22,884 research outputs found

    Preprocessing under uncertainty

    Get PDF
    In this work we study preprocessing for tractable problems when part of the input is unknown or uncertain. This comes up naturally if, e.g., the load of some machines or the congestion of some roads is not known far enough in advance, or if we have to regularly solve a problem over instances that are largely similar, e.g., daily airport scheduling with few charter flights. Unlike robust optimization, which also studies settings like this, our goal lies not in computing solutions that are (approximately) good for every instantiation. Rather, we seek to preprocess the known parts of the input, to speed up finding an optimal solution once the missing data is known. We present efficient algorithms that given an instance with partially uncertain input generate an instance of size polynomial in the amount of uncertain data that is equivalent for every instantiation of the unknown part. Concretely, we obtain such algorithms for Minimum Spanning Tree, Minimum Weight Matroid Basis, and Maximum Cardinality Bipartite Maxing, where respectively the weight of edges, weight of elements, and the availability of vertices is unknown for part of the input. Furthermore, we show that there are tractable problems, such as Small Connected Vertex Cover, for which one cannot hope to obtain similar results.Comment: 18 page

    Topology Control for Maintaining Network Connectivity and Maximizing Network Capacity Under the Physical Model

    Get PDF
    In this paper we study the issue of topology control under the physical Signal-to-Interference-Noise-Ratio (SINR) model, with the objective of maximizing network capacity. We show that existing graph-model-based topology control captures interference inadequately under the physical SINR model, and as a result, the interference in the topology thus induced is high and the network capacity attained is low. Towards bridging this gap, we propose a centralized approach, called Spatial Reuse Maximizer (MaxSR), that combines a power control algorithm T4P with a topology control algorithm P4T. T4P optimizes the assignment of transmit power given a fixed topology, where by optimality we mean that the transmit power is so assigned that it minimizes the average interference degree (defined as the number of interferencing nodes that may interfere with the on-going transmission on a link) in the topology. P4T, on the other hand, constructs, based on the power assignment made in T4P, a new topology by deriving a spanning tree that gives the minimal interference degree. By alternately invoking the two algorithms, the power assignment quickly converges to an operational point that maximizes the network capacity. We formally prove the convergence of MaxSR. We also show via simulation that the topology induced by MaxSR outperforms that derived from existing topology control algorithms by 50%-110% in terms of maximizing the network capacity

    Hypergraphic LP Relaxations for Steiner Trees

    Get PDF
    We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the partition LP relaxation introduced by Koenemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. Our results are the following. Structural results: We extend the technique of uncrossing, usually applied to families of sets, to families of partitions. As a consequence we show that any basic feasible solution to the partition LP formulation has sparse support. Although the number of variables could be exponential, the number of positive variables is at most the number of terminals. Relations with other relaxations: We show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is quasibipartite. Integrality gap upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap of these hypergraph relaxations in general graphs. In the special case of uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~ 1.216. By our equivalence theorem, the latter result implies an improved upper bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010

    Near-Minimal Spanning Trees: a Scaling Exponent in Probability Models

    Get PDF
    We study the relation between the minimal spanning tree (MST) on many random points and the "near-minimal" tree which is optimal subject to the constraint that a proportion δ\delta of its edges must be different from those of the MST. Heuristics suggest that, regardless of details of the probability model, the ratio of lengths should scale as 1+Θ(δ2)1 + \Theta(\delta^2). We prove this scaling result in the model of the lattice with random edge-lengths and in the Euclidean model.Comment: 24 pages, 3 figure
    • …
    corecore