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l)DISRUPTION MANAGEMENT IN PASSENGER RAILWAYS

MODELS FOR TIMETABLE, ROLLING STOCK AND CREW RESCHEDULING

Every day a significant number of people choose for the railways as a comfortable and
sustainable way of transportation. In order to accommodate the journeys of a large
number of railway passengers, extensive planning is necessary. Unfortunately, the execu -
tion of the plans is frequently disrupted by unexpected events. For railway operators it is
quite a challenge to deal with these disruptions as even small deviations from the plan can
have large influences on the timetable, the rolling stock schedule and the crew schedule.
More severely, these events reduce the available transport capacity and interrupt the
mobility of the passengers. 

This thesis discusses several models and solution approaches for railway disruption
management based on algorithmic techniques from Operations Research. The main focus
is to reduce the inconvenience passengers experience during disruptions. This is achieved
by improving the disruption management approaches for timetable, rolling stock and crew
rescheduling proposed within the scientific community. The existing models are extended
by introducing greater flexibility, e.g. allowing small delays in the crew rescheduling or
addition stops in the rolling stock rescheduling. As a result fewer trains are cancelled
during disruptions and passengers have more options to reach their destination. Although
some inconvenience will remain, as much as possible is mitigated.
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Chapter 1

Introduction

1.1 Motivation

Railways: A transportation mode in which trains run on dedicated tracks to transport passengers

or freight from one location to another. It looks that simple. One needs a track, a physical train

(also called rolling stock) and a driver, and ahead it goes. However, if a railway operator has

promised to serve several thousands of trains a day in its timetable, it becomes more complex.

It then needs thousands of rolling stock units and thousands of drivers. To be more efficient, the

operator does not hire for each train service another driver and does not buy the same amount of

rolling stock as the number of train services it operates. Rolling stock can be used sequentially

for different services, and the same is true for drivers.

If a crew member has to operate a certain service between two locations, it is called a task.

For rolling stock units a task means that the rolling stock is used for a certain service between

two stations. For each crew member and rolling stock unit there is a list of sequential tasks they

have to perform on one day, which is called a duty. Over the years railway operators have made

the duties for rolling stock and crew as efficient as possible to reduce hiring or purchasing costs.

A disadvantage of these efficient schedules is that, if something goes wrong, the effect on

the railway system can be severe. For example, if there is a separate rolling stock unit for each

train service, a broken rolling stock unit requires the operator to find rolling stock for just one

service. However if the broken rolling stock unit was assigned to multiple train services in its

duty, for all these services new rolling stock must be found. If there are train services for which

no rolling stock can be found, these services need to be cancelled. Cancelling a train service is

the last option for an operator since it will lead to large delays for passengers. The passengers

of the cancelled train service have to find another route to their destination and the train services

which are not cancelled become more crowded.
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2 Introduction

Another example in which the efficient schedules can lead to problems is the following.

Suppose there is a crew member who first has to operate a train from Woerden to Rotterdam,

then his next task is to operate a train from Rotterdam to Woerden and the crew member ends his

duty by driving a train from Woerden to Eindhoven. During operations, after the crew member

has arrived in Rotterdam, the tracks between Rotterdam and Woerden are taken out of service

due to a broken overhead line. The dispatchers of the railway operator then have to solve several

problems. The dispatchers have to check whether they could get the crew member to Woerden

in time such that he could still perform the last task in his duty. If this is not possible, the

dispatchers have to ensure that the crew member can still reach his final destination (Eindhoven)

and the dispatchers have to find another crew member to operate the train between Woerden and

Eindhoven in time. This example considers just one train between Rotterdam and Woerden, but,

as one can imagine, if multiple trains run between Rotterdam and Woerden, multiple duties of

crew members (and rolling stock units) are affected and the dispatchers of the railway operator

have a hard time to find a solution for all these affected duties.

1.2 Disruption Management

Many cases exist where irregularities disturb the operations of trains. Disruptions are in this the-

sis defined as unexpected events which require that several train services need to be cancelled

due to unavailability of infrastructure, rolling stock or crew. Examples include a blockage of

certain tracks due to broken overhead lines, an accident with other traffic or a malfunctioning

rolling stock unit. If a disruption occurs, the timetable, rolling stock schedule and crew sched-

ule become infeasible. Since disruptions occur unexpectedly, the operator has to make these

schedules feasible again within a real-time environment. This is called disruption management.

One goal is to make the schedules feasible again. However, it is even more important that

the passengers face as little inconvenience as possible. Therefore, the focus should be to mini-

mize the number of train services which need to be cancelled by lack of rolling stock or crew.

Furthermore, the capacity of the rolling stock assigned to a train service should match the de-

mand for that service. This means that for rolling stock rescheduling also predictions about the

demand should be available.

The disruption management process consists of finding a new timetable, finding rolling

stock for every train service in the new timetable, and finding crew to operate all trains in the

new timetable. The best solution to handle a disruption can be found by considering these

three schedules in an integrated way together with the passenger behavior. However, handling

one schedule at a time is already computationally challenging. Therefore, most research in

railway disruption management focuses on rescheduling one schedule at the time. An overview
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of existing literature in recovery models and algorithms for railway disruption management is

given by Cacchiani et al. (2014).

This thesis focuses on rescheduling one or at most two railway schedules at the time. The

research aims to develop tools for dispatchers of passenger railway operators which help them

in finding new schedules in case of large-scale disruptions. The approaches aim at reducing

the inconvenience that passengers experience from the disruption by cancelling as few train

services as possible.

If the rescheduling problems are solved separately, timetable rescheduling is most of the

time seen as the first step in the disruption management process. If a new timetable is ready,

the next step is to find rolling stock for each train service in the new timetable. The last step of

the disruption management process deals with assigning crew to each train service in the new

timetable while considering which type of rolling stock will be used for it. The structure of this

thesis follows this procedure. First a timetable rescheduling approach is discussed in Chapter

2, then a combined timetable and rolling stock rescheduling approach is discussed in Chapter

3, and at last, Chapters 4 and 5 deal with crew rescheduling approaches.

1.3 Contributions

In this section the content of the research described in Chapters 2 to 5 is summarized in more

detail. The performance of the developed approaches is tested on instances based on the opera-

tions of Netherlands Railways, which is the major railway operator in the Netherlands.

(Chapter 2): L.P. Veelenturf, M.P. Kidd, V. Cacchiani, L.G. Kroon, and P. Toth. A railway

timetable rescheduling approach for handling large scale disruptions. Under review at Trans-

portation Science

The research of Chapter 2 focuses on timetable rescheduling for passenger trains at a macro-

scopic (operator) level in a railway network. An integer programming model is formulated for

solving the timetable rescheduling problem, which minimizes the number of cancelled and de-

layed trains while adhering to infrastructure and rolling stock capacity constraints. It is also

possible to reroute trains to reduce the number of cancelled and delayed trains. All stages of the

disruption management process (from the start of the disruption to the time the normal situation

is restored) are taken into account.

(Chapter 3): L.P. Veelenturf, L.G. Kroon, and G. Maróti. Passenger Oriented Railway Dis-

ruption Management by Adapting Timetables and Rolling Stock Schedules. Under review at

Annals of Operations Research

Chapter 3 describes a real-time disruption management approach which integrates the reschedul-

ing of the rolling stock and the timetable by taking the changes in passenger demand into ac-
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count. Due to a disruption, passengers will adapt their routes to their destinations. Therefore,

the operator has to increase the capacity of trains for which it expects more demand than on a

regular day. Furthermore, at locations with additional demand, the frequencies of trains serving

that station could be increased. Within the disruption management approach, the timetable deci-

sions are limited to additional stops of trains at stations they normally would not serve. Several

variants of the approach are suggested, differing in how they determine which additional stops

should be executed. Real-time rescheduling requires fast solutions. Therefore several variants

of a heuristic approach are used.

(Chapter 4): L.P. Veelenturf, D. Potthoff, D. Huisman, and L.G. Kroon. Railway crew

rescheduling with retiming. Transportation Research Part C: Emerging Technologies, 20:95-

110, 2012.

In Chapter 4, the crew rescheduling problem with retiming is modelled and solved. This prob-

lem extends the crew rescheduling problem by the possibility to slightly delay the departure

of some trains, such that more flexibility in the crew rescheduling process is obtained. The

algorithm focuses on rescheduling the duties of train drivers. It is based on column genera-

tion techniques combined with Lagrangian heuristics. In order to prevent large increases in

computation time, retiming is allowed for a limited number of train services.

(Chapter 5): L.P. Veelenturf, D. Potthoff, D. Huisman, L.G. Kroon, G. Maróti, and A.P.M.

Wagelmans. A quasi-robust optimization approach for crew rescheduling. Transportation Sci-

ence, forthcoming

Chapter 5 presents a novel approach for crew rescheduling by considering several scenarios for

the duration of the disruption. The rescheduling problem is similar to a two-stage optimization

problem. In the first stage, at the start of the disruption, the plan is rescheduled based on the

optimistic scenario (i.e., assuming the shortest possible duration of the disruption), while taking

into account the possibility that another scenario will be realized. A prescribed number of the

rescheduled crew duties is required to be recoverable. The true duration of the disruption is

revealed in the second stage. By the recoverability of the duties, it is expected that the first

stage solution can easily be turned into a schedule that is feasible for the realized scenario for

the duration of the disruption.

1.4 Outline

The remainder of this thesis consists of the papers described in Section 1.3. To make the chap-

ters self-contained, we chose to include exact copies of the papers submitted or published. This

means that there can be overlap in the introductions and definitions of the problems discussed

in the chapters. In Chapter 6 we summarize the concluding remarks of the different papers.
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Chapter 2

A railway timetable rescheduling

approach for handling large scale

disruptions

This chapter considers the paper (Veelenturf et al. (2014a)) which is under review at Transporta-

tion Science. The research leading to this paper has received funding from the European Union’s

Seventh Framework Programme (FP7/2007-2013) in the ON-TIME project under Grant Agree-

ment SCP1-GA-2011-285243. In 2013 a preliminary version of this paper has been granted

a third place in the Student Paper Award Competition of the Railway Application Section of

INFORMS

Co-authors: M.P. Kidd, V. Cacchiani, L.G. Kroon and P. Toth

2.1 Introduction

The occurrence of unexpected large-scale disruptions, such as the unavailability of railway

track segments due to broken overhead wires or rolling stock breakdowns, causes train delays

and train cancellations with a consequent reduction of the quality of service to the passengers.

Therefore, it is crucial to recover from such situations as quickly as possible in order to reduce

passenger dissatisfaction and to restore the service of the railway system.

Due to its complexity, the recovery problem is usually decomposed into phases that are

solved in sequence. The main phases consist of timetable rescheduling, rolling stock reschedul-

ing and crew rescheduling. Timetable rescheduling calls for determining a feasible timetable

by applying reordering, retiming and rerouting of trains and even train cancellations. The de-
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rived timetable is input to the second phase, in which it may be necessary to determine a new

rolling stock allocation, due to the changes applied in the previous phase. Similarly, the new

timetable and rolling stock allocation are input to the last phase that aims at obtaining a feasible

crew schedule. Obviously, a feedback loop is sometimes necessary if no feasible rolling stock

or crew plan can be obtained, possibly requiring the cancellation of additional trains. Solving

the three phases separately may lead to sub-optimal solutions. However, solving them all in

an integrated way would lead to unacceptably long computing times, as we are facing real-time

problems. An overview of current models for solving these three steps is presented in Cacchiani

et al. (2014).

In this paper, we focus on the timetable rescheduling phase, thereby taking into account

constraints from the rolling stock rescheduling phase in order to increase the probability of

obtaining a feasible rolling stock schedule during the second phase. Constraints of the crew

rescheduling phase are more difficult to include, since there are much more complicated rules

about (meal) breaks and durations of crew duties. Therefore these are not considered in our

model.

We study timetable rescheduling at a macroscopic level, i.e. with high level constraints

disregarding detailed information on signals and routes inside stations or junctions. The reason

is that we want to deal with a complex real-world railway network and, at the same time, to solve

the problem in very short computing times. First, at a macroscopic level it has to be determined

which trains can still run with the available infrastructure capacity. Thereafter, small conflicts

at the signaling level should be detected and solved by slightly delaying some trains.

We consider large-scale disruptions related to blockages of one or more railway tracks be-

tween stations for a certain period of time (e.g. two hours). Indeed, disruptions of this kind

are very hard to manage by railway operators and infrastructure managers, as they cause many

changes in the system and decisions need to be taken very quickly. In addition, such disruptions

occur on a daily basis and the support of an automated tool for solving them is highly desirable.

Currently such disruptions are handled in practice by selecting the appropriate contingency plan

from a large set of such plans.

The main contribution of this paper consists of proposing an Integer Linear Programming

(ILP) formulation for the timetable rescheduling problem to deal with large-scale disruptions

on a real-world railway network. The formulation takes into account constraints that allow

to partially integrate the timetable rescheduling problem with the rolling stock rescheduling

phase. In particular, we consider a railway network with a cyclic timetable, i.e. the schedule of

the trains is repeated every given time period (for example every hour).

This approach generates a new timetable from the start of a disruption until the moment

at which the timetable must be back again to the normal state. This means that the approach
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does not only make a new reduced cyclic timetable for the steady disrupted state, but it also

produces a timetable to make the transition from the original timetable to this new reduced

cyclic timetable and back to the original timetable after the disruption has ended.

A useful feature of the proposed model is that it takes into account the possibility of rerout-

ing trains along alternative geographical paths in the network in order to reduce the number of

trains that are cancelled or delayed.

The model is solved to optimality by a general purpose solver on a set of real-world instances

of Netherlands Railways (the major railway operator in the Netherlands) in short computing

times.

This paper is organized as follows. Section 2.2 presents an overview of related research. In

Section 2.3, the problem is presented and in Section 2.4 an ILP formulation is given. Section

2.5 is devoted to the computational results based on instances of Netherlands Railways, and the

conclusions are discussed in Section 2.6.

2.2 Literature overview

Many works study the Train Timetabling Problem during the planning phase, i.e., when an

optimal timetable is derived for a set of trains in a time horizon of six months to one year.

We refer the reader to the following recent surveys on this topic: Cacchiani and Toth (2012),

Caprara et al. (2007), Caprara et al. (2011) and Lusby et al. (2011). In recent years, many

studies have been developed dealing with real-time timetable rescheduling. The majority of

them concern train rescheduling when relatively small disturbances affect a subset of trains,

instead of large-scale disruptions as is the case in our paper. We refer to Cacchiani et al. (2014)

for an overview of real-time rescheduling problems and solution approaches.

For example, the real-time traffic management system ROMA (Railway traffic Optimization

by Means of Alternative graphs) is presented in D’Ariano et al. (2008a) and D’Ariano et al.

(2007). ROMA considers the infrastructure at a detailed level and uses a branch-and-bound

algorithm for sequencing train movements combined with a local search algorithm for rerouting

trains. The experiments described in these papers concern the line between Utrecht and ’s

Hertogenbosch, and the congested areas around Utrecht Central Station and around Schiphol

Amsterdam Airport in the Netherlands.

Extensions of ROMA are presented in Corman et al. (2009), Corman et al. (2010), Corman

et al. (2012), and D’Ariano et al. (2008b), taking into account different objectives (minimiza-

tion of train delays and preservation of train connections), or building flexible timetables that

postpone certain decisions to the operational phase. These works consider a set of instances

provided by Netherlands Railways.
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Other microscopic approaches for small disturbances are presented in Boccia et al. (2013),

Caimi et al. (2012), Lusby et al. (2013) and Mannino and Mascis (2009).

A macroscopic level of detail of the railway network to handle disturbances is considered in

Acuna-Agost et al. (2011b), Acuna-Agost et al. (2011a), Dollevoet et al. (2012), Kecman et al.

(2013), Schöbel (2009) and Törnquist and Persson (2007).

Only very few works deal with large-scale disruptions. In Albrecht et al. (2013), disrup-

tions due to unexpected track maintenance extensions are considered, i.e. longer maintenance

operations are required than were planned. A meta-heuristic is used to construct an integrated

timetable which includes track maintenance, and an operational tool is used to generate a new

feasible schedule for the disrupted system. A case study for a single track rail network in

Queensland Australia is carried out.

In Brucker et al. (2002), train rescheduling is considered in the case of a partial track block-

age due to construction works. A local search algorithm is presented with the goal of minimiz-

ing lateness. This algorithm is tested on real-life instances of the German railways.

In Corman et al. (2011), the authors consider the case of double track railway lines where

some block sections of one track are unavailable. Centralized and distributed approaches are

presented: in the centralized approach the entire rescheduling problem is solved, while in the

distributed approach a coordinator sets constraints between areas and delegates the scheduling

decisions to local schedulers. Computational experiments on a large railway network in the

Netherlands show that both approaches face increasing difficulty in finding feasible schedules

in a short computation time for increasing time horizons of traffic prediction.

In Wiklund (2007), the author describes a simulation procedure for simulating train traffic at

a microscopic level in order to determine the effectiveness of various recovery strategies in case

of large-scale disruptions. A case study involving a fire at the interlocking system of a station

in Stockholm is considered.

Our work extends the ILP model presented in Louwerse and Huisman (2014), in which two

double track lines were considered and a partial or full track blockage was taken into account.

The new feature consists of dealing with a real-world railway network where the number of

tracks within the stations and between the stations is not limited to two. Furthermore, trains are

allowed to take other tracks within the stations or between the stations in comparison with the

tracks they are originally scheduled to, and now all tracks may be used in both directions. To

prevent overtakings of trains running on the same track, additional constraints are considered.

In addition, train reroutings along different paths are allowed in order to avoid the disrupted

area. An advantage of rerouting trains is that passengers do not need to reroute themselves

(possibly with some transfers) and that they can experience smaller delays.
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As in Louwerse and Huisman (2014), we include rolling stock constraints in order to in-

crease the probability of getting a feasible rolling stock schedule.

We also focus on all stages of the disruption management process, i.e. from the start of

the disruption to the time at which the normal situation is restored. In Louwerse and Huisman

(2014) only a new cyclic timetable is made for execution during the disruption. The authors

do not consider the transition from the original timetable to the new temporary timetable, nor

the transition back to the original timetable when the disruption has ended. In addition, they

assume that, at the time the disruption starts, the network is empty. In our research we do not

have these assumptions, and so we also determine how the timetable must be modified during

the transition phases.

2.3 Problem description

In this paper we consider a real-time timetable rescheduling approach for railway networks. In

case of a major disruption (i.e. temporarily blocked tracks) this approach is able to determine, by

taking into account the available infrastructure capacity, which train services (or parts thereof)

should be cancelled and which should be delayed such that as many trains as possible can still

be operated. A train service is partially cancelled if it runs only to a subset of the stations it

normally runs to. In most situations this means that the train ends at a location different than

the planned end location or starts at a location different than the planned start location.

The use of the available infrastructure capacity in this approach is considered from a macro-

scopic point of view, and by taking into account rolling stock capacity there is a high probability

that the new timetable has a feasible rolling stock schedule as well.

2.3.1 The disruption

For this approach we consider disruptions where a number of tracks between stations are

blocked. There can be multiple track blockages at the same time at different locations. However,

for the computational results we only consider disruptions where tracks at the same geographi-

cal location are blocked.

The duration of the disruption is assumed to be known and there is a fixed limited time avail-

able after the disruption before all trains must run again according to their original schedule.

Trains which passed their last stop before the blocked segment at the moment the disruption

occurs need special attention. It is not clear whether these trains did or did not pass the critical

point which caused the disruption. Therefore we assume in this research that these trains just

continue as planned.
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2.3.2 Resource restrictions and assumptions

We consider a railway network that consists of a set of stations (each one with a given capacity)

and of a set of open track sections (the parts of the railway network between two consecutive

stations), that can be single tracked, double tracked or with even more parallel tracks. A given

set of trains runs on the railway network, each one according to its original timetable. Trains

are characterized by a type, e.g. they can be regional or intercity trains. Each train uses a rolling

stock composition, i.e. a set of coupled rolling stock units, of the same type as the train.

We distinguish three types of resources which a train may occupy at any given moment,

namely tracks in open track sections, tracks in stations, and rolling stock compositions.

The capacity of a station is characterised by the number of tracks it has. Each track within

the station may only be occupied by one train at any given time. Furthermore, after a train

has used a track in a station, a certain headway time needs to pass before another train can

use the same track. All tracks in a station are assumed to have a platform next to them and

some stations have a shunting yard with an infinite capacity of tracks. An extension of the

model could handle shunting yards with finite capacity. However the shunting yards are not

considered to be the bottlenecks since we want to run (and not store) as many trains as possible.

The capacity of an open track section between two stations is also characterised by the

number of tracks it has. The tracks can be used in both directions. It is assumed that a train

cannot switch tracks while running on an open track section, and a track can only be used by

multiple trains at the same time if the trains run in the same direction. A certain headway

time should be taken into account between two trains using a track at the same time in the same

direction, or between two trains using a track consecutively in opposite directions. It is assumed

that a train entering a station from an open track section is able to reach every track in the station

regardless of the track of the open track section it is entering from.

At each station with a shunting yard, a limited number of rolling stock compositions is

available at the start of the day. A train uses a rolling stock composition for its entire duration,

after which the rolling stock composition is moved to a shunting yard or used by another train.

Hence rolling stock compositions may only end their duties at stations with shunting yards,

and the compositions are not split during the day. Furthermore, two trains may share rolling

stock only if they are of the same type. After a train has ended, a minimum turnaround time is

required before the rolling stock composition of that train may be used by another train.

Finally, the minimum running time between two stations and the minimum dwell time inside

a station should be respected by all trains. The arrival or departure of a train at a station may

further be delayed by only a maximum amount of time, and trains may only end at their final

destination or at their last stop before the disrupted tracks.
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2.4 Mathematical formulation

Each train service is represented by a set of events, which are arrivals or departures at certain

stations. The aim of the rescheduling approach is to determine the times at which these events

take place or to decide to cancel some events.

To do this, the timetable rescheduling approach is based on an event-activity network repre-

sented by a directed graph N = (E,A), where E is the set of vertices (events) and A the set of

arcs (activities). The graph N is associated with a set of trains T and an original timetable for

these trains. The set E = Etrain ∪ Einv of events consists of a set Etrain of train events, and a set

Einv of inventory events.

Each train event e ∈ Etrain represents either a departure or an arrival at a certain station. The

train of which train event e is a departure or arrival of, is denoted by te. The scheduled time at

which train event e takes places in the original timetable is given by qe. For each train event e,

de denotes the maximum allowed delay for the event.

Each event e ∈ Etrain is associated with a set of resources (tracks in open track sections,

tracks in stations, and rolling stock compositions) which it uses at the moment the event takes

place.

An inventory event e ∈ Einv has different characteristics. It represents the resource inventory

of a certain station, open track section or shunting yard at the start of the day. The number of

resources made available by inventory event e is denoted by ie.

The use of an activity a = (e, f) ∈ A directed from event e ∈ E to event f ∈ E denotes the

fact that event f uses one of the resources occupied by e after e has taken place. Between two

events there can be multiple activities, and for every resource type there can only be one activity

between the same pair of events. Each activity a = (e, f) ∈ A has an associated minimum

duration La which is necessary for the specific resource used by e to become available for use

by f . In summary, the activities determine the possible orders in which the resource units are

used for the events.

The Timetable Rescheduling Problem consists of delaying some trains and cancelling some

other trains such that maximum delay and capacity constraints are satisfied while minimising

the deviation from the original timetable. The first part of the proposed ILP formulation is given

in (2.1)-(2.5). The further constraints are described in subsequent sections. In the model, xe is

a decision variable denoting the time at which event e ∈ Etrain takes place in the new timetable

and yt is a binary decision variable such that yt = 1 if train t ∈ T is cancelled, and yt = 0

otherwise.

The objective function (2.1) is a weighted sum of the number of cancelled trains and the

sum of the delays of all the events from their original scheduled times. For every train t, λt
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describes the penalty for cancelling the train (which, for example, can depend on the train type

or the running time), and for each event e, μe is the penalty per time unit for delaying the event.

Constaint sets (2.2) and (2.3) ensure that an event does not take place before its scheduled time

in the original timetable and that its maximum allowed delay is not exceeded. Constraints (2.3)

also ensures that if a train is cancelled, then it “virtually” runs at its original time (i.e. no delay

penalty is considered).

Minimise
∑
t∈T

λtyt +
∑

e∈Etrain

μe(xe − qe) (2.1)

subject to xe − qe ≥ 0 ∀e ∈ Etrain (2.2)

xe − qe ≤ (1− yte)de ∀e ∈ Etrain (2.3)

yt ∈ {0, 1} ∀t ∈ T (2.4)

xe ∈ N ∀e ∈ Etrain (2.5)

2.4.1 Capacity constraints

Capacity constraints are needed in order to ensure that a resource unit is not used by more

than one train at a time, and that trains which are not able to get the resources they require are

cancelled.

The capacity is handled by the activities a ∈ A. For each event e we divide the activities

into two groups: in-activities and out-activities. The in-activities of event e are all activities

into event e and are denoted by the set: A−(e) = {a = (f, e) ∈ A|f ∈ E}. An in-activitity

a = (f, e) of event e means that event e can use the same resource as event f at least La minutes

after event f has taken place.

For each type of resource (tracks in open track sections, tracks in stations and rolling stock

compositions) and for each event e we can define a subset C ⊂ A−(e) of the in-activities

associated with that resource type only. Then, the set A−(e) denotes the collection of these

in-activity subsets for event e ∈ E. This means that for each event e, |A−(e)| is smaller than or

equal to three (the number of resource types). So for example, the set A−(e) can contain three

of these in-activity subsets: i) one subset of activities into event e associated with open track

section capacity, ii) one subset of activities into event e associated with station capacity, and

iii) one subset of activities into event e associated with rolling stock availability. The details of

these types of activities are discussed below.

The second group of activities of an event e are the out-activities which are all activities

out of event e and are denoted by the set A+(e) = {a = (e, f) ∈ A|f ∈ E}. An out-activitity

a = (e, f) of event e means that event f can use the same resource as event e at least La minutes
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after event e has taken place. We have for each type of resource a subset C ⊂ A+(e) of the

out-activities. These subsets are grouped in the set A+(e) denoting the collection of out-activity

subsets for event e.

Not every event has all three subsets of in-activities or out-activities. This is because for

some events it is fixed which event will be the predecessor or successor event using the same

resource and there is no minimum time involved before the resource becomes available. There-

fore, we left out decision variables for these activities for which we can easily determine the

values.

For example, considering the station capacity, it is sure that after an arrival of a train at a

certain track in a station, the next event on that track must be the departure of that train (unless

the train has reached its last station). Furthermore, since these events are related to a single

train, there is no headway time involved between them.

The capacity constraints are given by constraint sets (2.6)-(2.10), where za is a binary deci-

sion variable such that za = 1 if activity a ∈ A is selected, and 0 otherwise.

∑
a∈C

za + yte = 1 ∀e ∈ Etrain, C ∈ A−(e) (2.6)

∑
a∈C

za + yte ≤ 1 ∀e ∈ Etrain, C ∈ A+(e) (2.7)

∑
a∈C

za ≤ ie ∀e ∈ Einv, C ∈ A+(e) (2.8)

xf − xe +M(1− za) ≥ La ∀a = (e, f) ∈ A (2.9)

za ∈ {0, 1} ∀a ∈ A (2.10)

For a given event e ∈ Etrain and a subset of activities C ∈ A−(e), constraint set (2.6) ensures

that exactly one unit of the resource associated with subset C must be made available to event

e or that the corresponding train must be cancelled. In other words, these contraints ensure

that the train is cancelled if at least one resource is not available for an event, and that it is not

cancelled if one unit of all resource types is available.

Similarly, for a given event e ∈ Etrain and subset of activities C ∈ A+(e), constraint set

(2.7) ensures that at most one unit of the associated resource is made available by event e to

a successor event using the same resource unit. Finally constraint set (2.8) ensures that the

available inventory for a specific type of resources is not exceeded, and constraint set (2.9)

(where M is a large positive value) ensures that the minimum duration of an activity, if selected,

is maintained.
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Train service

The minimum running and dwell times of trains should be respected. This can be modelled by

the capacity constraints of Section 2.4.1. However, in contrast with the rolling stock and track

usage, for each train the order of the running and dwell events is fixed. Therefore we do not

need constraint sets (2.6), (2.7) and (2.8).

Let Atrain be the set of all train activities a = (e, f) which represent running or dwelling of

a train between consecutive events e and f of the same train. Then for train activities a ∈ Atrain

constraints (2.9) can be modified into:

xf − xe ≥ La ∀a = (e, f) ∈ Atrain (2.11)

Open track section capacities

An open track section between two stations has a limited number of tracks which may be used

in both directions. Multiple trains may use a track at the same time only if they run into the

same direction, but a minimum headway between the two trains must be considered.

To model this, let ek�track denote the initial open track section inventory event for open track

section (k, �) (the open track section between stations k and �), let Ek�
arr ⊂ Etrain denote the set

of events corresponding to an arrival at station � of a train that departed from station k, and let

Ek�
dep ⊂ Etrain denote the set of events corresponding to a departure from station k of a train in

the direction of station �.

In what follows the open track section activities for the open track section (k, �) are de-

scribed. This class of activities represents the sequential use of a track of the open track section

or the very first use of a track of the open track section. We only describe the events at the side

of station k. At the side of station � the activities are constructed similarly.

• For an event e ∈ Ek�
dep representing the departure of train te from station k onto the open

track section (k, �):

– The set A−(e) contains a subset of open track section activities from each event

f ∈ Ek�
dep\{e} to e, from each event f ∈ E�k

arr to e, and from the inventory event

ek�track to e. Thus for these activities, constraint set (2.6) implies that a train can only

depart on a track of an open track section if a train has departed on the same track in

the same direction, if a track used in the opposite direction became empty after an

arrival, or if there is an empty track available from the inventory.
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– The set A+(e) contains a subset of open track section activities to each event f ∈
Ek�

dep\{e}. Here constraint set (2.7) implies that, if a train departs onto an open track

section, then at most one other train can depart directly after this train on the same

track in the same direction.

• For an event e ∈ E�k
arr representing the arrival of train te at station k from the open track

section (�, k):

– There is no set A−(e), since there is no capacity restriction for the arrival event as

the train is already running on the track. We only have to take care that trains do not

overtake each other which will be discussed in constraint set (2.12).

– The set A+(e) contains a subset of open track section activities to each event f ∈
E�k

arr\{e}, and to each event f ∈ Ek�
dep. Here constraint set (2.7) implies that, if a

train arrives from a track of the open track section, then either another train arrives

directly after it from the same track, or the track will be used in another direction by

a train departing from station k.

• The set A+(ek�track) contains a subset of open track section activities from the inventory

event ek�track to each event e ∈ Ek�
dep ∪ E�k

dep. Here constraint set (2.8) implies that at most

iek�track
trains (equal to the number of tracks between stations k and �) may depart onto a

track which has not been used before.

For these classes of activities, constraint set (2.9) models the headway time which has to be

taken into account between two consecutive trains using the same track.

Figure 2.1 shows an example of a graph of open track section activities. Here we consider an

open track between stations A and B. The events are represented by nodes and placed in a time-

space plot where the vertical direction represents space and the horizontal direction represents

time. For a better understanding of the activities, we assume in this example the time at which

an event will take place as fixed. This time is stated within the nodes together with info about

whether it is an arrival (Arr) or departure (Dep). The capacity of an inventory event is given

between brackets. The open track section activities are represented by arcs. To make the graph

more intuitive, the train activities are also included and represented by dotted lines. This means

that two nodes linked with a dotted line, represent events of the same train.

Additional constraints are needed to prevent overtaking of trains on the same track. There-

fore, track activity pairs are introduced. For open track section (k, �) and events e, f ∈ Ek
dep

and e′, f ′ ∈ E�
arr such that te = te′ and tf = tf ′ , let a = (e, f) be the activity presenting the

consecutive departures of trains te and tf from station k on a track in (k, �), while a′ = (e′, f ′)



28_Erim Veelentirf_Stand.job

16 A railway timetable rescheduling approach for handling large scale disruptions
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Figure 2.1: Example of Event-Activity graph for open track section capacity

is the activity corresponding to the consecutive arrivals of the two trains at station � (as defined

above). Then the pair (a, a′) is a track activity pair, and B is defined as the set of all track

activity pairs. In order to ensure that no overtaking on tracks takes place, constraint set (2.12)

is required.

za = za′ ∀(a, a′) ∈ B (2.12)

Hence for a track activity pair (a, a′), if a is selected then so must be a′. This ensures that the

order in which two trains arrive from a track is the same as the order in which they departed.

Note that forcing tracks to be used in only one direction can easily be achieved by not includ-

ing activities from arrival events to departure events. Then the only in-activities for departure

events come from other departure events. Also, we should construct an inventory event for each

direction. The result will be that there are two disjoint graphs: one for each direction.

Figures 2.2-2.5 show, with bold arcs for the selected activities, all feasible solutions for

the open track section capacity problem considered in Figure 2.1 with fixed event times. Note

that the dashed arcs are train activities instead of open track section activities. These arcs are

included such that one can easily see how events use the same resource unit. A selected path,

in bold arcs, starting from the inventory event ek�track indicates in which order events take place

on a single track in the open track section. For example in Figure 2.2 each track is used in only

one direction. Trains 1, 4 and 5 use one track and Trains 2 and 3 use the other track.
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Furthermore, Figures 2.2 and 2.5 show how constraints (2.12) work between Trains 2 and

3. Due to constraint set (2.12) both the arc between the departures of these trains and the arc

between the arrivals of these trains are used. The same holds for Trains 4 and 5 in all Figures

2.2-2.5.
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Figure 2.2: Solution 1
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Figure 2.3: Solution 2
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Figure 2.4: Solution 3
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Figure 2.5: Solution 4

Station capacities

In a station a train needs to be assigned to a track with a platform to dwell or to pass if it does

not have a scheduled stop. There cannot be two trains at the same track at the same time. After

a train has left the track in the station, another train can arrive on that track.

To model this, we need the sets Ek
arr and Ek

dep which are all arrival and departure events at

station k, respectively. Furthermore, let ekstat denote the track inventory event at station k.

In the following, the station activities are defined. These activities represent the sequential

use of the same track in a station or the very first use of a track in a station.
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• For an event e ∈ Ek
arr, representing the arrival of train te at station k:

– The set A−(e) contains a subset of station activities from each event f ∈ Ek
dep to

e, and from the inventory event ekstat to e. For this class of activities, constraint set

(2.6) implies that a train can only arrive at station k if there is a track available. This

means that a previous train has departed from a track in the station, or that a track

has not been used before.

– The set A+(e) is not considered. It is sure that the next event using the same track

is the departure of train te at station k since one train at the time is allowed on one

track. We make use of this information and do not make it a decision variable in the

model.

• For an event e ∈ Ek
dep, representing the departure of train te from station k:

– The set A−(e) is not considered for the same reason as above. It is sure that the

previous event using the same track is the arrival of train te at station k.

– The set A+(e) contains a subset of station activities to each event f ∈ Ek
arr. For

this class of activities, constraint set (2.7) implies that, if a train has departed from a

station, then the track may be assigned to at most one new arrival.

• The set A+(ekstat) contains a subset of station activities from the inventory event ekstat to

each event e ∈ Ek
arr. Here constraint set (2.8) implies that at most iekstat

trains (equal to the

number of tracks at that station) may arrive at a track of station k which has not been used

before.

• Some events in e ∈ Ek
dep represent a departure from station k which is the first departure

of a train. For these events it is not clear if the rolling stock for the train arrives from the

shunting yard or whether the train uses rolling stock which was waiting at a station track

after it arrived servicing a train which ended in station k. For a departure event e which

represents a first departure of a train, we construct the set A−(e) in the same way as if e

is an arrival event and the set A+(e) in the same way as if event e is a departure event.

This way it is modeled that train te needs to have a track available at the time it departs.

The occupation of the tracks by rolling stock assigned to train te is handled correctly by

the rolling stock constraints which are discussed later.
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Figure 2.6: Example of Event-Activity graph for station capacity

• Some events in e ∈ Ek
arr represent an arrival at station k which is the last arrival of a

train. For these events it is not clear whether the rolling stock goes to the shunting yard

or whether it stays at the station track to be used by another train. For an arrival event e

which represents a first arrival of a train, we construct the set A−(e) in the same way as

if event e is an arrival and the set A+(e) in the same way as if event e is a departure. This

way it is modeled that train te needs an unoccupied track to arrive, and that the track is

released for the arrival of another train directly (minimum La minutes) afterwards.

For these classes of activities, constraint set (2.9) models the headway time which has to

be taken into account between a departure from a track in a station and an arrival on the same

track.

Figure 2.6 shows an example of a graph of station activities. The events are represented by

nodes and are considered to have a fixed time which is stated within the node. In this figure, the

horizontal direction represents time. Furthermore, the capacity of an inventory event is given

between brackets. The station activities are represented by arcs and the train activities are also

included and represented by dotted lines.

Figures 2.7-2.10 show, with bold arcs for the selected activities, all feasible solutions for

the station capacity problem shown in Figure 2.6, given that the times the events take place are

fixed. Note that the dashed arcs are train activities instead of station activities. A selected path,

in bold arcs, from the inventory event ekstat indicates in which order events take place on a single

track within the station. For example in Figure 2.7, Trains 1, 3 and 4 use one track and Train 2

uses the other track.

Rolling stock capacities

Every train needs rolling stock units to run. In our model we can have different types of rolling

stock: rolling stock for intercity trains and rolling stock for regional trains. We assume that

starting trains can use rolling stock of ending trains which are of the same type, or they can use

rolling stock from the shunting yard, if available.
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Figure 2.7: Solution 1

ekstat(2)

Arr7:00 Dep7:02

Train 1

Arr7:02 Dep7:04

Train 2

Arr7:15 Dep7:17

Train 3

Arr7:20 Dep7:22

Train 4

Figure 2.8: Solution 2
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Figure 2.9: Solution 3
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Figure 2.10: Solution 4

To model the assumptions in the structure of Section 2.4.1, let Ek
start ⊂ Etrain denote the set

of departure events corresponding to the start of a train from station k, let Ek
end ⊂ Etrain denote

the set of arrival events corresponding to the end of a train at station k, and let ekrol denote the

initial rolling stock inventory event at station k.

In the following, the rolling stock activities are defined. These activities represent the trans-

fer of rolling stock from an ending train to a starting train, or the very first use of a rolling stock

composition.

• For an event e ∈ Ek
start, denoting a start of a train from station k:

– The set A−(e) contains a subset of rolling stock activities from each event f ∈ Ek
end

to event e if events e and f are using the same type of rolling stock, and from the

inventory event ekrol to event e. For this class of activities, constraint set (2.6) implies

that a train can only depart if an earlier train has ended at that station, or if there is

still a rolling stock composition available in the inventory.

– The set A+(e) is not constructed since the next event using the same rolling stock is

known (the arrival event of train te at the next station) and so no decision variables

are needed.

• For an event e ∈ Ek
end,

– The set A−(e) is not constructed since the previous event using the same rolling

stock is known (the departure event of train te from the previous station) and so no

decision variables are needed.

– The set A+(e) contains a subset of rolling stock activities to each event f ∈ Ek
start.

Here constraint set (2.7) implies that, if a train has ended at a station, its rolling

stock can be assigned to at most one other train.
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Figure 2.11: Example of Event-Activity graph for rolling stock capacity

• The set A+(ekrol) contains a subset of rolling stock activities from the inventory event ekrol

to each event f ∈ Ek
start. Here constraint set (2.8) implies that at most iekrol

trains may start

from station k by using rolling stock compositions available at station k.

• For arrival and departure events which do not represent the start of a train nor the end of a

train, no rolling stock activities are constructed. Because we do not allow trains to switch

rolling stock during one train service, all events of a train service use the same rolling

stock. We use this information and do not need to model it by decision variables.

Furthermore, constraint set (2.9) models the turnaround time required to transfer rolling

stock from an ending train to a starting train, and the time required for shunting activities if a

starting train uses rolling stock from the inventory.

Figure 2.11 shows an example of a graph of rolling stock activities. The events are repre-

sented by nodes and ordered by location. The time at which an event takes place is assumed

to be fixed and stated within the node. The capacity of an inventory event is given between

brackets. The rolling stock activities are represented by arcs and the train activities are also

included and represented by dotted lines.

Figures 2.12 and 2.13 show with bold arcs two of the feasible solutions for the rolling stock

capacity problem shown in Figure 2.11. Note that again the dashed arcs are train activities.

A selected path from one of the inventory events (eArol, e
B
rol and eCrol) indicates in which order

events use a rolling stock composition. For example in Figure 2.12, Train 1 uses a rolling stock

composition from the inventory of Station A which will be left in Station B. Trains 2 and 3

both get their rolling stock composition from the inventory at Station B and Train 4 uses the

same rolling stock composition as Train 2.
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Figure 2.12: Solution 1
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Figure 2.13: Solution 2

If a station has a shunting yard, then the rolling stock composition of an ending train can

be moved to the shunting yard before it is used by a starting train again. To model this, we

add the rolling stock activities which include a back-and-forth to the shunting yard to the subset

of station activities. If the rolling stock composition goes to the shunting yard (with infinite

capacity), then a track in the station becomes available, and a track needs to be available at the

moment the rolling stock composition comes back from the shunting yard. The subset of rolling

stock activities does not change to ensure that still every train has a rolling stock composition.

Furthermore, in the operations, it is preferred to have a regular turning pattern for the rolling

stock units, since this requires less communication with the shunting crews. Each train belongs

to a series, which is a set of train services that have the same departure station, the same stops

and the same arrival station. In a cyclic timetable in every cycle one train of each train series

runs. Trains belonging to the same train series traveling in the same direction belong to the

same subseries. A turning pattern is a pair of subseries (s, s′) ∈ S×S, where S denotes the set

of all subseries. A turning pattern represents the transfer of rolling stock from a train belonging

to s to a train belonging to s′. A rolling stock activity a corresponding to the transfer of rolling

stock between two trains therefore belongs to a turning pattern. This turning pattern is denoted

by wa. Furthermore, W is the set of all possible turning patterns, Ws is the set of all turning

patterns containing subseries s, and uw is a decision variable such that uw = 1 if the activities

must correspond to turning pattern w is selected and 0 otherwise. Then constraint sets (2.13)-

(2.15) ensure a regular turning pattern in which rolling stock units of ending trains of a certain
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subseries are used only by starting trains which are from the same subseries.

∑
w∈Ws

uw ≤ 1 ∀s ∈ S (2.13)

za ≤ uwa ∀a = (e, f) ∈ Arol (2.14)

uw ∈ {0, 1} ∀w ∈ W (2.15)

2.4.2 Blockage of an open track section

The disruptions considered in this paper consist of blockages of tracks for a known duration.

A partial blockage is defined as the temporary unavailability of a subset of tracks between two

stations. When all tracks between two stations are blocked, we call it a full blockage. Note that

from a modeling point of view a full blockage is a special case of a partial blockage.

In our test instances we only consider blockages of tracks within an open track section.

However, blockages of tracks within a station can be handled in the same way. Another type

of disruption is a defective rolling stock unit. Although this also results in a track blockage,

another way to handle this kind of disruptions is by increasing the arrival time of this specific

train with the time it will take to fix the rolling stock.

Here we limit ourselves to blockages of tracks. Due to the blockage of the tracks, some

additional events and activities should be added. The time τ1 at which the disruption starts and

the time τ2 at which the disruption ends is given as input, together with a list of open track

sections which are partially blocked. If there is more than one track in the open track section

connecting two stations, information about which tracks are blocked is given as well.

We do not assume that the network is empty at the moment τ1 the disruption starts. Therefore

we should also take into account what has happened before time τ1, but we cannot change this.

Disrupted trains

Trains running over the disrupted area need special attention. For each train, a station is classi-

fied as a stopping station if a stop has to be made, or as a pass-through station otherwise.

Assume there is a partial blockage of an open track section on which train t ∈ T is sched-

uled. Let station k (�) be the last (first) stopping station of train t before (after) the blocked

section. Then, if a train t has an arrival time at station k during the disruption, the events

that would have been associated with train t (in case of no disruption) are now partitioned and

associated with three new trains, namely trains tα, tβ and tγ .

Let estart and eend denote the first departure event and the last arrival event of train t, respec-

tively, let earr
k and earr

� denote the arrival events at k and �, respectively, and let edep
k and edep

�
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denote the departure events from k and �, respectively. Train tα has events estart to earr
k , train tβ

has events edep
k to earr

� and train tγ has events edep
� to eend.

Furthermore, constraint sets (2.16) and (2.17) are included to ensure that if train tβ (the

train over the disrupted area) runs, then both trains tα and tγ also run. This is equivalent to

running the original train t. If tβ is cancelled, however, then tα and tγ may run or be cancelled,

independently of each other. This is modelled as follows:

ytβ ≥ ytα (2.16)

ytβ ≥ ytγ (2.17)

Additional rolling stock activities

For trains tα and tγ , all activities are defined as discussed in Section 2.4.1. However, in order to

ensure that trains tα, tβ and tγ use the same rolling stock if they all run, a rolling stock activity

(with a duration 0) is defined from events earr
k to edep

k and from events earr
� to edep

� . Furthermore,

no other rolling stock activities are defined for train tβ . For event earr
� , constraint (2.7) becomes

an equality constraint. Hence in the case where none of these three trains is cancelled, they all

use the same rolling stock, whereas if train tβ is cancelled, the rolling stock units of trains tα

and tγ may turn on other trains at stations k and � respectively.

Additional open track section activities

If train t leaves from station k before the disruption, but the disruption starts before train t

reaches station �, then it is assumed that train t continues along its original route. The reason

for this assumption is that decisions to be made for this kind of trains depend on microscopic

details of the disruption, such as whether the train is before or after the broken switches or

overhead wires, or whether this is the train whose rolling stock is malfunctioning. In these

cases, the events associated with train t are the same as in the case of no disruption. The open

track section activities for such a train are, however, defined differently. The open track section

activities of the arrival event of t at the end of the disrupted track section are only defined for

events which take place after the disruption (after τ2). This ensures that the blocked tracks are

only used again after the disruption has ended.

The assumption that these trains continue as planned is a choice made by the authors. It

does not affect the model itself. In specific situations also another choice could be made, for

example that the trains in the disrupted area are cancelled, or return to station k.
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Balancing directions

If the number of tracks is reduced, then more trains can run if all trains run in the same direc-

tion. To avoid such unbalanced timetables, which are not preferred in practice, the following

constraints can be added to the formulation for each pair of subseries (s, s′) ∈ S × S for which

s and s′ belong to the same train series, but differ in direction.

∑
t∈s

yt ≤
∑
t∈s′

yt + 1 (2.18)

∑
t∈s′

yt ≤
∑
t∈s

yt + 1 (2.19)

These constraints ensure that for every train series the number of trains in one direction cannot

exceed the number of trains in the other direction by more than one. Note that such constraints

are also (partially) enforced by the rolling stock circulation.

2.4.3 Managing all stages of the disruption process

To correctly handle the disruption, the time of all events that took place before the start of the

disruption is fixed, and trains associated with these events cannot be cancelled, since they are

already running. Moreover, it is preferable that the disruption does not affect the timetable for

the complete day. Therefore it is assumed that at some point in time after the disruption has

ended the trains should run according to their original timetable again. For this purpose a time

τ3 > τ2 is specified such that any event that takes place after τ3 cannot be delayed and such that

a train starting after τ3 cannot be cancelled.

The set of events E therefore only needs to contain events that are scheduled to take place

after τ1 and before τ3, together with some events outside this range in order to correctly model

the availability of capacities at time τ1, and to ensure a smooth recovery to the original timetable

at time τ3. Without going into too much detail, especially events which took place after τ1 minus

the minimum headway or turn around time, as well as events which have to take place before

τ3 plus the minimum headway or turn around time should be considered. If these events are not

considered the model assumes that at τ1 all tracks are empty and directly available. Furthermore

it then does not consider that there must be tracks available for the trains starting after τ3.

Secondly, after the disruption there must be enough rolling stock at every station to run the

timetable for the remainder of the day. Therefore, at every station an inventory event is added

which is scheduled at the time the disruption is over, connected with the rolling stock activities.

The number of selected rolling stock activities to this event must equal the number of rolling

stock compositions there are normally (without disruption) at that station at that time.
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2.4.4 Reroutings

One of the contributions of this paper is that we include the possibility for trains to be rerouted in

order to avoid the disrupted area if the network under consideration allows this. The advantage

of having an option to reroute a train is that passengers wishing to use this train do not have

to reroute themselves (possibly with some transfers). Furthermore, passengers may experience

a smaller amount of delay, and the normal trains running on the rerouted area may be less

crowded.

To incorporate this functionality, for each train t which is scheduled to travel through a

disrupted area an alternative list of stations between station k (the last stop before the blockage)

and station � (the first stop after the blockage) can be provided as rerouting option. Then, in

addition to the new trains tα, tβ and tγ (compensating for the blocked area), a fourth train tδ

is defined which runs on the rerouted path. For each station on the rerouted path (apart from

stations k and �), an arrival event and a departure event is associated with train tδ, while at

station k a departure event representing the start of the train is associated with tδ, and at station

� an arrival event representing the end of the train is associated with tδ.

For train tδ the scheduled time of the departure event at stations k is the same as for train tβ ,

while the arrival and departure times for the other events of tδ are determined using information

on the minimum running times necessary between the stations on the rerouted path. In order to

ensure that at most one of the two trains tβ and tδ runs, and that, if one of them runs, then both

tα and tγ also run, constraint sets (2.20)-(2.21) replace constraint sets (2.16)-(2.17) for train t.

ytβ + ytδ ≥ 1 + ytα (2.20)

ytβ + ytδ ≥ 1 + ytγ (2.21)

Furthermore, to handle a penalty for rerouting, a variable pt is introduced for all trains tβ

which have a rerouting option tδ. The decision variable pt = 1 if the train is cancelled and not

rerouted, and pt = 0 if the train runs as planned or is rerouted. To model this, constraints (2.22)

are added.

ytβ + ytδ ≤ 1 + ptβ (2.22)

In the objective function λtβytβ is replaced by θ · λtβytβ + (1 − θ) · λtβptβ where θ is a

parameter between 0 and 1 indicating the balance between the cost of rerouting and cancelling

a train. Furthermore λtδ = 0 for the rerouted copy of the train. These settings assure that if

train tβ runs as planned (ytβ = 0, ytδ = 1 and ptβ = 0), the costs in the objective function are
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0. If train tβ is rerouted (ytβ = 1, ytδ = 0 and ptβ = 0), the costs are θ · λtβ and if train tβ is

cancelled and not rerouted (ytβ = 1, ytδ = 1 and ptβ = 1), the costs are λtβ .

2.5 Computational experiments

In order to test our approach, we carried out computational experiments on part of the Dutch

railway network. The trains considered in this region are trains of Netherlands Railways, which

is the major railway operator of the Netherlands. The mathematical model is solved to optimal-

ity (with a gap of 0.01%) by CPLEX 12.4 on a PC with an Intel Xeon with 3.1 GHz and 16 GB

RAM.

2.5.1 Case description

Figure 2.14: Overview of the Dutch railway network

For our computational tests we consider

a heavily used part of the Dutch rail-

way network which is indicated in Fig-

ure 2.14. This network consists of 39

stations. At some stations, mostly lo-

cated at a double tracked section, trains

cannot switch tracks. Therefore, trains

cannot overtake each other in those sta-

tions. This means that those stations

can be considered as part of an open

track section and do not have to be

included as a station. In our com-

putational tests, we consider 26 sta-

tions/junctions where trains can switch

tracks. Note that a junction has the

same characteristics as a station, with

the difference that trains do not have a

scheduled stop there. Therefore, depar-

tures are allowed to take place there ear-

lier than scheduled.

Furthermore, our network consists of 27 open track sections between the considered sta-

tions. Of these sections, 3 are single tracked, 21 are double tracked, 1 has three parallel tracks

and 2 have four parallel tracks.
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In total 6 intercity and 10 regional train series run (mostly twice an hour in each direction)

on this network which results in more than 60 trains per hour. We only consider the minimum

number of rolling stock compositions which is required to run all these trains. This means that

any spare rolling stock compositions at the shunting yards are not considered. In total 61 rolling

stock compositions are necessary to run the trains of the complete day.

2.5.2 Parameter settings

In the mathematical model there are parameters for events and parameters for activities. First

the parameters for the events are considered. The scheduled event times qe are copied from the

timetable of Netherlands Railways and the capacities of the stations, open track sections and

rolling stock inventories ie are set conform the described network in Section 2.5.1.

For the maximum allowed delay de of an train event e we make a distinction between three

types of events. Trains running at the start of the disruption may be delayed more than a train

which has not started yet. This prevents infeasibilities of the mathematical model, since running

trains are not allowed to be cancelled. For events e ∈ Etrain of trains which are already running

at the time the disruption starts we have de = 30 minutes, for events e ∈ Etrain of rerouted trains

the maximum delay is equal to de = 15 minutes. For all other events e ∈ Etrain we have de = d,

where the value of d varies between 0, 3, 5 and 10 minutes over the different experiments.

For an activity, the minimum duration of the activity La can have multiple meanings. The

minimum running time of a train La is set equal to the scheduled running time in the timetable,

and the minimum dwell time is equal to the scheduled dwell time with a maximum of 2 minutes.

The minimum headway time on the open track sections La is equal to 2 minutes if the trains run

in the same direction and 0 minutes if the trains run in opposite directions. Within the stations

the minimum headway time La is equal to 2 minutes.

The time La required before a rolling stock composition of an ended train can be used for

a new starting train is 5 minutes. If the activity between an ending and a starting train takes

longer than 10 minutes at a station with a shunting yard, the rolling stock composition goes

to the shunting yard and releases the station capacity 5 minutes after the train has ended and

requires station capacity from 5 minutes before the next train starts.

In the objective function we have two penalties. Penalties for delaying trains and penalties

for cancelling trains. The aim is to run as many trains as possible. Therefore cancelling a

train is penalized much more than delaying one. Cancelling a train is penalized by 50 times

the running time of the train. Furthermore for every event there is a penalty of 1 per delayed

minute. If a train is rerouted the costs are 20% of the costs for cancelling that train such that
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rerouting is preferred over cancelling the train, but also that the original route is preferred over

the alternative route.

This research does not focus on how the available capacities are used. Just the utilization of

the capacity is maximized, and if multiple capacity allocations lead to the same utilization, then

just one possible allocation is provided, since the objective function does not contain penalties

on activities.

2.5.3 Disruption scenarios

In order to test the described approach, a large set of disruption scenarios is created. For all of

the 27 open track sections we constructed 30 scenarios of full blockages where all tracks of that

section are blocked, and for the 24 open track sections with more than one track, an additional

set of 30 scenarios is constructed where only one track is blocked. The first scenario is a 2 hour

disruption of that open track section starting at 9:00. Then we increase in every new scenario the

start time of the 2 hour disruption by one minute. Since the timetable of Netherlands Railways

in this region is cyclic with a cycle time of 30 minutes, a disruption starting at 9:30 should be

very similar to a disruption starting at 9:00. In total this leads to 810 scenarios of full blockages

and 720 scenarios where only one track is blocked.

We take a buffer time of 1 hour into account before all trains should be able to run as planned

again after the disruption is over. This means that with a 2 hour blockage all trains in a 3 hour

period are taken into consideration in the timetable rescheduling.

2.5.4 Rerouting of trains

If there is a disruption between ’s Hertogenbosch and Eindhoven, then trains can be rerouted

via Tilburg (see Figure 2.14). For this case, 30 scenarios where all tracks are blocked and 30

scenarios where one of the two tracks is blocked are constructed in a similar way as described

in Section 2.5.3. In these scenarios the trains of one of the Intercity lines were allowed to

be rerouted. This intercity line runs twice an hour in each direction, which means that in a

disruption of 2 hours 8 trains can be rerouted.

To include the rerouted trains in the timetable, more events need to get a new time xe which

differs from the scheduled time qe. This means that it is harder to find the optimal solution.

Therefore, for these cases, we first find the solution for the case where rerouting is not allowed,

and then, in a second run, that solution is used as start solution for the case with rerouting. In

the results, the presented computation times include the computation times of both runs.
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Minutes of
delay allowed

Cancelled
trains

Partially
cancelled

trains

Cancelled
minutes

Computation
time (s)

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Complete
blockage

(808 instances)

0 0 2.0 12 0 4.7 18 28 405 947 3 3.2 12
3 0 1.6 9 0 3.6 15 28 389 908 4 5.0 8
5 0 1.4 10 0 3.3 15 28 381 905 4 5.9 11

10 0 1.3 8 0 3.5 17 28 372 881 5 14.2 89

One track blocked
no balancing

(720 instances)

0 0 1.0 6 0 2.1 11 0 156 474 2 4.3 18
3 0 0.6 6 0 1.5 8 0 115 348 4 6.9 29
5 0 0.6 5 0 1.0 7 0 99 335 5 9.0 39

10 0 0.5 4 0 0.7 5 0 68 286 6 43.3 971

One track blocked
with balancing
(720 instances)

0 0 0.9 6 0 1.9 11 0 166 474 3 4.6 14
3 0 0.7 7 0 1.3 8 0 127 420 4 7.8 49
5 0 0.8 5 0 1.0 6 0 108 420 5 10.1 75

10 0 0.5 4 0 0.6 5 0 74 300 6 48.2 1992

Table 2.1: Results on cancellations and computation time

2.5.5 General results

In this section we discuss the results of all 1530 scenarios and in Section 2.5.6 we describe the

results in which we included the option to reroute trains in 60 of the scenarios as described in

Section 2.5.4.

Tables 2.1 and 2.2 contain the minimum, average and maximum values of the performance

measures over all feasible scenarios for the complete blockages and the blockages of one track.

Note that minimum (maximum) value represent the lowest (highest) value found for that mea-

sure. This means that the minimum (maximum) values for the different measures do not neces-

sary originate from the same scenario.

There are two settings: (i) whether or not balancing constraints ((2.18)-(2.19)) were used

in the case of a partial blockage, and (ii) how much delay (0, 3, 5 or 10 minutes) is allowed

for trains that are not running at the start of the disruption. From now on, we refer with the

term allowed delays only to the delays allowed for trains that are not running at the start of the

disruption.

It turned out that for only 2 of the 1530 scenarios it was not possible to find a feasible

solution matching all constraints in our model.
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Table 2.1 gives the results on the number of cancelled trains, the number of partially can-

celled trains, the number of cancelled minutes and the computation times. In order to make the

results maximally comparable, we count the number of the cancelled and partially cancelled

trains, and the number of cancelled minutes as follows. A train t is partially cancelled if the

disruption was on its route, and if only one of the trains tα or tγ (the parts before and after the

disruption) is operated, while the other one is cancelled. If only the part on the disruption (train

tβ) is cancelled, this is not considered as a (partially) cancelled train, since this part has to be

cancelled inevitably in case of a complete blockage. The number of cancelled minutes is the

sum of the scheduled lengths in minutes of the cancelled parts of all cancelled, partially can-

celled, and inevitably cancelled trains, which is the main part in the objective function. Since

the aim is to minimize the cancelled minutes and not to minimize the number of cancelled

trains, it may happen that there are solutions where more trains (with a short duration) need to

be cancelled to have less cancelled minutes.

For each instance, the total number of trains is approximately 180, since we compute a

schedule for 3 hours in which more than 60 trains per hour run.

In case of a complete blockage, as shown in Table 2.1, if no delays are allowed, on average

an amount of 405 minutes (almost 7 hours) of train service is cancelled. Allowing up to 10

minutes of delay, reduces the amount of cancelled minutes by more than 8%.

If only one track is blocked, we see that the effect of allowing more delay is much higher.

Allowing 10 minutes of delay decreases the number of cancelled minutes on average with more

than 50% (from 156 to 68 minutes). The results also demonstrate that in some parts of the

network it is still possible to run all trains if only one track is out of service. This may be

deduced from the fact that there are solutions with 0 cancelled minutes.

The price of forcing the new schedule to be a regular one by including balancing constraints,

in which the number of trains per train series in one direction differs at most one from the

number of trains in the other direction, is an increase of around 10% in the number of cancelled

minutes.

The largest computation time is less than 1.5 minutes in case a maximum delay up to 5

minutes is allowed. This means that our approach is able to find advanced timetables with a

high probability of having a feasible rolling stock schedule within a computation time which is

reasonable in practice.

We can even find better solutions by allowing more delays (up to 10 minutes). For the com-

plete blockage case, the computation times are still below 1.5 minutes then. However, in case

of a single track blockage, allowing delays for trains up to 10 minutes can increase the compu-

tation time to values which are not usable for practice. However, on average the computation
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Minutes of
delay allowed

Delayed
trains

Delayed
events

Total maximum
delay

Total delay

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Complete
blockage

(808 instances)

0 0 0.1 2 0 0.2 15 0 1 35 0 2 226
3 0 1.4 18 0 6 76 0 3 44 0 11 169
5 0 2.1 23 0 10 129 0 6 61 0 24 331

10 0 2.8 19 0 13 128 0 11 104 0 49 838

One track blocked
no balancing

(720 instances)

0 0 0.1 2 0 0.8 19 0 2 28 0 11 388
3 0 3.4 20 0 19 100 0 7 38 0 39 266
5 0 5.4 27 0 34 188 0 14 83 0 86 720

10 0 9.1 38 0 53 266 0 39 216 0 224 1452

One track blocked
with balancing
(720 instances)

0 0 0.1 2 0 0.7 17 0 1 27 0 8 387
3 0 3.0 20 0 17 91 0 6 35 0 36 368
5 0 4.9 20 0 30 141 0 13 67 0 76 396

10 0 8.3 33 0 49 233 0 34 170 0 201 1190

Table 2.2: Results on delays experienced

time is still relatively low and in both variants (with and without balancing constraints) less than

9 out of the 720 cases had a computation time larger than 5 minutes.

For the cases with a computation time larger than 5 minutes we have computed the results

with a maximum CPLEX CPU time of 5 minutes. In case of no balancing constraints, on

average the number of cancelled minutes was 16% higher than in the optimal solution computed

without the time limit. The maximum increase in cancelled minutes was 50%. In cases with

balancing constraints the average increase in cancelled minutes was 25% and the maximum

increase was 65%.

The decision on which allowed delay should be preferred can be taken by the dispatchers,

also based on the available computing time for obtaining the new timetable. A good trade-off

between solution quality and computing time corresponds to an allowed delay of 5 minutes.

Another strategy could be to first find the solution for the problem in which a delay of 5

minutes is allowed and then use the found solution as a feasible start solution for the problem

in which 10 minutes of delay is allowed. In this strategy the dispatchers can give the approach

(a maximum) time to improve the solution found with the setting of a maximum delay of 5

minutes.

Table 2.2 gives the results on the number of delayed trains, the number of delayed events,

the sum of the maximum delay experienced by each train on its route (Total maximum delay), as
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well as the sum of the delays of all events. As expected, allowing delays increases on average

the total delay of the trains and events, but, as can be seen in Table 2.1, it also reduces the

number of cancelled trains.

2.5.6 Results with the option to reroute trains

Table 2.3 presents the results of the 60 scenarios in which there is a rerouting option for intercity

trains. In the case of a complete disruption there was one instance which was not feasible for all

settings. Therefore, we removed this instance from the results. This leaves us with 29 scenarios

in case all tracks are blocked and 30 scenarios in case only one track is blocked.

One train series is allowed to be rerouted. Since this train series runs twice an hour in each

direction and since we are dealing with a 2 hour disruption, the total number of trains which

can be rerouted is equal to 2× 2× 2 = 8.

In Table 2.3 we compare the results in which rerouting is not allowed with the results of the

same instances in which rerouting is allowed. We can see that, in case of complete blockages,

our approach is able to reduce the number of cancelled minutes considerably (approximately

20%) if we allow reroutings. Computation times stay below 2 minutes. In addition, having

the option to reroute trains reduces the number of cancelled minutes much more than simply

allowing larger maximum delays.

If all tracks are blocked, we originally did not have to include the balancing constraints

since, in that case, no trains at all run over the blocked area. However, in case we allow rerout-

ings, it is worthwhile to include balancing constraints for the rerouted trains to ensure that

trains are rerouted evenly in each direction. The results demonstrate that in the case of a com-

plete blockage with reroutings these balancing constraints do not have much influence on the

solution and on the computation time. Therefore we recommend to include these balancing

constraints. This is due to the fact that it seems to be possible to reroute all trains in many cases.

If all trains are rerouted, then the result is automatically a balanced solution with 4 rerouted

trains in each direction.

Also in case only one of the tracks is blocked, allowing reroutings can reduce the number of

cancelled minutes considerably (up to 38%). However, if delays of 10 minutes are allowed, we

discover that our approach without reroutings is able to find solutions with the same number of

cancelled minutes. In case rerouting is allowed, the reroutings are used to reduce the delays of

the trains.

In case of a blockage of only one track, the balancing constraints have a larger effect than

in case of a complete blockage. Especially if we allow delays of 5 or 10 minutes, adding the



46_Erim Veelentirf_Stand.job

34 A railway timetable rescheduling approach for handling large scale disruptions

Minutes of
delay allowed

Rerouted
trains

Cancelled
minutes

Computation
time (s)

Min Avg Max Min Avg Max Min Avg Max

Complete blockage
no rerouting

(29 instances)

0 497 521 544 3 3.0 4
3 469 512 536 4 4.9 6
5 469 506 536 5 5.6 8

10 451 488 525 7 10.1 16

Complete blockage
with rerouting no balancing

(29 instances)

0 4 7.4 8 379 419 489 6 6.8 7
3 4 7.7 8 375 410 462 10 11.5 20
5 4 7.7 8 351 405 462 11 14.6 25

10 4 7.7 8 335 391 443 19 37.2 75

Complete blockage
with rerouting with balancing

(29 instances)

0 1 7.5 8 379 423 543 6 7.0 11
3 1 7.5 8 375 414 517 10 11.6 20
5 1 7.5 8 351 409 517 12 15.7 43

10 8 8 8 335 393 468 20 39.9 81

One track blocked
no rerouting no balancing

(30 instances)

0 256 274 304 3 5.4 10
3 193 221 251 5 7.8 29
5 151 168 189 7 14.6 39

10 60 88 96 19 71.8 284

One track blocked
with rerouting no balancing

(30 instances)

0 6 6.8 7 196 217 243 8 15.1 25
3 4 4.0 4 178 193 218 17 23.8 40
5 3 4.0 4 96 103 124 15 42.9 109

10 5 6.8 8 60 88 96 48 170.9 407

One track blocked
no rerouting with balancing

(30 instances)

0 288 311 334 5 7.2 11
3 243 283 326 8 16.8 49
5 243 257 307 13 27.8 55

10 94 129 153 30 144.4 396

One track blocked
with rerouting with balancing

(30 instances)

0 1 6.6 7 206 238 326 9 17.8 55
3 4 4.0 4 180 193 218 20 32.1 60
5 4 5.1 8 163 182 218 30 74.0 141

10 5 5.1 6 94 121 137 165 284.7 830

Table 2.3: Results with reroutings
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balancing constraints leads to an increase of about 50% in the number of cancelled minutes,

independently of whether or not reroutings were allowed.

Also in case reroutings are allowed, our approach is able to quickly find an optimal solution,

as long as we do not allow more than 5 minutes delay. If dispatchers want to allow larger delays

(10 minutes) the computation times increase, especially in the case with balancing constraints.

2.6 Conclusions

In this paper we introduced an Integer Linear Program (ILP) to solve the real-time railway

timetable rescheduling problem for a railway network. The railway timetable rescheduling

problem considered in this paper has a macroscopic view on the infrastructure network which

consists of stations and open track sections with certain numbers of tracks. Furthermore, con-

straints on the available rolling stock are also considered in order to have a high probability

that there is a feasible rolling stock schedule for the new timetable. The possibility of rerouting

trains in order to reduce the number of cancelled and delayed trains is also considered. In ad-

dition, all stages of the disruption management process (from the start of the disruption to the

time the normal situation is restored) are taken into account.

The ILP is modeled as an event activity network in which each event represents an arrival

or a departure of a train, and in which an activity refers to passing on a resource unit from one

event to another event. The resources considered are the tracks in the open track sections, the

tracks in the stations, and the rolling stock compositions.

Computational tests are performed on a heavily used part of the Dutch railway network.

Solutions are provided within computation times which are very well suitable for use in practice.

Most of our cases can be solved within 1.5 minutes of computation time. The results show

that a smaller number of trains needs to be cancelled and the number of cancelled minutes is

significantly reduced if we allow to slightly delay or to reroute some trains.

Our approach turns out to be able to handle, in short computing time, every state of the

network at the time the disruption starts, and to decrease cancellations and delays of trains.

This makes our approach much more flexible and efficient than the current practice of using

contingency plans.
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Chapter 3

Passenger Oriented Disruption

Management in Railways by Adapting

Timetables and Rolling Stock Schedules

This chapter considers the paper (Veelenturf et al. (2014b)) presented at the PATAT 2014 con-

ference. It is under review at Annals of Operations Research. A preliminary version of this

paper won in 2010 the Junior of the Year Award of research school TRAIL.

Co-authors: L.G. Kroon and G. Maróti

3.1 Introduction

In passenger railway operations, unforeseen events (such as infrastructure malfunctions, ac-

cidents or rolling stock breakdowns) can make parts of the railway infrastructure temporarily

unavailable. Then it is not possible to operate the timetable, rolling stock schedule and crew

schedule as planned. Within minutes, or even better, seconds, a new timetable and new re-

source (rolling stock and crew) schedules must be available. In Cacchiani et al. (2014) an

overview is given of recovering models and algorithms to solve these rescheduling steps. In

this overview it becomes clear that, although the schedules are interdependent, most research

focuses on rescheduling one of the schedules at a time. By the complexity of the rescheduling

problems, there is not enough time to solve the integrated problem. In this chapter we partly

integrate the rescheduling of the rolling stock plan and the timetable. Our particular focus lies

on passenger service, and we take passenger behavior explicitly into account.
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Current literature on integrated rescheduling of the timetable and the rolling stock schedule

is scarce. Adenso-Dı́az et al. (1999) and Cadarso et al. (2013) applied research on integrated

rescheduling of the timetable and rolling stock on cases of the Spanish railway operator RENFE.

Like the main focus of this chapter, Cadarso et al. (2013) take the dynamics of the passenger

behavior during a disruption into account. In the current paper, however, the fundaments of the

approach are from Kroon et al. (2014). In Kroon et al. (2014) the focus is on improving pas-

senger service by considering passenger behavior while rescheduling the rolling stock. Kroon

et al. (2014) use an iterative procedure for rescheduling the rolling stock and evaluating the re-

sulting passenger behavior which is inspired by the iterative framework of Dumas and Soumis

(2008). Changing the timetable can also improve the passenger service. Therefore we extend

the approach of Kroon et al. (2014) by allowing the timetable to be slightly adapted as well.

It is important to focus on the passenger service since a disruption does not only affect the

timetable and the resource schedules, but also the passengers. However, for railway operators

without a seat reservation system it is difficult to reschedule the passengers. The passengers

will make their new travel plan by themselves. If they had planned to take a train which is

canceled due to the disruption, they will decide not to travel or to reroute themselves. Rerouting

of passengers means that they take other trains to their destination than originally planned. This

does not necessarily require the passengers to take a detour: They can also take a later train on

the same line.

By the changed passenger flows, the disruption causes changes in the demand for seats.

Therefore, a rolling stock rescheduling approach to handle a disruption must take the modified

passenger flows into account dynamically, and not the passenger flows of a regular day. For

example, since some passengers will take a detour, additional capacity on the detour routes is

necessary. One way to handle this is to increase the capacity of the trains on this route. Another

option is to increase the capacity by inserting more train services or by letting trains make

additional stops.

The consequences of the timetable adaptations may not turn out to be advantageous for all

passengers. For example, an additional stop of a train will delay the train with a few minutes.

As a consequence, the original passengers of the train will get an additional delay in favor of

reducing the delay of the passengers at the station at which an additional stop is made. The small

delay of the train can even lead to a large delay for the passengers if they miss their transfer at

a later station. The railway operator has to make trade-offs between the different consequences

for the passengers.

In this research we limit the timetable decisions to adapting the stopping patterns. Other

timetable decisions to influence the passenger flows, for example by inserting additional trains,

are left out since an additional train requires the railway operator also to adapt the crew sched-
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ules. We assume that small delays caused by adapting the stopping patterns can be absorbed by

the buffers within the crew schedule.

Delay management, which consists of deciding on whether or not trains have to wait for

delayed connecting trains, is another problem in which slight timetable adaptations influence

the passenger flows. Delay management is a hard problem on its own and thereby not considered

in our approach. We refer the interested reader to Schachtebeck and Schöbel (2010), Kanai et al.

(2011) and Dollevoet et al. (2012) for recent works on delay management approaches.

The framework of our rolling stock rescheduling approach is discussed in Section 3.2. In

Section 3.3 we show a relaxation of the model discussed in Section 3.2. Instead of solving the

relaxation, we make use of an iterative procedure of which in Section 3.4 up to Section 3.7 the

components are explained. Results of different variants of our approach, based on a scenario in

the Netherlands are discussed in Section 3.8, and Section 3.9 concludes this paper.

3.2 Rolling stock and timetable rescheduling with dynamic

passenger flows

The performance of the disruption management process investigated in this paper arises from

the interaction of 3 factors: (i) the timetable, (ii) the rolling stock schedule (seat capacity), and

(iii) the passenger behavior.

We consider disruptions where passenger behavior has a large impact on the performance

of the railway system if the timetable and rolling stock schedule are not changed. Examples are

disruptions where certain tracks are blocked for a number of hours. Passengers react to these

disruptions by finding alternative routes to their destinations. However, the capacity on these

alternative routes can be limited, resulting in overcrowded trains and thereby longer dwell times

and delays.

Two ways to handle the increased demand on the alternative routes are to enlarge the ca-

pacity of the trains and to adapt the timetable. Adapting the capacity of the trains alone is not

always enough. For example, it can be impossible to increase the capacity of a train by lack

of time and/or reserve rolling stock or due to limited platform lengths. Therefore, timetable

adaptations such as adding extra train services, rerouting trains or adding extra stops for trains

are worthwhile as well.

By adapting the timetable, the railway operator can influence the passenger flows by provid-

ing new alternative travel routes and by influencing the demand for certain trains. For example,

a train can make an additional stop at a station to give passengers at that station an additional,
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earlier, travel option to their destination and to decrease the demand for the next train stopping

at that station and travelling in the same direction.

In this research we limit the timetable changes to adaptations of the stopping patterns of

trains. A stopping pattern of a train indicates the stations where the train makes a stop. A

stopping pattern can contain, next to the scheduled stops, also new stops at stations where the

train did not have a scheduled stop.

To make a new rolling stock schedule and timetable for the remainder of the day, we assume

that the complete characteristics of the disruption are revealed at the moment the disruption

starts. For example, at that time, the exact duration of the disruption is known.

Then, a general framework for rescheduling the rolling stock and timetable by considering

the passenger behavior based on the model of Kroon et al. (2014), with the difference that now

also decision variables for the timetable decisions are included, can be stated as follows:

min c(x) + d(y) + e(z) (3.1)

subject to z ∈ Z (3.2)

x ∈ Xz (3.3)

y = f(x, z) ∈ Y (3.4)

Here Z is the set of all possible timetables given the disruption, Xz is the set of all possible

rolling stock schedules matching with timetable z, and Y is the set of feasible passenger flows.

The function f(x, z) returns the emerging passenger flows for a given timetable z ∈ Z and

rolling stock schedule x ∈ Xz. Note that the chosen timetable z and rolling stock schedule

x uniquely determine the passenger flows y by the function f . This means that the only real

decision variables are the rolling stock schedule x and the timetable z.

The objective function consists of three terms. The function c(x) gives the system related

costs of a rolling stock schedule, which can also be seen as the rolling stock rescheduling costs.

The function d(y) gives the service related costs of the passenger flows. The function e(z)

gives the system related costs of a timetable, so the timetable rescheduling costs. The highest

priority is given to assigning at least one rolling stock unit to each train, to prevent the train

to be cancelled by lack of rolling stock. Such cancellations will not only have a large negative

influence on the passenger flows, but also make the crew schedule infeasible.

3.2.1 Iterative Procedure

The optimization model (3.1)-(3.4) is very difficult to solve directly, mainly due to the complex

structure of the objective function f . We are not aware of any algorithmic framework that
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Passenger flow simulation

Rolling stock reschedulingStart

Passenger flow simulation

Timetable adaptation

Passenger flow Updated rolling stock assignment

Updated timetable Passenger flow

Figure 3.1: Iterative procedure for solving the rolling stock rescheduling problem with dynamic

passenger flows.

would be able to handle realistic instances of (3.1)-(3.4). Therefore we propose an extension

to the iterative heuristic of Dumas and Soumis (2008) and Kroon et al. (2014); the approach is

sketched in Figure 3.1.

The input of our algorithm consists of the original (i.e., undisrupted) timetable, the original

rolling stock schedule as well as a list of train services that must be cancelled as an immediate

reaction to the disruption. The removal of these inevitably cancelled services gives the initially

modified timetable.

In each iteration, we evaluate the passenger flows by using a simulation algorithm. The

simulation is based on the previous iteration’s timetable and rolling stock schedule. Here the

rolling stock schedule is only needed because it determines the capacities of the trains. We use

the simulation model introduced by Kroon et al. (2014). The details of this simulation model

are summarized in Section 3.4. Note that the first iteration uses the initially modified timetable,

and assumes that each train has the same capacity as in the original schedule.

The passenger simulation pinpoints the trains with insufficient capacities. The rolling stock

rescheduling model computes a new schedule based on these findings, balancing it with other

criteria, such as operational costs. For details we refer to Section 3.5.

After another round of passenger simulation, we evaluate which adaptations of the timetable

could potentially improve the service quality. Each individual adaptation is a minor change,

such as requiring a train to make an extra stop. Therefore we can assume that the just com-

puted rolling stock schedule remains feasible. We describe several variants for finding the most

promising timetable adaptation in Section 3.6. Having decided on the timetable, the next itera-

tion will start by launching a passenger simulation.
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Our method differs from the framework of Kroon et al. (2014) by adding the timetable

adaptation step to the loop. Since the passenger flows can be heavily impacted both by a new

rolling stock schedule and by an adapted timetable, we carry out passenger simulations after

each of them.

The iterative approach is purely heuristic; it does not necessarily converge, and has no op-

timality guarantee. Motivated by the limited time in real-life applications, we terminate our

algorithm after a certain number of iterations, and we report the best solution found. In addi-

tion, we compute lower bounds, described in Section 3.7, in order to be able to judge the quality

of the solution.

3.3 Operator control

The rescheduling process may result in a better outcome if the operator can directly influence the

passengers’ behavior by appropriately assigning them to the train services (rather than letting

the passengers choose their routes). We call this situation operator control. In this section we

describe an optimization model for operator control which is a relaxation of the model (3.1)-

(3.4). We are not going to use this model in our computational tests, since it is a computationally

large model and we do not want to assume operator control. However, we still want to present

this relaxation of the model to give an idea about its complexity, and thereby justifying our use

of an iterative procedure.

We split all timetable services into trips t ∈ T representing a movement of a train between

two consecutive planned stops. The main decision for the rolling stock schedule is to assign

compositions to trips, where a composition consists of one or more combined train units. Let Gt

be the set of all compositions g which can be assigned to trip t, and the capacity of composition

g is denoted by Capg. Binary variables xt,g indicate whether composition g is used (xt,g = 1)

for trip t or not (xt,g = 0).

For the timetable decisions every trip t ∈ T has a set Jt of possible stopping patterns for

stops at the intermediate stations. Here a stopping pattern indicates a sequence of intermedi-

ate stations at which the train makes an additional stop. Binary variables zj indicate whether

stopping pattern j is used (zj = 1) or not (zj = 0).

A passenger p ∈ P should take a path from its origin to its destination within his/her

proposed deadline, where a path itself is a sequence of rides on trains between two stations.

Let Kp be the set of all paths that passenger p ∈ P could take and let Kp
t ⊂ Kp be all paths

including (part of) trip t which passenger p could take. Note that the paths in Kp and Kp
t can be

based on every possible stopping pattern. Let J̄k be the set of all stopping patterns j matching
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with path k. The binary variable ykp is 1 if passenger p picks path k and 0 otherwise. The

parameter dkp indicates the associated cost (delay) of passenger p taking path k.

Then, in case of operator control, the model of (3.1)-(3.4) can be relaxed by:

min c(x) +
∑
p∈P

∑
k∈Kp

ypkd
p
k + e(z) (3.5)

s.t. x ∈ X̄z (3.6)∑
j∈Jt

zj = 1 ∀t ∈ T (3.7)

∑
k∈Kp

ypk = 1 ∀p ∈ P (3.8)

ypk − zj ≤ 0 ∀p ∈ P , ∀k ∈ Kp and ∀j ∈ J̄k (3.9)∑
p∈P

∑
k∈Kp

t

ypk ≤
∑
g∈Gt

xt,gCapg ∀t ∈ T (3.10)

ypk ∈ {0, 1} ∀p ∈ P and ∀k ∈ Kp (3.11)

zj ∈ {0, 1} ∀t ∈ T and ∀j ∈ Jt (3.12)

The objective function (3.5) is to minimize the total costs of the rolling stock rescheduling, the

passenger flows (sum of delays) and the timetable rescheduling. Constraints (3.6) compactly

summarize the constraints on the underlying rolling stock rescheduling problem. These rolling

stock decisions are influenced by the chosen timetable z since there are some minimum pro-

cess times required in the rolling stock schedule. So, if some trips take longer than planned

certain processes can become infeasible. Constraints (3.7) determine that for every trip exactly

one stopping pattern must be selected. Every passenger must pick exactly one path, which is

modeled by Constraints (3.8). Constraints (3.9) ensure that only matching paths and stopping

patterns can be chosen. The chosen paths by the passengers should also match with the available

capacity in the trains which is modeled by Constraints (3.10).

Even this relaxation of the model of (3.1)-(3.4) is a complex model to solve in a real-time

environment by the interdependence between the rolling stock and the timetable via the pas-

senger flows. Therefore, we will solve the model in (3.1)-(3.4) by an iterative procedure as

discussed in Section 3.2.1.
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3.4 Simulation of the passenger flows

The iterative procedure starts with a simulation of the passenger flows, and each time the

timetable or rolling stock schedule is updated a new simulation of the passenger flows is neces-

sary.

To keep the simulation tractable, all passengers with the same characteristics (origin, desti-

nation and arrival time at the origin) are aggregated into passenger groups.

To simulate the passenger flows we use the simulation algorithm as described in Kroon

et al. (2014). It is important to mention that this is a deterministic simulation algorithm to

calculate the emerging passenger flows. This means that, given a timetable and rolling stock

schedule, there are uniquely defined resulting passenger flows. Here we shortly summarize the

assumptions of the model as described in Kroon et al. (2014). For more details we refer to that

paper. We emphasize that the approach is modular, which allows us to replace the simulation

model by any other simulation model to model the passenger behavior.

3.4.1 Assumptions

For the simulation of passenger behavior, Kroon et al. (2014) make assumptions on three funda-

mental issues: (i) What information is available to the passengers? (ii) Which traveling strategy

do passengers apply to the available information? and (iii) How do passengers interact?

Information available for the passengers

It is assumed that passengers always know the most recent timetable. This means that if the

timetable is updated due to a disruption, they know which trains are canceled, which trains make

additional stops, and which trains are delayed. Passengers do not know the future timetables, so

they cannot anticipate on cancellations, delays and additional stops before the disruption occurs.

Furthermore, they do not know anything about whether or not they fit in the trains they would

like to take.

Strategy of the passengers

Each passenger has a traveling strategy. This strategy decides for the passenger what will be

the preferred path to the destination given the most recent timetable. In Kroon et al. (2014)

all passengers have the same strategy. In our research we also use this single strategy. The

used strategy is that passengers want to reach their destination as early as possible. If several

paths have the same earliest arrival time, the passengers prefer the path with the least transfers

between trains. If we have multiple paths with the same earliest arrival time and the same
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minimum number of transfers, the passengers will take the path with the earliest departure

time. It is worthwhile to mention that in practice there is a more balanced trade off between

transfers and travel time. It seems to be highly unrealistic that passengers are willing to transfer

2 times to save 1 minute of travel time. Note that one could easily include other strategies as

well.

Each passenger wants to reach his destination before a certain deadline. If a passenger is

not able to reach his destination before the deadline, it is assumed that the passenger gives up

travelling by train. In this way it is modeled that passengers are not willing to wait endlessly.

Interaction between the passengers

If a train arrives, first the passengers who want to leave the train get the option to do so, then

the passengers who wait at the platform and want to enter the train compete for the available

capacity in the train. It can happen that there is not enough capacity for all passengers. Then it

is assumed that the number of passengers from each passenger group who actually board a train

is relative to the size of the group. This could lead to a fractional number of passengers but it is

assumed that the contribution of fractional flows are neglectable.

It is possible that not all members of a passenger group are able to board the train: Some

of them have to stay behind. We say that these passengers are rejected by the train. In case of

rejections, the passenger group is split into two: those passenger who were able to board the

train and those who were not. The rejected passengers must find a new preferred path from

their current location, while the boarded passengers can just follow their previously computed

preferred path.

3.4.2 Evaluating the passenger flows

In this research we evaluate the passenger flows by the delays which passengers face in com-

parison with their original expected arrival times and by the number of passengers who gave

up traveling by train since they ware not able to reach their destination within their set dead-

line. In our experiments we try different ways to penalize delay minutes. In one setting the

delay minutes are penalized uniformly and in another setting longer delays are penalized more,

since one may argue that longer delays are worse than several small delays. For passengers

who are not able to reach their destination within their deadline we penalize passengers leaving

the system by the difference between the deadline and the expected arrival time of the intended

traveling path. For each passenger, his delay or penalty for not reaching his destination within

his deadline is called his inconvenience.
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3.5 Rolling stock rescheduling

The rescheduling of rolling stock follows the procedure of Kroon et al. (2014). In this procedure

the rolling stock is rescheduled based on the model described in Nielsen et al. (2012) (which is

an extension of Fioole et al. (2006)). The basic decisions in the model are to assign a rolling

stock composition to each trip such that as many of the passengers are accommodated. The

difficulty of the rolling stock rescheduling is that a composition consists of multiple combined

train units.

During operations the operator can change the compositions by decoupling or coupling units

in the front or the back of the train. These operations are called shunting operations. Shunting

personnel must be arranged to facilitate these operations. Therefore, changing the shunting

operations also includes new tasks for the shunting personnel, which is not preferred.

Since a composition can consist of different types of train units, the order in which they are

combined within a composition matters (i.e. one could not decouple a unit in the middle).

As discussed, the main objective of our approach is to prevent cancellations caused by lack

of rolling stock. Therefore we first determine how many trains need to be cancelled due to lack

of rollings stock. To do this we run the rolling stock rescheduling approach on the initially

modified timetable with the single goal to find a feasible rolling stock schedule by minimizing

the number of trains without rolling stock. This means that we have only a penalty for trains

which do no get rolling stock assigned to them. All other penalties are set equal to 0. The result

shows how many trains need to be cancelled inevitably by lack of rolling stock. In the rolling

stock rescheduling steps we enforce the number of cancelled trains to be equal to this value

to ensure that no more trains than necessary are cancelled. Still the rolling stock rescheduling

approach has freedom in which trains it does not assign rolling stock to.

For all remaining rolling stock rescheduling steps, the model has two objectives: It consists

of a trade of between minimizing the rolling stock rescheduling costs and the inconvenience

for the passengers. The rolling stock rescheduling costs are mostly based on how much the

rolling stock schedule is changed. For example one does not want to make too many new

shunting operations, since these new shunting operations must be communicated (with a certain

probability of miscommunication) and require personnel to perform them.

The inconvenience for passengers is based on the latest simulation run with the timetable

and rolling stock schedule of the last iteration. Penalties are defined for assigning a certain com-

position to a trip. The penalties are determined by estimating the effect of the train capacities

on the total passenger inconvenience measured as discussed in Section 3.4.2.

Per trip the average inconvenience per passenger who was not able to board the train is

computed. To do this, per passenger group the difference in inconvenience between passengers
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who were not able to board and passengers who were able to board is determined. Then, the

weighted (based on group size) average of these differences is considered as the average incon-

venience per passenger who is not able to board the train. In the objective function the number

of seat shortages is multiplied by this average inconvenience per rejected passenger. For more

details we refer to Kroon et al. (2014).

Kroon et al. (2014) reported that the approach of updating the objective function could lead

to cyclical behavior if the feedback from earlier iterations is ignored. We follow the described

exponential smoothing procedure in Kroon et al. (2014) (which is based on Dumas and Soumis

(2008)) to take feedback from earlier iterations into account as well. We use the setting which

performed best in their case. This setting means that feedback from earlier iterations is weighted

for 35 percent.

3.6 Timetable adaptations

The disruption management process admits timetable decisions in order to better facilitate the

passenger flows. In this paper we limit the allowed timetable modifications to adding stops to

timetable services.

In this paper, adapting the stopping patterns means that trains may stop at stations where

they normally just pass through. Making an additional stop results in new traveling options for

some passengers but also in an increased travel time for others. Therefore it is necessary to

make a trade off between the positive and negative effects of the changed stopping pattern. The

objective of this research is to minimize the sum of the delays of all passengers. Therefore, we

only allow timetable changes that do not increase the total delay of all passengers. We assume

that an additional stop will delay all further trips of a train by a fixed number of minutes and

that those delays will not influence other train traffic.

The (greedy) procedure to adapt the stopping patterns goes as follows: (i) we have a list of

candidate timetable adaptations, (ii) we evaluate for each candidate the consequences, (iii) we

apply the timetable adaptation with the most positive consequences.

First of all, this approach requires that in step (i) a list of candidate timetable adaptations

is given. The dispatchers can give this as input to the approach. In the extreme case, every

timetable service is allowed to make an additional stop at every station it passes.

The effect measured in step (ii) indicates how much the total delay of the passengers will

change if only that single timetable adaptation will be applied. Therefore, in step (iii) we limit

ourselves to allow only one timetable adaptation per iteration of the solution approach. If no

candidate timetable adaptation reduces the total delay of the passengers, no timetable change is

made.
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For all candidate timetable adaptations, the consequences of applying the adaptation need to

be computed. In Sections 3.6.1-3.6.4 we discuss several methods and approximations to com-

pute these consequences. In Section 3.6.1 we discuss a method to compute the exact effect of the

additional stop. The exact effect can be computed since we use a deterministic simulation for

the passenger flows. However, computing the exact effect can be time consuming. Therefore,

we also suggest a faster approximation algorithm in Section 3.6.2. Furthermore, we introduce

two heuristics in Sections 3.6.3 and 3.6.4 which are more transparent for use in practice.

In the different variants we evaluate the effects of different candidate timetable adaptations.

We refer to train i as the train of which the stopping pattern will be adapted within the candidate

timetable adaptation. Furthermore, the station at which train i will make the additional stop

within the candidate timetable adaptation is called station b.

3.6.1 Exact effect of an additional stop (EXACT)

To determine the exact consequences of an additional stop, we need to run the simulation al-

gorithm which is discussed in Section 3.4 twice. First the simulation is performed with the

current timetable and then the simulation is performed with the timetable which results from

the timetable adaptation. From both simulations we get the total delay minutes of the pas-

sengers. The difference between these two total delay minutes shows the consequences of the

candidate timetable adaptation. This approach measures the exact effect of the additional stop

and is called EXACT.

A variant of EXACT, denoted by EXACT*, will not use the current capacity of train i in

the simulation but the capacity of the largest possible composition allowed for train i. The

difference between this simulation and the simulation of the current timetable will then not

measure the exact effect of the extra stop but the potential (which can be larger) effect of the

additional stop. In this case it is left to the rolling stock rescheduling phase to check whether it

is possible to increase the capacity of train i.

3.6.2 Estimated effect of an additional stop (EST)

In this section we introduce an approach to estimate the effect of an additional stop. In this

variant, both the positive and the negative effects of the additional stop are considered. For all

passengers their preferred path to their destination is known. If we change the timetable by

including an additional stop, some passengers might get another preferred path to their destina-

tion.

Some passengers arrive earlier at their destination due to an additional stop at their origin or

destination. Other passengers might profit from the delay of the train caused by the additional
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stop, since due to the delay they were able to catch this train which departs earlier than the

train they were intending to take. All these passengers originally did not have train i on their

preferred path, but in case the additional stop is executed they have train i on their preferred

path.

However, since the additional stop takes some time it also causes some delays for passengers

who had train i on their preferred path in the current timetable. Due to the delay of train i it can

be that their preferred path changes. Also if the preferred path does not change it can still mean

that the passengers are delayed if the trip on train i was the final trip in their path.

To estimate the effect of the additional stop we compute for each passenger his preferred

path in the current timetable and the preferred path in the timetable in which train i makes an

additional stop. The sum of all these differences is our estimation of the consequences of the

additional stop. Note that this is an estimation since this method assumes that every passenger

can take his preferred path which might not be true by the limited capacity of the rolling stock

compositions.

We make variants of this approach by assuming different durations of the additional stop

in the determination of the shortest path. This means that we can use for the estimation of the

effect another duration of the additional stop than the real duration of the additional stop. For

example, if we assume a shorter duration of the additional stop, we over-estimate the potential

effect of the additional stop. However, maybe this will lead to a good optimization direction.

The duration of the extra stop used in the estimation approach will be called the extra stop

penalty.

3.6.3 Rule of thumb: Do not pass passengers who did not fit in a previous

train (PRACT1)

If passengers did not fit in a train, then they have to wait for the next train in the same direction.

Especially for these passengers, since they have already been rejected, it is very frustrating if a

train in their direction passes them without stopping. A rule in practice could be that it is not

allowed to pass a group of passengers who were rejected by a previous train. This is an easy to

use rule of thumb. We will evaluate the performance of this rule which is called PRACT1.

To decide whether or not train i needs to make an additional stop we have to consider two

other trains. The first considered train h is the last train which arrived at station b before the

passing time of train i at station b. If there were passengers with destination b rejected to board

train h at the departure from the last station a before station b, train i will make an additional

stop at station b to let these rejected passengers travel from station a to b.
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The second considered train j (which is in most cases the same as train h), is the last train

which departed from station b in the same direction as train i before train i passes station b. If

there were passengers rejected to board train j at station b, train i will make an additional stop

at station b to let these rejected passengers enter the train.

Since we allow one timetable adaptation per iteration we have to make a comparison on how

effective the additional stop will be: Therefore, we sum up the advantages for all passengers

who were rejected to board train h in station a or train j in station b. For the passengers rejected

to board train h in station a the advantage is measured by the difference between the arrival

time of train i at station b and the arrival time of the first train from a to b after train i. For

the passengers rejected to board train j in station b the advantage is estimated by the difference

between the arrival time of train i at the first station after station b where both trains h and i stop

and the arrival time at the same station of the first train departing after train i from station b.

In this measurement we assume that all passengers are able to board train i, so that train i is

assumed to have infinite capacity. We do not use the actual capacity since in the rolling stock

rescheduling phase the capacity of train i could be increased.

3.6.4 Rule of thumb: including the negative effects PRACT2

The approach PRACT1 based on a rule of thumb only considers the positive effects of an ad-

ditional stop. This results in a situation that even if only one passenger may profit from the

additional stop, the stop will be executed. In another rule of thumb, PRACT2, the delay for

passengers traveling by train i caused by the additional stop is included. In this approach, the

advantages for passengers are measured in the same way as approach PRACT1, and the incon-

venience per passenger who travels by train i at the moment train i makes an additional stop at

station b will be equal to a fixed parameter. This parameter is equal to the duration of the extra

stop plus a possible penalty. Note that for practitioners this rule requires more knowledge. In

PRACT1 the dispatchers only need monitor whether there are trains where some passengers did

not fit in the train. In PRACT2 the dispatchers also need to know how many passengers did not

fit in the train, and how many passengers are in the next train passing station b.

3.7 Lower bound

The proposed approach does not guarantee to converge to an optimal solution. To consider the

quality of our solutions, we check the gap between a lower bound and the value of our solution.

Depending on the nature of the disruption, the lower bound on the rolling stock rescheduling

costs will not differ that much from 0, but the lower bound on the passenger delays can be quite
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interesting. In this section we come up with a lower bound which takes the positive effects of

an additional stop into account.

This lower bound can be reached by assuming infinite capacity on all trains, together with

assuming that all extra stops are executed and that an extra stop does not cause any arrival delay.

To be more precise, in this lower bound all extra stops are executed and the departure times

at stations after the additional stop are delayed by the time an extra stop will take, and all arrival

times are kept the same. This way we ensure that no passenger faces an arrival delay caused

by the additional stop and that passengers who may profit from a delayed train caused by an

additional stop still have the opportunity to enter the train. Then a simulation run with infinite

capacity on the trains and with the timetable as described above gives a lower bound on the total

passenger delay.

It can happen that passengers have an advantage by a delayed train since they can pick a

train earlier than their planned train. This must be considered in the lower bound. Therefore we

cannot just add the extra stops and leave all departure and arrival times the same.

By delaying the departure times we have a lower bound which is valid for both cases, with

and without the extra stop. No one gets an arrival delay, and some passengers arrive earlier

since they have an extra travel opportunity by the extra stop.

This lower bound represents the delay of the passengers which the operator cannot prevent

by increasing the rolling stock capacities or adapting the timetable. This delay is caused by the

train services that are inevitably cancelled due to the unavailability of infrastructure caused by

the disruption.

3.8 Computational Results

We tested the proposed approach on instances based on cases of Netherlands Railways (NS)

which is the major railway operator in the Netherlands. In these instances, a disruption, due

to some blocked switches, caused that fewer trains than normally can be operated on certain

tracks.

3.8.1 Detailed case description

The instances take the busiest part the Dutch railway network into account which is represented

in Figure 3.2. The original passenger flows are constructed conform a regular weekday of

Netherlands Railways, which resulted in 15064 passenger groups with a total of about 450,000

passengers.
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Figure 3.2: Part of the Dutch railway network

In almost all parts of the network we have four Intercity trains per hour in each direction. A

Intercity train is a train which only stops at larger stations. All intercity trains in this network

are considered, furthermore the regional trains, that stop at every station, between The Hague

(Gv) and Utrecht (Ut) are also considered.

For the rolling stock rescheduling, four types of rolling stock are available; two types for

regional trains and two types for intercity trains. The regional train types can be coupled to-

gether, which leads to 5 possible compositions, and the Intercity train types can also be coupled

together in 10 different compositions.

In Figure 3.2 the dotted line represents the disrupted area. On those tracks on a normal day

each hour 4 Intercity trains and 4 regional trains run in each direction. We constructed two

instances with a disruption in the rush hours between 7:00 A.M. and 10:00 A.M. In the first

instance (ZTM1), 2 regional trains per hour per direction are canceled. In the second instance

(ZTM2) also 2 Intercity trains per hour per direction are canceled. This means that in instance

ZTM1 in each direction 6 trains per hour still run between Gouda (Gd) and The Hague (Gv),

and only 4 trains per hour in each direction in instance ZTM2.
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Table 3.1: Rolling stock rescheduling costs

Type of costs value

New shunting operation 500
Changed shunting operation 500
Canceled shunting operation 100
Off balances at the end of the day, per unit 200
Seat shortage per seat per kilometer 0.1
Carriage Kilometers 0.0001

3.8.2 Parameter settings

The objective function consists of system related costs for the timetable adaptation and the

rolling stock rescheduling, and costs for the passenger delays. For the timetable adaptations we

do not consider any penalties other than that we assume that an additional stop will delay a train

by 3 minutes.

The rolling stock rescheduling costs are given in Table 3.1. Most important is that the rolling

stock schedule should not change too much from the original plan, since changed plans require

communication between the dispatchers and the personnel, and a failure in this communication

is easily made. Therefore we introduce costs for having other shunting operations than planned.

Changing the shunting operations also includes new tasks for the shunting personnel, which is

not preferred. We consider the carriage kilometers as least important.

The passenger service costs consist of the passenger delay minutes as discussed in Section

3.4.2, where the penalties for passengers who left the system because of not reaching their end

station within their deadline are also measured in delay minutes.

The approach will make at maximum 15 iterations.

To solve the composition model of the rolling stock rescheduling we used CPLEX 12.5.

The test instances are run on a laptop with a Intel(R) Core(TM) i7-3517U 1.9/2.4 Ghz and 4.0

GB RAM.

3.8.3 Results

This section provides the results of the two test instances. For the timetable rescheduling part

we had different approaches to decide which Intercity trains should make an additional stop.

We compare the effect of the different approaches on the final solution. We also compare our

approach (which includes the option to adapt the timetable) with the method of Kroon et al.

(2014) (which does not have an option to adapt the timetable) referred to as (NO STOP). In the

approach (EST) we estimated in the timetable rescheduling step the effect of an additional stop.
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Table 3.2: Results
Solution Lower Objective Passenger Rolling stock Extra Iteration Computation
Method bound delay rescheduling stops of best time

minutes costs solution (sec)

Instance ZTM1

(EXACT) 33526 55927 55874 53 4 4 563
(EXACT*) 33526 55927 55874 53 4 9 573

(EST 0min) 33526 57372 56818 554 3 3 349
(EST 1min) 33526 58857 58304 554 4 4 352
(EST 2min) 33526 57372 57318 53 5 9 352
(EST 3min) 33526 91534 90980 554 0 1 291
(PRACT1) 33526 64304 64251 53 3 4 282
(PRACT2) 33526 64304 64251 53 3 4 307

(NO STOP) 49626 91534 90980 554 - 1 235

Instance ZTM2

(EXACT) 110848 139588 136527 3061 3 3 456
(EXACT*) 110848 139588 136527 3061 3 8 427

(EST 0min) 110848 139630 136368 3262 3 4 352
(EST 1min) 110848 139630 136368 3262 3 4 315
(EST 2min) 110848 162228 159167 3061 2 6 351
(EST 3min) 110848 177123 173861 3262 0 1 291
(PRACT1) 110848 152062 149000 3061 4 4 320
(PRACT2) 110848 166356 163295 3061 3 7 326

(NO STOP) 120373 177123 173861 3262 - 1 249

Within this estimation we discussed that we could assume different lengths of the additional

stops. This assumed length of the additional stop is also called the extra stop penalty. In our

experiments we used 0, 1, 2 and 3 minutes for the extra stop penalty. Note that an extra stop

penalty of 0 minutes means that it is assumed that nobody faces negative effects of the additional

stop. Furthermore, note that the realized timetable adaptation always includes a 3 minute delay

caused by the additional stop.

In Table 3.2 we provide the best result found in the iterative procedure for each of the vari-

ants of the approach. Note that the iterative procedure does not necessarily converge to an

optimal solution and thus the best solution can be found at any iteration. Therefore, we in-

cluded the number of the iteration where the best solution was found. For each approach the

lower bound as discussed in Section 3.7 is given. Furthermore, the table contains the value of

the objective function which consist of the sum of the rolling stock rescheduling costs (by con-

sidering the parameters in Table 3.1) and the passenger inconvenience (measured in passenger

delay minutes as discussed in Section 3.4.2). In the table fractional values for the total passenger

delay minutes are rounded to whole minutes. We also report how many extra stops are included

in the timetable of the best result. The computation time is measured in seconds and reports the
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computation time over all 15 iterations, and not just the computation time up to the moment the

best solution is found. The latter would not be fair, since beforehand it is not known at which

iteration the best solution will be found.

Performance

In the approach NO STOP based on Kroon et al. (2014), timetable adaptations were not allowed.

Our results show that allowing the stopping patterns to be adapted can reduce the passenger

delays dramatically by about 25 to 35 percent.

From Table 3.2 we can deduce that the approach EXACT led in both cases to the lowest

passenger delay minutes and the lowest rolling stock rescheduling costs. EXACT*, the variant of

the approach EXACT, reaches the same solutions, but it takes longer to get there. The estimation

approach works well as long as we overestimate the positive effects of the additional stop by

having a lower extra stop penalty (0 or 1 min) than the realized delay (3 min).

The performance of the approach EST 0min is surprising. It underestimates the negative

effects and overestimates the positive effects of the additional stop but it is still able to reach

solutions which do not differ much from the solutions reached by the approach EXACT. In

deciding on which train should make an additional stop, the approach EST 0min assumes that

an additional stop does not cause any delay and thereby no one faces negative effects of the

additional stop. In every iteration an additional stop is introduced (by assuming that every

additional stop has at least some positive effect).

On the other hand, the bad performance of the approach EST 3min is also surprising. Es-

pecially since in this approach the duration of the additional stop in the estimation approach

matches the realized duration of an additional stop. However, this approach finds it never worth-

while to make an additional stop. Since this approach does not consider the capacities of the

trains, it does not take rejected passengers into account. The EST approaches, thereby underes-

timate the positive effect the additional stop could have for rejected passengers. It seems that

in EST 0min and EST 1min this underestimation is balanced by the overestimation of the other

positive effects, but in the EST 3min approach the underestimation is not corrected by another

overestimation.

The rules of thumb approaches PRACT1 and PRACT2 are outperformed by our exact ap-

proach EXACT and by our estimation approaches EST 0min and EST 1min. This shows that our

more complex approaches are able to come to better solutions.
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Iterative behavior

In Figures 3.3 - 3.8 we show for six of the variants how the solution of the case ZTM1 changes

over the iterations. The black dot indicates the first solution and by arrows we indicate how the

solution evolves. On the horizontal axis we have the rolling stock rescheduling costs and on the

vertical axis we have the passenger delays. With the rolling stock rescheduling both the rolling

stock rescheduling costs and the passenger delays can change. However a timetable adaptation

only influences the passenger delays, and therefore, a vertical drop or increase in the figure can

generally be associated with a timetable adaptation.

The EXACT approach has a quite clear converging path to its best solution by decreasing

passenger delays and rolling stock rescheduling costs. The solution of the approaches EST

0min and EST 1min first goes to solutions with low passenger delays and low rolling stock

rescheduling costs, but from a certain moment, the passenger delays are increasing again. The

approaches EST 2min and PRACT1 converge like the EXACT approach to their best solution,

but especially the solution of PRACT1 does not come close to the solution of EXACT. The

approach EST 3min has in every iteration the same solution.

In Figures 3.9 and 3.10 the iterative behavior of our best performing variants (EXACT and

EST 0min) on case ZTM2 are given. All variants did not show converging behavior for this case.

The figures demonstrate that the EXACT approach explores a smaller region of solutions. The

approach EST 0min first goes to solutions with large passenger delays, then gets to solutions

with low passenger delays and in the end it goes again into the direction of solutions with high

passenger delays.
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Figure 3.4: EST 0min case ZTM1
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Figure 3.5: EST 1min case ZTM1
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Figure 3.6: EST 2min case ZTM1
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Figure 3.7: EST 3min case ZTM1

Rolling stock

0 1000 2000

P
as
se
n
ge
r
D
el
ay
s

50000

60000

70000

80000

90000

100000

Figure 3.8: PRACT1 case ZTM1

Rolling stock

2000 3000 4000 5000

P
as
se
n
ge
r
D
el
ay
s

130000

140000

150000

160000

170000

180000

190000

200000

Figure 3.9: EXACT case ZTM2
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Computation time

Our approach added a module which adapts the timetable to the iterative procedure of the ap-

proach NO STOP of Kroon et al. (2014). This means that we assume that by the additional

computations our approach cannot be faster than the NO STOP approach.

If we use the EXACT approach, an instance is solved in about double the time of the

NO STOP approach. The other variants of the approach solve the instances faster (within 6

minutes).

The first rolling stock rescheduling step, to determine the number of trains without rolling

stock, is carried out in about 80 seconds. Then, next rolling stock rescheduling steps take 4 to

5 seconds per iteration. The timetable rescheduling phase takes 8 to 15 seconds per iteration

within the EXACT approach, since multiple simulations must be carried out. The computation

time of the timetable rescheduling phase drops to 1 to 6 seconds per iteration for the estimation

approaches EST and to less than 1 second for the approaches PRACT1 and PRACT2.

Table 3.3: Results with costs of the passenger flows times 10
Solution Lower Objective Passenger Rolling stock Extra Iteration Computation
Method bound delay rescheduling stops of best time

minutes costs solution (sec)

Instance ZTM1

(EXACT) 335260 558793 55874 53 4 7 568
(EXACT*) 335260 558793 55874 53 4 14 541

(EST 0min) 335260 568737 56818 554 3 3 346
(EST 1min) 335260 583589 58304 554 4 4 351
(EST 2min) 335260 568737 56818 554 3 6 350
(EST 3min) 335260 910355 90980 554 0 1 363
(PRACT1) 335260 642566 64251 53 3 7 297
(PRACT2) 335260 642566 64251 53 3 7 296

(NO STOP) 496260 910355 90980 554 - 1 210

Instance ZTM2

(EXACT) 1108480 1363686 135962 4064 3 11 431
(EXACT*) 1108480 1363686 135962 4064 3 5 430

(EST 0min) 1108480 1375949 137189 4064 4 4 346
(EST 1min) 1108480 1366944 136368 3262 3 4 298
(EST 2min) 1108480 1593181 158992 3262 2 4 331
(EST 3min) 1108480 1741873 173861 3262 0 1 359
(PRACT1) 1108480 1473060 146900 4064 2 2 313
(PRACT2) 1108480 1628519 162446 4064 3 12 293

(NO STOP) 1203730 1741873 173861 3262 - 1 237
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3.8.4 Additional tests

To see what happens with the solutions if we put more weight on the passenger delays, we run

all approaches also with an objective in which the cost of the passenger flows is multiplied by

10. The results are presented in Table 3.3. The results and the performance are almost similar to

the results in Table 3.2. In one third of the cases the rolling stock rescheduling costs are slightly

higher to reach lower passenger delays.

In a third test we experiment on how the approaches behave if we give additional penalties

to longer delays. In these tests we penalize delays between 15 and 30 minutes with an additional

5 minutes delay and delays longer than 30 minutes with an additional 10 minutes delay. Again

one can see from the results in Table 3.4 that these additional penalties do not influence the

solutions. In more than half of the cases, the best solution found is the same as in the situation

without these additional penalties (as presented in Table 3.2). For the other cases the differences

were not large.

These two additional tests show that our approach is not sensitive to changes in the evalua-

tion of the passenger inconvenience.

Table 3.4: Results with 5 minutes additional penalty for delays larger than 15 minutes and 10

minutes additional penalty for delays larger than 30 minutes
Solution Lower Objective Passenger Rolling stock Extra Iteration Computation
Method bound delay rescheduling stops of best time

minutes costs solution (sec)

Instance ZTM1

(EXACT) 36171 59342 55874 53 4 8 572
(EXACT*) 36171 59342 55874 53 4 8 563

(EST 0min) 36171 60777 56818 554 3 3 341
(EST 1min) 36171 62297 58304 554 4 4 348
(EST 2min) 36171 60777 56818 554 3 3 361
(EST 3min) 36171 94969 90980 554 0 1 360
(PRACT1) 36171 67684 64251 53 3 8 290
(PRACT2) 36171 67683 64251 53 3 8 273

(NO STOP) 52741 94969 90980 554 - 1 214

Instance ZTM2

(EXACT) 114988 144513 136527 3061 3 5 417
(EXACT*) 114988 144513 136527 3061 3 5 492

(EST 0min) 114988 144540 136368 3262 3 4 312
(EST 1min) 114988 144540 136368 3262 3 4 331
(EST 2min) 114988 167383 159167 3061 2 5 344
(EST 3min) 114988 182073 173861 3262 0 1 339
(PRACT1) 114988 155026 146930 3061 4 4 324
(PRACT2) 114988 167639 159563 3061 2 5 309

(NO STOP) 124813 182073 173861 3262 - 1 201
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3.9 Conclusions and further research

In this paper we proposed a disruption management approach which integrates the rescheduling

of rolling stock and the adaptation of stopping patterns with the aim of improving passenger

service.

Computational tests are performed on realistic large-scale instances of the Dutch railway

network. The two tested instances show that allowing the timetable to be adapted can reduce the

total delay of passengers by more than 20 percent without increasing the rolling stock reschedul-

ing costs. We suggested several variants of the approach, with the difference lying in the way of

how the timetable changes are evaluated. These variants lead to different results and different

computation times, but the results per variant are not quite sensitive to the exact cost parameter

settings.

Our solution approach does not necessarily converge to an optimal solution. The lower

bounds indicate that the gap between the solution and the lower bound is decreased by allowing

stopping pattern adaptations. However the gap is still significant, which is probably caused by

the weak lower bound. This is a topic for future research.

In future research we will incorporate other timetable decisions as well, for example rerout-

ings of trains. Furthermore we want to proceed with integrating delay management decisions

into the model, which will be quite challenging since the delay management approach is already

a difficult problem to solve on its own.
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Chapter 4

Railway Crew Rescheduling with Retiming

This chapter started with research in my MSc thesis and is my first paper finished during

my PhD. It has been published in Transportation Research Part C: Emerging Technologies

(Veelenturf et al. (2012)).

Co-authors: D. Potthoff, D. Huisman and L.G. Kroon

4.1 Introduction

Passenger railway operations frequently face unforeseen events like malfunctioning infrastruc-

ture, accidents, or rolling stock breakdowns. As a consequence of these events, part of the

railway infrastructure is temporarily unavailable. Therefore, it may not be possible to oper-

ate the timetable as planned then. In this paper we focus on disruptions, which are situations

in which an unforeseen event makes the resource schedules infeasible. Jespersen-Groth et al.

(2009) describe the common disruption management process in Europe as the accomplishment

of three interconnected steps: (1) timetable adjustment, (2) rolling stock rescheduling, and (3)

crew rescheduling. Because of their complexity and the limited time available for decision mak-

ing in a disrupted situation, these steps are usually carried out sequentially. First, an adjusted

timetable is constructed by canceling, delaying or rerouting a number of trains. In the next step

it is checked whether modified rolling stock schedules compatible with the adjusted timetable

can be found. Finally, in the third step, the crew members (train drivers and conductors) are

rescheduled according to the adjusted timetable and rolling stock schedule. However, notice

that in case of train drivers the rolling stock schedule hardly influences the crew rescheduling:

every train needs exactly one driver. If during the rolling stock or crew rescheduling steps no

rolling stock or crew for a task of the adjusted timetable can be found, then another iteration



74_Erim Veelentirf_Stand.job

62 Railway Crew Rescheduling with Retiming

through the steps is necessary. In that case, a different timetable, where some trains run on

different times or are canceled, is needed.

An infeasibility of the crew rescheduling step suggests to use a further adjusted timetable

where some additional trains are canceled. If this is compatible with the rolling stock schedule,

then this is a solution. However, in this paper we show that sometimes no additional trains need

to be canceled if the departures of some trains are delayed by just a couple of minutes, which is

called retiming. It is quite clear that up to 1,000 passengers waiting for a train on a busy station

during the peak hours will prefer a somewhat delayed train over a canceled one.

In this paper, we study an extension of the crew rescheduling problem, where the crew

rescheduling step is combined with small timetable modifications. More precisely, the de-

partures of some trains may be delayed by a few minutes. This gives more flexibility to the

rescheduling of the crew duties in the disruption management process, and may avoid unde-

sirable iterations through the three steps. Moreover, this new approach is able to provide high

quality solutions from a service point of view, as was indicated above. The crew rescheduling

approach in this paper will be applied for train drivers only since, in contrast to the conductors,

a train cannot run without a driver.

Note that in this paper we do not aim at a complete integration of the timetable adjustment

step and the crew rescheduling step: The timetable adjustment step is the first and leading step in

the disruption management process. After the rolling stock has been rescheduled, the adjusted

timetable is modified again in the crew rescheduling step only if this turns out to be appropriate

there. Clearly, the latter timetable modifications are initiated by the train operator. However,

since these are only minor timetable modifications, they cannot be distinguished from other

small delays, and thus they do not lead to discussions with the infrastructure manager. For the

same reason, the structure of the rolling stock circulation remains the same under the retiming

options. In addition, we do not study integration of other steps in the disruption management

process, such as integrating the rescheduling of rolling stock and crew, or train drivers and con-

ductors. Such integrations are very hard from a computational point of view. Moreover, the

main relation between rolling stock and crew is caused by the number of conductors that is

needed to operate a train. In practice, these rules are often violated in the disruption manage-

ment process, because a train can always run with less (possibly even zero) conductors. On the

other hand, the possibility of retiming in crew rescheduling is often applied in practice. There-

fore, it is relevant to study whether algorithms in the crew rescheduling process can consider

this feature.

The first contribution of this paper is a new formulation for railway crew rescheduling with

retiming, where the retiming options are modeled as discrete alternatives. Moreover, we show

how to adapt the solution approach of Potthoff et al. (2010) in order to keep the increase in
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Figure 4.1: Part of the Dutch railway network used by NS

computation time for the extended model moderate. We evaluate our approach based on real-life

data from Netherlands Railways (NS), the largest passenger railway operator in the Netherlands.

Finally, we show that crew rescheduling with retiming allows to find better solutions than crew

rescheduling without retiming.

The remainder of this paper is organized as follows. A problem description is provided in

Section 4.2. The existing literature on crew rescheduling is reviewed in Section 4.3. In Sec-

tion 4.4 we present the mathematical formulation of railway crew rescheduling with retiming.

Our solution approach is discussed in Section 4.5. Computational results are presented in Sec-

tion 4.6. In Section 4.7 we draw some conclusions and give some recommendations for further

research.

4.2 Problem description

We first introduce some railway terminology which is necessary to clearly describe the problem.

Most of the services offered by passenger railway operators are regular service trips (commonly

known as trains) on specified lines according to a published timetable. A line is determined by

a start station and an end station and a number of intermediate stops. In the Netherlands, all

lines are operated with a frequency of once or twice per hour. An example of such a line is

the 800-line between Maastricht (Mt) and Alkmaar (Amr) with 13 intermediate stops. In the

rush hours the 800-line is extended to Schagen (Sgn) with 2 additional intermediate stops, see

Figure 4.1.
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As stated earlier, we limit ourselves to rescheduling the train drivers. In order to operate

the timetable, trains are split into trips between relief points. A relief point is a station where a

driver can switch from one rolling stock unit to another. The work that must be carried out by

the drivers is divided into tasks. Several tasks may correspond to the same trip. For example,

each trip is related to the task of driving the train, as well as to one or more tasks for conductors.

The relief points on the 800-line are Maastricht (Mt), Sittard (Std), Roermond (Rm), Eind-

hoven (Ehv), ’s-Hertogenbosch (Ht), Utrecht (Ut), Amsterdam (Asd) and Alkmaar (Amr). Note

that the begin/end station during peak hours, Schagen (Sgn), is not a relief point, so a driver

arriving in Schagen has to stay on the rolling stock and drive the next train of the 800-line

from Schagen back to Alkmaar. This results in a task from relief point Alkmaar to relief point

Alkmaar.

A duty is a sequence of tasks which is carried out by one crew member on a single day. Each

duty ends at the same crew base as where it started. The set of crew bases is a subset of the

set of relief points. Sometimes a duty contains a so called deadheading task, which is used to

relocate the crew. A deadheading task means that the driver is not driving the train, but that he

is a passenger on that train. Another possibility is that the duty contains a repositioning task. A

repositioning task is comparable to a deadheading task, with the difference that it uses another

mode of transportation, for example a bus, a taxi or a train of another operator.

The operational crew rescheduling problem (OCRSP) is relevant in a disrupted situation,

where, starting at some point in time τ (the start time of the disrupted situation), parts of the

original timetable and rolling stock and crew schedules have become infeasible. OCRSP as-

sumes that the timetable and the rolling stock have been rescheduled already from time instant

τ onwards, and takes the rescheduled timetable and rolling stock schedule as input. OCRSP

tries to find a replacement duty for each original duty, such that as many tasks as possible of

the adjusted timetable are covered. For each original duty, a replacement duty consists of the

already completed (possibly empty) part of the duty until time instant τ , together with a feasible

completion of the duty. Here a feasible completion is a sequence of tasks following the already

completed part of the duty, resulting in a replacement duty which satisfies a number of rules. In

this research the following rules are used:

• A replacement duty needs to start and end at the same crew base as the original duty.

• A replacement duty may end up to 60 minutes later than the end time of the original duty.

• If, in a replacement duty, two subsequent tasks must be carried out on different rolling

stock units, then a certain minimum transfer time between the two tasks must be taken

into account.
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• A replacement duty which is longer than 5 1/2 hours must contain a meal break of at least

30 minutes at a relief point with a canteen. Moreover, the time before and after the meal

break must be less than 5 1/2 hours.

• A replacement duty can cover a task only if the involved driver is qualified for the route

and is licensed for the rolling stock type.

Not all duties in the original crew schedule contain assigned tasks. There exist a number

of reserve duties, where the driver is on stand-by for a specified amount of time at a major

station. The purpose of these reserve duties is that they can be used during crew rescheduling

in a disrupted situation.

If in a solution to the OCRSP a task cannot be covered by any crew member, it means that

no compatible crew schedule for the adjusted timetable can be found. In that case, the adjusted

timetable cannot be carried out, and hence the railway operator has to come up with another

adjusted timetable, for which it is possible to find a compatible crew schedule (and rolling stock

circulation).

The idea of retiming is to evaluate not just one fixed timetable but a relatively small number

of similar timetables at once. By slightly delaying the departure of some trains, more connec-

tions for drivers are allowed and hence more feasible completions may exist. Thus it may be

possible to find a better crew schedule. Anyway, the objective of retiming is to keep the amount

of additional delays as small as possible. Retiming is only allowed if there is no other way to

get a certain task covered.

In Figure 4.2a we show the original duty Ah 114 from crew base Arnhem (Ah) in case

the two southbound routes from ’s-Hertogenbosch (Ht) to Breda (Bd) and Eindhoven (Ehv)

are blocked from 15:30 to 18:30. The duty started with driving task 3043/e (the fifth task of

train 3043) from Arnhem (Ah) to Nijmegen (Nm). At 15:30, when the disruption started, the

driver has completed his next two tasks and is carrying out task 3653/b. The meal break (MB)

was planned in Roosendaal (Rsd), and thereafter the duty was supposed to end with driving

train 3666 from Roosendaal (Rsd) to Arnhem (Ah), 3666/a–3666/d. However, due to the

route blockage, task 3653/c is canceled. Therefore, original duty Ah 114 is infeasible now.

A replacement duty is shown in Figure 4.2b. Note that because the rescheduling takes place

at 15:30, the first four tasks of the duty cannot be changed. After those four tasks, the driver

arrives in ’s-Hertogenbosch (Ht) at 15:48. If the next task has to be carried out on different

rolling stock, a minimal transfer time of 10 minutes must be respected. So the replacement duty

is allowed to carry out task 16054/a to Utrecht (Ut) at 16:02, which is operated on different

rolling stock than task 3653/b. From Utrecht (Ut) the driver could go back to ’s-Hertogenbosch
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(Ht) by driving task 861/e. Finally, the duty can carry out tasks 3666/c and 3666/d as in the

original duty.

a) /e /a /a /b /c /d MB /a /b /c /d

3043 3048 3653 3666

Ah Nm Ah Nm Ht Bd Rsd RsdBd Ht Nm Ah

b) /e /a /a /b 16054/a 861/e MB /c /d

3043 3048 3653 3666

Ah Nm Ah Nm Ht Ut Ht Ht Nm Ah

c) /e /a /a /b 4456/a MB 4463/a /c /d

3043 3048 3653 3666

Ah Nm Ah Nm Ht Nm Nm Ht Ht Nm Ah

13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

Time of rescheduling (τ)

task MB meal break retimed task

Figure 4.2: Replacement duties for duty “Ah 114”

The motivation for retiming is to facilitate replacement duties that are not feasible in a fixed

timetable. For example, the planned departure time of task 4456/a is 15:56 and the task is

operated on different rolling stock than task 3653/b, which means that due to the minimum

transfer time a transfer between task 3653/b and task 4456/a is only allowed if the latter task

is delayed by at least 2 minutes. Figure 4.2c shows a replacement duty where task 4456/a is

delayed by 2 minutes. This replacement duty is not feasible without retiming. Note that, if duty

Ah 114 is the first duty arriving in ’s-Hertogenbosch (Ht) after 15:30, then allowing the delay

of task 4456/a by at least 2 minutes is the only way to get this task covered by a duty.

Modeling flexibility of departure times in a railway timetable is far from trivial due to a

large number of interdependencies. Throughout this paper we therefore assume that:

(i) A delayed departure of a task by χ minutes leads to a delayed arrival of the task by

χ minutes.

(ii) A delayed task does not affect other tasks using different rolling stock.

Assumption (i) is not always true in practice. On the one hand, the planned running time for

a train may include some time supplement that could be utilized to (partly) absorb delays. On

the other hand, a train that is running later than planned could experience an additional delay
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due to conflicts with other trains. Conversely, a delayed train may also affect other trains. For

example, a faster train may get stuck behind a slower delayed train. Figure 4.3 shows part of

the 2007 timetable for the route between ’s-Hertogenbosch (Ht) and Nijmegen (Nm). Two lines

use this route, the 3600 intercity line from Roosendaal to Arnhem and the 4400 regional line

from ’s-Hertogenbosch to Nijmegen. If the departure of the regional train 4456 is delayed, for

example by 9 minutes, it still departs before the intercity train 3656. As indicated in the figure

the faster intercity train 3656 catches up with the delayed regional train 4456. This causes a

conflict in the timetable. If overtaking on the last part of the route is not possible, the intercity

train will get stuck behind the regional train and experience a delay. This example shows that

assumption (ii) does not always hold as well. However, at this point in time it seems reasonable

since the objective of this paper is to analyze the potential retiming in crew rescheduling might

offer. Note that assumption (ii) holds if train 4456 is delayed by just 2 minutes.
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Figure 4.3: An example of a delayed task between ’s Hertogenbosch (Ht) and Nijmegen (Nm)

4.3 Literature review

The literature on railway crew rescheduling is still scarce. Walker et al. (2005) was the first

paper describing railway crew rescheduling. They present a model for simultaneous railway

timetable adjustment and crew rescheduling. The timetabling part of the model where the de-

parture of tasks can be chosen within certain time windows is linked with a crew rescheduling

part where generic driver duties are chosen. Here a generic driver duty is a sequence of tasks

that is feasible with respect to the start and end locations of consecutive tasks. Duty length and

task (piece-of-work) sequencing constraints ensure that the departure times are chosen such that
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only the rule related to the break may be violated in the selected duties. Breaks are added to

the duties during the branching process. A conflict free timetable could be achieved by adding

an enormous number of train crossing and overtaking constraints. The authors propose to re-

lax these constraints in the initial model and to resolve violations by branching on the waiting

decisions between involved train pairs.

Recently, Rezanova and Ryan (2010) and Rezanova (2009) presented a solution approach

for railway crew rescheduling under the assumption that the timetable is fixed. The problem is

formulated as a set partitioning problem with side constraints. The LP-relaxation of the problem

provides strong lower bounds, which is due to the perfectness of certain submatrices of the

constraint matrix. The proposed solution approach is a depth-first search in a branch-and-price

tree. The problem is first initialized with a small disruption neighborhood, which contains only

duties that cover delayed, canceled or re-routed tasks and that is limited by a recovery period.

As long as constraints are violated while solving the LP-relaxation, the disruption neighborhood

is extended by either adding more duties to the problem or by extending the recovery period.

In order to deal with new information becoming available, the crew rescheduling algorithm is

used on a rolling time horizon approach similar to the one proposed by Nielsen et al. (2012) for

rolling stock rescheduling.

Potthoff et al. (2010) also deal with railway crew rescheduling without retiming. The prob-

lem is modeled in a similar way as in Rezanova and Ryan (2010) and Rezanova (2009) with

the difference that tasks may be covered by more than one duty. First, an initial core problem

containing the infeasible duties and some candidate duties is solved. If tasks cannot be covered,

then new core problems representing the neighborhood of an uncovered task are explored itera-

tively. The neighborhood is constructed based on duties that can potentially cover the uncovered

task. Therefore, in the neighborhood they include duties that currently cover tasks that depart

around the same time from the same station as the uncovered task in a first step. In a second

step they add duties which are similar to the ones selected in the first step. The similarity of two

duties is defined as the number of stations that are visited by both duties at roughly the same

time. See Section 4.5.2 for further explanation. The core problems are explored with a column

generation based heuristic. Within the column generation procedure, Lagrangian relaxation

is applied to the restricted master problems and approximate dual solutions are obtained with

subgradient optimization. Moreover, vectors of Lagrangian multipliers are used as input for a

greedy algorithm that constructs feasible solutions. The current paper describes an extension of

the method of Potthoff et al. (2010).

In the airline domain, crew rescheduling received attention much earlier than in the railway

domain. An early paper on airline crew rescheduling is Johnson et al. (1994). Note that in

the airline domain crew rescheduling is also known as crew recovery. For a recent review of
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literature on airline crew rescheduling we refer to Clausen et al. (2010). Stojković and Soumis

(2001) and Abdelghany et al. (2004) are the first papers that extend crew rescheduling with the

possibility to retime flights.

In Stojković and Soumis (2001) some flights may be delayed within specified time windows

while new duties for pilots are generated simultaneously. The problem is formulated as a multi-

commodity network flow problem with time windows and flight precedence constraints. The

purpose of the flight precedence constraints is to ensure that minimum transfer times in the

underlying aircraft rotations are not violated and to keep important passenger connections. The

problem is separable per pilot and is solved with a branch-and-price algorithm. The decisions

about the departure times of the flights are taken in the master problem. Therefore, it is not

possible to take the meal break rule as presented in Section 4.2 into account in a straightforward

manner.

The model of Stojković and Soumis (2001) is extended to the multi-crew case in Stojković

and Soumis (2005). In the multi-crew case every flight has to be covered by exactly ν crew

members. This is achieved by deriving ν tasks per flight which need to be covered exactly once.

Again the departure time of some flights may be chosen within a time window. Same departure

time constraints constraints are added to the model to make sure that the same departure time is

chosen for all tasks selected for a flight. Two options are presented in order to deal with flights

that cannot be covered ν times. In one option covering less than ν tasks is accepted, while in

the second option either all ν tasks or none of the tasks derived for a flight are covered. As

in Stojković and Soumis (2001) the problem is solved with a branch-and-price algorithm using

specialized branching decisions.

Abdelghany et al. (2004) present a rolling approach for multi-crew rescheduling with retim-

ing of flights. The approach tries to resolve as many conflicts as possible in crew duties during

irregular operations. In a preprocessing step, flights from duties with conflicts and flights from

selected candidate crews are divided into sets of resource independent flights, each leading to

a recovery stage. Flights are resource independent if they cannot appear in a resource schedule

together. In the rolling approach the recovery stages are tackled in increasing order of time. For

each recovery stage an assignment problem with additional continuous variables for the depar-

ture times is solved with a Mixed Integer Programming solver. In the model, every flight has

three crew positions. Additional constraints enforce that neither duty limits nor transfer times

are violated. The model allows to assign less than three crew members to a flight, which means

that the flight is still under-staffed in the final solution. In general, it seems possible to apply

this approach also in a railway setting as considered in this paper. However, when decisions

are taken in the recovery stages, the effect of these decisions for the assignment of flights in the

later stages is not considered. This could lead to suboptimal solutions.
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Abdelghany et al. (2008) present an integrated approach to recover the flight schedule, air-

craft and crew at the same time. The overall approach follows Abdelghany et al. (2004), but

the Mixed Integer Program for the recovery stages is extended to deal with different resources,

namely aircraft, pilots and flight attendants. Either the required number of resource units per

type has to be assigned to a flight, or no resource units at all. The latter means that the flight

is canceled. Moreover, qualification constraints are added. For example, the pilot must be

qualified for the assigned aircraft type.

Crew scheduling with flight retiming in the planning phase is discussed by Klabjan et al.

(2002). Mercier and Soumis (2007) introduce an integrated model for flight retiming, aircraft

routing, crew rescheduling.

4.4 Mathematical formulation

In this section, we formulate the operational crew rescheduling problem with retiming as an

integer linear program. Therefore, we first introduce some notation. We use copies of tasks

to represent the retiming possibilities of the tasks, as proposed by Mercier and Soumis (2007).

The copies differ from each other in their departure and arrival times. Using copies of tasks

limits the retiming possibilities, since the departure time cannot be chosen continuously and the

retiming possibilities of a task must be determined beforehand.

We denote the set of tasks by N , indexed by i. Let sdep
i (sarr

i ) denote the departure (arrival)

station of task i ∈ N . The planned departure and arrival time are given by tdep
i and tarr

i , respec-

tively. The minimum required dwell time after task i is wi. Moreover, for every task i ∈ N a

penalty fi is defined for not covering task i. Furthermore, we derive a number of copies e ∈ Ei

for every task i ∈ N . Ei contains at least the copy representing the planned departure time of

task i. Denote by N c ⊆ N the tasks i for which |Ei| ≥ 2. E is the union of all sets Ei. With

i(e) we refer to the task copy e is derived from. With every copy e ∈ E we associate the delay

de compared to the planned departure time tdep
i(e), as well as a cost parameter ge representing the

penalty for the delay. The sets Êe and Ěe contain all copies of the same task (e′ ∈ Ei(e)) for

which the delay de′ is respectively larger or smaller than the delay de.

A rolling stock composition may propagate a delay from one task to another. In the follow-

ing we describe how this is taken into account. If two tasks i and j are operated directly after

each other on the same rolling stock composition, then task j is denoted by r(i). If task i is

the last task on a rolling stock composition, then r(i) is defined to be 0. If r(i) 	= 0, then a

minimum turnaround time ui between tasks i and r(i) is to be respected. Thus the selection of

the copy for task r(i) that is used in a duty depends on the selection of the copy for task i and

vice versa. Note that the turnaround time is 0 if the rolling stock composition is continuing in
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the same direction after task i. Let hi = max(wi, ui) be the minimum time that is needed after

the arrival of task i before the rolling stock composition is available for task r(i). Then for each

copy e ∈ Ei we define the set Le as the set of copies of task r(i) that can be selected for task

r(i) if copy e is selected for task i. More precisely, an additional constraint on Le ensures that

it only contains copies of r(i) which are not in a set Le′ of a copy e′ of the same task i(e) with

less delay. So every copy of r(i) is in exactly one set Le of a copy e ∈ Ei. This means that:

Le = {f ∈ Er(i)\
⋃

e′∈Ěe

Le′ | (tdep
r(i) + df )− (tarr

i + de) ≥ hi, ∀e′ ∈ Êe (tdep
r(i) + df )− (tarr

i + de′) < hi} (4.1)

Thus the set Le contains all copies of task r(i) which cannot be selected for task r(i) if a copy

of task i with more delay than copy e is selected for task i. Note that it is possible that Le = ∅.

Moreover, let Be be the set of copies of the same task, but with a smaller delay. Formally,

Be = {e′ ∈ Ei(e) | de′ ≤ de} (4.2)

We introduce a binary decision variable zi for every task i ∈ N . If task i is canceled, zi is set

to 1, otherwise zi is set to 0. Furthermore, ve is a binary decision variable with ve = 1 if copy

e is selected for task i(e) and 0 otherwise. Now we can introduce the following constraints to

model the delay propagation:

zi +
∑
e′∈Be

ve′ −
∑
e′∈Le

ve′ ≥ 0 ∀i ∈ N c : r(i) 	= 0, ∀e ∈ Ei (4.3)

This ensures that a copy in Le can only be used for r(i) if task i is canceled or if one of the

copies e′ ∈ Be is selected for task i. If a copy with more delay than copy e is selected for task

i, a copy in Le may not be used.

The following example in Table 4.1 illustrates the definition of Le (see (4.1)). Consider

train 3552 from Eindhoven (Ehv) to Hoofddorp (Hfdo) via ’s-Hertogenbosch (Ht) and Utrecht

(Ut). Thus there are three consecutive tasks assigned to the same rolling stock composition,

hence ul = um = 0. Assume we derive two copies for the first two tasks with 0 and 3 minutes

delay respectively. Detailed information about the copies is shown in Table 4.1. Let us assume

that hl = hm = 2 minutes. Then according to (4.1): Ld = {e}, Ld′ = {e′}, Le = ∅ and

Le′ = {f}. The last set results from the fact that the planned dwell time of train 3552 in Utrecht

is 6 minutes, so even if this train arrives with a delay of 3 minutes in Utrecht, the next task

can still depart at the planned time. This is an example where a delay can be absorbed due to
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Task Copy Delay (min) Origin Destination Departure Arrival
l d 0 Ehv Ht 14:47 15:06
l d′ 3 Ehv Ht 14:50 15:09
m e 0 Ht Ut 15:08 15:37
m e′ 3 Ht Ut 15:11 15:40
n f 0 Ut Hfdo 15:43 16:27

Table 4.1: Example of copies for train 3552 from Eindhoven (Ehv) to Hoofddorp (Hfdo)

margins in the timetable. Then Constraints (4.3) will become:

zl + vd − ve ≥ 0 (4.4)

zl + vd + vd′ − ve′ ≥ 0 (4.5)

zm + ve + ve′ − vf ≥ 0 (4.6)

Furthermore, Δ = ΔA ∪ΔR is the set of unfinished original duties, where ΔA is the set of

active duties and ΔR is the set of stand-by duties. Let Kδ be the set of all feasible completions

for duty δ ∈ Δ. With every feasible completion k ∈ Kδ we associate cost cδk and binary

parameters aδik and bδek. Here aδik is equal to 1 if feasible completion k for duty δ is qualified to

drive task i and 0 otherwise. Next, bδek is equal to 1 if feasible completion k for duty δ uses copy

e and 0 otherwise. Note that bδek is 1 if feasible completion k uses copy e for deadheading.

Let xδ
k be binary variables indicating if feasible completion k is chosen (xδ

k = 1), or not

(xδ
k = 0). Furthermore, recall that for all i ∈ N the binary decision variable zi indicates

whether task i is canceled or not, and that for all e ∈ E the binary decision variable ve indicates

whether copy e is selected for task i(e). Now we can formulate the operational crew reschedul-

ing problem with retiming (OCRSPT) as follows.
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min
∑
δ∈Δ

∑
k∈Kδ

cδkx
δ
k +

∑
i∈N

fizi +
∑
e∈E

geve (4.7)

s.t.
∑
δ∈Δ

∑
k∈Kδ

aδikx
δ
k + zi ≥ 1 ∀i ∈ N (4.8)

∑
k∈Kδ

xδ
k = 1 ∀δ ∈ Δ (4.9)

|Δ|ve −
∑
δ∈Δ

∑
k∈K

bδekx
δ
k ≥ 0 ∀e ∈ E (4.10)

∑
e∈Ei

ve + zi = 1 ∀i ∈ N (4.11)

zi +
∑
e′∈Be

ve′ −
∑
e′∈Le

ve′ ≥ 0 ∀i ∈ N c : r(i) 	= 0, ∀e ∈ Ei (4.12)

xδ
k ∈ {0, 1} ∀δ ∈ Δ, ∀k ∈ Kδ (4.13)

ve ∈ {0, 1} ∀e ∈ E (4.14)

zi ∈ {0, 1} ∀i ∈ N (4.15)

We refer to Model (4.7)–(4.15) as OCRSPRT1. In the objective function (4.7) the deviation

from the planned crew schedule, the penalties for canceled tasks, and the penalties for delays are

minimized. Constraints (4.8) ensure that every task is either assigned to one or more qualified

drivers, or is canceled. By Constraints (4.9) exactly one feasible completion must be selected

for every original duty. Constraints (4.10) make sure that the binary variable ve is set to 1 if

copy e is used in any selected feasible completion. That only one copy per task may be used is

modeled by Constraints (4.11). Moreover, these constraints guarantee that deadheading is not

possible on tasks which have been canceled.

Constraints (4.12) are the same as Constraints (4.3), and model the dependency between the

selected copies of consecutive tasks on the same rolling stock composition: If copy f is used for

task r(i), then task i is either canceled, or an appropriate copy from the set Ei is selected for this

task. Here we assume that stand-by rolling stock may be used if necessary. That is, if a task has

been canceled, then the next task on the rolling stock composition is served by stand-by rolling

stock and may therefore depart at every possible departure time. Obviously, Constraints (4.12)

are only required for tasks with multiple copies. Some of the Constraints (4.12) are redundant if

Le = ∅, but also if Le 	= ∅ they can be redundant by Constraints (4.11), (4.14), and (4.15). This

is true even in the linear relaxation of OCRSPRT1. Note that in the example discussed above

only Equation (4.4) is needed, since Equations (4.5) and (4.6) are redundant.
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An alternative model OCRSPRT2 is obtained by replacing Constraints (4.10) in OCRSPRT1

by

ve −
∑
k∈Kδ

bδekx
δ
k ≥ 0 ∀δ ∈ Δ, ∀e ∈ E (4.16)

Constraints (4.16) are clearly stronger than Constraints (4.10). Indeed, if Constraints (4.16)

are satisfied, then
∑

δ∈Δ
(
ve −

∑
k∈Kδ bδekx

δ
k

)
≥ 0 for all e ∈ E. Then, it also holds that

|Δ|ve −
∑

δ∈Δ
∑

k∈Kδ bδekx
δ
k ≥ 0 for all e ∈ E. It is not difficult to see that Constraints (4.16)

are really stronger than Constraints (4.10).

The foregoing implies that replacing Constraints (4.10) by Constraints (4.16) results in a

tighter LP relaxation and hence in a better LP lower bound. However, |E| constraints of type

(4.10) are replaced then by |E||Δ| constraints of type (4.16). Thus the number of constraints of

type (4.16) is much larger than that of type (4.10).

After several experiments with the solution approach described in Section 4.5, we discov-

ered that the approach of model OCRSPRT2 resulted in less uncovered tasks and less retimed

tasks than the approach of model OCRSPRT1. In principle the models have the same integer

solutions, but since we use a heuristic approach, we do not always find an optimal solution. We

also noticed that the computation times are higher if we use model OCRSPRT2 instead of model

OCRSPRT1. However, we accept the increase in computation time to obtain better results. So,

in the remainder of this paper we only consider model OCRSPRT2.

4.5 Solution approach

On an average workday a crew schedule of NS contains about 1,000 duties for drivers covering

in total more than 10,000 tasks. Our aim is to provide solutions of good quality within a couple

of minutes of computation time. Since considering all original duties and all tasks leads to

extremely large crew rescheduling instances, we extract core problems containing only subsets

of the duties and the tasks. We use a Lagrangian heuristic embedded in a column generation

(CG) scheme that is very similar to the one proposed by Potthoff et al. (2010). Further details

of this method are provided in Section 4.3. In the following, the method of Potthoff et al.

(2010) is referred to as iterative neighborhood exploration (INE). In this paper we investigate

two approaches which use the same heuristic to explore the core problems, but that differ in the

way the core problems are defined.

Our first approach is outlined in Figure 4.4. We first define an initial core problem where

retiming is not allowed. A solution for this core problem is computed using the column gen-

eration based heuristic. If the computed solution covers all tasks, then we stop. Otherwise we

iterate over the uncovered tasks and define one new core problem per uncovered task. These
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Define an initial core prob-
lem without retimed copies

Compute an initial solu-
tion using the CG heuristic

Get the list of
uncovered tasks

Explore the core problem
using the CG heuristic

Update the list of
uncovered tasks

List empty? STOP

Define the core problem
Select tasks which
may be retimed

Remove a task
from the list

YES

NO

Figure 4.4: Iterative neighborhood exploration with retiming (INER)

core problems are dealt with consecutively. We start with the uncovered task with the earliest

departure time. We use a neighborhood definition to select the tasks for which we allow retim-

ing and the tasks for constructing the core problems. Each core problem is solved using the

column generation heuristic, and the list of uncovered tasks is updated before solving the next

core problem. If the uncovered task on which the core problem was based, is not covered after

solving the core problem, no new core problem will be generated anymore around this task.

This means that the task is neglected in the list of uncovered tasks. The next core problem to

solve is the core problem around the uncovered task with the earliest departure time which is

not neglected. We refer to this approach as iterative neighborhood exploration with retiming

(INER). The difference with the approach of Potthoff et al. (2010) is that in INER retiming of

some tasks is allowed in the neighborhood exploration phase.

Our second approach is outlined in Figure 4.5. Here we do not use an iterative neighborhood

exploration. If the solution of the initial core problem contains some uncovered tasks, then a

second core problem is constructed and solved. This second core problem is an extension of the

initial core problem, which is obtained by adding retiming possibilities for a number of tasks.

In the remainder of this paper we refer to this approach as extended core problem with retiming

(ECPR).

In both approaches INER and ECPR we relax the initial core problem by using only Con-

straints (4.8), (4.9), (4.13) and (4.15). Note that in this model it can happen that feasible com-

pletions are chosen that contain deadheading on tasks which have been canceled. However,

in the next core problem which is considered in both approaches, these deadheadings are not

allowed anymore and a different solution is computed. We decided to use the relaxed model
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Define an initial core prob-
lem without retimed copies

Compute an initial solu-
tion using the CG heuristic

Get the list of
uncovered tasks

List empty? STOP

Create the extended
core problem by adding
retiming possibilities

Explore the extended
core problem using
the CG heuristic

YES

NO

Figure 4.5: Extended core problem with retiming (ECPR)

for solving the initial core problem because the computation time of the relaxed model is much

shorter than that of OCRSPRT2.

4.5.1 Defining the initial core problems

The initial core problems in INER and ECPR are constructed in the same way as in Potthoff et al.

(2010). The intention is to select the duties that are affected by the timetable adjustments and

to add a small number of duties containing some tasks close in space and time to the modified

tasks.

4.5.2 Neighborhoods for uncovered tasks in the INER approach

Given a task that is uncovered after the solution of the initial core problem, we define a neigh-

borhood which is extended by retiming possibilities in a subsequent step. First we select a

number of candidate duties. These duties can possibly cover the uncovered task. In order to of-

fer some reassignment possibilities we also select a number of similar duties for each candidate

duty.

The candidate duties are selected as follows. Given the departure time and station of the

uncovered task j, we look at the latest task j− that departs from the same station before task

j. Then we consider the replacement duty σ that covers j− in the current solution and check

heuristically if σ could cover j, thereby considering the qualifications of the driver. If yes, then

we select σ as a candidate and continue with the previous task that departs from station sdep
j

before j− until we have selected r candidates. We repeat the procedure considering tasks that

depart from station sdep
j after task j.
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Furthermore, we select the replacement duty which covers task ĵ, the first task that leaves

sarr
j and goes back to station sdep

j such that a driver can transfer from task j to task ĵ. Including

this replacement duty ensures that it is possible to carry out task j and then to deadhead back to

station sdep
j .

In the next step we select for every candidate duty the S most similar duties that have not

been selected yet. We define similarity between duties in terms of the numbers of stations that

are visited around the same time. We refer to Potthoff et al. (2010) for the exact definition.

4.5.3 Core problems with retiming possibilities

The primary goal of retiming is to enable solutions where less tasks have to be canceled. In order

to limit the computational effort, we allow retiming only for a subset of the tasks. If we have an

uncovered task which starts, for example, at ’s Hertogenbosch, then this indicates that there is

a shortage of crew in ’s Hertogenbosch around the start time of the task. By allowing to delay

some tasks starting at ’s Hertogenbosch around that time, we can hopefully prevent the crew

shortage. Therefore, we propose the following procedure to determine this subset. Let Nu be

the set of uncovered tasks after the initial core problem has been solved. Then, for an uncovered

task i ∈ Nu we construct a set N c
i with tasks that may be retimed as N1

i ∪N2
i , where N1

i = {j ∈
N | sdep

j = sdep
i and tdep

j ∈ [tdep
i −p, tdep

i +p]} for a certain positive parameter p. Furthermore, the

set N2
i is recursively defined as the set of all tasks which are linked by rolling stock connections

to tasks in N1
i or N2

i : N2
i =

{
r(i) | i ∈ N1

i ∪N2
i , t

arr
i − tdepr(i) < hi +maxe∈Ei

(de)
}

.

For the method INER, we set N c = N c
i for the uncovered task i currently under considera-

tion. For the extended core problem in the ECPR approach, the tasks that may be retimed are

N c = ∪i∈NuN c
i .

Let the set N̈ contain all tasks covered by an original duty in the neighborhood of the

uncovered task under consideration when using the method INER. For the ECPR approach N̈

is the set of tasks of the initial core problem. The core problems are then defined by a subset of

the original duties Δ̄ and a subset of the tasks N̂ . Here Δ̄ = {δ ∈ Δ | δ is covering a task i ∈
N̈ ∪ N c} and N̂ is the set of all tasks covered by at least one original duty δ ∈ Δ̄. Note

that, due to overcovering and deadheading, it can happen that for a task j ∈ N̂ not all duties δ

covering task j are in Δ̄. By definition of Δ̄, retiming is not allowed for these tasks. Denote by

N̄ = {i ∈ N̂ | δ ∈ Δ̄ ∀δ ∈ Δ covering task i}.

Given Δ̄ and N̄ we define Ē = ∪i∈N̄Ei. Moreover, we denote by K̄δ the set of feasible

completions for duty δ which only cover tasks i ∈ N̂ . The mathematical model for a core

problem is obtained by replacing N with N̄ , Δ with Δ̄, E with Ē and K with K̄ in the model

OCRSPRT2.
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4.5.4 Exploring a core problem

For computing near optimal solutions and lower bounds for the core problems we adapt the

heuristic presented in Potthoff et al. (2010), which is based on a combination of column genera-

tion and Lagrangian relaxation. For an introduction to column generation we refer to Desrosiers

and Lübbecke (2005). Let us first describe the building blocks, before we present our column

generation based heuristic.

Combining column generation and Lagrangian relaxation

A lower bound for a given core problem can be obtained by Lagrangian relaxation. In this sec-

tion we present the details of model OCRSPRT2. We relax Constraints (4.8), (4.12), and (4.16)

of the core problems in a Lagrangian fashion using multiplier vectors η, λ, and μ, respectively.

For simplicity we introduce γe =
∑

{d∈Ē | e∈Ld} ηd −
∑

{d∈Ē | e∈B̄d} ηd. Then, the La-

grangian subproblem equals:

Θ(η, λ, μ) = min
∑
i∈N̄

λi +
∑
δ∈Δ

∑
k∈K̄δ

(cδk +
∑
e∈Ē

μδ
eb

δ
ek −

∑
i∈N̄

λia
δ
ik)x

δ
k

+
∑
i∈N̄

(fi − λi −
∑
e∈Ēi

ηe)zi +
∑
i∈N̄

∑
e∈Ēi

(ge + γe −
∑
δ∈Δ̄

μδ
e)ve (4.17)

s.t. (4.9), (4.11), (4.13), (4.14) and (4.15)

For given vectors η, λ and μ, the optimal value of Θ(η, λ, μ) can be calculated with a simple

procedure. First, we determine the values for all xδ
k variables. To ensure that Constraints (4.9)

are not violated, we set xδ
k equal to 1 for exactly one k ∈ argmin

{
c̄δk(η, λ, μ)

∣∣ k ∈ K̄δ
}

for

every duty δ ∈ Δ̄. Here c̄δk(η, λ, μ) = (cδk +
∑

e∈Ē μδ
eb

δ
ek −

∑
i∈N̄ λia

δ
ik) is the Lagrangian

reduced cost of feasible completion k. The values of the zi and ve variables can be determined

independently from the xδ
k variables. The algorithm in Figure 4.6 determines for every task

i ∈ N̄ the values of the variables zi and ve (∀e ∈ Ēi) such that Constraints (4.11) are not

violated.

The Lagrangian dual problem is to find the best Lagrangian lower bound Θ∗:

Θ∗ = max Θ(η, λ, μ), η ≥ 0, λ ≥ 0 and μ ≥ 0 (4.18)

Since the number of feasible completions can be huge for some original duties, we combine

Lagrangian relaxation with column generation. Instead of considering all feasible completions

we consider only a subset of them in a restricted master problem (RMP). Denote by K̄δ
n the
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1 For all e ∈ Ēi determine ḡe = (ge + γe −
∑

δ∈Δ̄ μδ
e);

2 Select e∗ ∈ argmin
{
ḡe

∣∣e ∈ Ēi

}
;

3 if ḡe∗ ≤ fi − λi −
∑

e∈Ēi
ηe then

4 Set zi = 0, ve∗ = 1 and for all e ∈ Ēi \ {e∗}, set ve = 0
5 else

6 Set zi = 1 and for all e ∈ Ēi, set ve = 0
7 end

Figure 4.6: Algorithm to determine zi and ve for the solution of a Lagrangian subproblem

feasible completions present in the nth RMP. A lower bound Θ∗
n for the nth RMP is obtained by

subgradient optimization, see Fisher (1981) and Beasley (1993).

Let ηn, λn and μn be the vectors of the Lagrangian multipliers corresponding to Θ∗
n. In

the pricing problems of our column generation algorithm we check, per original duty, if fea-

sible completions exist that are not in the RMP, but have a lower Lagrangian reduced cost

than the feasible completions in the RMP. We refer to them as promising feasible comple-

tions. The pricing problem is formulated as a shortest path problem with resource constraints

(see below). If promising feasible completions exist we add them to the RMP. Let pδn =

min{c̄δk(η, λ, μ) | k ∈ K̄δ} be the solution value of the pricing problem for duty δ, and let

rδn = min{c̄δk(η, λ, μ) | k ∈ K̄δ
n} be the smallest Lagrangian reduced cost of a feasible comple-

tion for duty δ in the nth RMP. After solving the pricing problems for all duties δ ∈ Δ̄, we can

compute a lower bound for the core problem as LBn = Θ∗
n +

∑
δ∈Δ̄(p

δ
n − rδn).

Feasible solutions

Next to a good lower bound, we are especially interested in near optimal feasible solutions.

Based on Lagrangian multiplier vectors η, λ, and μ we try to generate feasible solutions with a

Lagrangian heuristic called GREEDY, which is shown in Figure 4.7.

First, we order the original duties by increasing reduced cost of the xδ
k variables that were

set to 1 in the Lagrangian subproblem solution. Then we select for every duty the best feasible

completion (Line 4–13). If it is the first time that a certain task appears in a selected feasible

completion, the copy which is used for that task will be the only copy that is allowed to be used

in all duties. So after a certain copy for a task has been selected, all feasible completions which

use another copy of the same task are ignored. Moreover, we ignore feasible completions which

cover copies of tasks that would violate Constraints (4.12). Since for every active duty δ the set

K̄δ
n contains the artificial completion without any additional tasks (that is, the driver is assumed

to go to his home depot as soon as possible), it is ensured that for every active duty at least one

feasible completion is left to select. If, after the feasible completions of the duties have been
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selected, still some tasks are uncovered, we check if the idle stand-by duties can cover those

tasks. A stand-by duty is idle if it does not cover any tasks.

The procedure GREEDY does not always find a feasible solution, however in most cases it

will. Only in the extraordinary case that a crew member is assigned to be a passenger on a train

which is not covered by a driver, the solution is infeasible. This condition is checked in Line 22.

1 Order the original duties δ ∈ Δ̄ by increasing reduced cost of the selected xδ
k variables;

2 Set zi = 1 for all i ∈ N̄ and set ve = 0 for all e ∈ Ē;
3 Set η̂ = η, λ̂ = λ, and μ̂ = μ;
4 foreach δ ∈ Δ̄ do

5 Choose k∗(δ) ∈ argmin{c̄δk(η̂, λ̂, μ̂) | k ∈ K̄δ
n} and set the corresponding xδ

k∗(δ) = 1;
6 Set λ̂i = 0 and zi = 0 for all i ∈ N̄ with aδik∗(δ) = 1;
7 foreach e ∈ Ē with bδek∗(δ) = 1 do

8 Define E∗: the set of copies which may not be used if copy e is used;
9 Define K∗: the set of completions which use at least one copy d ∈ E∗;

10 Ignore ∀δ ∈ Δ̄ the completions k ∈ K∗ out of K̄δ
n;

11 Set ve = 1 and η̂e = 0;
12 end

13 end

14 foreach i ∈ N̄ do

15 Set λ̂i = fi, if zi = 1;
16 end

17 Construct the set of idle stand-by duties Δ̄I = {δ ∈ Δ̄R | aδik∗(δ) = 0 for all i ∈ N̄};
18 foreach δ ∈ Δ̄I do

19 Set xδ
k∗(δ) = 0;

20 Repeat lines 5 until 12;
21 end

22 Check if
∑

e∈Ēi

∑
δ∈Δ̄

∑
k∈Kδ bδekx

δ
k = 0 for all i ∈

{
i ∈ N̄ | zi = 1

}
. If this condition

holds, a feasible solution has been found.

Figure 4.7: Procedure GREEDY to construct feasible solutions

Solving the pricing problems

The problem of finding the path corresponding to the feasible completion with the smallest

Lagrangian reduced cost is modeled as a shortest path problem with resource constraints. To

that end, for every duty in a core problem we construct a directed acyclic graph that models

all possible feasible completions. The nodes represent arrivals or departures of copies derived

from the tasks. An arc goes from an arrival node to a departure node if it is possible to use

the corresponding copies after each other in a feasible completion. Besides the cost, every arc
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has two additional parameters: a time consumption and a boolean value indicating if the arc

can represent a meal break. We use a resource to measure the time spent before or after the

meal break. This resource is reset to 0 if we traverse an arc that corresponds to a meal break.

Moreover, along a path this resource must be between 0 and 5 1/2 hours at any node. For solving

the pricing problems, we adapted the generic dynamic programming algorithm presented by

Irnich and Desaulniers (2005). Note that shortest path problems with resource constraints are in

general NP-hard since they are generalizations of the weight constrained shortest path problem.

The column generation based heuristic

1 stopF ix = false, LBF = −∞, UB∗ = ∞, UBF = 0;
2 while stopFix = false do

3 stopColGen = false;
4 while stopColGen = false do

5 Compute the lower bound Θ∗
n for the RMP with subgradient optimization;

6 Call GREEDY with at most maxMV multiplier vectors and update UB∗;
7 Solve pricing problems and add promising feasible completions;
8 Compute LNn if all pricing problems have been solved;
9 if any stopping criterion for column generation is met then

10 stopColGen = true, LBF = UBF + LBn;
11 end

12 end

13 if any stopping criterion for fixing is met then

14 stopF ix = true;
15 else

16 Fix the feasible completions for at most maxFix original duties and update UBF ;
17 end

18 end

Figure 4.8: The algorithm to solve a core problem

Our column generation based heuristic using the building blocks as described in Section 4.5.4,

is outlined in Figure 4.8. It can be seen as a depth-first search approach in a branch-and-

bound tree with column generation in every node. This is a common way of designing column

generation based heuristics for crew scheduling problems, see Desaulniers et al. (2001). In

Line 5 a dual solution for the RMP is obtained by Lagrangian relaxation as explained above.

Another specialty in our approach is that we generate solutions throughout the algorithm, see

Line 6. We denote by UB∗ the cost of the best found feasible solution. When solving the

pricing problems for the original duties, we do pricing and stop if we have found promising

columns for more than a fraction maxPP of the duties. In Line 9 we use three criteria to decide
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Location ID Time Type
Abcoude Ac:1 11:00-14:00 two sided blockage, some trains are rerouted
’s-Hertogenbosch Ht:1 15:30-18:30 two sided blockage
Zoetermeer Ztm:1 08:00-11:00 reduced number of trains

Table 4.2: Information about the disruption scenarios

if we stop column generation in the current node. First, we stop if no columns have been added

to the RMP. Second, we stop if Θ∗
n is close to LBn. As a third criterion we use a maximum

number of column generation iterations maxItCG to perform in the current node. In the root

node, where no feasible completions have been fixed, maxItGC = ∞, in the other nodes we can

use a relatively small number to speed up the algorithm.

After terminating the column generation procedure for a node, we check in Line 13 if the

best feasible solution of value UB∗ is close to the lower bound LBF which is the sum of

the fixed part UBF and the lower bound of the free variables Θ∗
n. If this is the case, we can

terminate the algorithm since we know that it is unlikely to find a better feasible solution if we

only fix more variables. Otherwise, we fix the feasible completions for more original duties.

This is done based on the number of times a feasible completion was set to 1 in the solution of

a Lagrangian subproblem during the last subgradient optimization.

4.6 Computational results

In this section we evaluate our two new approaches with retiming INER and ECPR on three dis-

ruption scenarios, Ac:1, Ht:1, and Ztm:1. These scenarios are based on past real-life disruptions

near Abcoude (Ac), ’s-Hertogenbosch (Ht), and Zoetermeer (Ztm), see Figure 4.1. Table 4.2

presents information about the scenarios. Furthermore, we used a crew schedule from NS that

was planned for a regular working day in September 2007. In order to evaluate the benefits of

retiming, we compare our new methods with the method proposed in Potthoff et al. (2010). As

was mentioned earlier, we refer to the latter as iterative neighborhood exploration (INE). More-

over, we investigate the effect of considering stand-by duties. For that reason, we determine

two cases. In the first case we do not use any stand-by duty and in the second case we use a set

of 46 stand-by duties.

All approaches have been implemented in C++. The tests have been performed under Win-

dows XP on a quad core 2.99 GHz CPU machine with 3.25 GB RAM memory. However, only

a single core was used in the tests.
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4.6.1 Parameter settings

First of all, we used the following parameter settings which are required to determine the core

problems. In the definition of N1 we set p = 30 minutes. For every task in N̄ c we derive four

copies with delays de equal to 0, 1, 3 and 5 minutes.

In the column generation based heuristic, we use the following settings. For partial pricing

we set maxPP = 0.3. For calling GREEDY we set maxMV = 100. In the root node of our

depth-first search maxItCG = ∞. In all other nodes we use maxItCG = 10. Furthermore,

maxFix was set to 0.05.

4.6.2 Cost parameters for the objective function

After some initial experiments, we chose the following settings to account for the different

aspects of the objective function. First, the cost of changing a duty is set to 400. The cost of

sending a stranded driver home by taxi is 3,000. Covering a task in a feasible completion costs 0

if the corresponding original duty was already covering that task, and 50 otherwise. Moreover,

the cost of a transfer is 0 if the transfer was already in any original duty, and 1 otherwise. The

usage of a new repositioning task costs 1,000. The penalty for retiming a task is 200 per minute

of delay.

The penalty fi for canceling task i depends on the characteristic of the task. A task is of

type A-B if sdep
i 	= sarr

i and of type A-A if sdep
i = sarr

i . We set fi = 20, 000 if task i is of type A-B

and fi = 3, 000 otherwise. This is motivated by the overall disruption management process. If

only tasks of type A-A are canceled, then the crew schedule is compatible with the underlying

rolling stock schedule under the assumption that the rolling stock assigned to the canceled A-A

tasks can remain idle at the platform or can be shunted to a nearby shunt yard and pulled out

again for its next trip.

4.6.3 Numerical results

Table 4.3 shows the results of the three approaches in case we allow 46 stand-by duties to be

used. Table 4.4 shows the results without using stand-by duties. In these tables we use the

following abbreviations: “It” is the iteration number of the general solution approach as given

in Figures 4.4 and 4.5. The costs in the columns “LB” and “UB” are the lower bound on the

optimal solution and the cost of the best found solution for the core problem. “Gap” represents

the relative difference between the best solution and the lower bound of the core problem. The

column “Sol” represents the cost of the total solution: the cost of the core problem (“UB”) plus

the rescheduling cost of the other duties that were selected in earlier iterations, and that are
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Method It |Δ̄| |N̄ | |Ē| LB UB Gap Sol TT A-B A-A DT TD
(%) (s) (min)

Ac:1 INE 1 176 629 0 58718 59211 0.8 59211 98 1 0 0 0
Ac:1 INE 2 98 259 0 25324 25324 0.0 59211 110 1 0 0 0

Ac:1 INER 2 115 317 106 31202 31202 0.0 59212 137 1 0 0 0

Ac:1 ECPR∗ 2 187 670 30∗ 58718 59116 0.7 59116 493 1 0 0 0

Ht:1 INE 1 126 660 0 61661 61744 0.1 61744 95 1 1 0 0
Ht:1 INE 2 77 391 0 30637 30637 0.0 61694 106 1 1 0 0
Ht:1 INE 3 72 372 0 30450 30450 0.0 61694 118 1 1 0 0

Ht:1 INER 2 87 455 37 17637 17809 1.0 45649 169 0 1 3 9
Ht:1 INER 3 79 413 56 14007 14007 0.0 45649 190 0 1 3 9

Ht:1 ECPR 2 147 835 119 43241 43751 1.2 43751 602 0 1 2 6

Ztm:1 INE 1 117 432 0 51940 51991 0.1 51991 25 2 0 0 0
Ztm:1 INE 2 99 247 0 43264 43264 0.0 51991 36 2 0 0 0
Ztm:1 INE 3 100 301 0 23563 23563 0.0 32339 50 1 0 0 0

Ztm:1 INER 2 133 398 175 5355 5667 5.8 13392 167 0 0 1 3

Ztm:1 ECPR† 2 186 768 185† 11982 12389 3.4 12389 572 0 0 1 3

Table 4.3: Results with stand-by drivers.

needed to complete the solution. The total computation time in seconds including the current

iteration is given in the column “TT”. The columns “A-B” and “A-A” represent the number of

uncovered tasks of the respective types. The last two columns give information about the used

retimed copies. The column “DT” displays the number of delayed tasks and the column “TD”

represents the total number of delayed minutes.

For the approaches INER and ECPR, we solve the model OCRSPRT2. We compare the

results with the INE method. Since the rescheduling model without retiming is used in the initial

core problem of all three approaches, the results of the first iteration are the same. Therefore we

report this result only once (for the method INE) in Tables 4.3 and 4.4. The final result obtained

by each approach is shown in bold. We were not able to use the ECPR approach with p = 30 in

the definition of N1 since it ran out of memory. For Ac:1 (∗) we had to set p = 5 and for Ztm:1

(†) we had to set p = 20.

In Table 4.3, we notice that by using stand-by duties the ECPR method has the best solution

in all cases. However, the computation times of this approach are more than three times longer

than those of the other two approaches. In terms of the number of uncovered tasks the INER

approach performs the same as ECPR, except for case Ht:1 where in the solution of INER an

additional task is delayed. By delaying at most 3 tasks, both retiming approaches have less

uncovered tasks than the INE approach in the cases Ht:1 and Ztm:1. In case Ac:1, retiming did

not result in better crew schedules. However, the solution of the method INE for Ac:1 is a crew

schedule which is not completely compatible with the adjusted timetable, since it has one driver

deadheading on a canceled task. Note that this driver could not carry out this task himself due
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Method It |Δ̄| |N̄ | |Ē| LB UB Gap Sol TT A-B A-A DT TD
(%) (s) (min)

Ac:1 INE 1 130 629 0 61136 62187 1.7 62187 86 1 0 0 0
Ac:1 INE 2 59 287 0 27235 27235 0.0 62187 97 1 0 0 0

Ac:1 INER 2 79 351 106 34066 34066 0.0 62136 146 1 0 0 0

Ac:1 ECPR∗ 2 141 670 30∗ 60967 62390 2.3 62390 539 1 0 0 0

Ht:1 INE 1 90 660 0 65567 65803 0.4 65803 94 1 2 0 0
Ht:1 INE 2 44 407 0 34489 34489 0.0 65803 105 1 2 0 0
Ht:1 INE 3 39 407 0 31080 31080 0.0 65803 115 1 2 0 0
Ht:1 INE 4 40 405 0 29941 29941 0.0 63657 124 1 1 0 0

Ht:1 INER 2 52 454 37 23200 23208 < 0.1 52861 144 0 3 2 6
Ht:1 INER 3 45 439 56 16747 16747 0.0 50364 163 0 2 2 6
Ht:1 INER 4 54 429 82 17812 17812 0.0 46666 205 0 1 2 6

Ht:1 ECPR 2 114 871 157 44502 44660 0.4 44660 641 0 1 2 6

Ztm:1 INE 1 71 432 0 51991 51992 0.0 51992 16 2 0 0 0
Ztm:1 INE 2 54 249 0 42058 42058 0.0 51992 23 2 0 0 0
Ztm:1 INE 3 55 306 0 42159 42159 0.0 51992 36 2 0 0 0

Ztm:1 INER 2 86 390 175 5354 5818 8.7 14046 138 0 0 1 3

Ztm:1 ECPR† 2 140 768 185† 12058 12441 3.2 12441 477 0 0 1 3

Table 4.4: Results without stand-by drivers.

to lacking licenses of this driver. The uncovered task in Ac:1 is rerouted due to the disruption

and takes half an hour longer. The crew member which was originally assigned to this task does

not have a license for the new route and is therefore not allowed to drive this train. This task

has to be carried out exactly at the moment of rescheduling. Thus it is not possible to cover this

task without retiming it. Because of the minimum transfer time of 10 minutes, the task must

be delayed by at least 10 minutes. However, the retiming approaches INER and ECPR use a

maximum retiming possibility of only 5 minutes. Therefore they were also not able to cover this

task. Furthermore, in additional tests in which INER and ECPR also allowed retimed copies

with 10 minutes delay, it was still not possible to cover all tasks.

If we do not allow any stand-by duties to be used, see Table 4.4, then ECPR resulted twice

in the best solution and INER found once the best solution. In terms of uncovered tasks and

delayed minutes, the methods performed equally well. Except for case Ac:1, retiming of at

most 2 tasks results in less uncovered tasks. Again the computation time of ECPR is by far the

largest, and INER has a computation time which is at most 2 minutes longer than that of INE.

We notice that the solutions in which stand-by duties are used have lower costs, but if we

only consider the number of uncovered tasks and the number of delayed tasks, it was not neces-

sary to use stand-by duties. Moreover, for Ht:1, the use of stand-by duties increased the number

of delayed tasks.

We performed a sensitivity analysis on the cost per minute delay to check if our conclusions

still hold under different values. Therefore, we did some experiments with a cost of 100 and 300
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instead of 200 per minute delay. A cost of 300 per minute delay does not lead to any significant

changes in the solutions. We also discovered that a cost of 100 per minute delay resulted for

INER in one case in an additional delayed train. In all other cases the solutions were quite

the same as with cost of 200 per minute delay. So the performance of the different methods

compared to each other does not change when we increase or decrease the delay cost.

A comparison of the computed solutions with manual solutions is not possible for several

reasons. First, the solutions obtained manually by the dispatchers do not satisfy all constraints

that we took into account in the paper, since it is sometimes too hard for them to find a feasible

solution at all. Second, the instances described in this paper consider only single disruptions.

However, in practice there are usually several disturbances per day. Since in the dispatching

system used by NS it is possible only afterwards to obtain information on how the duties have

been performed, it is not possible to obtain information on how the duties have been adjusted in

response to a single disruption.

4.7 Conclusions and future research

We presented two approaches to solve railway crew rescheduling with retiming. We compared

our new approaches INER and ECPR with the existing method INE of Potthoff et al. (2010)

that does not allow retiming. In 4 out of 6 cases (Ht:1 and Ztm:1, both with and without stand-

by drivers), the new approaches found solutions with less canceled tasks. Moreover, the total

amount of delay that was introduced into the timetable by retiming is very small, which makes it

likely that these solutions can be implemented in practice. The computation times of the INER

approach are within a range that should make this method applicable within a decision support

system for disruption management.

In this paper we have limited ourselves by considering only the train drivers. However, in

a disrupted situation, conductors need to be rescheduled at the same time. This can be done

as in Stojković and Soumis (2005) and Abdelghany et al. (2008) by using multiple tasks per

trip. These tasks represent the different functions of the crew members. Here the delays and

the cancelations of the tasks that are connected with the same trip must be synchronized in an

adequate way.

Conflicts between trains due to retiming decisions should be taken into account as well. In

our future research we will extend the presented model and solution approaches into that direc-

tion. Furthermore, as was indicated already in the paper, crew rescheduling is linked with rolling

stock rescheduling. Therefore, integrating the crew rescheduling process with the rolling stock

rescheduling process is a relevant subject for further research. This should be accomplished in
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such a way that the computation times remain short, but at this moment this seems to be still

too complex.

Disruption management takes place in a highly uncertain environment. Therefore it can

only be estimated how long it will take e.g. until a broken switch has been repaired. This means

that, at the point in time when the first rescheduling decisions must be made, it is not certain for

how long the timetable will be adjusted during the rest of the day. Therefore the rescheduling

process of the timetable, the rolling stock and the crew duties may have to be carried out several

times, possibly with a rolling horizon, if the duration of the disruption turns out to be different

than the initial estimate. New models and algorithms that take the uncertainty in the duration of

the disruption into account are subject for further research.
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Chapter 5

A Quasi-Robust Optimization Approach

for Crew Rescheduling

This paper started by work of Daniel Potthoff on railway crew rescheduling under uncertainty

in his PhD thesis (Potthoff (2010)). The model is extended by adding more flexibility in the

level of robustness of the resulting crew schedule. This chapter has been accepted for publica-

tion in Transportation Science (Veelenturf et al. (forthcoming)). The research in this paper has

been granted in 2012 a second place in the Student Paper Award Competition of the Railway

Application Section of INFORMS.

Co-authors: D. Potthoff, D. Huisman, L.G. Kroon, G. Maróti, A.P.M. Wagelmans

5.1 Introduction

Transportation systems of bus, rail or air traffic often have to deal with disruptions. For ex-

ample, weather conditions, accidents, and malfunctioning infrastructure or vehicles may block

the traffic at a certain location for a certain period of time. As a consequence, the timetable as

well as the schedules for vehicles and crews cannot be executed as planned: They have to be

rescheduled.

Large-scale disruptions generally require substantial rescheduling steps (as opposed to mi-

nor disruptions due to small delays). This chapter focuses on such rescheduling problems due

to large-scale disruptions where the underlying infrastructure becomes temporarily unavail-

able. We describe the problem setting and our solution approach in the context of railway crew

rescheduling, more specifically: for rescheduling train drivers. We want to emphasize, though,

that the ideas are directly applicable in a broader class of service or production scheduling set-
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tings where timetabled and location dependent tasks are to be carried out by a given number of

servers (e.g. real-life vehicle, crew and machine scheduling problems).

The operation of a railway system is based on an extensive planning process, resulting in a

timetable and schedules for the rolling stock and crews. The interested reader can find further

details about the underlying planning problems in Abbink et al. (2005) and Kroon et al. (2009).

Effective disruption management is key to a good operational performance of a train op-

erating company. We refer to Jespersen-Groth et al. (2009) for a detailed description of the

disruption management process. Decision support for rescheduling the crews is particularly

important since the crew duties are subject to complex rules and regulations. In what follows,

the problem of rescheduling the crew duties in a disrupted situation is called the Operational

Crew Rescheduling Problem (OCRSP).

Potthoff et al. (2010) proposed an approach for solving OCRSP. However, this approach

assumes that an accurate estimate of the duration of the disruption is available at the time the

rescheduling is carried out. The same holds for the approach of Rezanova and Ryan (2010) and

for the models developed for crew rescheduling in the airline industry. We refer to Clausen et al.

(2010) for an overview of crew rescheduling models in the airline industry.

The main goal of crew scheduling is to cover a given set of tasks by a certain number of

crews. The tasks are characterized by their start time, end time, start location and end locations.

A duty is an ordered sequence of tasks that can be assigned to a single crew.

A particularly challenging issue in real-time rescheduling is the uncertainty about the dura-

tion of the disruption. For example, recovery works on a broken switch in a railway network

may take two hours in the optimistic scenario, but they may stretch up to four hours in the

pessimistic scenario. The traffic is interrupted during the recovery works, leading to cancelled

tasks for rolling stock and crews. It is unclear at the start of the disruption how many tasks will

have to be cancelled.

A common approach to tackle this uncertainty is to modify the schedule at the start of the

disruption based on an estimated duration of the disruption. Usually, the initial estimate is the

optimistic scenario: the shortest possible duration. Later, when it turns out that the disruption

lasts longer than initially estimated, the schedule is modified again and again. This approach is

also called wait-and-see.
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Existing algorithmic frameworks for dealing with uncertainty include the classical approaches

of robust optimization and stochastic programming:

• Robust optimization tries to find the best solution that remains feasible under all specified

scenarios without applying any modifications or recovery actions. For more informa-

tion about robust optimization we refer to Bertsimas and Sim (2003) and Ben-Tal and

Nemirovski (2002).

• Two-stage stochastic programming minimizes the sum of the first stage costs and the

expected costs of the recovery in the second stage. An important assumption is that the

probability for the occurrence of each of the considered scenarios is known a priori. For

more information about stochastic programming we refer to Birge and Louveaux (1997)

and Kall and Wallace (1994).

Both robust optimization and stochastic programming lead to significantly more complex opti-

mization problems than the underlying deterministic problems. In most cases, realistic instances

cannot be solved in (near) real-time. In addition, robust optimization is very conservative, while

stochastic programming needs information about a probability distribution for the occurrence

of the different scenarios, which is usually not available in practice.

Liebchen et al. (2009) introduced the concept of recoverable robustness which aims at find-

ing a first stage solution that, in the second stage, can easily be turned into feasible solution

no matter which scenario takes place. Cacchiani et al. (2012) study recoverable robust rail-

way rolling stock planning. Cacchiani and Toth (2012) provide a survey of different robustness

notions in the context of railway timetabling.

In this paper we propose a quasi-robust rescheduling approach; it is built upon the concept

of recoverable robustness. The main idea is to compute a good schedule for the optimistic

scenario in such a way that it can easily be turned into a feasible schedule in any other scenario.

This is achieved by requiring in the first stage that a given number of the rescheduled duties

must have an alternative for tasks for which it is not certain whether they must be carried out.

Thus, if such tasks turn out to be cancelled in the realized scenario, then these duties can easily

be made feasible again. Duties with this property are called recoverable. A more detailed

definition of this concept is provided in Section 5.2.3

Recoverability of a duty is a local property: It depends on the duty itself and not on the entire

solution. It is therefore rather easy to incorporate it in column generation based algorithms

without substantially raising their running time. Furthermore, the approach admits to balance

the robustness and the operational costs by requiring a given number of the rescheduled duties

to be recoverable.
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Our method consists of two stages. In the first stage we assume that the optimistic scenario

takes place, and we compute the modified schedule subject to a constraint that a given number

of rescheduled duties must be recoverable. Then, in the second stage, when it turns out that

another scenario than the optimistic scenario is realized, we compute the rescheduled duties

from scratch. That is, we do not limit the recovery action in the second stage to simply falling

back to the recovery alternatives of the recoverable duties. Computing the rescheduled duties

from scratch in the second stage will be necessary when not all duties are recoverable after the

first stage. Moreover, rescheduling from scratch in the second stage also helps to reduce the

second stage costs.

The primary criterion for assessing the quality of a schedule is the number of additionally

cancelled tasks (i.e., the ones that are cancelled on top of those that are cancelled due to the

disruption), both in the first stage and in the second stage. The two-stage evaluation framework

allows us to analyze how the robustness requirements in the first stage influence the actual

rescheduling performance in the pessimistic scenario or in any other scenario. We also compare

our approach with a typical rolling horizon approach where initially only the optimistic duration

of the disruption is taken into account, and where the duties are rescheduled whenever the

information about the duration of the disruption is updated.

We demonstrate the effectiveness of our approach by the results of the computational tests

that were carried out on a number of railway crew rescheduling instances of Netherlands Rail-

ways (NS), the main operator of passenger trains in the Netherlands.

The contributions of this paper are summarized as follows.

- We consider disruption management of crew scheduling under uncertainty.

- We develop a framework to deal with the uncertainty about the duration of a disruption.

- We evaluate our approach on realistic railway crew rescheduling instances of Netherlands

Railways.

We want to emphasize that our focus lies both on developing new methods and on practical ap-

plications. We consider real-time disruption management of substantially complex scheduling

systems. In fact, our computational tests are based on railway crew rescheduling instances that

are quite challenging, even without taking into account the uncertainty about the duration of the

disruption. We focus on rescheduling the duties of the train drivers, but the approach is also

applicable for rescheduling the duties of conductors

This paper is organized as follows. In Section 5.2, we give a description of our quasi-robust

rescheduling approach and of the uncertainty that has to be dealt with. We also give a formal

definition of the concept of quasi-robustness. Section 5.3 presents our computational results.
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This paper is concluded in Section 5.4 with suggestions for further research. Appendix 5.5 gives

a detailed example of a crew rescheduling instance of NS.

5.2 Quasi-robust optimization approach

In Section 5.2.1 we first discuss the deterministic crew rescheduling problem. Then in Section

5.2.2 the framework of rescheduling under uncertainty is provided, and in Section 5.2.3 the

definitions are formalized. The solution approach is discussed in Section 5.2.4, and Section

5.2.5 concludes with how the approach is tested on crew rescheduling problems of NS.

5.2.1 Crew rescheduling problems

Crew scheduling problems can be seen as a set of timetabled tasks which must be carried out

by a number of crews. In the crew scheduling problems that we consider, each task has a fixed

start and end time and a given start and end location. A driver’s task can correspond to driving

a train or to travelling (as passenger) on a train from one station to another.

A sequence of tasks to be carried out by a single driver is called a duty. If a task is carried

out by a certain driver, we say that the task is covered by that driver. Each driver belongs to a

crew base: his or her assigned duty must start and end at that crew base.

If a disruption occurs, a number of tasks must be cancelled due to the unavailability of the

infrastructure or vehicles. As a consequence, some of the original duties become infeasible and

must be rescheduled. In such an operational crew rescheduling problem (OCRSP), the duties

must be modified such that as many as possible of the remaining tasks are covered by a driver,

and such that the modifications of the duties are minimal.

In this section we first assume that the disruption starts at time τ1 and that the duration of the

disruption is known. Thus the set of remaining tasks that still have to be carried out is known at

time τ1. In Section 5.2.2 we relax this assumption.

The completion for a driver is a new feasible sequence of tasks to replace the original duty

which starts at τ1. The completion only consists of non-cancelled tasks. Preferably, the com-

pletion covers the same tasks as the original duty and ends at the same time. The concept of

completions is illustrated in the example described in Appendix 5.5.

We use the following notations.

• T : The set of tasks that have not started yet at the time of rescheduling (i.e., at time τ1),

and that, given the duration of the disruption, are still to be carried out.

• Δ: The set of drivers whose original duty has not finished by time τ1.
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• Kδ: The set of all feasible completions for driver δ ∈ Δ. For every feasible completion

k ∈ Kδ we have:

– cδk: The cost of completion k for driver δ. The cost of a completion is zero if the

original duty of the driver is not modified.

– aδik ∈ {0, 1} to indicate whether task i is covered by completion k for driver δ.

• fi: The cost for not covering a task i.

Given these definitions, we can formulate the OCRSP with a given duration of the disruption as

a Mixed Integer Program (MIP). This MIP is an adapted version of a Set Covering model. The

model uses binary variables xδ
k to represent whether or not completion k is selected for driver

δ. Furthermore, binary variable zi = 0 if task i is covered and zi = 1 if task i is not covered by

any of the selected completions. The model is formulated as follows.

(OCRSP ) :min
∑
δ∈Δ

∑
k∈Kδ

cδkx
δ
k +

∑
i∈T

fizi (5.1)

s.t.
∑
δ∈Δ

∑
k∈Kδ

aδikx
δ
k + zi ≥ 1 ∀i ∈ T (5.2)

∑
k∈Kδ

xδ
k = 1 ∀δ ∈ Δ (5.3)

xδ
k, zi ∈ {0, 1} ∀δ ∈ Δ, ∀k ∈ Kδ, ∀i ∈ T (5.4)

Here the objective function (5.1) describes the aim of minimizing the sum of the costs of the

completions and the costs of not covering certain tasks. Constraints (5.2) make sure that every

task is either covered by a completion or it is marked as not covered. Constraints (5.3) ensure

that every driver is assigned exactly one completion. Constraints (5.4) describe the binary

character of the decision variables. The model for this rescheduling problem differs from a

standard scheduling (set covering) model since the completions are different for each driver

depending on the tasks the driver has already performed. For example, the maximum end time

and end location are fixed for each driver.

5.2.2 Rescheduling under uncertainty

In contrast with the assumption in Section 5.2.1, the duration of the disruption is usually not

known at the start time τ1 of the disruption. In this paper we deal with this uncertainty about the

duration of the disruption by considering the rescheduling problem as a two-stage optimization

problem.
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The first stage rescheduling is carried out at time τ1. At time τ1, an optimistic estimate τ

and a pessimistic estimate τ̄ of the end time of the disruption are assumed to be known. Later,

at time τ2, with τ1 < τ2 ≤ τ , the actual end time of the disruption τ (with τ ≤ τ ≤ τ̄ ) becomes

known. Time τ2 is the time at which the second stage rescheduling is carried out.

Without loss of generality we can restrict ourselves to a finite set S of scenarios. Indeed,

each scenario is characterized by the subset of tasks that are to be covered, and the number of

such subsets is finite.

The optimistic scenario s and the pessimistic scenario s̄ correspond to the optimistic and the

pessimistic end time of the disruption, respectively. In the optimistic scenario the set of tasks Ts

must be carried out, and in the pessimistic scenario the smaller set of tasks Ts̄ must be carried

out. The tasks in the set C := Ts \ Ts̄ are called the critical tasks.

All other scenarios are obtained by cancelling a number of critical tasks from the set C. The

set of tasks that must be carried out in scenario s is denoted by Ts. We assume that the scenarios

have been ordered in such a way that Ts2 ⊂ Ts1 if the disruption ends earlier in scenario s1 than

in scenario s2.

Then the rescheduling problem under uncertainty is stated as follows. Given the set of

possible scenarios S, find (at time τ1) a new schedule valid for the optimistic scenario s that

minimizes the sum of the costs of this new schedule and the worst case costs for the additional

rescheduling in the second stage (at time τ2). Note that, since we do not assume knowledge of a

probability distribution of the scenarios, we cannot minimize the expected costs. The objective

function is explained in more detail in Section 5.2.3.

5.2.3 Definitions

In this section we define the concept of q-quasi-robustness. First we give an informal descrip-

tion. The idea behind q-quasi-robust optimization is to generate completions for q drivers in

a way that is, in some sense, robust against all possible scenarios, i.e., the completions can be

carried out no matter which scenario is actually realized. By doing so, we aim at minimizing the

rescheduling costs (in particular the number of cancelled tasks) in the second stage (at time τ2)

if a scenario other than the optimistic scenario s is realized. We call our approach quasi-robust

rather than robust because we do not require all completions to be robust.

Now we proceed with the formal definition of q-quasi-robustness in three steps in Defini-

tions 1, 2 and 3.
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Definition 1. Let k and γs be completions for driver δ. Suppose that k is feasible in the first

stage OCRSP and that γs is feasible in the second stage OCRSP when scenario s is realized.

Then γs is said to be a recovery alternative for completion k in scenario s if aδiγs = 1 holds for

each task i ∈ Ts with aδik = 1.

In words, γs is a recovery alternative for k in scenario s if each task i ∈ Ts that is covered by

completion k is also covered by completion γs. Informally speaking, γs circumvents the critical

tasks of k that are cancelled in scenario s, while all non-critical tasks in k are still covered by

γs. We observed in our tests that completions with recovery alternatives often had to contain a

certain amount of idle time around (i.e., before and/or after) a critical task.

Now a recoverable completion is defined as follows.

Definition 2. Let k be a completion for driver δ and suppose that k is feasible in the first stage

OCRSP for the optimistic scenario s. Then k is called recoverable if

- k does not contain two critical tasks directly after each other, and

- there exists a recovery alternative γs for completion k in each scenario s ∈ S.

Note that, by Definition 2, a completion without any critical task is recoverable. Note further

that a recoverable completion may contain more than one critical task, but only if there is at

least one non-critical task between each pair of critical tasks. We use this restriction to make

the alternative path for each critical task independent of the other critical tasks and thereby also

of the scenario. If two critical tasks are performed directly after each other, this property does

not hold. For example, then the first critical task needs an alternative path including the second

critical task (for scenarios in which the second critical task is not cancelled) and an alternative

path excluding both critical tasks (for scenarios in which both critical tasks are cancelled).

Definition 3. Let q be a non-negative integer. A schedule obtained in the first-stage rescheduling

phase is called q-quasi robust if at least q drivers have a recoverable completion.

Based on the above Definitions 1, 2 and 3, we next describe the q-quasi-robust rescheduling

problem (q-QRSP ) that is to be solved in the first-stage rescheduling phase. We denote the set

of recoverable completions for driver δ by Rδ ⊂ Kδ. Furthermore, for each driver δ and each

feasible completion k of δ, the binary decision variable xδ
k describes whether or not completion

k ∈ Kδ is selected in the solution. For each task i ∈ Ts, the binary variable zi = 0 if i is

covered and zi = 1 if i is not covered by the selected completions. Now we state q-QRSP in the

first stage as follows.
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min
∑
δ∈Δ

∑
k∈Kδ

cδkx
δ
k +

∑
i∈Ts

fizi (5.5)

s.t.
∑
δ∈Δ

∑
k∈Kδ

aδikx
δ
k + zi ≥ 1 ∀i ∈ Ts (5.6)

∑
k∈Kδ

xδ
k = 1 ∀δ ∈ Δ (5.7)

∑
δ∈Δ

∑
k∈Rδ

xδ
k ≥ q (5.8)

xδ
k, zi ∈ {0, 1} ∀δ ∈ Δ, ∀k ∈ Rδ, ∀i ∈ Ts (5.9)

The objective function (5.5) describes that the aim is to minimize the sum of the costs of

the selected completions and the costs of leaving certain tasks not covered. Constraints (5.6)

specify that each task i ∈ Ts must be covered by a completion or it must be marked as not

covered. Constraints (5.7) describe that each driver must get a completion. Constraints (5.8)

determine that at least q drivers must get a recoverable completion. Finally, constraints (5.9)

require the decision variables to be binary valued.

The model (5.5)–(5.9) for q-QRSP in the first stage is very similar to the model (5.1)–(5.4)

for OCRSP. The difference is that in (5.5)–(5.9) we require at least q drivers to have a recov-

erable completion. Note that if q = |Δ|, then all drivers must have a recoverable completion.

That implies that in each scenario a feasible solution can be obtained by using the correspond-

ing recovery alternative for each driver. On the other hand if q = 0, then no driver needs a

recoverable completion, which means that no robustness at all is taken into account.

If another scenario is realized than the optimistic one, then the second stage amounts to

solving an OCRSP instance. Recall that the exact duration of the disruption is known when the

second stage problem is solved.

5.2.4 Solution approach

The solution approach for q-QRSP in the first stage consists of a combination of Lagrangian

relaxation and column generation, and is based on Caprara et al. (1999), Huisman et al. (2005)

and Potthoff et al. (2010). If the problem contains many tasks, then drivers can have a huge

number of feasible completions. Therefore we use a column generation approach where only

promising completions are considered.
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Lagrangian relaxation

In the master problem for q-QRSP in the first stage, Constraints (5.6) are relaxed which results

in the following Lagrangian subproblem.

Θ(λ) = min
∑
δ∈Δ

∑
k∈Kδ

cδkx
δ
k +

∑
i∈Ts

fizi +
∑
i∈Ts

λi(1−
∑
δ∈Δ

∑
k∈Kδ

aδikx
δ
k − zi) (5.10)

s.t.
∑
k∈Kδ

xδ
k = 1 ∀δ ∈ Δ (5.11)

∑
δ∈Δ

∑
k∈Rδ

xδ
k ≥ q (5.12)

xδ
k, zi ∈ {0, 1} ∀δ ∈ Δ, ∀k ∈ Rδ, ∀i ∈ Ts, (5.13)

The latter can be rewritten as follows.

Θ(λ) = min
∑
i∈Ts

λi +
∑
δ∈Δ

∑
k∈Kδ

(cδk −
∑
i∈Ts

λia
δ
ik)x

δ
k +

∑
i∈Ts

(fi − λi)zi

s.t. (5.11) − (5.13)

For given Lagrange multipliers λi, the Lagrangian subproblem can be solved in the following

way. Let zi = 1 if fi−λi < 0, and let zi = 0 otherwise. To determine the xδ
k values, we have to

choose at least q drivers which must have a recoverable completion. This can be accomplished

as follows.

First, we define c̄δk = cδk −
∑

i∈Ts̄
λia

δ
ik, kδ = argmin{c̄δk | k ∈ Kδ\Rδ} and rδ =

argmin{c̄δk | k ∈ Rδ}. Thus kδ represents the completion with the lowest reduced costs of

all non recoverable completions for driver δ, and rδ represents the completion with the lowest

reduced costs of all recoverable completions for driver δ. For every driver either of these com-

pletions must be selected. Based on this information we can determine the optimal values for

the xδ
k variables by the following steps.

1. Set all xδ
k variables equal to 0.

2. Compute for every driver δ the difference between the reduced costs of the two comple-

tions cδ,∗ = c̄δ
rδ
− c̄δ

kδ
.

3. For the q drivers δ with the lowest values of cδ,∗, set xδ
rδ

= 1.

4. For all remaining drivers, set xδ
rδ

= 1 if cδ,∗ ≤ 0. Otherwise set xδ
kδ

= 1.
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Restricted master problem

Since we use column generation, we consider a restricted master problem (RMP) of (5.10)-

(5.13) containing only a subset of the xδ
k variables. In our implementation, this subset al-

ways contains at least one recoverable completion for every driver (but not necessarily a non-

recoverable completion). For example, a recoverable completion for a driver that is feasible in

each scenario is to end its duty without carrying out any further tasks.

In the nth column generation iteration, the xδ
k variables in the RMP are given by ∪δ∈Δ{xδ

k :

k ∈ Kδ
n}, where Kδ

n ⊆ Kδ is a subset of completions for driver δ. Further, let Rδ
n = Kδ

n ∩ Rδ

be the recoverable completions for driver δ in iteration n. As mentioned, Rδ
n 	= ∅.

Let Θ∗
n be the optimal value of the Lagrangian subproblem of the nth column generation

iteration. We use subgradient optimization to compute an approximate value A∗
n for Θ∗

n satisfy-

ing A∗
n ≤ Θ∗

n. Let λ∗
n be the corresponding multiplier vector. We solve a pricing problem for

every driver δ ∈ Δ to check if A∗
n is a good approximation of Θ∗. If it is not, we need to add

more completions to the RMP in order to improve the solution. For the details of this procedure

we refer to Potthoff et al. (2010).

The pricing problems are modeled as shortest path problems with resource constraints (SP-

PRC) in dedicated graphs. These graphs are introduced later. Let uδ
n = min{c̄δk(λ∗

n) : k ∈ Rδ
n}

and vδn = min{c̄δk(λ∗
n) : k ∈ Kδ

n} be the smallest Lagrangian reduced costs of the already gen-

erated recoverable and general completions, respectively. Furthermore, let sδn = min{c̄δk(λ∗
n) :

k ∈ Rδ} and tδn = min{c̄δk(λ∗
n) : k ∈ Kδ} be the optimal values of the recoverable and the

general pricing problem for driver δ, respectively. Then the completions corresponding to uδ
n

and vδn should be added to the RMP if sδn − uδ
n < 0 and tδn − vδn < 0.

The pricing problem

The pricing problem for a driver δ can be modeled as a shortest path problem with resource

constraints (SPPRC) in the pricing problem graph. We follow here the graph model described

by Potthoff et al. (2010). The resources are required to handle additional application-specific

properties of the duties. For example, labor rules at NS have limitations on the lengths of the

parts of a duty before and after the meal break.

In a pricing problem graph, a node represents the start or the end of a task. Arcs are used to

represent the tasks and to indicate which tasks can follow each other. The latter depends on the

scheduled time as well as on the start and end locations of the tasks.

Example 4. Figure 5.1 shows an example of a pricing problem graph involving tasks g, h, i, j,

l, m, and n. The bold arcs correspond to the tasks. The thin arcs indicate transfers from one

task to another.
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h
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j
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n

Figure 5.1: A pricing problem graph involving tasks g, h, i, j, l, m, and n.

By construction, any feasible completion corresponds to a path in a pricing problem graph.

However, the reverse is not true in general, due to complex labor rules such as the aforemen-

tioned restriction on meal breaks. These rules are handled by the resource constraints.

Task i is said to be covered directly after task h in a completion if task h is followed directly

by task i in the corresponding path. In this case, task i is a successor of task h, and task h is a

predecessor of task i.

Finding recoverable completions Completions for a driver can be generated based on regu-

lar pricing problem graphs as shown in Figure 5.1. However, for generating only recoverable

completions, we have to modify the pricing problem graphs in order to guarantee the existence

of a recovery alternative for completions containing critical tasks. In other words, when con-

structing a completion, we have to guarantee that for each critical task in the completion also an

alternative path is available that can be used in case the critical task is cancelled. Here we use

the following lemma.

Lemma 5. Let k be a feasible recoverable completion for driver δ, and let i be any critical task

in k. Then there exists a path, consisting of non-critical tasks only, from the end node of the

non-critical predecessor of task i to the start node of the non-critical successor of task i.

Proof. If completion k is recoverable, then it does not contain two critical tasks directly after

each other. Thus each critical task i in k has a non-critical predecessor and a non-critical succes-

sor. Now the claim follows from the fact that completion k should have a recovery alternative

in the pessimistic scenario s̄, in which all critical tasks have been cancelled. In this pessimistic

scenario the non-critical predecessor of task i and the non-critical successor of task i still have

to be carried out, but task i is cancelled. Thus there exists a path as indicated.

Lemma 5 easily extends to the case when a critical task is the first task of completion k.

Then the end node of its predecessor is replaced by a dummy node representing the start of the
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completion. Similarly, if a critical task is the last task of completion k, then the start node of its

successor is replaced by a dummy node representing the end of the completion.

Note that the relation in Lemma 5 is not an equivalence: The existence of a path does not

imply the existence of a feasible completion, due to the resource constraints.

Based on Lemma 5 we propose an algorithm to generate the recoverable completions. The

algorithm consists of thee steps: (i) finding alternative paths, (ii) modifying the pricing problem

graph, and (iii) considering additional resources and solving the SPPRC.

For the third step, we introduce additional arc properties next to the costs. These arc prop-

erties are used to define so-called Resource Extension Functions. For each scenario, a separate

Resource Extension Function is needed to check whether a generated completion is feasible in

the corresponding scenario. For the details of the Resource Extension Functions, we refer to

Potthoff (2010).

Finding alternative paths We have to find out for each critical task i whether there exists an

alternative path in the pricing problem graph consisting of non-critical tasks only that can be

used to replace critical task i if this task is cancelled.

To that end, we remove all arcs corresponding to the critical tasks from the graph. In the

reduced graph we can use a shortest path algorithm to determine, for every non-critical pre-

decessor task h of critical task i, all non-critical successor tasks of critical task i that can be

reached from task h via a path consisting of non-critical arcs only. In case of a SPPRC we are

not interested in reachability alone, but also in information about how a successor node can be

reached. To be more precise, we would like to find the path from the non-critical predecessor

task h to the non-critical successor task j which uses the fewest resources.

Modifying the pricing problem graph Next we go back to the original pricing problem

graph, and we modify it as follows. Let task i be a critical task. Then the arc corresponding

to this task is removed from the graph. Consider any non-critical predecessor task h of critical

task i and consider any non-critical successor task m of critical task i that can be reached from

h via a path consisting of non-critical arcs only (as described in the previous paragraph). Then

we insert a copy i′ (with two new nodes) of the just removed arc, and we connect i′ to h and m

in such a way that h, i′ and m appear in a directed path.

These steps are carried out for each critical task. The procedure is illustrated in Example 6

and Figure 5.2. Note that we consider here only non-critical predecessors and non-critical



114_Erim Veelentirf_Stand.job

102 A Quasi-Robust Optimization Approach for Crew Rescheduling

h

g

i′

i′′

i′′′

j

l

m

n

Figure 5.2: Part of a pricing problem graph after the preprocessing step for critical task i that

is cancelled in scenario s has been carried out.

successors in order to avoid the occurrence of two critical tasks directly after each other in a

completion.

Example 6. Figure 5.2 shows the modified pricing problem graph that is obtained when the

preprocessing steps are applied to the pricing problem graph shown in Figure 5.1. Here task i

is a critical task that is carried out in scenario s and cancelled in scenario s. Task i has two

predecessors {h, g}, and three successors {l,m, n}. From task h, only task m can be reached

via task j in the auxiliary problem when critical task i has been removed. For this relation we

introduce a new task i′ and the necessary arcs. From task g, tasks m and n can be reached in

the auxiliary problem, which is represented by the copies i′′ and i′′′ of critical task i. Note that

task l cannot be reached from any predecessor of task i. Therefore, task l cannot be covered by

any recoverable completion.

Lemma 7. Suppose that feasible completion k is obtained as a resource constrained shortest

path in the graph constructed according to the above described procedure. Then k is recover-

able.

Proof. If the feasible completion k does not contain any critical task, then it is recoverable by

definition.

If completion k contains exactly one critical task i, then task i is not preceded nor succeeded

in k directly by another critical task. Thus the alternative path for critical task i that was deter-

mined in the described procedure fits between the non-critical predecessor of task i in k to the

non-critical successor of task i in k.
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If completion k contains more than one critical task, then, due to the construction of the

graph, two critical tasks in k do not follow each other directly in k. As a consequence, their

alternative paths do not interact with each other. They are separated from each other in time by

at least one non-critical task.

The foregoing cases imply that, if task i is a critical task, then task i can be replaced by

its alternative path in any scenario not containing task i. Clearly, task i can be carried out as

planned in any scenario containing task i.

Finally, the Resource Extension Functions per scenario are used to handle the resource con-

sumption in each scenario. As a consequence, completion k is a feasible completion in the first

stage under the optimistic scenario. If any other scenario than the optimistic one is realized,

then the corresponding recovery alternative for completion k is a feasible completion in the

second stage.

It is clear from the above example that the number of nodes and arcs in the pricing prob-

lem graphs increase significantly if many successors of the arrival node of a critical task can

be reached from many predecessors of the departure node of the critical task. This has conse-

quences for applying the concept of recoverability on instances of practical relevance.

5.2.5 Implementation for crew rescheduling problems of NS

The method proposed in this paper is an extension of the approach of Potthoff et al. (2010) for

solving OCRSP. Since real-life applications need results within a few minutes, Potthoff et al.

(2010) do not aim at rescheduling all duties, but only a subset of them. This subset is updated

as long as there are still tasks which are not covered. The initial subset consists of the duties

that are directly affected by the disruption (these duties must be rescheduled), but also of a set

of heuristically chosen additional duties that may help to find better solutions.

Our approach selects the subset of duties in the same manner as Potthoff et al. (2010)

chooses the initial subset. We adapt the master and pricing problem of Potthoff et al. (2010)

to handle the recoverability. Especially in the pricing problems we have to keep track of more

resource constraints since we have to ensure that also in the recovery alternatives meal break

rules are not violated.

In the first stage, our approach ensures for crews that need a recoverable completion that

there is a recovery alternative if another scenario than the optimistic scenario is realized. From

all feasible recovery alternatives, this approach picks the one which consumes the fewest re-

sources. Such an alternative does not have to be the cheapest alternative. Therefore we resched-

ule again in the second stage to search for the cheapest alternative.
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For rescheduling in the second stage we use the method of Potthoff et al. (2010) to solve

OCRSP, since we assume that the duration of the disruption is known at that time. Note that

we can only skip the rescheduling in the second stage if in the first stage all crews have a

recoverable completion. However, since we do not optimize on what the recovery alternative

looks like, rescheduling in the second stage can still reduce the second stage rescheduling costs.

5.3 Computational results

In this section we report our computational results for the q-quasi-robust optimization approach

for crew rescheduling under uncertainty. We test the method on realistic crew rescheduling

instances of NS.

In order to explore the balance between robustness and nominal costs, every case is solved

multiple times. We start with the instance where no completion is required to be recoverable,

which corresponds with the wait-and-see approach. Then we gradually increase the number of

completions that must be recoverable, until we finally reach the point where all completions are

required to be recoverable.

Since we are using a heuristic to solve the problem it may happen that we do not find an

optimal solution for an instance. Due to this phenomenon, it may happen that a solution of the

first stage where q1 crews need a recoverable completion has lower costs than a solution where

q2 crews need a recoverable completion, even though q1 > q2. In such a case we use in our

results the solution of q1 for all values of q with q2 ≤ q ≤ q1.

It is worthwhile to compare the two extreme cases. If no crew needs a recoverable comple-

tion, we just solve the underlying OCRSP for the optimistic scenario without any robustness

requirements. This may lead to high rescheduling costs in the second stage. On the other hand,

if the entire schedule is required to be quasi-robust and if we find a solution that covers all

tasks, then in principle no further rescheduling steps are necessary no matter which scenario is

realized.

The q-quasi-robust optimization approaches have been implemented in C++ and compiled

with the Visual C++ 10.0 compiler.

5.3.1 Cases

For our computational study, we used five large-scale disruptions that actually took place in the

past in the Netherlands. On a regular working day about 10,000 tasks are carried out by about

1,000 duties, about 90 of which are reserve duties. In all five cases a route becomes suddenly

unavailable for 2 to 3 hours due to a disruption.
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Location ID Time # crews
affected selected

Abcoude Ac A 16:30-18:30 67 142
Abcoude Ac B 16:30-18:30 59 116
Beilen Bl A 07:00-10:00 15 42
Beilen Bl B 16:00-19:00 15 39
’s-Hertogenbosch Ht 08:00-11:00 55 98

Table 5.1: Summary of the different cases.

As a preparation for the crew rescheduling step, we modify the timetable according to the

contingency plans currently used by NS. In particular, the timetable services on the disrupted

line are cancelled. The rolling stock is rescheduled following some basic rules, which are also

described in the contingency plans. The original (undisrupted) duties of the crews are taken

from the operational schedules of NS on a workday in September 2007.

A brief description of the five cases is given in Table 5.1. In all of the cases railway traffic

was blocked in both directions. This table considers the optimistic scenario where the disruption

ends after the minimum possible duration. We note that the case Bl A is described in detail in

Appendix 5.5.

The cases around Abcoude involve a disruption of the centrally located and heavily uti-

lized route between Utrecht and Amsterdam. The network does allow rerouting possibilities

for passengers and crews, although these are time-consuming. Around 60 drivers are directly

affected by the disruption in these cases. The two cases around Beilen show a disruption on a

less heavily used route, but the blockage cuts off the northern part of the network from the rest.

The cases around Beilen have a direct effect on 15 drivers. The case with a disruption around

’s Hertogenbosch has a big impact, since this also involves a heavily utilized route. In total 55

drivers are directly affected by this disruption.

For each of the 5 cases we consider two scenarios: we define the optimistic scenario s and

the pessimistic scenario s as the scenarios corresponding to the shortest and the longest duration

of the disruption, respectively. For the q-quasi-robust optimization approach, especially the

number of critical tasks is important. Table 5.2 shows the main characteristics of the five cases.

For every case we present the optimistic duration of the disruption, and the time the disruption

lasts longer in the pessimistic scenario s. We also show the number of critical tasks.

5.3.2 Objective function

The quality of a solution is measured by a combination of the operational costs and the reschedul-

ing costs. The most important goal is that all remaining tasks are covered by the modified duties.
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Optimistic Considered Critical tasks
Case Duration Extension in s
Ac A 2:00 0:30 8
Ac B 2:00 0:30 8
Bl A 3:00 1:00 6
Bl B 3:00 1:00 5
Ht 3:00 0:30 10

Table 5.2: Information about the disruptions and the considered uncertainty.

Therefore, we account a cost of 20,000 for the additional cancellation of a task due to a missing

driver.

The cost of each completion is zero if the duty is unchanged. Otherwise the cost is defined

as the sum of the individual penalties depending on the way the duty is changed. We use the

following values for the penalties. We account a cost of 400 for each duty that is changed

anyhow. Every task that is not assigned to its original duty has a cost of 50. A cost of 1

is accounted for every transfer between two tasks that was not used in the original plan by

some crew member. Finally, if a crew member has to be repositioned by using a taxi ride,

the accounted cost equals 1,000. These values for the cost parameters performed best in a

preliminary study.

5.3.3 Numerical results

The first stage problem of q-QRSP amounts to computing the completions for the optimistic

scenario subject to the additional requirements about the number of recoverable completions.

In the first stage problem of q-QRSP we consider initial core problems as described in Sec-

tion 5.2.5. In order to account for the uncertainty about the duration of the disruption, we

construct the initial core problems based on the optimistic duration of the disruption plus the

possible extension in time.

In the second stage problem we assume that the pessimistic scenario is realized, and we

solve the OCRSP using the results of the first stage problem as input. All second stage instances

are solved by the algorithm presented in Potthoff et al. (2010) with the same subsets of duties

as in the first stage. Note that we do not restrict the recovery action to the mere use of the

recovery alternatives of the completions. That approach would lead to a feasible solution only

if all completions were required to be recoverable in the first stage.

Table 5.3 shows the objective values obtained for the first and second stage problems. For

every fixed value of q, denoting the number of duties that are required to have a recoverable

completion, we report the results of the first stage, the second stage, and the sum of them. The
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outcome of the first stage indicates what happens under the optimistic scenario, while the sum

of the first and second stage represents what happens under the pessimistic scenario. Note that

tasks which are not covered in the first stage will not be considered and consequently not be

covered in the second stage. For every solved instance we give the lower bound (LB), the cost

of the best found solution (UB), and the number of cancelled tasks (#CANC).

First, we notice the result that more robustness requirements (i.e., a higher value of q) leads

to higher first stage costs. The number of additionally cancelled tasks shows the same pattern,

which can be expected since these tasks constitute the main part of the first stage costs. So we

see that in the first stage more tasks are cancelled to have, most of the time, a better solution in

the second stage. Cancelling tasks in the first stage also means that there will be more slack in

the completions, which can be used in the second stage.

The total costs of the two stages indicate the tradeoff between costs and robustness. Es-

pecially for the cases Bl A en Bl B, the requirement of more and more robustness initially

decreases the total costs. From a certain value of q on, however, the total costs start increasing

again. That is, the robustness requirements help to decrease the second stage rescheduling costs,

but too much robustness turns out to be expensive in the first stage without any further added

value in the second stage.

In the other cases we have somewhat irregular behavior: a more robust schedule in the first

stage may lead to higher costs in the second stage. This can happen because not all duties

have a recoverable completion and then rescheduling the duties which have not yet a recovery

alternative could lead to bad luck and additionally cancelled tasks in the second stage. Anyway,

in all cases the second stage costs are negligible if all crews have a recoverable completion in

the first stage.

For all cases, except for Ac A, we have solutions that have the same number of cancelled

tasks in the first stage as the solution where no uncertainty is taken into account (q = 0),

but with less cancelled tasks in the second stage. Thus in these cases, at the price of some

slightly higher total costs for the first stage but without additional cancellations if the optimistic

scenario is realized, we can reduce the total number of cancellations if the pessimistic scenario

is realized. For these cases, the instance with minimum total costs, a minimum number of

cancellations if the optimistic scenario is realized, and a minimum total number of cancellations

if the pessimistic scenario is realized is indicated with bold figures in Table 5.3.

Only for the case Ac A, the dominating solution is realized by not taking uncertainty into

account, so with q = 0.

To illustrate the foregoing, Figure 5.3 gives a graphical representation of the results for the

case Bl A. The black line indicates the costs of the first stage for varying levels of the number

of recoverable duties q, and the dashed black line gives the corresponding lower bounds for the
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Case Ac A Stage 1 Stage 2 Stage 1 + 2
q LB UB #CANC LB UB #CANC UB #CANC
0-135 471,430 530,162 22 55,296 56,302 2 586,464 24
136-137 479,646 530,513 22 103,037 112,425 5 642,938 27
138 494,392 550,767 23 115,631 116,349 5 667,116 28
139-140 506,108 551,377 23 43,206 44,604 2 595,981 25
141 534,303 592,182 25 9,979 10,332 0 602,514 25
142 575,931 612,734 26 297 1,807 0 614,541 26
Case Ac B Stage 1 Stage 2 Stage 1 + 2
q LB UB #CANC LB UB #CANC UB #CANC
0-109 46,182 52,486 0 55,434 58,031 2 110,517 2
110-111 43,690 54,148 0 43,852 48,484 2 102,632 2
112 38,478 55,244 0 49,085 66,529 3 121,773 3
113 42,863 57,667 0 26,491 26,582 1 84,249 1

114 42,326 63,252 0 26,969 28,840 1 92,092 1
115-116 48,309 86,567 1 3,918 3,918 0 90,485 1
Case Bl A Stage 1 Stage 2 Stage 1 + 2
q LB UB #CANC LB UB #CANC UB #CANC
0-36 32,093 32,350 1 36,046 45,168 2 77,518 3
37 32,786 32,896 1 34,516 43,661 2 76,557 3
38 31,222 34,653 1 22,747 24,110 1 58,763 2

39 36,645 39,021 1 5,623 23,314 1 62,335 2
40 56,550 77,666 3 2,157 2,157 0 79,823 3
41 78,384 80,925 3 1,833 1,909 0 82,834 3
42 108,055 118,568 5 1,240 1,305 0 119,873 5
Case Bl B Stage 1 Stage 2 Stage 1 + 2
q LB UB #CANC LB UB #CANC UB #CANC
0-34 46,626 58,406 2 65,453 66,511 3 124,917 5
35 47,955 59,765 2 29,868 42,360 2 83,923 4

36 56,549 76,803 3 24,114 24,114 1 83,923 4
37 73,236 78,164 3 21,876 21,908 1 103,612 4
38 93,673 99,165 4 1,405 1,405 0 102,972 4
39 117,441 119,727 5 2,609 2,609 0 121,832 5
Case Ht Stage 1 Stage 2 Stage 1 + 2
q LB UB #CANC LB UB #CANC UB #CANC
0-86 151,455 157,135 5 50,620 55,138 2 212,273 7
87-88 150,683 158,198 5 55,903 61,674 2 219,872 7
89 149,497 158,599 5 60,226 61,818 2 220,417 7
90 148,476 158,903 5 71,199 85,320 3 244,223 8
91 147,851 161,222 5 84,797 99,855 4 261,077 9
92 145,239 162,071 5 51,011 60,712 2 222,783 7
93 145,634 164,484 5 55,768 56,091 2 220,575 7
94 141,731 164,578 5 74,104 97,043 4 261,621 9
95 144,067 164,581 5 14,698 15,735 0 180,316 5

96 145,375 188,234 6 94,815 98,510 4 286,744 10
97 164,382 191,141 6 7,126 7,974 0 199,115 6
98 183,565 209,077 7 4,436 6,721 0 215,798 7

Table 5.3: Results of the different cases for different values of q
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Figure 5.3: Graphical representation of the results for the case Bl A.

costs of the first stage. The gray line indicates the costs of the second stage for varying levels

of q, and the dashed gray line gives the corresponding lower bounds. The dotted line represents

the total costs for the first and second stage for varying levels of q. The figure clearly indicates

that the solution corresponding to q = 38 has only slightly higher costs for the first stage than

the solution corresponding to a value of q between 0 and 36. However, for this solution the total

costs for the first and second stage are significantly lower. Note that the differences between the

upper and the lower bounds are small.

Summarizing, the computational results confirm the intuition that a higher degree of first

stage q-quasi-robustness in general leads to higher first stage costs as well as to lower second

stage costs, and that an optimal level of q-quasi-robustness can be obtained by varying the

number of recoverable duties q. Most of our cases reach the lowest total costs at an intermediate

robustness level: no robustness and full robustness are both inferior. Our algorithm can explore

the consequences of several robustness levels, and thereby help the decision makers to find the

best balance between total costs and robustness.

5.3.4 Computation times

Computation times are very important for our application, since we are dealing with an appli-

cation of real-time rescheduling. The cases around Beilen can be solved very quickly. For any

given value of q for the number of crews that need to have a recoverable completion, the first

stage is solved within 10 seconds and the second stage is solved within 3 seconds. The other
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cases need longer computation times. For a given value of q, the second stage is solved within

1.5 minutes, but the first stage can take up to 3.5 minutes. These running times are promising

and fast enough for a real-time application.

5.4 Concluding remarks

In this paper we study real-time resource rescheduling problems in case of large-scale dis-

ruptions. We propose a novel rescheduling approach that explicitly deals with the uncertain

duration of the disruption. We introduce the concept of q-quasi-robustness, and argue why clas-

sical models (such as robust optimization and stochastic programming) are unsatisfactory for

the problems we consider.

Our method is widely applicable to problems containing tasks with fixed start and end times

and locations which have to be scheduled on a certain set of resources. Examples are real-life

vehicle, crew and machine scheduling problems. Furthermore, the robustness requirements can

easily and tractably be integrated into existing column generation models, a commonly used

optimization framework for resource scheduling and rescheduling.

We demonstrate the power of our approach on real-life crew rescheduling problems of NS.

Our method is able to find solutions of reasonably good quality (proven by lower bounds) in a

matter of minutes. A detailed analysis shows that q-quasi-robustness reflects the intuitive notion

of robustness quite well.

Besides its methodological contributions, the method has good prospects to be valuable

in practice. First, computations on challenging real-life cases reliably lead to good solutions.

Second, the computation times of a few minutes are close to what is needed in real-life decision

making. And third, our approach is able to balance robustness requirements against operational

and recovery costs. This allows decision makers to explore several variants and with different

robustness levels.
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5.5 Appendix: Example for a crew rescheduling problem of

NS

In this section we show an example of a typical crew rescheduling instance of NS.

5.5.1 Disruption

The disruption affects the Northern part of the Netherlands. The disrupted timetable is repre-

sented in Figure 5.4 as a time-space diagram. Due to a broken catenary, no railway traffic is

possible between Hoogeveen (Hgv) and Beilen (Bl) from 7:10 on. It is estimated that the repair

works will last between 3 and 4 hours. The timetable is updated according to a pattern described

by the contingency plan that is applicable in this situation.

In this case, the trains of the train lines 500, 700, and 9100, that are operated between

Zwolle (Zl) and Groningen (Gn) (and vice versa) in an hourly periodic timetable, are turned

in four intermediate stations. (The 500 line consists of train numbers between 501 and 599; a

similar assumption holds for the other lines). In particular, the intercity trains of the 500 and

700 lines are turned in Hoogeveen and Assen (Asn). The regional trains of the 9100 train line

are turned in Meppel (Mp) and Beilen. The corresponding trips between Hoogeveen and Assen

(and vice versa) and between Meppel and Beilen (and vice versa) are cancelled.

At the intermediate stations where the trains are turned, the crew is supposed to stay with

the turning trains. This means effectively that tasks from Groningen to Zwolle are changed into

tasks from Groningen to Groningen, and that tasks from Zwolle to Groningen are changed into

tasks from Zwolle to Zwolle. These combined tasks are so-called rerouted tasks. The rerouted

tasks are indicated later with “/r” after their train number. Note that the concept of rerouted

tasks can easily be added to the framework developed in this paper.

Figure 5.4 shows how the timetable between Zwolle and Groningen is updated. Since the

repair works take at least 3 hours, the turning pattern is applied for sure for three southbound and

three northbound trains of each of the three involved train lines. For the trains in the fourth hour

after the start of the disruption, it is uncertain whether the trains will take their normal routes

(dashed lines in Figure 5.4) or whether they will be turned as well (dotted arcs in Figure 5.4).

Traditional crew rescheduling approaches deal with this situation as follows. At time τ1 the

optimistic duration of the disruption is estimated, and the modified timetable corresponding to

this estimate is used as input for OCRSP.

This means that the blockage is estimated to be resolved by 10:10. Therefore, the modified

timetable that is given as input to OCRSP assumes that the trains 727, 736, 529, 538, 9129
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Figure 5.4: Time space diagram showing how the timetable between Groningen (Gn) and

Zwolle (Zl) is updated, if the route between Beilen (Bl) and Hoogeveen (Hgv) is blocked tem-

porarily.

and 9138 can run between Beilen and Hoogeveen as planned. Thus the corresponding tasks

indicated with dashed lines in Figure 5.4 are considered in the instance of OCRSP.

However, it may happen that new information becomes available at τ2 = 9:40 saying that the

route will be blocked until 11:10. This means that the timetable has to be updated again and that

the trains 727, 736, 529, 538, 9129 and 9138 must also be turned at the intermediate stations.

Thus at time τ2 the rolling stock and crew schedules must be rescheduled as well, given this

new information and the rescheduled timetable. The rerouted tasks 727/r, 736/r, 529/r, 538/r,

9129/r, and 9138/r are used as input for a second instance of OCRSP. Here, for example, task

727/r consists of a task from Zwolle to Hoogeveen in the time slot of the original task 727,

followed by a return task from Hoogeveen to Zwolle in the time slot of the original task 736,

see Figure 5.4. Since the two consecutive parts of task 727/r must be carried out by the same

crew, the two parts together are considered as one single rerouted task.

5.5.2 Feasible completion

In this section we illustrate the concept of recovery alternatives and recoverability for the afore-

mentioned route blockage between Hoogeveen and Beilen.

Figure 5.5a shows a planned duty from crew base Groningen (Gn). Due to the route block-

age between Hoogeveen and Beilen, task 724 from Groningen to Zwolle (Zl) is rerouted and
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a) 724 724 5827 5830 MB 5841 743 9145

Gn Zl Amf Amf Asd Asd Amf Zl Gn

b)
724/r Taxi 530 MB 732 743 743 9145

Gn ZlGn AmfAmf Hfdo Amf Zl Gn

c) 724/r 728/r 732/r 736 MB 538 2845 747 9149

Gn Gn Gn Gn Zl Zl Amf Ut Amf Zl Gn

d) 724/r 728/r 732/r 736 MB 542 747 747

Gn Gn Gn Gn Zl Zl Amf Zl Gn

e) 724/r 728/r 732/r 736/r MB 9142 542 747 747

Gn Gn Gn Gn Gn Gn Zl Amf Zl Gn

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

Time of rescheduling

task deadheading MB meal break

modified or rerouted task Taxi deadheading using a taxi

Figure 5.5: Examples of feasible completions for an affected original duty from crew base

Groningen (Gn).

returns to Groningen. Therefore, the driver cannot follow his planned duty. A feasible comple-

tion of the duty under the optimistic scenario s is shown in Figure 5.5b. The optimistic scenario

s assumes that the route blockage lasts until 10:10. Since this completion does not cover any

critical task, it is a recoverable completion. The completion in Figure 5.5c is not recoverable.

It covers critical task 736 from Groningen to Zwolle. If the pessimistic scenario s is realized,

which means that the route is blocked until 11:10, then this task is rerouted (736/r) and ends

in Groningen. Then the driver is not able to get to Zwolle in time to deadhead on task 538

from Zl to Amersfoort (Amf). Figure 5.5d shows a recoverable feasible completion covering

the critical task 736 from Groningen to Zwolle. Its recovery alternative that is valid in the

pessimistic scenario s is shown in Figure 5.5e. In this recovery alternative, task 9142 is in

fact a deadheading task, since, according to the definition of a recoverable duty, this task is also

covered by another feasible completion.
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Chapter 6

Summary and conclusion

This thesis studies disruption management in railway systems and aims to reduce the inconve-

nience passengers face during disruptions. In case of a disruption, the railway operator has to

come up with a new timetable and new rolling stock and crew schedules. To help the dispatch-

ers in finding these new schedules, this thesis discusses several railway disruption management

approaches. The approaches extend previous research in railway disruption management by

reducing the number of assumptions, by adding more flexibility and by taking passenger be-

havior or uncertainty during disruptions into account. These extensions prove to be powerful in

reducing the inconvenience passengers face by having less cancelled trains and less delays for

passengers.

In Chapter 2 the timetable rescheduling problem has been investigated. From this research

it can be concluded that, in case of a disruption, it is possible to find new timetables within

computation times which are reasonable for practice. The model used is flexible and can handle

different kinds of infrastructure layouts. In current practice, dispatchers use prescribed contin-

gency plans if a disruption occurs. However, by the flexibility and short computation times,

our model can be of great use for practice. Another advantage of the model is that it also con-

siders the available rolling stock. This decreases the probability that additional trains need to

be cancelled due to lack of rolling stock and thereby decreases the probability that additional

rescheduling steps must be carried out.

Rolling stock rescheduling is discussed in Chapter 3. The chapter does not introduce a new

model for rolling stock rescheduling. However, it comes up with a framework in which the

timetable, the rolling stock schedule and the passenger behavior are considered together. Of

the three schedules (timetable, rolling stock and crew) of a railway operator, the timetable and

rolling stock schedules are the ones which influence the passenger flows. Chapter 3 is based

on previous research in which only the rolling stock schedule was taken into account to im-

prove passenger service during disruptions. However, computational tests of our framework on
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instances of Netherlands Railways showed that slight timetable adaptations, such as having an

additional stop of a train at a certain station, can reduce the delays of passengers significantly.

During disruptions, dispatchers should use our framework to decide which trains on the alter-

native routes should get an increased capacity and which should make an additional stop, such

that passengers face as little delay as possible by the disruption.

If the operator has a new timetable and rolling stock schedule to handle the disruption, the

last step is to find crew to operate all trains. In this thesis two chapters investigate how previ-

ous crew rescheduling approaches in railways can be improved. The first approach, discussed

in Chapter 4, adds more flexibility while constructing the new crew schedule. The approach

allows some trains to be slightly delayed such that new connections for crew become available.

The results of tests with the approach on instances of Netherlands Railways demonstrate that

allowing these small timetable modifications reduces the number of trains which need to be

cancelled by lack of crew. This shows that dispatchers can be better off by adding the option to

slightly modify the timetable.

The second crew rescheduling approach, discussed in Chapter 5, aims at creating more ro-

bust crew schedules. While rescheduling the crew duties, it takes into account that the disruption

can take longer than estimated. At the moment it becomes clear that the disruption takes longer

than estimated, the crew duties must be rescheduled again. The advantage of our quasi-robust

rescheduling approach is that, if the disruption takes longer than planned, then there are less

rescheduling costs in the second rescheduling phase. However, in the initial rescheduling the

costs are a bit higher. Our approach provides an overview of solutions in which it is stated how

many tasks need to be cancelled by lack of crew in each phase. In this way dispatchers can

decide which kind of solution they prefer.

The rescheduling approaches discussed in this thesis demonstrate to perform well on prac-

tical instances. They demonstrate that they are able to find schedules in which passengers

face less inconvenience than in schedules found by current approaches. First, the timetable

rescheduling approach shows to be flexible in finding schedules which minimize cancellations

and delays. Secondly, the rolling stock rescheduling approach shows that a combination of

rescheduling the rolling stock and timetable leads to a drastic decrease of passenger delays in

comparison with an approach which only considers the rolling stock schedule. At last, the two

crew rescheduling approaches show that they can prevent cancellations by lack of crew if slight

timetable adaptations are allowed or in case the uncertainty of the disruption is considered.

In addition to the solution quality, the approaches also perform well in terms of computation

time. Therefore they can be of great advisory support for the dispatchers. The approaches were

tested on instances of Netherlands Railways. However, the approaches can also be used in

applications of other railway operators. In case of the crew rescheduling approaches they can
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even be applied in disruption management systems of other transport modes (e.g. airlines and

bus/tram/metro systems) to improve the passenger service.

The next step should be to link the proposed approaches to the data systems of the railway

operators such that the approaches can make use of the real-time data streams.
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R. H. Möhring, and C. D. Zaroliagis, editors, Robust and Online Large-Scale Optimization,

pages 399–421. Springer, Berlin, 2009.
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M. Stojković and F. Soumis. The operational flight and multi-crew scheduling problem. Yu-

goslav Journal of Operations Research, 15:25–48, 2005.

L. P. Veelenturf, D. Potthoff, D. Huisman, and L. G. Kroon. Railway Crew Rescheduling with

Retiming. Transportation Research Part C: Emerging Technologies, 20:95 – 110, 2012.

L. P. Veelenturf, M. P. Kidd, V. Cacchiani, L. G. Kroon, and P. Toth. A railway timetable

rescheduling approach for handling large scale disruptions. Technical Report ERS-2014-

010-LIS, Erasmus Research Institute in Management (ERIM), 2014a. URL http://hdl.

handle.net/1765/51678. Under review at: Transportation Science.
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(Summary in Dutch)

Helaas vinden er in spoorwegnetwerken dagelijks verstoringen plaats. Reizigers komen hier-

door later dan gepland aan op hun bestemming, wat voor hen erg vervelende gevolgen kan

hebben. Spoorvervoerders moeten dan ook alles op alles zetten om te zorgen dat de reizigers

zo min mogelijk last ondervinden van verstoringen. Aan de ene kant zal een spoorvervoerder

(gezamenlijk met een spoorwegbeheerder) proberen om verstoringen te voorkomen. Het is

echter niet altijd mogelijk om elke verstoring te voorkomen. Daardoor zal er aan de andere kant

ook onderzoek gedaan moeten worden hoe er gezorgd kan worden dat reizigers zo min mogelijk

hinder van verstoringen ondervinden.

In dit proefschrift wordt op dit laatste gefocust. In de verschillende hoofdstukken van dit

proefschrift wordt onderzocht hoe in het geval van verstoringen de treinen het best bijgestuurd

kunnen worden. In geval van een verstoring zal de spoorvervoerder een nieuwe dienstregeling

en nieuwe materieel- en personeelsplannen moeten maken. Het is van groot belang dat bij het

maken van de nieuwe plannen rekening gehouden wordt met de reizigers en met wat de reizigers

willen en doen.

Hieronder volgen voor elk van de drie genoemde planningsproblemen voorbeelden die een

indruk geven tegen wat voor problemen een spoorvervoerder aanloopt in geval van verstoringen.

Een belangrijk onderdeel hierbij is dat er maar weinig tijd beschikbaar is om met nieuwe plan-

nen te komen omdat de treinen ondertussen gewoon doorrijden. Verder zal worden aangegeven

hoe deze problemen in dit proefschrift zijn onderzocht.

Bijsturing van de dienstregeling

Als er door een verstoring geen treinverkeer mogelijk is tussen Woerden en Utrecht zullen de

treinen tussen Woerden en Utrecht uit moeten vallen of ze moeten worden omgeleid (bijvoor-

beeld via Breukelen).
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Als er gekozen wordt om de treinen uit te laten vallen is de vraag of de treinen alleen

uitvallen op het traject tussen Woerden en Utrecht of misschien ook over een langer traject.

Van invloed op deze beslissingen is de hoeveelheid beschikbare sporen op de stations. Als

een trein die normaal van Den Haag via Woerden naar Utrecht gaat nu eindigt in Woerden,

neemt het daar een spoor in beslag. Als er nu allemaal treinen in Woerden eindigen in plaats

van in Utrecht zijn op een gegeven moment alle sporen bezet en dan kan er geen nieuwe trein

meer binnenkomen. Om dit te voorkomen, kan de vervoerder besluiten dat het materieel van

de treinen die in Woerden eindigen ingezet wordt voor treinen die normaal van Utrecht via

Woerden naar Den Haag gaan, maar die nu in Woerden starten in plaats van in Utrecht. Als er

een lange tijd zit tussen de aankomst in Woerden en het vertrek uit Woerden kan het nog steeds

zijn dat er problemen ontstaan doordat sporen te lang bezet zijn. Het kan dus betekenen dat het

niet anders mogelijk is dan dat de treinen al op een plek voor Woerden eindigen en teruggaan

naar Den Haag.

Een andere optie is om de treinen om te laten rijden via Breukelen. Als daarvoor gekozen

wordt, moet er rekening gehouden worden met het traject tussen Woerden en Breukelen en met

het traject tussen Breukelen en Utrecht. Is daar wel ruimte op het spoor voor deze treinen? Uit

veiligheidsoverwegingen moet bijvoorbeeld tussen elke twee treinen die achter elkaar op het

zelfde spoor rijden een minimaal aantal minuten als buffer zitten. Verder hebben treinen ook

verschillende snelheden en kan het gebeuren dat een snelle trein opgehouden wordt door een

langzame trein.

In hoofdstuk 2 van dit proefschrift is onderzoek gedaan naar een wiskundig model dat in

geval van een verstoring een nieuwe dienstregeling kan genereren welke rekening houdt met de

capaciteiten van de stations en tussen de stations. Verder houdt het model er rekening mee dat

er altijd materieel aanwezig moet zijn voor een trein. De aanpak is in het algemeen in staat om

binnen een anderhalve minuut een nieuwe dienstregeling te genereren waarin het aantal treinen

dat uitvalt en vertraagd wordt is geminimaliseerd.

Bijsturing van het materieel

In dit voorbeeld gaan we weer uit van een verstoring tussen Woerden en Utrecht waarbij nu

de helft van het aantal sporen nog steeds beschikbaar is. Verder gaan we er vanuit dat het

bijsturingsmodel van hoofdstuk 2 heeft ontdekt dat, als twee van de vier stoptreinen per uur

uitvallen, de rest van de treinen nog steeds kunnen rijden.

Tussen Woerden en Utrecht ligt het station Vleuten waar alleen stoptreinen stoppen. Nu

stoppen op Vleuten nog maar twee treinen per uur in plaats van vier. Dit zal betekenen dat deze
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resterende treinen nu ongeveer twee keer zoveel reizigers hebben als normaal. Om hier mee om

te gaan heeft een spoorvervoerder twee opties.

De eerste optie is om de stoptreinen die nog steeds rijden langer te maken door het inzetten

van langere materieelsamenstellingen. Dan passen er meer mensen in de trein. De trein kan

echter niet onbeperkt langer gemaakt worden. Zo kan de trein bijvoorbeeld niet langer zijn dan

het perron in Vleuten. Verder moet er ook gekeken worden of er überhaupt wel reserve materieel

aanwezig is en of er wel voldoende tijd is om het reserve materieel van het rangeerterrein af te

halen en te koppelen aan de huidige trein.

Een tweede optie is om treinen die normaal niet in Vleuten stoppen daar nu wel te laten

stoppen. Hierdoor hoeven de reizigers in Vleuten niet te wachten tot de volgende stoptrein en

komen ze eerder aan op hun bestemming. Maar uiteraard geldt ook hier dat er wel genoeg plaats

moet zijn voor de reizigers in de trein die de extra stop maakt. Verder moet er rekening mee

gehouden worden dat de extra stop voor een vertraging van de trein zorgt en dat reizigers in de

trein daardoor bijvoorbeeld hun overstap kunnen missen.

In hoofdstuk 3 van het proefschrift wordt onderzocht hoe in het geval van een verstoring

bepaald kan worden welke treinen een andere materieelsamenstelling dienen te krijgen en welke

treinen een extra stop moeten maken. Hierbij wordt rekening gehouden met hoe de reizigers

zullen reageren op de nieuwe dienstregeling en het nieuwe materieelplan. De besluiten over

de dienstregeling en het materieelplan worden zodanig gemaakt dat de totale vertraging die

reizigers ondervinden op hun route wordt geminimaliseerd.

Bijsturing van het personeel

Als er geen machinist gevonden kan worden voor een trein kan de trein niet rijden. Het per-

soneelsplan heeft dus een invloed op de reismogelijkheden van de reizigers. Bij het maken

van een nieuw personeelsplan tijdens een verstoring moet het aantal treinen waarvoor geen per-

soneel gevonden kan worden dus geminimaliseerd worden. In dit proefschrift zijn hier twee

onderzoeken naar gedaan.

Stel dat er een machinist is die eerst een trein moet rijden van Woerden naar Rotterdam,

dan een trein van Rotterdam naar Woerden en tot slot een trein van Woerden naar Eindhoven.

Nadat de machinist de trein van Woerden naar Rotterdam heeft gereden, wordt bekend dat er

geen treinverkeer meer mogelijk is tussen Rotterdam en Woerden. Er zijn dan verschillende

problemen die de spoorvervoerder moet oplossen.

Doordat de treinen van Rotterdam naar Woerden uitvallen moet de vervoerder een manier

vinden om de machinist toch op tijd in Woerden te krijgen om vanaf daar de trein van Woerden

naar Eindhoven te rijden. Als dat niet lukt zal de vervoerder een manier moeten vinden om
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de machinist in ieder geval op zijn laatste bestemming (Eindhoven) te krijgen. De machinist

mag niet zomaar op een willekeurig station zijn dienst eindigen. Voor de reizigers is het echter

belangrijker dat, als de machinist niet op tijd in Woerden kan zijn om de trein tussen Woerden

en Eindhoven te rijden, een andere machinist dit van hem overneemt. Anders moet die trein

uitvallen.

In dit voorbeeld behandelen we slechts één trein die uitvalt tussen Rotterdam en Woerden.

Maar men kan bedenken hoeveel puzzels de vervoerder moet oplossen als er meerdere treinen

uitvallen waardoor meerdere diensten van machinisten (en materieel) geraakt worden.

In het verleden zijn er al modellen ontwikkeld voor het bijsturen van rijdend personeel. In

hoofdstuk 4 is onderzocht wat het effect zal zijn als we deze modellen uitbreiden met de mo-

gelijkheid om kleine dienstregelingswijzigingen toe te passen. Zo kan het voorkomen dat in de

huidige modellen geen machinist gevonden kan worden voor de trein van Woerden naar Eind-

hoven, maar dat een kleine extra vertraging van deze trein er ineens voor kan zorgen dat het wel

lukt om een machinist te vinden om de trein te rijden. Door deze kleine dienstregelingswijzigin-

gen toe te staan blijkt het mogelijk om minder treinen uit te laten vallen door het ontbreken van

een machinist.

Een andere uitbreiding op de bestaande bijsturingsmodellen voor personeel wordt bespro-

ken in hoofdstuk 5. Voor de bestaande modellen is het belangrijk om de exacte duur van de

verstoring te weten. Op het moment dat de verstoring begint is het echter moeilijk in te schatten

hoe lang de verstoring exact zal duren. Daarom nemen we de onzekerheid in de duur van de

verstoring mee in het model dat besproken wordt in hoofdstuk 5. Dit maakt de nieuwe perso-

neelsplannen meer robuust en leidt er toe dat, als de verstoring langer duurt dan verwacht, er

dan minder treinen uitvallen door het ontbreken van machinisten.

Eindconclusie

In dit proefschrift zijn verschillende uitbreidingen van bestaande bijsturingsmodellen onder-

zocht. De modellen zijn getest op scenario’s van de Nederlandse Spoorwegen (NS). Het blijkt

dat de uitbreidingen zorgen voor minder uitval van treinen en minder vertragingen voor reizigers.

De ontwikkelde methoden zijn in staat om in zeer korte tijd een nieuwe dienstregeling, materieel-

en personeelsplanning te genereren. Dit maakt het mogelijk om deze modellen in de praktijk

te gebruiken. Er zijn dan nog wel uitdagingen om de modellen gekoppeld te krijgen aan de

real-time informatiesytemen.
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l)DISRUPTION MANAGEMENT IN PASSENGER RAILWAYS

MODELS FOR TIMETABLE, ROLLING STOCK AND CREW RESCHEDULING

Every day a significant number of people choose for the railways as a comfortable and
sustainable way of transportation. In order to accommodate the journeys of a large
number of railway passengers, extensive planning is necessary. Unfortunately, the execu -
tion of the plans is frequently disrupted by unexpected events. For railway operators it is
quite a challenge to deal with these disruptions as even small deviations from the plan can
have large influences on the timetable, the rolling stock schedule and the crew schedule.
More severely, these events reduce the available transport capacity and interrupt the
mobility of the passengers. 

This thesis discusses several models and solution approaches for railway disruption
management based on algorithmic techniques from Operations Research. The main focus
is to reduce the inconvenience passengers experience during disruptions. This is achieved
by improving the disruption management approaches for timetable, rolling stock and crew
rescheduling proposed within the scientific community. The existing models are extended
by introducing greater flexibility, e.g. allowing small delays in the crew rescheduling or
addition stops in the rolling stock rescheduling. As a result fewer trains are cancelled
during disruptions and passengers have more options to reach their destination. Although
some inconvenience will remain, as much as possible is mitigated.
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