173 research outputs found

    Disruption Management in Passenger Railways

    Get PDF

    Disruption Management in Passenger Railways

    Get PDF

    Train scheduling with application to the UK rail network

    No full text
    Nowadays, transforming the railway industry for better performance and making the best usage of the current capacity are the key issues in many countries. Operational research methods and in particular scheduling techniques have a substantial potential to offer algorithmic solutions to improve railway operation and control. This thesis looks at train scheduling and rescheduling problems in a microscopic level with regard to the track topology. All of the timetable components are fixed and we aim to minimize delay by considering a tardiness objective function and only allowing changes to the order and to the starting times of trains on blocks. Various operational and safety constraints should be considered. We have achieved further developments in the field including generalizations to the existing models in order to obtain a generic model that includes important additional constraints. We make use of the analogy between the train scheduling problem and job shop scheduling problem. The model is customized to the UK railway network and signaling system. Introduced solution methods are inspired by the successful results of the shifting bottleneck to solve the job shop scheduling problems. Several solution methods such as mathematical programming and different variants of the shifting bottleneck are investigated. The proposed methods are implemented on a real-world case study based on London Bridge area in the South East of the UK. It is a dense network of interconnected lines and complicated with regard to stations and junctions structure. Computational experiments show the efficiency and limitations of the mathematical programming model and one variant of the proposed shifting bottleneck algorithms. This study also addresses train routing and rerouting problems in a mesoscopic level regarding relaxing some of the detailed constraints. The aim is to make the best usage of routing options in the network to minimize delay propagation. In addition to train routes, train entry times and orders on track segment are defined. Hence, the routing and scheduling decisions are combined in the solutions arising from this problem. Train routing and rerouting problems are formulated as modified job shop problems to include the main safety and operational constraints. Novel shifting bottleneck algorithms are provided to solve the problem. Computational results are reported on the same case study based on London Bridge area and the results show the efficiency of one variant of the developed shifting bottleneck algorithms in terms of solution quality and runtime

    A rolling horizon approach for the locomotive routing problem at the Canadian National Railway Company

    Full text link
    Cette thèse étudie le problème du routage des locomotives qui se pose à la Compagnie des chemins de fer nationaux du Canada (CN) - le plus grand chemin de fer au Canada en termes de revenus et de taille physique de son réseau ferroviaire. Le problème vise à déterminer la séquence des activités de chaque locomotive sur un horizon de planification donné. Dans ce contexte, il faut prendre des décisions liées à l'affectation de locomotives aux trains planifiés en tenant compte des besoins d'entretien des locomotives. D’autres décisions traitant l'envoi de locomotives aux gares par mouvements à vide, les déplacements légers (sans tirer des wagons) et la location de locomotives tierces doivent également être prises en compte. Sur la base d'une formulation de programmation en nombres entiers et d'un réseau espace-temps présentés dans la littérature, nous introduisons une approche par horizon roulant pour trouver des solutions sous-optimales de ce problème dans un temps de calcul acceptable. Une formulation mathématique et un réseau espace-temps issus de la littérature sont adaptés à notre problème. Nous introduisons un nouveau type d'arcs pour le réseau et de nouvelles contraintes pour le modèle pour faire face aux problèmes qui se posent lors de la division de l'horizon de planification en plus petits morceaux. Les expériences numériques sur des instances réelles montrent les avantages et les inconvénients de notre algorithme par rapport à une approche exacte.This thesis addresses the locomotive routing problem arising at the Canadian National Railway Company (CN) - the largest railway in Canada in terms of both revenue and the physical size of its rail network. The problem aims to determine the sequence of activities for each locomotive over the planning horizon. Besides assigning locomotives to scheduled trains and considering scheduled locomotive maintenance requirements, the problem also includes other decisions, such as sending locomotives to stations by deadheading, light traveling, and leasing of third-party locomotives. Based on an Integer Programming formulation and a Time-Expanded Network presented in the literature, we introduce a Rolling Horizon Approach (RHA) as a method to find near-optimal solutions of this problem in acceptable computing time. We adapt a mathematical formulation and a space-time network from the literature. We introduce a new type of arcs for the network and new constraints for the model to cope with issues arising when dividing the planning horizon into smaller ones. Computational experiments on real-life instances show the pros and cons of our algorithm when compared to an exact solution approach

    Delay Management and Dispatching in Railways

    Get PDF
    Passenger railway transportation plays a crucial role in the mobility in Europe. Since the privatization of the railway sector in the 90s, passenger satisfaction has become an important performance indicator in this sector. A key aspect for passengers is the reliability of transfers between trains. When a train arrives at the station with a delay, passengers might miss their connection if the next train departs on time. These passengers then prefer the connecting train to wait, but this introduces delays for many other passengers. Delay Management is a field in railway operations that deals with this situation. It determines whether a connecting train should wait for the passengers that arrive with a delayed train or should depart on time. In this thesis, we apply techniques from Operations Research to develop models and solution approaches for Delay Management. The objective in our models is the minimization of passenger delay. First, we extend the classical delay management model with passenger rerouting. This allows us to compute the exact delays for passengers. We develop an exact algorithm and several heuristics to solve this extension. Then, we incorporate the limited capacity of the stations in our models. Stations are the bottlenecks of the railway infrastructure, where delays of one train can easily propagate to other trains. When optimizing the wait-depart decisions, these secondary delays should be considered. We therefore develop an integrated model that includes headway constraints for trains on the same track in the station and an iterative approach that evaluates the timetable microscopically

    Decision Support for the Rolling Stock Dispatcher

    Get PDF

    Efficiency and Robustness in Railway Operations

    Get PDF

    Practice Oriented Algorithmic Disruption Management in Passenger Railways

    Get PDF
    How to deal with a disruption is a question railway companies face on a daily basis. This thesis focusses on the subject how to handle a disruption such that the passenger service is upheld as much as possible. The current mathematical models for disruption management can not yet be applied in practice, because several important practical considerations are not taken into account. In this thesis several models are presented which take important practical details into account: (1) Creating a macroscopic global feasible solution for all three resource schedules, instead of focussing on one individual resource schedule. (2) Scheduled maintenance appointments required

    Ant Colony Optimisation for Dynamic and Dynamic Multi-objective Railway Rescheduling Problems

    Get PDF
    Recovering the timetable after a delay is essential to the smooth and efficient operation of the railways for both passengers and railway operators. Most current railway rescheduling research concentrates on static problems where all delays are known about in advance. However, due to the unpredictable nature of the railway system, it is possible that further unforeseen incidents could occur while the trains are running to the new rescheduled timetable. This will change the problem, making it a dynamic problem that changes over time. The aim of this work is to investigate the application of ant colony optimisation (ACO) to dynamic and dynamic multiobjective railway rescheduling problems. ACO is a promising approach for dynamic combinatorial optimisation problems as its inbuilt mechanisms allow it to adapt to the new environment while retaining potentially useful information from the previous environment. In addition, ACO is able to handle multi-objective problems by the addition of multiple colonies and/or multiple pheromone and heuristic matrices. The contributions of this work are the development of a junction simulator to model unique dynamic and multi-objective railway rescheduling problems and an investigation into the application of ACO algorithms to solve those problems. A further contribution is the development of a unique two-colony ACO framework to solve the separate problems of platform reallocation and train resequencing at a UK railway station in dynamic delay scenarios. Results showed that ACO can be e ectively applied to the rescheduling of trains in both dynamic and dynamic multi-objective rescheduling problems. In the dynamic junction rescheduling problem ACO outperformed First Come First Served (FCFS), while in the dynamic multi-objective rescheduling problem ACO outperformed FCFS and Non-dominated Sorting Genetic Algorithm II (NSGA-II), a stateof- the-art multi-objective algorithm. When considering platform reallocation and rescheduling in dynamic environments, ACO outperformed Variable Neighbourhood Search (VNS), Tabu Search (TS) and running with no rescheduling algorithm. These results suggest that ACO shows promise for the rescheduling of trains in both dynamic and dynamic multi-objective environments.Engineering and Physical Sciences Research Council (EPSRC
    • …
    corecore