127 research outputs found

    Towards Deeper Understanding in Neuroimaging

    Get PDF
    Neuroimaging is a growing domain of research, with advances in machine learning having tremendous potential to expand understanding in neuroscience and improve public health. Deep neural networks have recently and rapidly achieved historic success in numerous domains, and as a consequence have completely redefined the landscape of automated learners, giving promise of significant advances in numerous domains of research. Despite recent advances and advantages over traditional machine learning methods, deep neural networks have yet to have permeated significantly into neuroscience studies, particularly as a tool for discovery. This dissertation presents well-established and novel tools for unsupervised learning which aid in feature discovery, with relevant applications to neuroimaging. Through our works within, this dissertation presents strong evidence that deep learning is a viable and important tool for neuroimaging studies

    Acta Cybernetica : Volume 18. Number 2.

    Get PDF

    Separation Principles in Independent Process Analysis

    Get PDF

    Electroencephalograph (EEG) signal processing techniques for motor imagery Brain Computer interface systems

    Get PDF
    Brain-Computer Interface (BCI) system provides a channel for the brain to control external devices using electrical activities of the brain without using the peripheral nervous system. These BCI systems are being used in various medical applications, for example controlling a wheelchair and neuroprosthesis devices for the disabled, thereby assisting them in activities of daily living. People suffering from Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis and completely locked in are unable to perform any body movements because of the damage of the peripheral nervous system, but their cognitive function is still intact. BCIs operate external devices by acquiring brain signals and converting them to control commands to operate external devices. Motor-imagery (MI) based BCI systems, in particular, are based on the sensory-motor rhythms which are generated by the imagination of body limbs. These signals can be decoded as control commands in BCI application. Electroencephalogram (EEG) is commonly used for BCI applications because it is non-invasive. The main challenges of decoding the EEG signal are because it is non-stationary and has a low spatial resolution. The common spatial pattern algorithm is considered to be the most effective technique for discrimination of spatial filter but is easily affected by the presence of outliers. Therefore, a robust algorithm is required for extraction of discriminative features from the motor imagery EEG signals. This thesis mainly aims in developing robust spatial filtering criteria which are effective for classification of MI movements. We have proposed two approaches for the robust classification of MI movements. The first approach is for the classification of multiclass MI movements based on the thinICA (Independent Component Analysis) and mCSP (multiclass Common Spatial Pattern Filter) method. The observed results indicate that these approaches can be a step towards the development of robust feature extraction for MI-based BCI system. The main contribution of the thesis is the second criterion, which is based on Alpha- Beta logarithmic-determinant divergence for the classification of two class MI movements. A detailed study has been done by obtaining a link between the AB log det divergence and CSP criterion. We propose a scaling parameter to enable a similar way for selecting the respective filters like the CSP algorithm. Additionally, the optimization of the gradient of AB log-det divergence for this application was also performed. The Sub-ABLD (Subspace Alpha-Beta Log-Det divergence) algorithm is proposed for the discrimination of two class MI movements. The robustness of this algorithm is tested with both the simulated and real data from BCI competition dataset. Finally, the resulting performances of the proposed algorithms have been favorably compared with other existing algorithms

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Information Theory and Machine Learning

    Get PDF
    The recent successes of machine learning, especially regarding systems based on deep neural networks, have encouraged further research activities and raised a new set of challenges in understanding and designing complex machine learning algorithms. New applications require learning algorithms to be distributed, have transferable learning results, use computation resources efficiently, convergence quickly on online settings, have performance guarantees, satisfy fairness or privacy constraints, incorporate domain knowledge on model structures, etc. A new wave of developments in statistical learning theory and information theory has set out to address these challenges. This Special Issue, "Machine Learning and Information Theory", aims to collect recent results in this direction reflecting a diverse spectrum of visions and efforts to extend conventional theories and develop analysis tools for these complex machine learning systems
    corecore