10,623 research outputs found

    Preliminary design of a 100 kW turbine generator

    Get PDF
    The National Science Foundation and the Lewis Research Center have engaged jointly in a Wind Energy Program which includes the design and erection of a 100 kW wind turbine generator. The machine consists primarily of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades operates at 40 rpm and generates 100 kW of electrical power at 18 mph wind velocity. The entire assembly is placed on top of a tower 100 feet above ground level

    MULTIPAC, a multiple pool processor and computer for a spacecraft central data system, phase 2 Final report

    Get PDF
    MULTIPAC, multiple pool processor and computer for deep space probe central data syste

    Test signal generation for analog circuits

    Get PDF
    In this paper a new test signal generation approach for general analog circuits based on the variational calculus and modern control theory methods is presented. The computed transient test signals also called test stimuli are optimal with respect to the detection of a given fault set by means of a predefined merit functional representing a fault detection criterion. The test signal generation problem of finding optimal test stimuli detecting all faults form the fault set is formulated as an optimal control problem. The solution of the optimal control problem representing the test stimuli is computed using an optimization procedure. The optimization procedure is based on the necessary conditions for optimality like the maximum principle of Pontryagin and adjoint circuit equations

    Approach to In Situ Component Level Electronics Assembly Repair (CLEAR) for Constellation

    Get PDF
    Maintenance resupply is a significant issue for long duration space missions. Currently, the International Space Station (ISS) approaches maintenance primarily around replaceable modules called Orbital Replacement Units (ORU). While swapping out ORUs has served the ISS well keeping crew time for maintenance to a minimum, this approach assumes a substantial logistics capacity to provide replacement ORUs and return ORUs to Earth for repair. The ORUs used for ISS require relatively large blocks of replacement hardware even though the actual failed component may be several orders of magnitude smaller. The Component Level Electronics Assembly Repair (CLEAR) task was created to explore electronics repair down to the component level for future space missions. From 2006 to 2009, CLEAR was an activity under the Supportability project of the Exploration Technology Development Program. This paper describes the activities of CLEAR including making a case for component-level electronics repair, examination of current terrestrial repair hardware, and potential repair needs. Based on those needs, the CLEAR team proposes an architecture for an in-situ repair capability aboard a spacecraft or habitat. Additionally, this paper discusses recent progress toward developing in-space repair capabilities--including two spaceflight experiments-- and presents technology concepts which could help enable or benefit the same

    Automated testsystem of COGNISION headset for cognitive diagnosis.

    Get PDF
    There are more than 15 million Americans suffering from a chronic cognitive disability in the Unites States. Researchers have been exploring many different quantitative measures, such as event related potentials (ERP), electro-encephalogram (EEG), Magnetic Encephalogram (MEG) and Brain volumetry to accurately and repeatedly diagnose patients suffering from debilitating cognitive disorders. More than a million cases have been diagnosed every year, with many of those patients being misdiagnosed as a result of inadequate diagnostic and quality control tools. As a result, the medical device industry has been actively developing alternative diagnostic techniques, which implement one or more quantitative measures to improve diagnosis. For example, Neuronetrix (Louisville, KY) developed COGNISION™ that utilizes both ERP and EEG data to diagnose the cognitive ability of patients. The system has shown to be a powerful tool; however, its commercial success would be limited without lack of a fast and effective method of testing and validating the product. Thus, the goal of this study is to develop, test and validate a new “Testset” system for accurately and repeatedly validating the COGNISION™ Headset. A Testset was constructed that is comprised of a software control component designed using the Labview G programming language, which runs on a computer terminal, a Data Acquisition (DAQ) card and switching board. The Testset is connected to a series of testing fixtures for interfacing with the various components of the Headset. The Testset evaluates the Headset at multiple stages of the manufacturing process as a whole system or by its individual components. At the first stage of production the Electrode Strings, amplifier board (Uberyoke), and Headset Control Unit (HCU) are tested and operated as individual printed circuit boards (PCBs). These components are again tested as mid-level assemblies and/or at the finished product stage as a complete autonomous system with the Testset monitoring the process. All tests are automated, requiring only a few parameters to be defined before a test is initiated by a single button press, and then selected test sequences are begun for that particular component or system and are completed in a few minutes. A total of 2 Testsets were constructed and used to validate 10 Headsets. An automated software system was designed to control the Testset. The Testset demonstrated the ability to validate and test 100% of the individual components and completed assembled Headsets. The Testsets were found to be within 5% of the manufacturing specifications. Subsequently, the Automated Testset developed in this study enabled the manufacturer to provide a comprehensive report on the calibration parameters of the Headset, which is retained on file for each unit sold. The automated testsystem’s statistical analysis shows that the two Testsets yielded reliable and consistent results with each other

    Summer Institute in Biomedical Engineering, 1973

    Get PDF
    Bioengineering of medical equipment is detailed. Equipment described includes: an environmental control system for a surgical suite; surface potential mapping for an electrode system; the use of speech-modulated-white-noise to differentiate hearers and feelers among the profoundly deaf; the design of an automatic weight scale for an isolette; and an internal tibial torsion correction study. Graphs and charts are included with design specifications of this equipment

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Component-Level Electronic-Assembly Repair (CLEAR) System Architecture

    Get PDF
    This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers

    A study of selected environmental quality remote sensors for free flyer missions launched from the space shuttle

    Get PDF
    The sensors were examined for adaptability to shuttle by reviewing pertinent information regarding sensor characteristics as they related to the shuttle and Multimission Modular Spacecraft environments. This included physical and electrical characteristics, data output and command requirements, attitude and orientation requirements, thermal and safety requirements, and adaptability and modification for space. The sensor requirements and characteristics were compared with the corresponding shuttle and Multimission Modular Spacecraft characteristics and capabilities. On this basis the adaptability and necessary modifications for each sensor were determined. A number of the sensors were examined in more detail and estimated cost for the modifications was provided
    corecore