2,208 research outputs found

    Adaptive Middleware for Resource-Constrained Mobile Ad Hoc and Wireless Sensor Networks

    Get PDF
    Mobile ad hoc networks: MANETs) and wireless sensor networks: WSNs) are two recently-developed technologies that uniquely function without fixed infrastructure support, and sense at scales, resolutions, and durations previously not possible. While both offer great potential in many applications, developing software for these types of networks is extremely difficult, preventing their wide-spread use. Three primary challenges are: 1) the high level of dynamics within the network in terms of changing wireless links and node hardware configurations,: 2) the wide variety of hardware present in these networks, and: 3) the extremely limited computational and energy resources available. Until now, the burden of handling these issues was put on the software application developer. This dissertation presents three novel programming models and middleware systems that address these challenges: Limone, Agilla, and Servilla. Limone reliably handles high levels of dynamics within MANETs. It does this through lightweight coordination primitives that make minimal assumptions about network connectivity. Agilla enables self-adaptive WSN applications via the integration of mobile agent and tuple space programming models, which is critical given the continuously changing network. It is the first system to successfully demonstrate the feasibility of using mobile agents and tuple spaces within WSNs. Servilla addresses the challenges that arise from WSN hardware heterogeneity using principles of Service-Oriented Computing: SOC). It is the first system to successfully implement the entire SOC model within WSNs and uniquely tailors it to the WSN domain by making it energy-aware and adaptive. The efficacies of the above three systems are demonstrated through implementation, micro-benchmarks, and the evaluation of several real-world applications including Universal Remote, Fire Detection and Tracking, Structural Health Monitoring, and Medical Patient Monitoring

    Immersive interconnected virtual and augmented reality : a 5G and IoT perspective

    Get PDF
    Despite remarkable advances, current augmented and virtual reality (AR/VR) applications are a largely individual and local experience. Interconnected AR/VR, where participants can virtually interact across vast distances, remains a distant dream. The great barrier that stands between current technology and such applications is the stringent end-to-end latency requirement, which should not exceed 20 ms in order to avoid motion sickness and other discomforts. Bringing AR/VR to the next level to enable immersive interconnected AR/VR will require significant advances towards 5G ultra-reliable low-latency communication (URLLC) and a Tactile Internet of Things (IoT). In this article, we articulate the technical challenges to enable a future AR/VR end-to-end architecture, that combines 5G URLLC and Tactile IoT technology to support this next generation of interconnected AR/VR applications. Through the use of IoT sensors and actuators, AR/VR applications will be aware of the environmental and user context, supporting human-centric adaptations of the application logic, and lifelike interactions with the virtual environment. We present potential use cases and the required technological building blocks. For each of them, we delve into the current state of the art and challenges that need to be addressed before the dream of remote AR/VR interaction can become reality

    Cloud Services Brokerage for Mobile Ubiquitous Computing

    Get PDF
    Recently, companies are adopting Mobile Cloud Computing (MCC) to efficiently deliver enterprise services to users (or consumers) on their personalized devices. MCC is the facilitation of mobile devices (e.g., smartphones, tablets, notebooks, and smart watches) to access virtualized services such as software applications, servers, storage, and network services over the Internet. With the advancement and diversity of the mobile landscape, there has been a growing trend in consumer attitude where a single user owns multiple mobile devices. This paradigm of supporting a single user or consumer to access multiple services from n-devices is referred to as the Ubiquitous Cloud Computing (UCC) or the Personal Cloud Computing. In the UCC era, consumers expect to have application and data consistency across their multiple devices and in real time. However, this expectation can be hindered by the intermittent loss of connectivity in wireless networks, user mobility, and peak load demands. Hence, this dissertation presents an architectural framework called, Cloud Services Brokerage for Mobile Ubiquitous Cloud Computing (CSB-UCC), which ensures soft real-time and reliable services consumption on multiple devices of users. The CSB-UCC acts as an application middleware broker that connects the n-devices of users to the multi-cloud services. The designed system determines the multi-cloud services based on the user's subscriptions and the n-devices are determined through device registration on the broker. The preliminary evaluations of the designed system shows that the following are achieved: 1) high scalability through the adoption of a distributed architecture of the brokerage service, 2) providing soft real-time application synchronization for consistent user experience through an enhanced mobile-to-cloud proximity-based access technique, 3) reliable error recovery from system failure through transactional services re-assignment to active nodes, and 4) transparent audit trail through access-level and context-centric provenance

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure
    • …
    corecore