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Abstract. The distribution of liquid at the semi solid state is one of the most important parameters for 

steel thixoforging. It has a great influence on the viscosity of the material, on the flows and finally on 

the final shape and mechanical properties of the thixoforged parts. 

Both ex situ and in situ 3D X-ray microtomography characterizations have been carried out to 

determine the quantity and localization of liquid at high temperature of M2 steel slugs. 

Microtomography was first performed ex situ at room temperature on samples heated and quenched 

from semi-solid state. The specimens were also scanned in situ directly at high temperature. The 

obtained results have been compared to 2D observations using EDS technique in SEM on heated and 

quenched specimens. They showed a good correlation making both approaches very efficient for the 

study of the liquid zones at the semi-solid state. 

Introduction 

Semi-solid forming is an innovative technology offering the opportunity to manufacture complex 

components with high mechanical properties in one step. Thixoforging which involves heating the 

feedstock into the semi-solid state with a low liquid fraction is of interest to scientists and industries.  

Therefore, fundamental knowledge on the microstructure evolution in the heating step is of great 

importance, including the spheroidization of solid grains, formation, location and volume fraction of 

liquid phase. These parameters are critical for effective process control, since they affect the 

microstructure development [1], rheological behavior [2] and therefore the material flow [3] during 

processing. 

Classically, the characterization and quantification of these parameters are normally performed on 

a 2D polished and etched surface of solid material quenched from the semi-solid state.  However, a 

random 2D section may lead to some error in shape factor, grain size distribution and liquid 

quantification, in particular- because the solid grains are not spherical but have a complex shape due 

to the agglomeration process in the semi-solid state. These parameters can only be precisely 

determined by 3D investigation after quenching, when the microstructure is preserved from the 

semi-solid state. The serial sectioning technique can be used for observing the 3D microstructures [4], 

but also non-destructive X-ray microtomography [5, 6]. Moreover, the microstructure evolution 

during heating can also be investigated insitu at high temperature with this technique [7]. However, 

such experiments are mainly performed on aluminum alloys.  

In the present work, two different states of M2 steel are investigated: as-received and semi-solid 

state. The instrumental device and the experimental procedure are described. The microstructure 

evolution during heating to the semi-solid state is analyzed and discussed. By comparing the results 

obtained by various techniques, the former liquid zones are finally well identified and quantified. 
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Experimental Methods 

The M2 high-speed tool steel (solidification range: 1200°C ~1420°C) was chosen because of its 

large freezing range and low solidus temperature which are suitable for thixoforming process. 

Especially, its high content of alloying elements permits a good absorption contrast between solid and 

liquid phases for X-ray microtomography. The chemical composition of M2 steel is given in Table 1. 

 

Table. 1 Chemical composition of M2 steel 

Weight % C Mn Mo Si Cr V W 

M2 0.85 0.25 5.0 0.035 4.1 1.9 6.4 

 

In order to study the microstructure evolution, the M2 slug was partially induction heated to 

semi-solid state by a direct remelting route. Due to the skin effect, the temperature field was not 

uniform in the slug, meaning some zones were in the semi-solid state at high temperature, while 

others remained totally solid, similar to the as-received state as shown in Fig. 1. During heating, the 

temperature was measured by a pyrometer. After heating for 120s, the temperature at the point C 

reached to 1250°C and the slug was directly quenched in the water in order to preserve the former 

structure at the semi-solid state. The cylindrical samples with a diameter of 1.2mm were 

electrodischarge-machined from the quenched slug in different directions for the X-ray 

microtomography experiments. Here, we mainly focus on one sample as shown in Fig. 1. 

 

 
Fig. 1. Schematic view of temperature distribution during induction heating. 

 

X-ray microtomography experiments were realized at room temperature at the ESRF, ID15A 

beamline, in Grenoble. Before testing, the sample was mounted on a translation-rotation stage which 

is used for aligning the sample with the X-ray beam. In the test, X-rays go through the sample which 

is continuously rotating 360° with a high constant energy (60keV). A fast DALSTAR Pantera 1M60 

CCD is used to record the transmitted beam. The exposure time of this camera is 25ms. For one scan, 

3600 projections with the effective pixel size of 1.2µm were obtained. After reconstruction, the 3D 

representation of the microstructure was processed and analyzed with ImageJ.  

In order to identify the microstructure represented in 3D, 2D microstructure observations were 

also performed. The distribution of various chemical compositions was studied by Energy Dispersive 

Spectrometry (EDS). A Jeol 7001FLV Scanning Electron Microscope (SEM) was used to 

characterize the microstructure, such as the phases, grain size and shape. Here, the observed samples 

in 2D were etched by 2% Nital (2 ml HNO3 + 98ml ethanol). 



 

Results and discussion 

High energy X-ray microtomography experiments were first performed on the as-received M2 

steel grade. Fig. 2 presents a 2D tomographic slice on transversal section and a 3D reconstructed stack 

of a sample at the as-received state. The black zones represent porosities. In Fig. 2(a), typical 

segregation bands are observed for this commercially rolled M2 grade. In order to characterize the 

white and grey zones, SEM and EDS experiments were performed. 

 

 
Fig. 2. X-ray microtomographic results of as-received M2 steel in (a) 3D and (b) 2D. 

 

Fig. 3 presents the SEM micrographs of as-received M2 steel on transversal and longitudinal 

directions. Two different types of carbides (MC and M6C) presented in the as-received material were 

confirmed by EDS, Fig.3: the whiter particles are M6C carbides which are rich in W and Mo, while 

the darker ones are MC carbides riching in V, W and Mo. These carbide particles are distributed in the 

martensite matrix and along grain boundaries. The microsegregation bands are observed in 

longitudinal surface (shown in Fig. 2(a) and Fig. 3(b)). The average equiaxed grain size is 10µm 

measured adopting the mean lineal intercept method as outlined in ASTM E112-96.  

 

 
Fig. 3. SEM micrographs of as-received M2 steel on (a) transversal direction and (b) longitudinal 

direction with two kinds of carbides: M6C and MC. 

 



 

Comparing the results obtained by these two techniques, the white zones in tomographic slices are 

confirmed to be carbides particles. However, due to the resolution (3µm) of X-ray microtomography, 

some small carbide particles (<1µm) are not distinguished or some isolated carbides particles with a 

distance less than 3µm are probably shown as one big large particle.  

3D tomographic images and SEM micrographs of heated and quenched M2 steel at different 

heights are shown in Fig. 4. The tomographic images show the spatial distribution of the carbides in 

the material: the white corresponds to carbide particles, black to pores and dark gray to the matrix. 

These images can be directly compared since the same amount of material is concerned with the same 

magnification in each case. As shown in Fig. 1, the temperature field is not uniform in sample due to 

the penetration depth and conduction: the temperature increases with increasing height. Thereby, the 

microstructures at different height are different in grain size and morphology. At the bottom (Fig. 

4(c)), due to the heat exchange between the material and ceramic, the material remains at the solid 

state showing a similar microstructure to the one at the as-received state as shown in Fig. 2: separated 

fine carbide particles are distributed in the matrix and along grain boundaries. With increasing height, 

the temperature increases. The original carbide particles are dissolved and the alloying elements start 

diffusing to the liquid zones where the solubility is higher. As well known, liquid preferably develops 

from the grain boundaries due to their high content of alloying elements. During quenching, new 

carbides are created from the liquid zones as illustrated in Fig. 4(b) (H ≥15mm in Fig. 1). The 

diffusion process is enhanced with increasing height; the original carbides are further dissolved. 

Finally, the original carbides are completely dissolved with the diffusion of the alloying elements to 

the liquid zones forming interconnected new carbides after quenching. One can also observe the 

entrapped liquid which corresponds to the fine carbide particles in the matrix. From the images, it can 

be found that there is a significant grain growth from 10µm to 45µm at high temperature as compared 

with the one at the as-received state. As well known, the grain growth is thermally activated: the 

grains grow with increasing temperature and holding time. However, the grain size at high 

temperature is still relatively small which can be explained by pinning effect [8]: a big amount of 

carbides (see Fig.3) contained in the M2 steel is responsible for inhibiting the grain growth during 

heating. Omar et al. [9] mentioned that the carbides restrict the grain growth during the ferrite-to 

austenite phase transformation of M2 which takes place around 800°C.  

 

 
Fig. 4. Tomographic stacks (above) and SEM images (below) of quenched M2 at various heights.  

 



 

When comparing SEM micrographs and X-ray microtomographic images, they are in quite good 

agreement. The real volume fraction of liquid can be measured by image analysis with an image 

processing software ImageJ. Fig. 5 shows the evolution of the volume fraction of carbide as a 

function of height. As can be seen from the curve, over the height interval from 0mm to 12mm, the 

carbide fraction of material stabilizes at 11±1%. Then, from the height of 12mm to 17mm, the carbide 

fraction grows rapidly from 11±1% to 15±1%. Subsequent to the rapid growth, it increases slowly 

until reaching the value of 21±1%. The material from the bottom up to the height of 12 is assumed to 

be at the solid state, because the microstructure (showing small separated carbide particles are 

distributed in the matrix and along grain boundaries) and the volume fraction of carbides (11±1%) are 

similar to those at the as-received state. When the carbides are dissolved, the material contains liquid 

phase and austenite grains. The new carbides are formed instead of liquid zones during subsequent 

quenching process. In this case, the volume fraction of carbides (FC) is equal to the former liquid 

fraction (FL). Using SEM, it is found that at the height of 15mm, the original carbide particles are 

completely dissolved and new carbides are formed. Based on this, the carbide fraction over 13±1% is 

considered to be equal to the volume fraction of liquid.   

 

 
Fig. 5. Volume fraction of liquid as a function of the height for Sample 1. 

Conclusion 

The microstructure evolution of the M2 steel during heating to the semi-solid state was examined 

with both 2D and 3D techniques. Different types of carbides (MC-type and M6C-type) at both 

as-received state and quenched from semi-solid state were identified by EDS. 3D X-ray 

microtomography illustrates the distribution of carbides: the as-received material showed 

microsegregation bands in longitudinal section and small carbides in transverse section, while after 

being induction-heated and water-quenched, new large interconnected carbides were formed, 

corresponding to the liquid zones at semi-solid state. The grains were growing, and the solid phase 

was surrounded with the liquid zones at high temperature. The real volume fraction of carbide was 

calculated on X-ray tomographic stacks. Furthermore, the good agreement between 2D SEM-EDS 

microstructures and 3D X-ray microtomography results proves that both kinds of techniques are just 



 

as efficient in characterizing high-alloyed steels in the semi-solid state. The high energy X-ray 

microtomography was proven to be a powerful tool for this kind of study. In addition, owing to their 

high resolution and easy access, SEM and EDS techniques should also be applied for 

characterization. 
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