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A new modular X-ray-transparent experimental cell enables tomographic

investigations of fluid rock interaction under natural reservoir conditions

(confining pressure up to 20 MPa, pore fluid pressure up to 15 MPa,

temperature ranging from 296 to 473 K). The portable cell can be used at

synchrotron radiation sources that deliver a minimum X-ray flux density of

109 photons mm�2 s�1 in the energy range 30–100 keV to acquire tomographic

datasets in less than 60 s. It has been successfully used in three experiments at

the bending-magnet beamline 2BM at the Advanced Photon Source. The cell

can be easily machined and assembled from off-the-shelf components at

relatively low costs, and its modular design allows it to be adapted to a wide

range of experiments and lower-energy X-ray sources.

Keywords: high-energy microtomography; in situ studies; porous media.

1. Introduction

Movement of fluids in rock is of fundamental interest for geothermal

energy and fossil fuel extraction, CO2 sequestration and nuclear

waste storage. Fluids interacting with rocks critically affect the rocks’

mechanical and chemical properties at all scales, from crystal lattice

to plate tectonic (e.g. Griggs, 1967; Regenauer-Lieb et al., 2001).

Consequently, the behaviour and migration of fluids in rocks have

been extensively studied [see reviews by, for example, Rumble

(1989), Ferry (1994) and Ingebritsen & Manning (2010) for meta-

morphic fluid migration]. Laboratory studies used to rely on indirect

measurements and post mortem analyses to quantify the various

aspects of fluid migration in porous rocks [see, for example, Kranz et

al. (1990) and David et al. (1994) amongst numerous others], but over

the last 25 years techniques such as magnetic resonance imaging,

neutron and X-ray tomography have changed our experimental

approaches [see, for example, Kimmich (1997), Kaestner et al. (2008),

Webber (2012) and Wildenschild & Sheppard (2013) for overviews].

However, only the latest generation of synchrotron-based X-ray

microtomography beamlines are capable of imaging fluid flow and

fluid–rock interactions in cells that are robust enough to simulate

conditions in geological reservoirs. Here we present a simple and

cost-effective experimental cell that allows imaging of fluid–rock

interaction at confining pressures of up to 20 MPa and temperatures

up to 473 K. So far, the cell has been successfully employed in three

experiments at beamline 2-BM at the Advanced Photon Source

(USA).

2. The experimental cell and its periphery

The cell is a miniature version of a Hassler core holder with inde-

pendent control of confining pressure and fluid infiltration. It consists

of upper and lower stainless steel end-caps that hold an X-ray-

transparent aluminium pressure vessel containing the millimetre-

sized sample in between them (Figs. 1 and 2). Three support rods with

threaded ends connect to nuts at the upper and lower end-caps and

support the confining pressure applied in the cell. All connections for

the confining oil and pore fluid circuits are through high-pressure

liquid chromatography fittings in the upper and lower end-caps of the

cell. The fittings connect to short stainless steel tubes, which them-

selves connect to flexible PEEK (polyether ether ketone) tubes to

allow the cell to rotate freely on the rotation stage. A small spill

container is attached to the base of the cell, which itself connects to a

magnetic base that fits the air-bearing stages available at the beam-

line. The cell uses commercially available components where possible

and readily available materials for parts that need to be machined

(Fig. 2). Parts, materials and suppliers are listed in Table S1 of the

supporting information, as well as technical drawings of the machined

parts.1

The sample is mounted inside the central aluminium pressure

vessel, in between two stainless steel tube stubs. The lower stub is

permanently threaded into the base, whereas the upper stub is

1 Supporting information for this paper is available from the IUCr electronic
archives (Reference: PP5039).
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inserted through the top, is adjusted to the sample height and held in

place using a fitting on the upper end-cap. Currently, the cell can

accommodate cylindrical samples with diameters of up to 3 mm. The

length of the sample is defined by the application and field of view.

The sample is jacketed by a combination of elastic silicone and high-

temperature heat shrink tubes and sealed from the confining silicone

oil through a combination of O-rings and windings of thin steel wire

that provided an excellent seal (see Fig. S1).

In our experiments, confining pressure is applied to the sample

using a manually operated piston screw pump (Fig. 2). The heat-

resistant confining oil is pumped into the space between the wall of

the aluminium pressure vessel and the jacketed sample. Confining

pressure is monitored using a pressure gauge at the pump. An

adjustable pressure-release valve prevents overpressurization.

Multiple-day experiments were conducted at a confining pressure of

15 MPa, with a higher pressure reached over short periods and during

the off-line safety testing. The central pressure vessel has a wall

thickness of 4 mm, is made from cold-worked aluminium, and is

specified to withstand a bursting pressure of up to 60 MPa. We also

tested a pressure vessel and support rods made from 6082-T6 alloy

and found that these components are fully compatible with the

beamline set-up. 6082-T6 aluminium alloy has a proof stress of

310 MPa, resulting in a bursting strength of the aluminium vessel of

172 MPa. Due to the substantially increased safety margin, we

recommend using this alloy to machine the pressure vessel and

support rods (see also Table S1).

Fluid can be pumped through the sample using a high-pressure

syringe pump (Fig. 2). At the down-stream end an adjustable back-

pressure regulator sets the pore fluid pressure. Fluid pressure is

monitored using pressure gauges before and after the sample.

The cell is heated by two band heaters mounted around the upper

and lower end-caps (Figs. 1 and S2), with a supporting heating mat

wrapped around the upper half of the aluminium pressure vessel to

counter excessive thermal loss. The heaters are monitored by two

adhesive type-K thermocouples mounted in between the heaters and

the cell and controlled by two on–off controllers (Table S1). A third,

sheathed, thermocouple is inserted into the fluid pressure circuit

through the top of the cell, with the tip placed a few millimetres above

the sample, sealed and held in place by a fitting at the top of the cell.

This thermocouple is logged remotely. The temperature difference

between the heaters and the sample was found to be 15 K (at 473 K

heater temperature). A thermal insulation shield sandwiched in

between the spill container and the magnetic base minimizes

conductive heat loss towards the rotating stage.

The modularity of the cell allows for individual parts to be

exchanged and adapted to specific experimental requirements.

Besides the heated cell shown in Fig. 1, a second ambient-tempera-

ture, low confining/pore fluid pressure (up to 373 K, up to 5 MPa) cell

uses fibre-glass reinforced PEEK (Table S1) for the top and base

parts and quartz glass cylinders for the central X-ray-transparent part

(see supporting technical drawings). This cell is used for fluid infil-

tration/imbibition experiments at ambient temperature and under

low pore- and confining pressure conditions (�1 MPa).

3. Data acquisition and application

The cell was tested and improved at beamline 2-BM at the Advanced

Photon Source. Beamline 2-BM is a dedicated tomography beamline

with a bending-magnet source. Experiments were conducted in the

upstream experimental station 25 m from the source. There, a poly-

chromatic beam filtered by 1 mm aluminium, 15 mm silicon and 8 mm

borosilicate glass yielded a photon flux with an energy peak at 65 keV

(Fig. S3). The filters were used to eliminate X-rays below 30 keV,

which would have introduced beam-hardening artefacts. A Cooke

pco.dimax CMOS camera with 2016� 2016 pixels (pixel size 11 mm�

11 mm) was used in a scan mode in which projections are recorded

while the sample is continuously rotated (i.e. the stage rotation does

not stop in between image acquisitions). The camera recorded

projections from a 100 mm-thick LuAG:Ce single-crystal scintillator,

magnified through a 7.5� Mitutoyo long-working-distance lens

yielding a pixel side length of 1.47 mm. The sample–scintillator

distance was 300 mm. Projections were collected with an exposure

time of 10 ms while the sample was rotated over 180� at 9� s�1.

1800 projections were collected in 20 s. A single-distance phase

retrieval algorithm (Paganin et al., 2002) was used to reconstruct

tomographic datasets.
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Figure 2
Sketch of the set-up of the cell and its peripheral hardware.

Figure 1
The assembled cell, with the two bracket heaters mounted around the upper and
lower end-caps and the internal thermocouple inserted through the top of the cell.
Note that, in experimental use, a magnetic base is fixed to the bottom spill
container, which connects to the air-bearing stage at the beamline. See text for
further explanation.



So far the heated (i) and ambient-temperature (ii, iii) cells have

been successfully used in three experiments (Fig. S4), all of which are

still being analysed:

(i) Real-time evolution of pore structure during in situ carbonation

of porous olivine aggregates (forsterite, Mg2SiO4). In an olivine

carbonation experiment a sintered olivine sample was subjected to a

constant confining pressure Pc of 15 MPa while a sodium bicarbonate

solution (NaHCO3 at 1.5 M) was injected into the olivine sample at a

fluid pressure of 10 MPa. Subsequently, the cell was heated to 473 K

for a total duration of �72 h. Under these conditions, olivine disso-

lution and magnesite (MgCO3) precipitation cause considerable

alteration in the existing pore space. Microtomography datasets

collected at different stages of the carbonation process reveal

progressive growth of new crystals [Fig. S4(a)].

(ii) Oil/water imbibition experiments in a dolomitic reservoir rock

to reproduce results from Pak et al. (2013) with a higher temporal

resolution than achieved with a laboratory tomograph in Edinburgh.

A KI-doped aqueous solution was replaced with dodecane

[CH3(CH2)10CH3], a low viscosity alkane [Fig. S4(b)]. This experi-

ment was conducted at ambient temperature and under a moderate

confining pressure Pc of 1 MPa [Fig. S4(b)].

(iii) Infiltration of dodecane [CH3(CH2)10CH3] and KI-doped

aqueous solution into a reservoir sandstone across the top surface of

the sample to study boundary effects. This experiment was conducted

at ambient temperature and under a moderate confining pressure Pc

of 1 MPa.

4. Conclusions

We present a simple experimental cell that allows microtomographic

visualization of fluid flow and fluid–rock interaction in porous rocks

at reservoir conditions. The cell is designed for synchrotron-based

X-ray microtomography and so far has been used at the bending-

magnet source beamline 2-BM at the Advanced Photon Source.

Successful tests proved that it allows for fast (i.e. in seconds) scanning

of a millimetre-sized sample at 473 K and 15 MPa using a polychro-

matic beam with a photon flux larger than 109 photons mm�2 s�1 in

the energy range between 30 and 100 keV. Its simplicity and modu-

larity allow for the design to be adapted to specific experimental

requirements and lower-energy sources easily and make the cell a

low-cost platform for future technical developments. The cell

contributes towards investigating a wide range of geological reser-

voirs in time-resolved three-dimensional studies. The time- and

space-resolved experiments that become possible with the cell will

contribute significantly to our understanding of the dynamics of

geothermal reservoirs, CO2 sequestration and high-level radioactive

waste repositories.
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