15,503 research outputs found
Determination of quantity and localization of liquid in the semi-solid state using both 3D X-ray microtomography and 2D techniques for steel thixoforming
The distribution of liquid at the semi solid state is one of the most important parameters for steel thixoforging. It has a great influence on the viscosity of the material, on the flows and finally on the final shape and mechanical properties of the thixoforged parts. Both ex situ and in situ 3D X-ray microtomography characterizations have been carried out to determine the quantity and localization of liquid at high temperature of M2 steel slugs. Microtomography was first performed ex situ at room temperature on samples heated and quenched from semi-solid state. The specimens were also scanned in situ directly at high temperature. The obtained results have been compared to 2D observations using EDS technique in SEM on heated and quenched specimens. They showed a good correlation making both approaches very efficient for the study of the liquid zones at the semi-solid state
In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor
Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor
Recommended from our members
X-Ray Microtomography of A Sulphide Rich Pallasite
The application of X-ray microtomography to the sulphide rich main group pallasite Hambleton is dicussed as an attempt to further understand pallasite genesis. X-ray microtomography is an under utilized technique for the study of diverse samples such as pallasites. The three-dimensional textures observed in Hambleton may be explained by introduction of a large sulphide volume under pressure into a metal-olivine mixture with metal approaching solidus temperature
Microstructural characterization of a Canadian oil sand
The microstructure of oil sand samples extracted at a depth of 75 m from the
estuarine Middle McMurray formation (Alberta, Canada) has been investigated by
using high resolution 3D X-Ray microtomography (CT) and Cryo Scanning
Electron Microscopy (CryoSEM). CT images evidenced some dense areas
composed of highly angular grains surrounded by fluids that are separated by
larger pores full of gas. 3D Image analysis provided in dense areas porosity
values compatible with in-situ log data and macroscopic laboratory
determinations, showing that they are representative of intact states. CT
hence provided some information on the morphology of the cracks and disturbance
created by gas expansion. The CryoSEM technique, in which the sample is freeze
fractured within the SEM chamber prior to observation, provided pictures in
which the (frozen) bitumen clearly appears between the sand grains. No evidence
of the existence of a thin connate water layer between grains and the bitumen,
frequently mentioned in the literature, has been obtained. Bitumen appears to
strongly adhere to the grains, with some grains completely being coated. The
curved shape of some bitumen menisci suggests a bitumen wet behaviour
Microstructure of chemically modified wood using X-ray computed tomography in relation to wetting properties
X-ray computed tomography (XCT) was utilized to visualize and quantify the 2D and 3D microstructure of acetylated southern yellow pine (pine) and maple, as well as furfurylated pine samples. The total porosity and the porosity of different cell types, as well as cell wall thickness and maximum opening of tracheid lumens were evaluated. The wetting properties (swelling and capillary uptake) were related to these microstructural characteristics. The data show significant changes in the wood structure for furfurylated pine sapwood samples, including a change in tracheid shape and filling of tracheids by furan polymer. In contrast, no such changes were noted for the acetylated pine samples at the high resolution of 0.8 mu m. The XCT images obtained for the furfurylated maple samples demonstrated that all ray cells and some vessel elements were filled with furan polymer while the fibers largely remained unchanged. Furfurylation significantly decreased the total porosity of both the maple and pine samples. Furthermore, this was observed in both earlywood (EW) and latewood (LW) regions in the pine samples. In contrast, the total porosity of pine samples was hardly affected by acetylation. These findings are in line with wetting results demonstrating that furfurylation reduces both swelling and capillary uptake in contrast to acetylation which reduces mostly swelling. Furfurylation significantly increased the cell wall thickness of both the maple and pine samples, especially at higher levels of furfurylation
Multi-scale characterisation of the 3D microstructure of a thermally-shocked bulk metallic glass matrix composite
Bulk metallic glass matrix composites (BMGMCs) are a new class of metal alloys which have significantly increased ductility and impact toughness, resulting from the ductile crystalline phases distributed uniformly within the amorphous matrix. However, the 3D structures and their morphologies of such composite at nano and micrometre scale have never been reported before. We have used high density electric currents to thermally shock a Zr-Ti based BMGMC to different temperatures, and used X-ray microtomography, FIB-SEM nanotomography and neutron diffraction to reveal the morphologies, compositions, volume fractions and thermal stabilities of the nano and microstructures. Understanding of these is essential for optimizing the design of BMGMCs and developing viable manufacturing methods
Morphological characterization of a polymeric microfiltration membrane by synchrotron radiation computed microtomography
Most commercial polymeric membranes are prepared by phase inversion. The performance of the membranes depends greatly on the morphology of the porous structure formed during the
different steps of this process. Researchers in this field have found it extremely difficult to foresee how a change in the composition of the polymer solution will affect pore formation without a set of methods designed to yield detailed knowledge of the morphological structure.
This paper reports the new potential associated with X-Ray synchrotron microtomography to characterize the 3D structure of a PvDF hollow fibre microfiltration membrane prepared by phase inversion. 3D morphological data obtained from the ID19 line at the ESRF are presented. The membrane actually appears as a complex three-dimensional bi-continuum of interconnected pores. Within the hollow fibre structure, different regions with various
thicknesses and pore size distributions have been identified and well characterized.
Transversal views show the anisotropic finger-like structure of pores, while longitudinal
sections reveal a honeycomb structure which resembles the structure of highly concentrated water in oil emulsion or dispersion. This typical structure might be obtained during the phase inversion process. How the phase inversion process may result in these morphologies is finally discussed
Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets
The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties
A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions
A new modular X-ray-transparent experimental cell enables tomographic investigations of fluid rock interaction under natural reservoir conditions (confining pressure up to 20 MPa, pore fluid pressure up to 15 MPa, temperature ranging from 296 to 473 K). The portable cell can be used at synchrotron radiation sources that deliver a minimum X-ray flux density of 109 photons mm−2s−1in the energy range 30–100 keV to acquire tomographic datasets in less than 60 s. It has been successfully used in three experiments at the bending-magnet beamline 2BM at the Advanced Photon Source. The cell can be easily machined and assembled from off-the-shelf components at relatively low costs, and its modular design allows it to be adapted to a wide range of experiments and lower-energy X-ray sources.</jats:p
- …