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l)DELAY MANAGEMENT AND DISPATCHING IN RAILWAYS

Passenger railway transportation plays a crucial role in the mobility in Europe. Since the
privatization of the railway sector in the 90s, passenger satisfaction has become an
important performance indicator in this sector. A key aspect for passengers is the reliabil -
ity of transfers between  trains. When a train arrives at the station with a delay,
passengers might miss their connection if the next train departs on time. These passengers
then prefer the connecting train to wait, but this introduces delays for many other passen -
gers. Delay Management is a field in railway operations that deals with this situation. It
determines whether a connecting train should wait for the passengers that arrive with a
delayed train or should depart on time.

In this thesis, we apply techniques from Operations Research to develop models and
solution approaches for Delay Management. The objective in our models is the minimiza -
tion of passenger delay. First, we extend the classical delay management model with
passenger rerouting. This allows us to compute the exact delays for passengers. We devel -
op an exact algorithm and several heuristics to solve this extension. Then, we incorporate
the limited capacity of the stations in our models. Stations are the bottlenecks of the
railway infrastructure, where delays of one train can easily propagate to other trains.
When optimizing the wait-depart decisions, these secondary delays should be considered.
We therefore develop an integrated model that includes headway constraints for trains on
the same track in the station and an iterative approach that evaluates the timetable
microscopically.
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Chapter 1

Introduction

1.1 Motivation

Passenger railway transportation plays a crucial role for the mobility in the Netherlands.

Especially around the main cities in the Randstad, which is the Western, most populated

part of the Netherlands, many commuters make use of the railway system to get to their

jobs and schools. During the peak hours, heavy congestion on the highways increases the

travel times for cars, while the railway system provides a fast and sustainable mode of

transportation.

The main performance indicator for most European railway operators is the punctuality.

The punctuality measures the percentage of trains that arrive at a station with a delay

below some threshold value. In most European countries, including the Netherlands, this

threshold value is 5 minutes. The punctuality discards an important aspect: It considers

only the delays of the trains; not those of the passengers. If a train is delayed by 4 minutes,

it is possible that passengers cannot transfer to a connecting train. In that case, these

passengers will get a delay that is much larger than the delay of their first train. To take

the passenger delays into consideration, Netherlands Railways has recently introduced

the passenger punctuality that measures the percentage of passengers who arrive within

5 minutes after their planned arrival time.

Delay management is a field in Operations Research that tries to minimize the nuisance for

the passengers in case of small delays. By delaying connecting trains slightly, the transfer

from one train to the next can be maintained. The delay for transferring passengers will

be reduced by maintaining the connection, but the passengers who are already in the

connecting train will be delayed. We illustrate this by the following real-world example.

One of the busiest long distance train series in the Netherlands is the 800 series. Trains

from this series start in Maastricht in the South and continue via ’s-Hertogenbosch,
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Maastricht

’s-Hertogenbosch

Utrecht

Amsterdam

Alkmaar

Nijmegen

Figure 1.1: Part of the railway network in the Netherlands. The solid line represents the

long distance train; the dashed line depicts a regional train. In ’s-Hertogenbosch, many

commuters want to transfer from the regional train to the long distance train and vice

versa.

Utrecht, and Amsterdam towards Alkmaar in the North-West of the country. Many

commuters that use this series and depart from ’s-Hertogenbosch in Northern direction

arrive at the station in ’s-Hertogenbosch by a regional train from Nijmegen. In Figure

1.1, the corresponding railway network is depicted. The long distance train departs five

minutes after the regional train has arrived and departure and arrival take place on op-

posite sides of the same platform. If the regional train arrives on time, passengers can

thus easily transfer to the long distance train. However, if the regional train has a small

delay and the long distance train departs on time, this may not be possible. It would

then be better for the transferring passengers if the long distance train would depart a

few minutes later. If the long distance train departs on time, transferring passengers have

to wait for the next train towards Utrecht, which departs 15 minutes later.

Things are worse in the opposite direction. Many commuters travel back from the North

to ’s-Hertogenbosch and then transfer to the regional train. In this situation, the transfer

time is again five minutes, but now the regional train departs from a different platform

than where the long distance train arrives. Even if the delay of the long distance train

is only two minutes, it is impossible to reach the regional train on time. If the regional

train then departs on time, the transfer cannot be made by the passengers. As regional

trains run less frequently, the passengers then have to wait for half an hour for the next

regional train. This can be very frustrating. If the regional train would have waited for

the passengers from the long distance line, their delay would be reduced by half an hour.
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However, for passengers already in the train, waiting would have introduced delays that

could be avoided.

The example illustrates the trade off between a large delay for few transferring passen-

gers on the one hand and a small delay for many passengers in the connecting train on

the other hand. The delay for the passengers who want to transfer will be reduced if

the connecting train is delayed, but the passengers who are already in the train will get

unnecessarily delayed. Furthermore, delaying a train can have consequences for other

trains in the network, especially in highly utilized railway networks such as the one in the

Netherlands. This suggests that the decision to delay a train is a very complex decision,

where the consequences for all other trains should be considered carefully. Deciding which

trains should wait for passengers from a delayed feeder train is the topic of this thesis.

In the first half of 2012, the percentage of dropped connections in the Netherlands equals

over 8 percent. These missed connections are an important point of criticism from passen-

gers. Decreasing the percentage of missed connections, and thereby lowering the average

travel time, can improve customer satisfaction significantly.

The main focus in this thesis will be on the railway system in the Netherlands. Although

our models and solution approaches are applicable to other railway operators as well, we

have evaluated them on cases from the Dutch railway system only. Since the late nineties,

railway activities in the Netherlands are assigned to an infrastructure manager (ProRail)

on the one hand and several railway operators on the other hand. The infrastructure

manager is responsible for building and maintaining the infrastructure and for the safe

execution of the timetable. The railway operators are responsible for the product that

is delivered to the passengers and manage the rolling stock and the crew. Netherlands

Railways (Nederlandse Spoorwegen in Dutch, or NS) is the largest passenger railway op-

erator. It transports about 1.2 million passengers with over 5000 scheduled trains on a

normal weekday.

The remainder of this chapter is organized as follows. We first discuss the planning process

and traffic control at Netherlands Railways and ProRail in Section 1.2. In Section 1.3,

we will present some applications of Operations Research to scheduling problems arising

at the railway system in the Netherlands. Finally, in Section 1.4, we will give an outline

of this thesis.

1.2 Resource management at a railway operator

In this section, we first describe the planning process. Then, we will introduce delay

management and dispatching, which controls the railway operations and resolves small
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deviations from the schedules. When the railway system faces larger disturbances, the

timetable and crew and rolling stock schedules should be adjusted as well. This process

is called disruption management and it is the last topic in this section.

1.2.1 Planning process

Here, we briefly discuss the planning process at Netherlands Railways. The resources

that are discussed in this section are an important aspect of delay management as well.

Four processes are distinguished: line planning, timetabling, rolling stock planning and

crew planning. Most European railway operators apply a similar planning approach. For

more details on the planning process at Netherlands Railways, we refer to Huisman et al.

(2005).

The line plan describes the routes and frequencies of the train lines. It is determined

at the strategic level, and generally remains unchanged for several decades. Netherlands

Railways introduced a new line plan in 2007 that was completely developed from scratch.

Since then, the line plan distinguishes between long-distance trains that only stop at

larger stations and regional trains that stop at every station that is passed. Some of the

long-distance trains run across the entire country. Regional train lines are generally much

shorter and cover only 2 or 3 larger stations. The line planning process aims at giving

as many passengers as possible a direct connection from their origin to their destination.

However, it is impossible to offer a direct connection between each pair of stations. If

many passengers want to travel between two stations that are not directly connected,

the line plan also prescribes a connection from one line to another that makes sure that

passengers can conveniently travel between these two stations. Political wishes and the

available infrastructure also play an important role when the line plan is determined. The

line plan of 2013 has again been developed completely from scratch.

When the line plan has been constructed, a timetable must be developed. The timetable

gives the departure and arrival times of the trains at every station in the railway network.

Moreover, it precisely describes the routes of the trains through a station and prescribes

the platforms at which trains will stop. Netherlands Railways generates a new timetable

every year. Doing so, it can adapt the timetable to new infrastructure becoming available,

to new stations being opened and to changes in the passenger demand. As most railway

companies, Netherlands Railways operates a cyclic, or periodic, timetable, which means

that the timetable is repeated every hour. A clear advantage of cyclic timetables is

that they are much easier to remember for the passengers. A drawback is their limited

flexibility: As the timetable is equal every hour, fewer direct connections between pairs



1.2 Resource management at a railway operator 5

of stations can be offered. Furthermore, cyclic timetables are more expensive to operate.

The timetable is constructed in two stages (see Kroon et al. (2008a)). The first stage

is performed globally for the complete railway network and determines the arrival and

departure times of the trains. Detailed information about the infrastructure within the

stations is neglected in the first stage. However, the capacity of the tracks between the

stations is taken into account. For example, when a long-distance train and a regional

train use the same track, the long-distance train is not allowed to overtake the slower

regional train. Besides this limited track capacity, the minimal travel times between

stations should be respected. These travel times include some buffer times in order to

deal with small delays.

In the second stage, which is performed locally at the larger stations, the trains are

assigned to the platforms. When the arrival and departure times are determined, the

routes of the trains through the stations should be determined. The objective for the

local timetabling process is robustness. When more time is available between two trains

using the same platform or track, a delayed train will not directly influence the next one.

After the timetable has been generated, rolling stock and crew schedules are constructed.

For both processes, a similar division in a global stage and a local stage is observed. In

the rolling stock planning, units of rolling stock are assigned to trains. In the global stage,

first the type of rolling stock and the number of carriages for each train that runs at 8:00

a.m. is determined. The required capacity is highest at 8:00 a.m., so if an assignment

can be found at that time, there will be a feasible assignment during the remainder of the

day as well. The objective in this phase is to match the available capacity as closely as

possible to the estimated demand. Given the allocation at 8:00 a.m., the train types are

assigned for the remainder of the trains. After this assignment of train types, a route is

determined for each unit of rolling stock. In some routes, a rolling stock unit is decoupled

from a train and parked at a shunting yard for a while. The transportation between the

shunting yard and the stations is considered in the local stage. We refer to Abbink et al.

(2004) for more information on the process of planning the rolling stock at Netherlands

Railways.

The final component in the planning process is crew planning. From the timetable and

the rolling stock schedule, a set of tasks can be derived. A task is an indivisible amount of

work that must be assigned as a whole to a crew member. An example of a task is driving

a train from one station to the next. Driving a long-distance train from its begin to its

end point consists of many tasks, which may be performed by different crew members.

The crew planning process assigns all tasks to a crew member. The crew schedule has to

satisfy many rules (see Abbink et al. (2005) and Abbink et al. (2011)). In a first stage,
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a set of anonymous duties is constructed, such that all tasks are present in at least one

duty. Each duty starts and ends at one of the 29 crew bases. The objective in this

global stage is to generate the minimum set of duties that cover all tasks. Of course,

each duty should contain a break and respect the maximum duration. Furthermore, the

set of duties should distribute the work fairly over the crew bases. This means that all

crew bases should have the same amount of early and night duties, and roughly the same

division between regional and long-distance trains, for example. In a second stage, the

duties are assigned to actual drivers and guards. This process is called crew rostering.

A new timetable is constructed every year and revised roughly six times a year. After every

revision, a rolling stock and crew planning is created for a generic day. For example, a set

of duties for the crew is generated that can be operated on every Monday. Usually, these

schedules are ready a few weeks before the day of operation. There could, however, be

different requirements on specific days in the year. For example, more capacity is required

when a large event takes place. Or due to maintenance work, it could be impossible to

use parts of the network. In such cases, the timetable and the schedules for both rolling

stock and the crew should be adapted, usually a few days in advance. Because less

time is available on such short notice, finding a feasible schedule is more important than

finding the most efficient one. Besides, an additional objective in the short-term phase

is to maintain as much of the original plan as possible. However, the main problem

characteristics remain the same as in the yearly stage. Therefore, we do not discuss the

short-term planning process in detail, but refer to Huisman (2007).

1.2.2 Delay management and dispatching

One of the tasks of the infrastructure manager is the safe execution of the timetable.

Currently, dispatchers consider only the operational aspects of the timetable. They focus

mainly on larger delays that would cause the rolling stock or crew schedules to become

infeasible. If this would happen, the delay would propagate to other trains in the network

and induce new problems. On the contrary, smaller delays will be absorbed by the buffer

times in the timetable and will not cause any problems for other trains.

As long as all trains run as planned, the signals and switches are adjusted automatically

by the route setting system ARI (Automatische Rijweg-Instelling). When a train arrives

at a junction on time, ARI will set the signals and the switches in the correct position

so that the train can continue on the planned speed. ARI also implements some very

basic dispatching rules to deal with trains that arrive at a junction with a small delay.

Each switch is preceded by a measuring point, where trains driving towards the switch are
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detected. If a train arrives at the measuring point within a predefined time interval, the

signals and switch are adjusted automatically. As long as the railway system faces only

small delays, ARI will thus be able to set the routes for the trains automatically. Recall

that the planned running times contain buffers to absorb delays. From an operational

point of view, such small delays do not cause problems.

For the passengers however, a small delay can enlarge the travel time by half an hour or

more, when a connection is missed. From the passengers’ point of view, it can then be

better to delay the connecting train also, in order to maintain the connection. Deciding

whether connecting trains should wait for a delayed train is known as delay management

(see Schöbel (2001)). The objective is to minimize the total or weighted delay of all

passengers. When it is decided that a train should wait for delayed passengers, this

train will probably arrive with a delay at the next station, where other passengers want

to transfer. The decision to maintain a connection thus propagates through the entire

railway network. Furthermore, if a train is delayed before it enters a busy track, it might

keep up other trains that are scheduled on the same track. This illustrates that delay

management is a complex problem, where a decision to delay a train can have consequences

for many other trains as well.

Currently, the dispatchers apply a simple rule to determine whether a train should wait

or not. For each connection, a maximal waiting time is specified. If a train arrives at

a station with a delay, one first determines the waiting time needed to maintain the

connection. If this waiting time is smaller than the maximal waiting time, the connecting

train waits; otherwise it departs on time. Although this guideline is easy to implement, it

discards two important aspects. First, although the guideline contains different waiting

times for the peak and off-peak hours, it does not distinguish between the evening and

the afternoon. During the afternoon, there are more trains running between two stations.

This means that if a passenger misses a connection, the delay that this passenger will incur

is smaller than during the evening. Furthermore, delaying a train in the afternoon will

have much more consequences for other trains. These differences should be considered

when the wait-depart decisions are made. Second, the guideline does not consider the

number of passengers that transfer to the train. When there are many passengers that

use the connection, one should wait longer for these transferring passengers. Note that

the passenger flows during the morning peak hours are quite different from those during

the afternoon peak hours.
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1.2.3 Disruption management

Despite the efforts in the planning process, on the day of operations one often faces events

that prevent the resource schedules from being executed as planned. We will distinguish

between small and large disturbances. With small disturbances, only one or a few trains

are involved. Larger disturbances involve more trains and are also known as disruptions.

A blockage of a certain part of the infrastructure, broken rolling stock or an employee that

does not show up at work are typical examples of a disruption. Formally, one speaks of

a disruption in case the rolling stock or crew schedules become infeasible (see Jespersen-

Groth et al. (2009)).

Recall that railway activities in the Netherlands are split between an infrastructure man-

ager on the one hand and the railway operators on the other hand. The railway operators

are responsible for the rolling stock, for the crew and for the passengers. The infras-

tructure manager is responsible for the execution of the timetable. It monitors the train

movements of all railway operators and controls the signals and switches. We now first

introduce the parties that are involved in the disruption management process. Then, we

describe how a typical disruption is dealt with.

Since 2010, Netherlands Railways and ProRail have been centralizing the organizations

involved in the disruption management process. In 2011, the Operations Control Center

Rail (OCCR) was opened, in which both the Network Traffic Control Center (NTCC)

and the Network Operations Control Center (NOCC) are located. The NTCC monitors

the train traffic from the perspective of the infrastructure manager. The NOCC is its

equivalent from the side of the operator and monitors the rolling stock, the crew and the

passengers. The main reason to locate the NTCC and the NOCC together in the OCCR

was to facilitate the communication between them.

Besides the NTCC, the infrastructure manager has 12 Regional Traffic Control Centers

(RTCCs). Each RTCC is located at a larger station and is responsible for monitoring

the train traffic in the area around that station, including some other, smaller stations.

Furthermore, it controls the switches in that area and determines the train routes through

the stations.

At the operator, there are five Regional Operations Control Centers (ROCCs). Tasks of

an ROCC include the planning of shunting operations and monitoring and rescheduling

the crew and rolling stock duties.

For common disruptions, such as the unavailability of a certain track, emergency scenar-

ios are available that describe how to deal with the disruption. The scenario prescribes

which trains should be canceled and indicates how the rolling stock will be rescheduled.

If a disruption occurs, the NTCC determines which emergency scenarios are applicable.
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In cooperation with the NOCC a specific scenario is then selected and the duration of the

disruption is estimated. The NOCC proposes how to reschedule the rolling stock alloca-

tion. The implementation of the measures defined in the emergency scenario is delegated

to the RTCCs and the ROCCs. The RTCCs remove the canceled train movements from

the system and adjust the routes for trains that are still running. The ROCC adjusts the

rolling stock duties, deals with local rolling stock issues and reschedules the crew duties.

If different shunting operations are required, the ROCC makes sure that crew and rolling

stock are available to perform the shunting task. Planning new shunting operations should

be communicated with the corresponding RTCC, as infrastructure must be available to

perform the shunting operation. Because of the canceled trains, many crew duties will

become infeasible. Each ROCC is responsible for rescheduling the duties of crew members

that are in the area of the ROCC during the disruption.

1.3 Applications of Operations Research

In the previous section, we described scheduling problems that arise at a railway operator.

Many of these scheduling problems can be solved by using techniques from Operations

Research. In this section, we will give an overview of such applications in the railway

context.

1.3.1 Planning process

We will first discuss Operations Research applications that can be found in the planning

process. Research on planning problems at Netherlands Railways started already in the

90s, and many of the solution methods have been implemented in practice.

Given the line plan, the timetabling problem determines first the arrival and departure

times of all trains. If the timetable to be generated should be cyclic, this problem can be

formulated as a periodic event scheduling problem (PESP, see Peeters (2003)). The PESP

was first described by Serafini and Ukovich (1989). A special purpose algorithm to solve

the PESP was developed by Schrijver and Steenbeek (1993). This algorithm, CADANS,

applies constraint programming to find a feasible solution. If no feasible solution exists,

CADANS reports which constraints are conflicting.

When a feasible set of departure and arrival times is found, the routes through the sta-

tions should be determined. These routes also determine the platform at which trains

stop. STATIONS is a system that solves this train routing problem (see Zwaneveld et al.

(2001)). To find feasible train routes, STATION first lists for each train the set of possi-
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ble routes. Then, it selects one route for each train, such that no two selected routes are

conflicting. Two routes are conflicting if they use the same part of the infrastructure at

the same time.

CADANS and STATIONS form the major elements of DONS (Designer of Network Sched-

ules), an integrated system that solves the complete timetabling problem (see Hooghiem-

stra et al. (1999)). DONS also provides an interface to SIMONE (Simulation Model for

Networks), a simulation model to evaluate the quality of the timetable (see Middelkoop

and Bouwman (2001)). Note that SIMONE can only be used to estimate performance

indicators of the simulated timetable; it cannot be used to optimize any performance

measures. The DONS system is applied yearly to generate a new timetable.

Kroon et al. (2008b) developed a stochastic optimization model (SOM) to optimize the

punctuality of the timetable. SOM takes a given timetable as input, and rearranges the

buffers in the driving times in such a way, that robustness against delays is maximized. To

do so, a sample average approximation is applied. SOM was tested on a part of the Dutch

railway network and is now being implemented as part of DONS. Other instruments to

improve the reliability of the timetable are developed by Vromans (2005).

After the timetable has been generated, the rolling stock schedule is determined. The aim

in this process is to assign a number of rolling stock units to each trip in the timetable.

When determining the rolling stock schedule, three conflicting aspects must be balanced:

(1) service to the passengers, (2) efficiency, and (3) robustness. Service to the passengers

is high when every passenger is offered a seat. On the contrary, a schedule is efficient if

it minimizes the rolling stock utilization, measured as the number of units that are used,

and the total distance traveled by all units, measured in carriage kilometers. In order

to reduce the number of carriage kilometers, rolling stock units can be coupled to trains

shortly before the peak hours and decoupled afterwards. A drawback of (de)coupling

units is that it decreases the infrastructure availability: Coupling and decoupling a train

require infrastructure that would otherwise be available to regular train services. They

also introduce one more scheduling problem: After being decoupled, the rolling stock units

must be parked at shunting yards. The operational planning of these shunting operations

are considered by Lentink (2006) and Freling et al. (2005).

As explained in the previous section, the required capacity peaks at 8:00 a.m. in the

morning. Therefore, one first allocates the train units during that period. Abbink et al.

(2004) describe a model that determines the type and number of train units for each

train that is driving at 8:00 a.m. The solution of this model is used to divide the avail-

able train units over the different lines. Given this capacity distribution, a rolling stock

circulation is developed for each train line. More specifically: For each train on a line
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a rolling stock composition is selected. To find this selection, one first determines the

set of feasible compositions for each trip. The length of a composition is limited by the

length of the shortest platform during the trip, hence the set of feasible compositions is

bounded. Then, one determines the composition changes that are allowed at the stations.

For example, it may be possible to remove a train unit at the front or at the end of the

train, but not at both. Rolling stock scheduling can now be formulated in a graph, where

a node corresponds to the assignment of a composition to a trip, and the arcs represent

a composition change at a station. A rolling stock circulation is then equivalent to a flow

through this network. This composition model is described in Maróti (2006) and further

developed in Fioole et al. (2006) and Nielsen (2011). A prototype was first implemented

in ROSA (Rolling Stock Allocation) and a full system is now known as TAM (Tool voor

de Aanpassing van de Materieelinzet).

In the crew scheduling problem, a driver and a number of guards must be assigned to

each task in the timetable. The crew scheduling problem is modeled as a set covering

problem by Caprara et al. (2002). In this model, the columns correspond to the duties of

the crew and the rows are the tasks that must be covered. To solve such a set covering

model, one commonly applies a column generation approach to deal with the enormous

amount of possible duties. The restricted master problem is formulated as the Lagrangian

relaxation of the set covering problem and solved by the subgradient method. An advan-

tage of the Lagrangian relaxation is that it gives a natural procedure to obtain feasible

solutions heuristically. The pricing problem corresponds to a shortest-path problem that

can be solved by dynamic programming.

The set covering model is adapted to the situation in the Netherlands and implemented in

the TURNI system (see Abbink et al. (2005)). TURNI has been applied at Netherlands

Railways until 2008. It generates a crew schedule for each individual day of the week.

However, some of the constraints apply to all duties during the complete week. To find

solutions that satisfy these constraints over the week, a decomposition algorithm has been

developed in Abbink et al. (2007).

TURNI played a crucial role during the strikes in 2001, when the crew of Netherlands

Railways did not agree on the new policy of the board. In this new policy, the duties for

the drivers would contain several trips from the base up and down to a nearby station.

Such duties were assumed to be much easier to reschedule during disruptions. However,

the crew members feared such duties would decrease the variation in their work, and

termed the new plan “Circling the Church”. After heavy negotiations between the board

and the unions, a new set of rules was introduced, that are known as “Sharing Sweet and

Sour”. These rules were so complex that a solution obeying to these rules could not be
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found manually. Using TURNI, a crew plan could be generated that respected the new

requirements, and the strikes ended. This process is described in much more detail in

Abbink et al. (2005).

Since 2008, Netherlands Railways applies the crew scheduling algorithm LUCIA, which

is implemented as part of the CREWS system that is used by the planning department.

LUCIA is based on the same mathematical model as TURNI, and allows for parallel ex-

ecution of the pricing problem. Furthermore, it can solve instances that contain all tasks

in a complete week at once. Recall that some of the rules apply to all duties in a week.

By solving the problem in an integrated way, solutions can be found that are about 1%

better than solving the problem for the individual days (see Abbink et al. (2011)).

In 2007, Netherlands Railways introduced a new line plan and timetable that were built

completely from scratch. A new timetable was needed to accommodate the increasing

number of passengers and because the punctuality had to be improved. The reason to

introduce this new timetable in 2007 were several infrastructure projects that would be-

come available by the end of 2006. The most important projects are quadrupling of the

tracks between Utrecht and Amsterdam, the Betuwe line for freight trains from the port

of Rotterdam to Germany and the high speed line from Amsterdam to Belgium. Although

these projects turned out to finish with some delay, the board of Netherlands Railways

decided to introduce the new timetable nonetheless.

The timetable of 2007 and the rolling stock and crew schedules were all generated with the

models described above. It was the first time that all three resources were planned with

algorithms based on Operations Research techniques. For this application of Operations

Research, Netherlands Railways was awarded the INFORMS Franz Edelman Award in

April 2008. Kroon et al. (2009) describe the planning process and the challenges that

were faced during the implementation of the scheduling systems mentioned above.

1.3.2 Dispatching

Research on dispatching in the Netherlands has mainly focused on the train scheduling

problem. Given the current position of all trains in the area, the aim is to determine

the order of trains at switches and junctions, such that the maximal delay is minimized.

As the infrastructure in the stations is very dense, a microscopic model can be used to

capture the required level of detail. In such a microscopic model, the infrastructure is

represented by a set of individual block sections, that cannot be entered by two trains

simultaneously.

In close cooperation with ProRail, D’Ariano (2008) applied the concept of alternative
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graphs (see Mascis and Pacciarelli (2002)) to model the train scheduling problem. In this

graph, a node represents the entrance of a train in a specific block section. Arcs between

these nodes represent precedence constraints between these events. For example, driving

from one block section to the next and stopping at a platform are arcs in the network.

Besides these operational constraints, an order has to be determined for two trains that

compete for a common block section in the network. The two possible choices are repre-

sented by a pair of alternative arcs, one of which must be selected. A complete ordering

is given by a choice for one alternative arc from each pair. Such an ordering is feasible

if the resulting network does not contain cycles. In that case, the entrance times can be

found by dynamic programming.

A branch-and-bound algorithm to optimize the ordering decisions is developed by D’Ariano

et al. (2007). Here, the routes of the trains through the stations cannot be changed. In

Corman (2010), several extensions to this model and solution methods are developed. In

D’Ariano et al. (2008), an integrated model is presented that optimizes both the train

routes and the ordering decisions simultaneously. A tabu search algorithm to solve this

model is studied by Corman et al. (2010a). All methods described so far consider only

an isolated area around a station. However, delays arising at one station will propagate

to the next, if the buffer in the running time is insufficient to absorb the delay. For that

reason, the ordering decisions in the stations should be coordinated amongst each other.

Instances that describe the complete network in the Netherlands would become too large,

therefore Corman et al. (2012) describe a decomposition technique that allows to solve

smaller instance and synchronize the decisions in each part.

Delay management has attracted minor attention in the train scheduling literature. In

Corman et al. (2010b), a bi-objective model is described that minimizes the maximal

delay of the trains on the one hand, and the number of missed connections on the other.

1.3.3 Disruption management

We now describe applications of Operations Research in disruption management. The lit-

erature on Operations Research methods in this area has focused on rolling stock and crew

rescheduling. It is assumed that an emergency scenario is available that gives the adjusted

timetable. The first task to perform in this situation is the rolling stock rescheduling. This

process is described in full detail by Nielsen (2011). The approach to solve this problem

is very similar to that in the planning phase. When a disruption occurs, a new compo-

sition must be assigned to the trains that are affected by the disruption. Besides, after

the disruption, the rolling stock schedules should return to the original plan as soon as
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possible. An additional objective is to find a circulation that is as similar as possible to

the original rolling stock schedule. Another important aspect in rolling stock scheduling

is that by the end of the day, the number of rolling stock units at each shunting yard

should match the amounts that are required on the next day. If one requires these bal-

ances to be restored by the end of the disruption, many shunting operations are needed.

These shunting operations require much capacity at the stations, and therefore negatively

influence robustness. To obtain solutions that are more robust, Nielsen et al. (2012) apply

a rolling horizon approach. During the first part of the disruption, the off-balances are

not penalized in the objective function. If the rolling horizon reaches the end of the day,

rolling stock mismatches are penalized more heavily. Doing so, more time is available to

restore the inventories at the end of the day, and the number of shunting operations can

be reduced. Furthermore, the rolling horizon approach reduces the need for an accurate

estimate for the duration of the disruption. In practice, it is usually not known when the

infrastructure will be fully available again. With the rolling horizon approach, a schedule

is computed with the most recent estimate of the duration of the disruption. When a new

estimate becomes available, this new information is used in the rescheduling run for the

next planning horizon.

If a certain track is blocked for several hours, Netherlands Railways advises the passen-

gers to travel via another route, if possible. On these alternative routes, the planned seat

capacity will not be sufficient. Kroon et al. (2010) describe an iterative algorithm that

deals with this situation. In each iteration, a new rolling stock schedule is determined

first. Then, the capacity shortage in each train is determined by simulating the passenger

behavior. These shortages are fed back to the rolling stock rescheduling algorithm in the

next iteration. The method converges to a solution that balances the rescheduling cost

and the capacity shortages.

The crew rescheduling problem during disruptions is studied by Potthoff (2010). The

solution methodology for the rescheduling problem closely resembles the methodology

in crew planning. However, instead of generating complete duties for each base in the

pricing problems, a set of replacement duties is determined for each duty that has to be

rescheduled. Such a replacement duty contains the work in the duty that has already been

performed, and extends the duty with tasks that can be performed in the future. The

aim is now to select a feasible replacement duty for each original duty, such that all tasks

from the emergency timetable are covered. A crucial aspect in the disruption process is

that only limited time is available. Therefore, one only determines a replacement duty

for the crew members whose duty cannot be executed as a consequence of the disruption,

plus some duties that contain tasks in the geographical area around the disruption. This
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procedure is called dynamic duty selection and was developed by Potthoff et al. (2010).

In a computational study, it is shown that this algorithm produces solutions of higher

quality than the manual solutions found by the dispatchers. In most of the cases, a crew

member was found for all tasks from the emergency timetable. However, few cases were

reported in which some tasks could not be covered. In those cases, it could be useful

to delay a train slightly. This approach, in which timetabling and crew rescheduling are

integrated to some extent, allows for more tasks to be covered. For more information on

crew rescheduling with retiming, we refer to Veelenturf et al. (2011).

Similar as for rolling stock rescheduling, the uncertainty about the duration of the dis-

ruption should be taken into account in the crew rescheduling process. This aspect is

considered in the quasi-robust crew rescheduling problem, that is introduced by Veelen-

turf et al. (2012). In this model, both an optimistic, short estimate and a pessimistic,

longer estimate for the duration of the disruption is given. To deal with the uncertainty,

first a solution is determined with the optimistic estimate. If the duration turns out to

be longer, the duties are rescheduled again. As a consequence, the model distinguishes

between the first-stage costs with the optimistic estimate, and the second-stage costs that

are only incurred if the duration is longer and the duties should be rescheduled a second

time. In the solution approach, a replacement duty is called quasi-robust if it is feasible

for the shortest duration and can easily be adjusted in case the duration is longer. Solu-

tions with many quasi-robust duties will have a higher first-stage cost. However, in case

the pessimistic estimate was correct, the second-stage costs will be lower. By varying

the number of quasi-robust duties in a solution, a trade-off can be made between the

first-stage costs and the second-stage costs.

1.4 Outline of this thesis

The topics of this thesis are delay management and dispatching in railways. Recall that

delay management deals with the transfers between trains. If a delayed feeder train arrives

at a station where passengers have a short connection to another train, this connecting

train might have departed before the passengers can enter it. For the transferring pas-

senger, it would then have been better if the connecting train had waited, but this would

have introduced new delays for the passengers that are already in the connecting train. If

the connecting train departs on time, the transferring passengers have to wait for the next

train to their destination. The aim of delay management is to decide on the wait-depart

decisions in such a way, that the overall delay for the passengers is minimized.

In this thesis we consider the off-line delay management problem: We assume that all
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delays in the system are known for a given period of time. Given these delays, the

planned timetable, and the travel plans of all passengers, the aim is to determine for each

connection whether it should be maintained or not. If it has been determined whether

trains should wait for a delayed feeder train or not, it is easy to compute the disposition

timetable, which gives the rescheduled times when all departures and arrivals take place.

A first integer programming formulation for the delay management problem was developed

by Schöbel (2007). In this first model, two simplifying assumptions are made.

1. The delay for passengers who miss a connection equals one cycle time.

2. The infrastructure capacity can be neglected.

The impact of the limited capacity of the tracks is studied by Schachtebeck (2010), who in-

troduced the capacitated delay management problem. A model is presented that includes

headway constraints for trains that utilize the same piece of the infrastructure. These

headway constraint represent the two possible orderings of trains on the same track, one

of which should be selected.

In Chapters 2 and 3 of this thesis, we investigate the validity of the first assumption.

Instead of assuming a delay of one cycle time for passengers who miss a connection, we

measure the delay for these passengers exactly. First, in Chapter 2, we introduce Delay

Management with Rerouting of Passengers, that simultaneously optimizes the wait-depart

decisions and the passenger routes. This approach, where routing decisions are integrated

in network problems, is studied by Schmidt (2012) in a wide range of applications. To

model the passenger flows in the network, we introduce the notion of origin-destination

pairs (OD pairs), that represent a group of passengers with the same origin and destina-

tion who enter the railway system at a specified time. We assume that passengers prefer

the fastest route to their destination and integrate the routing decisions in the integer

programming formulation. As such, we are able to determine the delays for the passengers

exactly and can thus minimize their true delays. For medium-sized real-world instances

from Netherlands Railways, the integer programs can be solved by standard optimization

software. We show in a computational study that the delay is reduced by up to 8% when

the routing decisions are incorporated in the models, with respect to a model without

passenger rerouting. However, for large-scale instances, solving the integer program takes

too much time for practical applications. Therefore, in Chapter 3, we propose several

heuristics for the delay management problem with rerouting decisions. The first heuristic

is based on the model without passenger rerouting. Instead of assuming that passengers

who miss a connection have a delay of one cycle time, we view the extra delay after

missing a connecion as a parameter and search for the best value of this parameter by
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enumeration. In the second heuristic, we replace this global parameter by an OD pair-

specific penalty that is updated iteratively. We first assume that there is no extra delay for

passengers who miss a connection and determine an optimal disposition timetable. Then,

we determine for each OD pair, the fastest route to their destination. For passengers

who miss a connection, we compute the additional delay with respect to their planned

arrival time and use this extra delay as the value for the parameter in the next iteration.

By repeating this procedure, a good estimate for the additional delay of each OD pair is

obtained that can be used in the model without passenger rerouting. Finally, we apply a

set of simple dispatching strategies as a third heuristic. These simple rules are currently

used by the dispatchers. In a computational study, we show that the iterative heuristic

performs very well. It is able to compute solutions that are at most 1% worse than the

optimal solution within seconds. It thus combines the fast solution method for the model

without rerouting and the improved quality of the model that includes the passenger

routes. However, the simple dispatching rules perform very badly. The solutions found

with these heuristics are at most 5% better than the solution in which no train waits at

all.

In Chapters 4 and 5, we consider the second assumption of the delay management model

from Schöbel (2007). In Chapter 4, we extend the model of Schachtebeck (2010) by in-

corporating the limited capacity of the stations. To model the station capacity, we view

a station as a set of platform tracks. For trains that are scheduled on the same platform

track, headway activities are introduced that make sure that a train can only enter the

station after the preceding train has left the platform. We also allow to reschedule the

platform assignment within the station dynamically. We thus allow a train to be assigned

to another platform track. We evaluate the effect of a dynamic platform assignment on

instances from Netherlands Railways and show that it reduces the delay of the passengers

significantly. For larger instances, the integer programs for delay management with a

dynamic platform assignment become very large. We therefore propose a heuristic that

iteratively solves first a delay management problem with a static platform assignment and

then optimizes the platform assignment in each station separately.

Inspecting the solutions with a dynamic platform assignment, we observe that the delay

reduction is accompanied by many changes in the platform assignment. These platform

track changes are annoying for the passengers and put pressure on the dispatching organi-

zation. Therefore, we propose the bi-objective delay management problem with capacities

of stations that minimizes the passengers’ delay on the one hand and the number of plat-

form track changes on the other. We show that a big portion of the delay reduction can

be obtained by allowing only few platform changes.
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In Chapter 5, we aim at closing the gap that currently exists between the train schedul-

ing and the delay management literature. In train scheduling, a microscopic model is

commonly applied to capture all details of the railway infrastructure. These models dis-

tinguish each individual signal and junction in the network and have a precision of seconds.

The aim of train scheduling algorithms is to schedule all train movements within a small,

congested area in the network. In contrast, delay management models take a macroscopic

view and generally consider larger parts of the railway network. We propose an iterative

algorithm that first optimizes the macroscopic delay management problem. Given the

connections to be maintained, we then apply the microscopic train scheduling algorithm

to determine the exact arrival and departure times in the stations. The objective in the

train scheduling model is to minimize the maximal train delay with respect to the disposi-

tion timetable from the delay management model. In the solution of the train scheduling

problem, some trains will arrive or depart later than in the disposition timetable. These

deviations are used as input for the delay management problem in the next iteration. We

show that the iterative heuristic converges for instances with small source delays. When

larger delays are considered, the behavior of the iterative approach is unstable.

Chapters 2-5 are based on papers that are either published in or submitted to scientific

journals. As such, they come with their own introduction, literature review and conclu-

sions. The references to these papers are given below.

Chapter 2 T. Dollevoet, D. Huisman, M. Schmidt, and A. Schöbel, “Delay Management with

Rerouting of Pasengers”. Transportation Science, 46(1):74-89 (2012b)

Chapter 3 T. Dollevoet and D. Huisman “Fast Heuristics for delay management with passenger

rerouting”. Submitted to Public Transport (2011)

Chapter 4 T. Dollevoet, D. Huisman, M. Schmidt, and A. Schöbel, “Delay Management in-

cluding Capacities of Stations”. Submitted to Transportation Science (2012c)

Chapter 5 T. Dollevoet, F. Corman, A. D’Ariano, and D. Huisman, “An iterative optimiza-

tion framework for delay management and train scheduling”. Submitted to Flexible

Services and Manufacturing (2012a)

In Chapter 6 we summarize the main findings of each chapter and draw some general

conclusions on delay management. Furthermore, we will present some possible directions

for further research.



Chapter 2

Delay Management with Rerouting

of Passengers

2.1 Introduction and Motivation

Passenger railway transport plays an important role in the European mobility. Especially,

during peak hours or for distances between 20 and 800 kilometers, passengers often choose

to travel by train. To ensure a high frequency and an easy-to-remember timetable, most

European railway companies have opted for a cyclic timetable (see Liebchen (2008) or

Kroon et al. (2009) for two recent publications on the subject). In such a timetable,

each line has to be operated in a cyclic, or periodic, pattern: the trains run, for example,

every 30, 60 or 120 minutes. A weak point in such a system is that passengers often

have to change trains, because it is impossible to give a direct connection between all

origin-destination pairs. To minimize the inconvenience of changing from train A to train

B, the timetable is often constructed in such a way that train B departs shortly after

train A arrives preferably with a cross-platform connection, i.e. both trains stop at two

adjacent tracks of the same platform. However, if train A has a delay during the oper-

ations, the question is whether train B should wait or depart. Such decisions are called

delay management (DM).

DM deals with (small) source delays of a railway system as they occur in the daily oper-

ations. In case of such delays, the scheduled timetable is not feasible anymore and has to

be updated to a disposition timetable. Because delays are often transferred if a connecting

train waits for a delayed feeder train, such connections are often not maintained in case

of delays.

There exist various models and solution approaches for DM. The main question, which
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has been treated in the literature so far, is to decide which trains should wait for delayed

feeder trains and which trains better depart on time (wait-depart decisions). A first inte-

ger programming formulation for this problem has been given in Schöbel (2001) and has

been further developed in De Giovanni et al. (2008) and Schöbel (2007); see also Schöbel

(2006) for an overview about various models. The complexity of the problem has been

investigated in Gatto et al. (2005). The online version of the problem has been studied

in Gatto et al. (2007), Gatto (2007) and Berger et al. (2011). Further publications about

DM include a model in the context of max-plus algebra (de Vries et al., 1998; Goverde,

1998), a formulation as a discrete time-cost trade-off problem (Ginkel and Schöbel, 2007)

and simulation approaches (Suhl and Mellouli, 1999; Suhl et al., 2001). Recently, also the

limited capacity of the track system has been taken into account, see Schöbel (2009) for

modeling issues and Schachtebeck and Schöbel (2010) or Schachtebeck (2010) for heuristic

approaches solving capacitated DM problems.

What has been neglected in most studies so far is the aspect of rerouting. In most of

the available models, it is assumed that passengers take exactly the lines they planned,

i.e. if they miss a connection, they have to wait a complete period of time (the cycle

time) until the same connection takes place again. This assumption is usually not valid

in practice. Often, there is an earlier connection using another line or even changing the

path of the trip that a passenger can take. In our work, we show how such rerouting can

be incorporated within the DM process.

DM with rerouting has found little attention in the literature so far. Berger et al. (2011)

investigate an online DM model, where passengers have a fixed route through the infras-

tructure network but are allowed to adapt the choices of the trains they take according

to the delays. Gatto et al. (2005) show strong NP-hardness for a DM problem, where

passengers are allowed to choose their route according to the current delays.

A real-world example of a situation where rerouting passengers in case of delays is bene-

ficial, is given next. Consider the black nodes in the railway network in Figure 2.1. An

intercity service runs from Zwolle to Utrecht via Amersfoort. There are also intercities

from Utrecht to Amsterdam, and from Amersfoort to Amsterdam, and a regional train

from Amersfoort to Amsterdam. The intercities only stop at larger stations, while the re-

gional train stops at all stations on its route. A large number of passengers want to travel

from Zwolle to Amsterdam, and they thus have a transfer at Amersfoort. In the current

timetable, the transfer time for those passengers is rather small, hence these passengers

will miss the connecting intercity to Amsterdam if their train is slightly delayed.
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The Hague

Rotterdam

Schiphol

Utrecht

Amsterdam

Amersfoort

Zwolle

Figure 2.1: Part of the railway network in the Netherlands. The western part of the

country is depicted. A circle in the picture indicates a station where long distance trains

stop. The stations where only regional trains stop are not depicted. A line indicates that

there is a direct connection between two stations. For each line, there are two or four

long-distance trains and two regional trains per hour.

• If the possibility of rerouting the passengers is not taken into account, the intercity

from Amersfoort to Amsterdam will be forced to wait to avoid that these passengers

miss their connection and have to wait for one hour for the next intercity.

• However, if we allow the passengers to adapt their route to the current delay sit-

uation, it turns out that missing the intercity from Amersfoort to Amsterdam is

not as bad as thought. There are two other possibilities: The passengers can stay

in the delayed train and transfer in Utrecht instead, or they can use the regional

train from Amersfoort to Amsterdam. Both alternatives lead to delays which are

significantly less than one hour and finally to the decision that the intercity from

Amersfoort to Amsterdam better departs on time.

This small example shows that the delay of passengers that miss a connection is often

much smaller than the cycle time of the timetable. To find optimal wait-depart decisions,

rerouting passengers should therefore be taken into account.

In this thesis, DM is treated as an offline problem, signifying that all delays are known

before the optimization process starts. Offline DM can be used for short-term adaption

of timetables whenever delays can be anticipated, e.g. in the case of construction works.

Furthermore, given the source delays that are currently in the system, many secondary

delays can be predicted. Offline DM can then propose how to react to these secondary

delays. Moreover, regarding computational complexity, our offline DM is contained in NP,

which makes it tractable by an integer programming approach, while PSPACE-hardness
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was shown for an online DM allowing free choices of trains in Berger et al. (2011).

In this chapter, we will investigate how such a re-routing of passengers can be incorporated

into the DM model. We denote the resulting model by delay management with rerouting

decisions (DMwRR). The contributions of this chapter are as follows. Firstly, we have

developed a new model and integer programming formulation for DMwRR. Secondly, we

investigate the complexity of DMwRR in several special cases. We prove that DMwRR

is polynomially solvable for only one origin-destination pair, whereas in the slightly more

general case of having all passengers starting at the same origin, the problem results to

be strongly NP-hard. Furthermore, we prove strong NP-hardness for a DM problem with

simplified delay costs. And finally, our third contribution is that we show that DMwRR

can be solved for large real-world instances and performs significantly better than the

existing models, where re-routing of the passengers is only taken into account after the

wait-depart decisions have been made.

The remainder of this chapter is structured as follows. In Section 2.2, we show how

the DM model can be modified to include rerouting of passengers. An integer program

using event-activity networks is formulated in Section 2.3. In Section 2.4, we present a

polynomially solvable special case of the problem. We show that a slight generalization of

this case is already NP-hard. Furthermore, we discuss another simplified variant in which

we assume fixed delay costs for each maintained changing activity. In Section 2.5, we

report the results of several experiments based on real-world data of Netherlands Railways,

the largest passenger operator on the Dutch railway network. Finally, we conclude the

chapter by mentioning ideas for further research.

2.2 Model

Given some source delays from outside the system, the delay management problem is to

decide which trains should wait for delayed feeder trains and which trains should depart

on time. The goal is to find a solution, which is best for the passengers. In our work,

we want to minimize the sum of all delays over all origin-destination pairs (OD pairs)

assuming that all passengers take shortest paths.

In classical DM, passenger routes are determined before the optimization step given the

timetable as it was planned to be operated. In the optimization step, passengers are

assumed to stick to their predefined routes. If a connection on such a route is dropped,

the passengers are assumed to wait until the connection is available again in the next

period, thus the delay of one cycle time is added to their travel time. However, the actual

delay of the passengers might not equal one cycle time. On one hand, there might be a
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faster way for that passenger to arrive at his destination. The passenger will then not

wait for the same connection in the next period, but will choose the earlier alternative.

The delay will then be less than one cycle time. On the other hand, if there are no

earlier alternatives, it is possible that the train in the next period is delayed as well. The

delay for the passenger is then larger than one cycle time. To compute the delay for the

passengers correctly, their routes have to be determined during the optimization phase.

By computing a route for all passengers explicitly, the actual delay for the passengers can

be determined correctly. Another advantage of rerouting passengers can be seen at the

end of the day. If a passenger misses a connection to the last train of the day, he will have

to wait for the first train on the next day. The classical model assumes that the delay is

then equal to one cycle time, which is clearly an underestimation. When passengers are

rerouted in the optimization phase, an explicit route is found for each passenger. It is

therefore certain that all passengers will arrive at their destination.

To include the routing in the model, instead of fixing the route beforehand, we introduce

OD pairs. We assume that the number of passengers who want to travel from a given origin

to a destination at a certain time is known. For example, 200 passengers want to travel

from Zwolle to Amsterdam at 8:00 A.M. We denote such an OD pair by p = {u, v, suv},

where u is the origin, v is the destination, and suv is the planned starting time of the

trip. P denotes the set of all such OD pairs. We use wp for the number of passengers

associated with an OD pair p ∈ P .

To model the DM problem with rerouting, we will make use of event-activity networks,

first introduced by Nachtigall (1998) for timetabling problems and used for the classical

DM problems by Schöbel (2006). The event-activity network N = (E ,A) is a directed

graph, where E denotes the set of events and the set A consists of the activities. The

departure or the arrival of a train g at a station v, denoted by (g−v−Dep) or (g−v−Arr),

respectively, are the most important events in the network. For each event e ∈ Edep∪Earr,

we denote the planned departure or arrival time by πe and the source delay by de. To

incorporate the routes of the passengers, we introduce for every OD pair p = {u, v, suv} ∈

P , an origin event Org(p) and a destination event Dest(p). Note that besides the origin

and destination, the OD pairs also contain the time at which passengers want to start

their journeys. In summary, the set of events in the network, denoted by E , consists of

the departure events of the trains, the arrival events of the trains, and the origin and

destination events for the passengers for a given OD pair:

E = Edep ∪ Earr ∪ Eorg ∪ Edest.
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The activities are the arcs in the directed graph N . There are driving activities, waiting

activities and changing activities. The driving and waiting activities represent driving

from one station to the next and waiting at a station to let the passengers get on and off

the train. The changing activities are used by the passengers. They represent the possi-

bility for passengers to transfer from a train that arrives at a certain station to a train

that departs at the same station some time later. Note that we only consider transfers

that are present in the planned timetable. We do not include transfers that can only be

maintained if the feeder train arrives with a delay. It should be noted that the driving

and waiting activities impose operational restrictions on the vehicles, whereas a changing

activity does not imply that a train has to wait in case of a delay of another train. In

fact, the decision “wait or depart on time” is the main decision we want to take during

the optimization process. We denote La for the minimal time that is needed to perform

activity a ∈ Adrive ∪ Await ∪ Achange.

To take the rerouting of passengers into account, we additionally introduce origin and des-

tination activities. Let an origin event e = Org(p) ∈ Eorg be given, where p = {u, v, suv}

represents the passengers who want to travel from station u to station v at time suv. This

event e is connected to all departure events that depart from u not earlier than time suv.

It remains to connect the arrival events to the destination events. Consider therefore a

destination event Dest(p) ∈ Edest, where again p = {u, v, suv}. Let SPp denote the ear-

liest arrival time of the passengers if there are no delays. SPp can be calculated using a

shortest-path algorithm in the event-activity network with all connections. As the overall

delay at an event cannot exceed maxe′∈E de′ , a connection a = (e1, e2) ∈ Achange that sat-

isfies πe2 − πe1 ≥ La +maxe′∈E de′ will always be maintained. By solving a shortest-path

problem in the event-activity network with only these safe connections, we can find a

path in the event-activity network on which all connections will certainly be maintained.

Denoting Ap for the planned arrival time on this path, it holds that Ap + maxe′∈E de′ is

an upper bound for the arrival time for OD pair p. An arrival event e should therefore

be connected to Dest(p) if e is an arrival event at station v and if the planned time πe

satisfies πe ∈ [SPp, Ap +maxe′∈E de′ ]. This concludes the description of the activities in

the event- activity network. Summarizing

A = Adrive ∪ Await ∪ Achange ∪ Aorg ∪ Adest.

An example of an event-activity network is given in Figure 2.2. This event-activity net-

work corresponds to the example that we described in Section 2.1. The oval nodes rep-

resent the origin and destination events that are introduced to model the behavior of
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{Zl, Asd} {Ut, Asd}

g1 − Zl− D g1 − Amf − A g1 − Amf − D g1 − Ut− A

g2 − Ut− D g2 − Asd− A {Ut, Asd}

{Amf, Asd} g3 − Amf − D g3 − Asd− A {Zl, Asd}

g4 − Amf − D g4 − Hvs− A g4 − Hvs− D g4 − Asd− A {Amf, Asd}

Figure 2.2: The squared nodes are the departure and arrival events where “D” stands for

departure and “A” stands for arrival. The origin and destination events are represented

by ovals. As we only consider one possible departure time for each OD pair, we did

not include the starting time in the origin and destination events. The dashed arcs are

the origin and destination arcs, that are introduced to be able to state the shortest-

path problem for the passengers. The solid lines represent driving, waiting and changing

activities.

passengers when delays occur. The dashed arcs depicting the origin and destination ac-

tivities are needed to take the routing of passengers into account.

Recall that πe denotes the planned time for each event e ∈ Earr ∪ Edep, i.e. π corresponds

to the timetable as it is planned to be operated. For an origin event e = Org(p) ∈ Eorg

with p = {u, v, suv}, we set πe = suv (which can be interpreted as the time at which a

passenger of OD pair p arrives at his or her departure station). For a destination event

e = Dest(p), the planned arrival time πe depends on the path chosen by the passengers

in p. Assuming rational behavior of the passengers, we set πe = SPp, that is the earliest

possible arrival time for OD pair p.

Given a set of source delays de associated to some events e ∈ Earr ∪ Edep, the problem

is to decide which trains should wait for passengers to arrive from delayed trains and

which should depart without waiting. Thus we have to determine which of the connec-

tions a ∈ Achange will be maintained and which will be removed. We denote the set of

maintained connections by Afix. For the resulting network

N (Afix) := (E ,Adrive ∪ Await ∪ Afix ∪ Aorg ∪ Adest)
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in which the set of changing activities has been replaced by Afix, a new timetable can be

constructed using the critical path method (see Schöbel (2007)). The times for the events

e ∈ Edep ∪ Earr in this new timetable will be denoted by xe. For events e ∈ Eorg, we define

xe = πe.

Given such a timetable and the connections that are maintained, for every OD pair, a

route through the network has to be found, such that the travel time is minimized. To

this end, let P be a directed path from e1 to e2 in the network N (Afix), where e1 ∈ E \Edest

and e2 ∈ E \ Eorg. We now define its length l(P ).

• First, assume that e1, e2 ∈ Edep ∪ Earr. We define l(P ) = xe2 − xe1 to be the travel

time or distance between e1, e2 in N (Afix).

• We now extend this definition to destination events Dest(p) for an OD pair p =

{u, v, suv}. Let pre(Dest(p), P ) be the predecessor of Dest(p) in path P from e1 to

Dest(p). Then, we define l(P ) = xpre(Dest(p),P ) − xe1 .

• We are mainly interested in the travel time for the passengers. For the special

case of a path P connecting an OD pair p = {u, v, suv}, we hence obtain l(P ) =

xpre(Dest(p),P ) − suv. As we assume that passengers take the fastest paths to arrive

at their destinations, we set l(p) = l(P (p)), where P (p) is a fastest path from the

origin event Org(p) to the destination event Dest(p).

Because an OD pair p chooses a shortest path P (p) from Org(p) to Dest(p) in N (Afix),

we define the arrival time for the pair p as tAfix
p = xe, where e is the predecessor of the

destination event Dest(p) on P (p). Note that in this model, passengers who cannot take

the path they planned to take because connections on this path are dropped, in most

cases, will not have to suffer the delay of one cycle time waiting for the next connection

but choose another path to their destination.

In the DM problem, we want to minimize the sum of all delays of the OD pairs. The

delay of an OD pair p = {u, v, suv} is given as

tAfix
p − SPp.

Summarizing, the objective of DMwRR is to find a subset Afix ⊂ Achange, so that we

minimize:

min
Afix⊂Achange

∑
p∈P

wp ·
(
tAfix
p − SPp

)
or, equivalently min

Afix⊂Achange

∑
p∈P

wp · t
Afix
p .
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In words: We minimize the average delay or the sum of the arrival times of the passengers.

Since DM without rerouting is NP-hard (Gatto et al., 2005), it is not surprising that

DMwRR is NP-hard as well. In Section 2.4, we will investigate the borderline between NP-

hardness and tractability by analyzing the complexity of DMwRR for different structures

of the underlying OD data.

2.3 Integer Programming Formulation

In this section, we will give an integer programming formulation that takes the routing

decisions for the passengers into account explicitly. The model is based on the classical

DM model as it was introduced in Schöbel (2007).

The event-activity network is a directed graph. We denote δin(e) and δout(e) for the set

of arcs into e and out of e, respectively, for every event e ∈ E .

2.3.1 Variables

The most important decision is which connections need to be kept alive. For each changing

activity a ∈ Achange, we thus introduce a binary decision variable za, which is defined as

follows:

za =

{
1 if connection a is maintained,

0 otherwise.

The times that the arrival and departure events take place are the next set of decision

variables. For each event e ∈ Earr ∪ Edep, we define xe ∈ N as the rescheduled time that

event e takes place. The variables x = (xe) therefore define the disposition timetable.

These decision variables are the same as in the classical model.

The new aspect that we have to model are the routes that the passengers take. First note

that a route has to be determined for every OD pair. Recall that P denotes the set of

all OD pairs. To model the routing decisions for a given pair p ∈ P , we introduce binary

decision variables qap, which indicate whether activity a ∈ A is used in the path that is

chosen for OD pair p ∈ P . Formally, the variables qap are defined as follows:

qap =

{
1 if activity a is used by passengers in p,

0 otherwise.

The arrival time for an OD pair p now depends both on the path that is chosen, and on

the disposition timetable x. To be able to incorporate the arrival time of these passengers
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in a linear model, we introduce a variable tp ∈ N, which will represent the arrival time for

pair p ∈ P . The linearization will be given in the next section.

2.3.2 Integer programming formulation

We first present our integer programming formulation for DMwRR and then discuss its

meaning.

min
∑
p∈P

wp(tp − SPp) (2.1)

such that

xe ≥ πe + de ∀e ∈ Earr ∪ Edep, (2.2)

xe ≥ xe′ + La ∀a = (e′, e) ∈ Adrive ∪ Await, (2.3)

xe ≥ xe′ + La −M1(1− za) ∀a = (e′, e) ∈ Achange, (2.4)

qap ≤ za ∀p ∈ P , a ∈ Achange, (2.5)∑
a∈δout(e)

qap = 1 ∀e = Org(p) ∈ Eorg, (2.6)

∑
a∈δout(e)

qap =
∑

a∈δin(e)

qap ∀p ∈ P , e ∈ Earr ∪ Edep, (2.7)

1 =
∑

a∈δin(e)

qap ∀e = Dest(p) ∈ Edest, (2.8)

tp ≥ xe −M2(1− qap) ∀e = Dest(p) ∈ Edest, a ∈ δin(e), (2.9)

za ∈ {0, 1} ∀a ∈ Achange, (2.10)

qap ∈ {0, 1} ∀p ∈ P , a ∈ A, (2.11)

xe ∈ N ∀e ∈ Earr ∪ Edep, (2.12)

tp ∈ N ∀p ∈ P . (2.13)

The objective function (2.1) minimizes the total delay of all passengers. Constraints (2.2)

imply that events cannot take place earlier than in the original timetable and that source

delays are taken into account. To make sure that delays are propagated through the

network correctly, constraints (2.3) transfer the delay from the start of activity a to its

end. For maintained connections, that is connections for which za = 1, constraints (2.4)

transfer delays from the feeder train to the connecting train. The value of M1 should be

chosen large enough for these constraints to be correct. In Schöbel (2006), it has been

shown that M1 = maxe∈E de is large enough. Constraints (2.2 - 2.4) are also present in
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the classical model.

Constraints (2.5 - 2.9) take the routing decisions into account. First of all, constraints

(2.5) make sure that changing activities can only be used if the connection is maintained.

Equations (2.6 - 2.8) are the constraints of the shortest-path problem for each OD pair

p. For every pair, a path is selected from the origin Org(p) ∈ Eorg to the destination

Dest(p) ∈ Edest. Constraint (2.9) defines the arrival time for OD pair p, where M2 is

again a large number. For the arrival event e that is selected and the destination activity

a out of this event, qap = 1, forcing that tp ≥ xe for this particular arrival event. All other

path variables qap are equal to zero, therefore putting no restriction on the value of tp.

To find the minimal value of M2 for which (2.9) is correct, consider an arbitrary OD

pair p ∈ P . As mentioned in Section 2.2, if maxe′∈E de′ ≤ T only arrival events e ∈ Earr

for which πe ≤ Ap + maxe′∈E de′ should be connected to the destination event Dest(p).

Consider now an arbitrary activity a = (e,Dest(p)) ∈ δin(Dest(p)). For maxe′∈E de′ ≤ T ,

it holds that

xe ≤ πe +max
e′∈E

de′ ≤ Ap + 2max
e′∈E

de′ .

It follows that M2 = Ap − SPp + 2maxe′∈E de′ is large enough. Indeed, as

xe −M2 ≤ Ap + 2max
e′∈E

de′ −M2 = SPp,

the constraint tp ≥ xe −M2(1− qap) does not pose a restriction on tp when qap = 0.

For a given OD pair p ∈ P , Constraints (2.6 - 2.8) define a path from source Org(p) to

sink Dest(p) in the directed graph N . Many nodes in this graph can never be on such a

path: Either it is impossible to arrive at such an event from the origin event Org(p), or

there is no path from that event to the destination event Dest(p). The events that cannot

be used on a path can be found easily by dynamic programming. This observation can be

used to remove many of the variables qap. For an arc a = (e, e′) ∈ A that connects a node

that can never be used on a path from Org(p) to Dest(p), the variable qap will be zero

in every feasible solution. We can therefore remove this variable from the formulation.

Applying this procedure for all OD pairs p ∈ P reduces the number of binary variables

drastically.

We remark that the variables za are not needed in the above model, because constraints

(2.4) and (2.5) can be replaced by the constraints

xe ≥ xe′ + La −M(1− qap) ∀a = (e′, e) ∈ Achange∀p ∈ P ,
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leading to an equivalent model. Nevertheless, we have chosen to leave these variables in

the model to show the similarity with earlier models. Furthermore, the variables za could

be used to guide the solution process.

In Section 2.5, we will use this formulation to analyze differences between DMwRR and

the classical DM version without rerouting.

2.4 Special Cases of DMwRR and their Complexities

In the previous section, we gave an integer programming formulation for the general

problem DMwRR. Now, we will identify simplifications and special cases of DMwRR to

understand the border between still polynomial solvable and already NP-hard variants.

The knowledge about the reasons for the NP-hardness as well as polynomial approaches

for special cases can later serve to construct good heuristics for the general case.

In this section, we will hence examine three special cases of DMwRR. We first present a

polynomial algorithm for the case of DMwRR where the demand is given by only one OD

pair, and where we assume that there is no path in the event-activity network that enters

a train more than once. We will then (slightly) generalize this case and allow that all OD

pairs start at the same origin but have different destinations. It will turn out that even in

this case, DMwRR is NP-hard. Finally, we will consider another variant with simplified

delay costs. Although this is a strong simplification of DMwRR, it will turn out to be

NP-hard as well.

2.4.1 DMwRR for one single OD pair

This subsection deals with a simplification of DMwRR: We assume that we are given only

one OD pair p = {u, v, suv}. To simplify the notation in the following section, we will

identify Org(p) with u and Dest(p) with v, so u and v will be regarded as events in the

network. We will show that the problem is solvable by a modified version of Dijkstra’s

algorithm for finding a shortest path. The algorithm finds the optimal solution if there

is no path in the network that enters a train more than once. In practice, this holds,

for example, if trains do not overtake each other and if trains take the shortest routes

between their end points. If such paths do exist, the algorithm finds a feasible solution,

and thus an upper bound on the optimal solution value.

Let N be a network with feasible timetable π, p = {u, v, suv} an OD pair, and D a set

of source delays. Like in the original Dijkstra’s algorithm, we determine in every step

a feasible path for a pair of events {u, i}, where u = Org(p) is the origin event of the
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OD pair p = {u, v, suv} under consideration and i ∈ E . To do this formally, we need the

following slight extension of DMwRR.

Having in mind the practical application in passenger rerouting, we defined in Section 2.2,

the problem DMwRR for a network N and a set of OD pairs P consisting of elements of

the form p = {u, v, suv}, where u is the origin, v the destination, and suv is the starting

time. Now, we also want to deal with OD pairs as elements of the type p∗ = {u, i, suv},

where i ∈ E is an arbitrary successor of u in N . We hence extend the problem DMwRR

to instances consisting of a network N and a set of OD pairs P of type p∗.

Let u be the origin event of the considered OD pair. Determining a feasible path for a fixed

pair of events {u, i} can hence be seen as solving DMwRR for N and P = {{u, i, suv}}.

The part of Dijkstra’s algorithm that has to be modified is the calculation of the node

labels that represent the earliest possible times at the events. To calculate the transfer of

delays efficiently, we define tr[e] as the train belonging to an event e ∈ Edep ∪ Earr.

Given a set of maintained connections Afix ⊂ Achange, the minimal arrival times xAfix [e]

in the events e considering the network N (Afix) can be calculated iteratively:

Starting with xAfix [u] = suv, we use the critical path method and obtain iteratively

xAfix [e] = max{π[e] + de, max
i:(i,e)∈Adrive∪Await∪Afix

{xAfix [i] + L(i,e)}}.

Let π̃[i] = x∅[i] for all i ∈ Earr ∪ Edep denote the minimal arrival times calculated by the

critical path method for the empty set of maintained connections and set π̃[u] = π̃[v] =

suv.

We observe that for every set Afix ⊂ Achange and every event e ∈ Earr ∪ Edep,

xAfix [e] ≥ π̃[e] ≥ π[e] + de.

So we can equivalently determine the minimal arrival times in the events e for a given set

Afix ⊂ Achange as

xAfix [e] = max{π̃[e], max
i:(i,e)∈Adrive∪Await∪Afix

{xAfix [i] + L(i,e)}}.

In Lemma 2.1 and Lemma 2.2, we will prove properties of the optimal set of connections

Afix and the path used by the passengers in N (Afix) for the case of one single OD pair.

These will lead to a simplification of the calculation of the minimal arrival times as given

in Lemma 2.3.

Lemma 2.1 states that in any optimal solution for p∗ = {u, e, suv} with e ∈ E , only the

connections on the path used from u to e have to be maintained.
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Lemma 2.1 Let Ãfix be a set of maintained connections such that for an event e ∈ E ,

the arrival time for p∗ = {u, e, suv} is minimal. Let P = (EP ,AP ) be an optimal path

from u to e in N (Ãfix). Then, there exists an optimal set of maintained connections AP
fix

such that AP
fix = A

P ∩ Achange.

Proof Obviously Ãfix ⊃ A
P ∩Achange. On the other hand, if a ∈ Ãfix \ A

P , no passenger

on path P uses a, so we can remove it. �

The statement of Lemma 2.2 is the following. There is always a path with minimal arrival

time such that the passengers use every train at most once.

Lemma 2.2 Let e be an event in N . For every set Afix for which there exists a path from

the origin u to e in N (Afix), there also exists a path P = (EP ,AP ) from u to e that fulfills

the following condition:

If j, k ∈ EP such that xAfix [j] < xAfix [k] and tr[j] 
= tr[k], then tr[j] 
= tr[l] for all l ∈ EP

with xAfix [k] < xAfix [l].

Proof Assume that P0 is a path from u to e in N (Afix) such that tr[l] = tr[j] 
= tr[k] and

xAfix [j] < xAfix [k] < xAfix [l] for j, l, k ∈ P0 We construct a new path P1 in the following

way: P1 consists of the same events as P0 between u and j. Then P1 continues on tr[j]

until l is reached. From l to e, P1 once again contains the same events as P0. Note that

P1 is also contained in N (Afix). Repeating this construction, we obtain a path with the

claimed property. �

The following lemma states that for computing the time of an event of path P , only the

events of P are relevant.

Lemma 2.3 For a path P from u to e in N (Achange) fulfilling the condition of Lemma 2.2

and the set AP
fix = Achange ∩ A

P , the minimal time of event e can be calculated as

xAP
fix [e] = max{π̃[e], xAP

fix [j] + L(j,e)}

for the predecessor j of e on the path P .

Proof If (j, e) ∈ Adrive ∪Await, or if (j, e) ∈ A
P
fix and e is the departure of the train tr[e],

then (j, e) is the only activity terminating in e in N (AP
fix), because A

P
fix = Achange ∩ A

P .
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Thus

xAP
fix [e] =max{π̃[e], max

i:(i,e)∈Adrive∪Await∪AP
fix

{xAP
fix [i] + L(i,e)}}

=max{π̃[e], xAP
fix [j] + L(j,e)}.

Now let (j, e) ∈ AP
fix and (k, e) ∈ A with tr[k] = tr[e]. Because of Lemma 2.2, xAP

fix [k] =

π̃[k] and π̃[e] ≥ π̃[k] + L(k,e) = xAP
fix [k] + L(k,e). Using A

P
fix = Achange ∩ A

P , it follows that

xAP
fix [e] =max{π̃[e], max

i:(i,e)∈Adrive∪Await∪AP
fix

{xAP
fix [i] + L(i,e)}}

=max{π̃[e], xAP
fix [j] + L(j,e), x

AP
fix [k] + L(k,e)}

=max{π̃[e], xAP
fix [j] + L(j,e)}.

�

Let’s come back to our modified Dijkstra’s algorithm. We solve problem DMwRR for

different events i. In any iteration, we store

• T [i]: Minimal arrival time in event i for passengers traveling from u to i with starting

time suv.

• Afix[i]: Changing activities that have to be maintained in the optimal solution of

DMwRR with OD pair {u, i, suv}.

• TD[i]: Set of “forbidden trains” = trains that were used on the minimal path

from u to i, not including tr[i] since these may not be used anymore according to

Lemma 2.2. Note that if one would allow passengers to reenter a train, solutions

can be found that are infeasible.

Let PERM be the set of events for which DMwRR has been solved and the above values

have been determined. For every e with a direct predecessor i ∈ PERM , we determine

the preliminary arrival time

T̃ [e] = min
i∈PERM :(i,e)∈A,tr[e]/∈TD[i]

{π̃[e], T [i] + L(i,e)}.

Like in Dijkstra’s algorithm, we fix the event ê with smallest T̃ [e].

To calculate the set of fixed connections Afix[ê] and the set of delayed trains TD[ê], we

distinguish two cases. Let iê be the predecessor of ê in the solution of DMwRR for

{u, ê, suv}.
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• If â = (iê, ê) is a changing activity, we obtain Afix[ê] = Afix[iê] ∪ {(iê, ê)} and

TD[ê] = TD[iê] ∪ {tr[iê]}.

• Otherwise, we simply set Afix[ê] = Afix[iê] and TD[ê] = TD[iê].

The algorithm is summarized below.

Algorithm: Modified Dijkstra for DMwRR for one OD pair

Input: Instance of DMwRR with network N , feasible timetable π, delays de, and one

OD pair p = {u, v, suv}.

Step 1. Generate the timetable π̃ by the critical path method. Set π̃[u] = π̃[v] = suv.

Step 2. Set PERM = {u}, TEMP = E \ {u}, T [u] = suv, T̃ [e] = ∞ for every

e ∈ TEMP , TD[u] = ∅, Afix[u] = ∅, êold = u.

Step 3. For every e ∈ TEMP such that (êold, e) ∈ A, tr[e] /∈ TD[eold]

set T̃ [e] = min{T̃ [e],max{π̃[e], T [êold] + L(êold,e)}}.

Step 4. Choose ê ∈ argmine∈TEMP T̃ [e]. Set iê the corresponding predecessor of ê,

PERM = PERM ∪ {ê}, TEMP = TEMP \ {ê}, T [ê] = T̃ [ê].

Step 5. If ê = v, go to Step 7.

Step 6. If (iê, ê) ∈ Achange, setAfix[ê] = Afix[iê]∪{(iê, ê)} and TD[ê] = {TD[iê] ∪ {tr[iê]}}.

Otherwise, set Afix[ê] = Afix[iê] and TD[ê] = TD[iê].

Set êold = ê. Go to Step 3.

Step 7. Set Afix = Afix[v] and tp = T [v].

Output: Optimal set Afix for the given instance of DMwRR.

Theorem 2.4 The algorithm finds an optimal solution Afix to DMwRR with one OD pair

if no path in the network enters a train more than once. In general, it finds a feasible

solution and an upper bound. The running time of the algorithm is O(n2), where n is the

number of events in the network N .

Proof First, we observe that adding changing activities to a set A1 does not influence

the time for events e that happen before the added activities take place.

That means for two sets A1 ⊂ A2 ⊂ Achange and an event e, the following statement holds:

If e takes place before any activity in A2 \ A1 starts, i.e.

xA2(e1) ≥ xA2(e) for all (e1, e2) ∈ A2 \ A1,
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it follows that

xA1 [e] = xA2 [e]. (2.14)

Now, we will show inductively that in every iteration of the algorithm for every event

e ∈ PERM , it holds that

T [e] = xAfix[e][e]

for the labels T [e] and the sets of changing activities Afix[e] calculated by the algorithm.

As T [u] = suv = x∅[u] = xAfix[u][u], the assumption holds for the origin u. Assume that

in the k-th iteration of the algorithm, the assumption holds for the events in PERM .

Let ê be the event that is chosen in Step 4 of the algorithm and iê ∈ PERM such that

(iê, ê) ∈ A and max{π̃[ê], xAfix[iê][iê] + L(iê,ê)} is minimal. Let T̃ old[ê] be the label of ê

at the beginning of Step 3, and let êold be the event that was added to PERM in the

(k − 1)-th iteration. Then the new label of ê is calculated as

T̃ [ê] =

{
T̃ old[ê] if tr[ê] ∈ TD[êold]

min{T̃ old[ê],max{π̃[ê], T [êold] + L(êold,ê)}} if tr[ê] /∈ TD[êold]

= min
i∈PERM :(i,ê)∈A,tr[e]/∈TD[i]

max{π̃[ê], T [i] + L(i,ê)}.

Let AP
fix = A

P ∩Achange be the set of changing activities contained in P like in Lemma 2.3.

We note that because of the construction of Afix[e] for an event e,

Afix[e] = A
P
fix (2.15)

for the path P used by the Dijkstra algorithm as a feasible path from u to e.
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Let P be the path from u to ê and P ′ be the path from u to the predecessor iê of e in

P with P ′ ⊂ P . Then

T [ê] = min
i∈PERM :(i,ê)∈A,tr[e]/∈TD[i]

max{π̃[ê], T [i] + L(i,ê)} (2.16)

= min
i∈PERM :(i,ê)∈A,tr[e]/∈TD[i]

max{π̃[ê], xAfix[i][i] + L(i,ê)} (2.17)

= max{π̃[ê], xAfix[iê][iê] + L(iê,ê)} (2.18)

= max{π̃[ê], xAP ′

fix [iê] + L(iê,ê)} (2.19)

= max{π̃[ê], xAP
fix [iê] + L(iê,ê)} (2.20)

= xAP
fix [ê] (2.21)

= xAfix[ê][ê], (2.22)

where we use (2.15) in (2.19) and (2.22). (2.17) holds because of the assumption T [i] =

xAfix[i][i] for all i ∈ PERM and (2.20) is true because of the initial observation (2.14).

Assume now that there is no path that enters a train more than once. It remains to show

that the set Afix[ê] and the label T [ê] = xAfix[ê][ê] are optimal for the event ê chosen in

Step 4 of the algorithm, that means that there is no set A ⊂ Achange such that there is a

path from u to ê in N (A) and

xA[ê] < xAfix[ê][ê].

This assumption will also be proven inductively. For the origin event u, setting Afix[u] = ∅

leads to T [u] = suv, which is optimal. Suppose that in the iterations 1 to k − 1 of the

algorithm, the choice of Afix[e] and the labels T [e] are optimal for the regarded events e.

Now, let ê be the event chosen in Step 4 in the k-th iteration, i.e. such that T [ê] = T̃ [ê] ≤

T̃ [e] for every e ∈ TEMP . Suppose that there is a set A ⊂ Achange such that there is a

path from u to ê in N (A) and

xA[ê] < xAfix[ê][ê]. (2.23)

Let PA
uê be an optimal path from u to ê inN (A), that satisfies the conditions of Lemma 2.2.

We assume that no path enters a train more than once. Therefore the condition tr[ê] /∈

TD[e] holds trivially for all e ∈ TEMP .
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(1) If the predecessor e0 of ê in PA
uê is in PERM , because of the assumption that the

labels T [e] and chosen sets Afix[e] are optimal for all e ∈ PERM ,

xA[ê] = max{π̃[ê], T [e0] + L(e0,ê)}

≥ min
i∈PERM :(i,ê)∈A,tr[ê]/∈TD[i]

max{π̃[ê], T [i] + L(i,ê)}

= T [ê] = xAfix[ê][ê],

which contradicts (2.23).

(2) If the predecessor e0 of ê in PA
uê is in TEMP , let e1 denote the last event in PERM

on the path PA
uê (e1 exists because u ∈ PERM) and e2 ∈ TEMP its successor. So

as T [ê] = T̃ [ê] ≤ T̃ [e] for every e ∈ TEMP ,

xA[ê] ≥ xA[e2]

≥ max{π̃[e2], T [e1] + L(e1,e2)}

≥ min
i∈PERM :(i,e2)∈A,tr[e2]/∈TD[i]

max{π̃[e2], T [i] + L(i,e2)}

= T̃ [e2] ≥ T̃ [ê] = T [ê] = xAfix[ê][ê],

which contradicts (2.23).

For a set of fixed connections A, denote by tAp the traveling time for OD pair p in N (A).

It remains to show that Afix = Afix[v] and tAfix
p = T [v] is an optimal solution to DMwRR

for the OD pair p = {u, v, suv}. As defined in Section 2.2, Afix[v] is optimal if it minimizes

tAfix
p = xAfix [e] for the predecessor e of v on a minimal path from u to v in the network

N (Afix). Suppose that the set Afix[v] and the predecessor e calculated by the algorithm

are not optimal with regard to an optimal path from u to v. Let A be an optimal set, PA
uv

an optimal path in N (A), and e0 the optimal predecessor. Then

tAp < tAfix
p . (2.24)
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(1) If e0 ∈ PERM , because of the assumption that the labels T [i] and chosen sets

Afix[i] are optimal for all i ∈ PERM ,

tAp = max{π̃[v], xA[e0] + L(e0,v)}

≥ min
i∈PERM :(i,v)∈A

max{π̃[v], T [i] + L(i,v)}

= min
i∈PERM :(i,v)∈A

max{suv, T [i] + L(i,v)}

= T [v]

= tAfix
p ,

which contradicts (2.24).

(2) If the predecessor e0 of v in PA
uv is in TEMP . let e1 denote the last event in PERM

on the path PA
uv and e2 ∈ TEMP its successor. So as T [v] = T̃ [v] ≤ T̃ [e] for

e ∈ TEMP .

tAp = xA[e0] ≥ xA[e2] = max{π̃[e2], T [e1] + L(e1,e2)} ≥ T̃ [e2] ≥ T̃ [v] = T [v] = xAfix[v][v],

which contradicts (2.24).

The generation of the timetable in Step 1 is done in time O(n2) by the procedure given in

Schöbel (2007). Inspecting Step 3, we note that for the setting of the labels T̃ , summing

up over all iterations every activity a ∈ A has to be considered at most once. As Steps

4 − 6 are done in time O(n), Steps 3 − 6 can be executed in O(n2). As Step 7 is also in

O(n2), the running time of the modified Dijkstra algorithm is O(n2). �

We can use this algorithm to determine a lower bound on the optimal solution for the gen-

eral DMwRR problem as follows: We apply the modified Dijkstra algorithm for DMwRR

with one OD pair for every OD pair p ∈ P , and sum up over the solution values weighted

with wp. This gives us a lower bound on the solution of DMwRR.

Lemma 2.5 Let DMwRR be given together with a set of OD pairs P and let z∗ be its

optimal objective value. Assume that no path in the network enters a train more than

once. For any OD pair p ∈ P, let fp denote the objective value of the reduced problem

DMwRR with only the OD pair p = {u, v, suv}. Then

tp ≥ fp



2.4 Special Cases of DMwRR and their Complexities 39

is a valid inequality for our integer programming formulation for DMwRR for any p ∈ P.

In particular, we have ∑
p∈P

wpfp ≤ z∗.

Moreover, this bound on the objective value can be calculated in in O(|P|n2).

This bound significantly improves the time needed to solve the integer program for

DMwRR as will be shown in Section 2.5. Note that it is easy to generate an upper bound

by holding all connections (set all za = 1) such that we can now bound the objective value

from above and below.

2.4.2 DMwRR for a tree-like structure of the demand

In Section 2.4.1, we have seen that for the case of only one OD pair, DMwRR is solvable

in polynomial time and we have given a Dijkstra-type solution algorithm for this case.

Dijkstra-type algorithms can usually be generalized to trees. We hence investigate the

question if the case of multiple OD pairs in which all passengers have the same origin and

starting time can still be solved by the approach of the previous section. However, this

generalization of our problem already turns out to be strongly NP-hard.

Theorem 2.6 DMwRR is strongly NP-hard, even if only one delay occurs, all origin

and destination events are connected to only one event in the network and all OD pairs

{uk, vk, sukvk} have the same origin uk := u and same starting time sukvk := 0.

Proof This theorem will be proven by reduction to the NP-complete decision problem

minimum cover (see Garey and Johnson (1979)). An instance of minimum cover consists

of a finite set S = {sj : j = 1, . . . , n}, a collection C = {ci : i = 1, . . . ,m} of subsets of

S, and a positive integer K ≤ |C|. The question to decide is whether there is a subset

C ′ of C with |C ′| ≤ K such that every element of S is contained in at least one element

of C ′. The structure of the minimum cover problem can be represented by a matrix

M = (mij)i=1,...,m,j=1,...,n with

mij =

{
1 if sj ∈ ci

0 otherwise.

We construct an instance of the DMwRR in which S corresponds to the OD pairs and

C to connections for which we have to decide whether they are maintained or not. We

have to cover all OD pairs (i.e. make sure that all passengers reach their destinations)
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with a minimal set of maintained connections since maintaining a connection causes costs

(represented as delays) to other passengers. Our construction is the following.

For a given instance (S,C,K) of minimum cover, we transfer the matrix M to a set of

stations A = {aij : mij = 1}, that means whenever mij = 1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

there is a station aij. There are trains tri for i = 1, . . . ,m starting all at a station

a0 and running through the existing stations aij in increasing order of j and trains trj

running through the existing stations aij in increasing order of i. The stations aij offer

the possibility to change from train tri to train trj, so if and only if mij = 1, it is possible

to change from tri to trj. There are no slack times on the driving or waiting activities of

the trains tri and trj, as well as on the changing activities between these trains, so any

delay of a train tri will propagate to all following events of the train and to the events of

the trains trj if the changing activity between these trains at station aij is maintained.

There are destinations vj for j = 1, . . . , n that are reached by train trj after the last

station aij that this train passes.

We introduce an origin u with one train starting there, going to a station a0. At station

a0 there are changing activities to the departure events of the trains tri, having no slack

times. In this construction, the passengers wanting to travel from u to vj at station a0

have to choose a train tri such that they will be able to change to the train trj and reach

their destination, that means a train tri such that aij exists.

We suppose that a delay of 1 at the arrival event of train tr0 at station a0 occurs. As

there are no slack times on the changing activities to the trains tri, if a connection to a

train tri is maintained, this train will receive a delay of 1. When passengers change to a

train trj at station aij, this delay will be transferred to the train trj, thus all passengers

of the OD pairs {u, vj , 0} arrive at their destinations with a delay of 1.

Now, we assume that there are more OD pairs {u, v1, 0}, . . . , {u, vm, 0} that can reach

their destination via the trains tri. To this end, for every i = 1, . . . ,m, we introduce two

more stations ain+1 and vi. We assume that the train tr0 after leaving a0 runs through

the stations ain+1 for all i = 1, . . . ,m. At the driving activity from a0 to a1n+1, we set the

slack time to be 1, thus when the train arrives at station a1n+1, despite of the delay of 1

occurring at the arrival event in a0, it is not delayed anymore. We allow the passengers

to change from tr0 to tri at every station ain+1. So we can assume that all passengers

wanting to travel from u to vi for an i = 1, . . . ,m will take train tr0 until station ain+1,

and thus will be delayed if and only if the connection from tr0 to tri at station a0 is

maintained. We will denote the constructed event-activity network by N .

In Figure 2.3, the station network for an instance of DMwRR constructed from an instance

of minimal cover with S = {s1, s2} and C = {{s1}, {s2}, {s1, s2}} is pictured.
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a11 a13 v1 v1 tr1

u u a0 a22 a23 v2 v2 tr2

a31 a32 a33 v3 v3 tr3

v1 v2

v1 v2

tr1 tr2

Figure 2.3: The station network for the instance of the DM problem with rerout-

ing constructed from an instance of minimum cover with S = {s1, s2} and C =

{{s1}, {s2}, {s1, s2}}. The squared nodes represent stations; the oval nodes represent

origin and destination events. There are six trains, tr0 represented by the thick line,

tr1, tr2 and tr3 starting at station a0 and going from left to right, and tr1 and tr2 going

top down.

Setting the number of passengers to be wuvi = wuvj = 1, we can now show that the

instance (S,C,K) of minimum cover has a solution if and only if there is a set Afix such

that the sum over the delays of the OD pairs in the network N (Afix) is smaller than or

equal to K̃ = n+K.

We divide Achange into two sets: the changing activities at station a0 A
1
change := {(tr0 −

a0 − Arr, tri − a0 − Dep) : i = 1, . . . ,m} and all other changing activities A2
change :=

{(tri − aij − Arr, trj − aij −Dep)} ∪ {(tr0 − ain+1 − Arr, tri − ain+1 −Dep)}. Now, we

observe that maintaining a connection in A2
change does not yield a delay for any OD pair.

So we choose to maintain all connections in A2
change.

For a solution C ′ of minimum cover, we set Afix(C
′) := A2

change ∪ {(tr
0 − a0 − Arr, tri −

a0 − Dep) : ci ∈ C ′} and vice versa for a solution Afix ⊃ A
2
change, we define C ′(Afix) =

{ci : (tr0 − a0 − Arr, tri − a0 −Dep) ∈ Afix}. Thus we have a bijection between subsets

C ′ ⊂ C and Afix ⊃ A
2
change.

Let A ⊂ A1
change. We see that in N (A ∪ A2

change), there exists a path from u to vj if and

only if at least for one i with sj ∈ ci, the connection (tr0 − a0 − Arr, tri − a0 − Dep) is

maintained.

Thus a set Afix is feasible for DMwRR (that means for every OD pair, there exists a path
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from origin to destination) if and only if the corresponding set C ′ is feasible for minimum

cover.

Furthermore, we observe that the OD pairs {{u, vj , 0} : j = 1, . . . , n} will reach their

destination with a delay of 1, because there are no slack times on the paths from u to

vj for all j = 1, . . . , n. For the other OD pairs {u, vi, 0}, the delay is 1 if the connection

(tr0 − a0 − Arr, tri − aij −Dep) is maintained, and 0 otherwise.

Thus for a pair of solutions Afix ⊃ A
2
change and C ′ ⊂ C with solution values z(Afix) and

z(C ′)

z(Afix) = z(C ′) + n.

That means there is a solution to the constructed instance of DMwRR with solution value

≤ K̃ if and only if there is a solution to (S,C,K) with solution value ≤ K.

So every instance of minimum cover can be transformed polynomially to an instance of

DMwRR with the claimed properties. �

2.4.3 Rerouting with simplified costs

The delays that arise in DMwRR for the passengers by the wait-depart decisions for the

connections can be divided into the following two types:

(1) A connection is maintained: The waiting train and the passengers on the waiting

train are delayed.

(2) A connection is not maintained: The passengers who wanted to take this connection

have to travel along another, probably longer path.

Calculating the delay of the first type by a heuristic approach motivates the following

rerouting problem with simplified costs.

Let N = (E ,A) be a directed network with edge lengths La for all a ∈ A. Let Achange ⊂ A

be a set of connections that can be maintained or removed. We assume that maintaining

a connection a ∈ Achange yields a fixed delay of da for the passengers. This delay can be

regarded as a cost for opening a connection that is added to the solution value. Let P be

a set of OD pairs, given as a subset of E × E with demand wp for each p = {u, v} ∈ P .

The objective of this variant is to minimize the simplified costs arising as fixed delays

for maintaining connections plus the travel costs of the OD pairs. Hence the objective
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function is

min
Afix⊂Achange

∑
p∈P

wp ·DAfix
(u, v) +

∑
a∈Afix

da,

where DAfix
(u, v) =

∑
a∈Puv

La with Puv being a shortest path from u to v in the network

in which all connections a ∈ Achange \ Afix are removed.

In contrast to DMwRR, in this simplified variant, we are trying to minimize shortest path

distances regarding the edge lengths La and not arrival times. The simplified delays arise

as costs or penalties, whenever a connection a ∈ Afix is maintained and do not influence

other parts of the network, while in DMwRR, they can propagate through big parts of

the network and delay the following events.

Like in DMwRR this problem can be solved in polynomial time if there is only one OD

pair (by adding the simplified costs da divided by the demand of the OD pair wp for a

connection a to its length La and applying Dijkstra’s algorithm). However, by modifying

the proof of Theorem 2.6, it can be shown that even this simplified variant is strongly

NP-hard.

Theorem 2.7 Rerouting with simplified costs is strongly NP-hard, even if all origin and

destination events are connected to only one event in the network and all OD pairs {uk, vk}

have the same origin uk := u.

Proof Analogously to the proof of strong NP-hardness for DMwRR, we can prove this

theorem by constructing an equivalent rerouting with a simplified costs problem for each

instance of minimum cover. For this proof, we simplify the network N from the proof

of Theorem 2.6 to a network Ñ by removing all events at the stations ain+1 and vi, the

destination events vi, and all related activities. The set of OD pairs is P = {{u, vj} :

j = 1, . . . ,m} with unit demand. For the changing activities from tr0 to tri, we set the

simplified costs to 1, for the ones from tri to trj to 0. Similar to the proof of Theorem 2.6,

we observe that we can assume the connections (tri − aij − Arr, trj − aij − Dep) to be

maintained because their simplified costs are 0. Like in that proof for a given set C ′ of

subsets of S, we define

Afix(C
′) := {(tr0−a0−Arr, tr

i−a0−Dep) : ci ∈ C ′}∪{(tri−aij−Arr, trj−aij−Dep) : mij = 1},

and for a given subset Afix ⊃ {(tr
i − aij − Arr, aij − trj −Dep) : mij = 1}, we set

C ′(Afix) = {ci : (tr
0 − a0 − Arr, tri − a0 −Dep) ∈ Afix}.
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Now, a set C ′ of subsets of S and the associated subset Afix ⊂ Achange are both feasible

or infeasible and have the same objective value as can be seen analogously to the proof

of Theorem 2.6. �

2.5 Computational Experiments

We have created six cases to evaluate the integer programming formulation given in

Section 2.3. We will first describe the cases that we consider. Then, we will discuss

the solution of the integer programs and show that the polynomial algorithm for one OD

pair can be applied to improve the overall running times. Finally, we will demonstrate

that taking rerouting into account reduces the total delay significantly.

2.5.1 Cases

In all cases, we consider a part of the railway network in the Netherlands during a period

in the late evening. For all possible OD pairs p = {u, v, suv}, the average number of

passengers over several days is known. We denote this average by w̄p. The first case

corresponds to the example described in Section 2.1. The stations that are included in

the first case are represented by black circles in Figure 2.1. We focus on the situation

where the train from Zwolle arrives in Amersfoort with a delay. Therefore, only a short

time of two hours in the evening is taken into account. As described in Section 2.1, three

intercities and one regional train are considered. In the first case, we consider the average

number of passengers. For each OD pair p, we thus set wp = w̄p. A time period of

four hours is considered in the other cases. As all trips of passengers and trains take

less than four hours, it does not make sense to consider longer time periods. The second

case considers the stations that are indicated by a grey or black circle in Figure 2.1. All

long-distance trains between those stations are included. The third case contains all-

long distance trains in the Randstad, which is the Western, most populated part of the

Netherlands. This case includes all stations in Figure 2.1. Note that in the second and

third cases, the regional trains are not considered. As the long-distance trains only stop

at larger stations, the average number of passengers for each OD pair is quite large. It is

therefore reasonable to set wp = w̄p here as well. The fourth case is an extension of the

second one. It includes also the regional trains. When the regional trains are taken into

account, the number of changing activities grows enormously, because much more trains

depart at each station during a given time interval. As the regional trains also stop at
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smaller stations, there are many OD pairs for which the average number of passengers

is small. We therefore create two cases: one with the average passenger figures, and

one with a possible realization of the passenger figures. For the former, we again set

wp = w̄p. For the latter, let w̄p be the average number of passengers for OD pair p.

Denote fp = w̄p − w̄p� for the fractional part of w̄p. For each OD pair p, we determine

the number of passengers as

wp =

{
w̄p�+ 1 with probability fp,

w̄p� otherwise.

Note that the expected number of passengers now equals w̄p. Finally, the sixth case

considers all trains between all stations in the picture. To overcome the enormous amount

of possible OD pairs, we also consider a realization of the passenger figures in this case.

Note that Figure 2.1 shows only a part of the railway network in the Netherlands.

The timetable and the passenger figures are obtained from Netherlands Railways. For

the first case, only a delay for the train from Zwolle to Amersfoort is interesting, because

otherwise no connections are violated. This delay can take values between 0 and 30

minutes. For all other cases, we have generated 100 delay scenarios. In each scenario,

each arrival event has a probability of 10% to be delayed. If a train is delayed, the size of

this delay is a uniformly distributed integer number between 1 and 15 minutes.

In Table 2.1, we present some information about the cases and sizes of the resulting event-

activity networks. The second column gives the number of OD pairs that are included.

Recall that an OD pair p ∈ P is characterized by its origin and destination station and

start time. If it is possible to travel from one station to another at several times, these

possibilities correspond to multiple OD pairs. To each OD pair p ∈ P , we associate a

passenger figure wp. The third column gives the total number of passengers that are

considered in each case. The number of passengers is scaled for secrecy and does not

represent the true number of passengers that travel in the given time period. For both

the number of OD pairs and number of passengers, we have reported the total number and

the percentage that need a transfer. The fourth column indicates the number of trains.

If a train runs from station A to B and continues from station B to station C, and so

on, these trips are counted as one train. Finally, the last columns present the dimensions

of the corresponding event-activity networks and the number of binary variables in the

resulting integer program.

Comparing Cases II and IV, we see that the number of trains is doubled, while the number

of changing activities in the event-activity network is 10 times as large. We also observe

that there are far more departure and arrival events, as the regional trains stop more often
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Size of the event-activity network Binary
Case OD pairs Passengers Trains |Edep| |Aop| |Ach| |Aorg| |Adest| Variables
I 111 (15%) 23 (2.3%) 7 28 49 10 131 135 507
II 355 (36%) 147 (12%) 117 219 321 1074 662 705 6219
III 914 (55%) 345 (21%) 168 349 530 1723 1842 2041 21255
IV 3940 (65%) 261 (12%) 284 1022 1760 8068 13832 14665 461494
V 908 (28%) 289 (12%) 284 1022 1760 8068 2342 2548 46533
VI 2875 (39%) 775 (17%) 404 2053 3702 13812 7732 8110 147775

Table 2.1: The cases investigated: For each case, the number of OD pairs, number

of passengers, and number of trains are presented. Furthermore, the size of the event-

activity network that models each case is given. Note that |Earr| = |Edep| and that Aop =

Adrive ∪ Await.

Objective Delayed Dropped Delayed Delayed
Case Value events connections OD pairs passengers
I 30462 2.7 1.9 11.4 % 9.0 %
II 169464 41.7 18.1 22.5 % 16.0 %
III 514325 65.4 25.3 24.7 % 21.4%
IV 527543 339.6 192.6 45.7 % 27.5%
V 5584 390.7 209.2 36.9 % 26.4 %
VI 18428 842.2 358.8 42.7 % 33.1 %

Table 2.2: DMwRR: For each case, the objective value and the average number of delays,

dropped connections, and delayed trips and passengers are given.

than the long-distance trains. Similar effects can be observed when cases III and VI are

compared. Regarding the passengers’ data, we see that 65% of the OD pairs in Case IV

need a transfer, but that the percentage of passengers who transfer is only about 12%.

2.5.2 Computational results

We usedCPLEX 11.1 on an Intel Xeon Quad PC (3.0 GHz) with 3 GB of memory to solve

the mathematical models presented in Section 2.3. Table 2.2 reports the characteristics

of the optimal solutions for all cases. Each entry in the table is the average value over all

delay scenarios. The second column gives the average objective value. Then, the number

of events with a delay and the number of dropped connections are reported. The next

columns give the percentage of OD pairs and percentage of passengers who have a delay.
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Case II III IV V VI
tp ≥ SPp 0.3 2.0 741 28.8 161
tp ≥ fp 0.1 0.8 606 22.2 150

Table 2.3: The average running times for different lower bounds on the arrival times tp.

The running times include the time needed to obtain the bound.

The first case can be solved within one second. It turns out that the optimal routes for the

passengers are very sensitive to the delays of the trains. At Amersfoort, the intercity to

Amsterdam waits at most one minute for the delayed train from Zwolle. If the train from

Zwolle arrives later, passengers should travel via Utrecht and transfer there. However, if

the connection in Utrecht cannot be made, the passengers should transfer in Amersfoort

to the regional train in the direction of Amsterdam.

The arrival times of the passengers for an OD pair p ∈ P are bounded from below by

SPp, as passengers cannot arrive earlier than planned. As explained in Lemma 2.5, the

polynomial algorithm for one OD pair p ∈ P can be used to find a better lower bound on

the arrival time tp. For all cases except the first one, we have evaluated the effect on the

computation time of adding the inequality tp ≥ fp for every p ∈ P to the integer program.

As can be seen in Table 2.3, the average running time for all cases is reduced. For the

largest case, the improvement is about 20%. We conclude that applying the polynomial

algorithm to obtain better bounds on the arrival times improves the solution process.

The second and third cases can be solved within one second. With the bound from the

polynomial algorithm, solving the fourth case takes, on average, 10 minutes. For the real-

time setting that we consider, such computation times are acceptable. If we consider a

realization of the passenger demand instead of the averages over several days, computation

time are less than one minute. The last case can then be solved within three minutes.

These computation times are fast enough for practical application.

2.5.3 The impact of passenger rerouting

To evaluate the effect of taking rerouting into account explicitly, we have compared the

performance of our model to a no-wait (NW) policy and to the classical model without

rerouting from Schöbel (2007). In a NW policy, all trains depart as early as possible. The

timetable is then determined by the operational constraints only. The classical model

assumes that a passenger who misses a connection will have a delay of one cycle time. We

denote this model by DM. For both NW and DM, we have implemented the model only to

decide which connections to maintain. Given these wait-depart decisions, the passengers
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Objective Value Dropped connections
Case NW DM DMwRR NW DM DMwRR NW DM DMwRR
I 31217 31889 30462 100 % 102.2 % 97.6 % 2.2 1.7 1.9
II 177053 167873 165110 100 % 94.8 % 93.3 % 26.1 22.4 18.8
III 540393 510427 495111 100 % 94.5 % 91.6 % 39.4 30.2 26.7
IV 558667 544978 512885 100 % 97.5 % 91.8 % 244.7 219.4 192.6
V 6068 5902 5568 100 % 97.3 % 91.7 % 244.7 242.5 209.3
VI 20735 19950 18343 100 % 96.2 % 88.5 % 472.4 415.0 359.4

Table 2.4: Comparison of different models. Model NW implements a no-wait policy.

Model DM is the classical DM model. Model DMwRR is our model, which includes

rerouting. In all three models, passengers are allowed to take the best-possible path (i.e.,

to reroute) after the wait-depart decisions have been made.

are then rerouted to compute their actual delay. In this way, a fair comparison can be

made between the policies.

As we consider a time period in the late evening, some passengers miss their connection to

the last train if rerouting is not included in the optimization of the wait-depart decisions.

It is impossible for these passengers to arrive at their destination. Our model, that takes

rerouting into account during the optimization of the wait-depart decisions, finds a route

for all passengers explicitly. This ensures that all passengers can arrive at their destination,

which is a clear advantage of taking rerouting into account. It is hard to assign a specific

delay to the passengers for which no route is found. To be able to compare the delay in

the three models, we therefore excluded these passengers from our data. To do so, we

first evaluated the NW policy. Then, we determined which passengers could not arrive at

their destination and removed them from our input.

Table 2.4 reports the characteristics of the solutions for the cases without the excluded

passengers. For each case, we report the average objective value and number of missed

connections.

For the first case, even the NW policy performs better than the classical model. Note that

this case is specifically selected to explain why rerouting should be taken into account, so

it could be expected that the classical model without explicit rerouting does not perform

well on this case. The model with rerouting gives the best solution. On average, over

all scenarios for the first case, the delay is reduced by 4.5% with respect to the classical

model and by 2.4% with respect to a NW policy.

For all other cases, the NW policy performs worst. In the second and third cases, taking

rerouting into account reduces the delay by about 8% with respect to a NW policy and by
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about 2% in comparison to the classical DM model. For the larger cases that include the

regional trains, we find even larger improvements. The delay is reduced by about 7% with

respect to the classical DM model, and by 10% in comparison to a NW policy. The better

performance is a consequence of considering also the regional trains. The regional trains

give many passengers an alternative route when a connection is missed. This explains

why rerouting passengers gives larger improvements for these cases.

2.6 Conclusion and Further Research

In this chapter, we introduced a model that allows to react to delayed trains not only by

wait-depart decisions for the following trains but also by rerouting of passengers. For this

purpose, we introduced the origin and destination of the passengers as events in the event-

activity network used in DM and connected the wait-depart decisions to a shortest-path

problem in the resulting network. We proved that this problem is NP-hard. Furthermore,

we developed an integer programming formulation for the DM problem with rerouting.

This novel formulation was tested on real-world instances of Netherlands Railways. We

showed that improvements of 2%-8% can be obtained by incorporating the rerouting

aspect in the model. Furthermore, our model ensures that all passengers can reach their

destination.

We propose two directions of further research on DMwRR. First, further special cases

of the problem should be considered. For these special cases, faster solution procedures

can be developed. For example, if the event-activity network has a special structure, this

structure can be exploited to solve the DM problem more efficiently. The methods to

solve these easier problems can be used in heuristics to solve large-scale DM problems in

a short time. Second, decomposing methods could be developed that split the problem in

the wait-depart decisions on one hand and the rerouting of the passengers on the other.

Heuristics of this type are studied in Chapter 3.

In practice, the limited capacity of the infrastructure has a large impact on the real-

time performance of a railway operator. Therefore, capacity constraints should also be

integrated in the DMmodel with rerouting that we presented in this chapter. The capacity

of the stations is considered in Chapters 4 and 5.





Chapter 3

Fast Heuristics for Delay

Management with Passenger

Rerouting

3.1 Introduction

Most regular train passengers will recognize the frustration of missing a connecting train

when their feeder train arrives at the transfer station with a small delay. In low-frequency

railway systems, missing a connection can have a severe impact on the travel time of

the passengers, even if the delay of the incoming train is only small. In such cases, it

might be better to delay the connecting train slightly. By delaying the connecting train,

passengers from the delayed train are able to transfer to the connecting train and do not

have to wait for the next train. A train waiting for passengers from a delayed feeder

train reduces the punctuality, which is the main performance indicator for most railway

operators. However, it improves the reliability of the system as a whole and thereby

increases passenger satisfaction. Netherlands Railways, the largest passenger operator in

the Netherlands, endorses the importance of the reliability of the railway system and has

recently introduced the passenger punctuality as a performance indicator. The passenger

punctuality measures the ratio of passengers who arrive at their destination with a delay

smaller than a certain threshold value.

In railway operations management, determining which connections to maintain in case of

a delayed feeder train is the subject of delay management. Delay management thus decides

which trains should wait for a delayed feeder train and which trains should depart on time.

The aim is to minimize the total delay for the passengers. Deciding on the wait-depart
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decisions is a complex problem: If a train waits for a delayed feeder train, passengers in

that train will arrive with a delay at the next station, where subsequent transfers take

place. This shows that the effects of the wait-depart decisions propagate throughout the

entire railway network. Therefore, when solving the delay management problem, the en-

tire railway network should be considered at once. Nevertheless, the current practice at

most railway operators is to apply simple rules of thumb to determine which trains should

wait. As an example, Netherlands Railways applies a so-called Waiting Time Rule. For

each connection, a threshold is determined. If the delay of the incoming train is smaller

than the threshold, the connecting train waits. Otherwise, the train departs on time.

Kliewer and Suhl (2011) evaluate a wide range of such simple dispatching rules.

In this thesis, we consider off-line delay management. In the off-line delay management

problem, all primary delays in the system are known before the optimization process

starts. Off-line delay management is useful when delays can be predicted, for example

when construction works restrict the maximal speed of the trains. Furthermore, when a

set of primary delays is known in the system, the secondary delays can be determined eas-

ily. Off-line delay management can then propose how to react to these secondary delays.

Finally, solution methods for off-line delay management can be applied to solve on-line

problems in a real-time setting. This application requires solution methods that solve

the off-line delay management within a short computation time. The delay management

problem that we consider is: Given a set of source delays in a railway system, determine a

disposition timetable with a new set of maintained connections, such that the total delay

of the passengers is minimized.

A crucial aspect in delay management is to determine the delay for the passengers. To

evaluate the delay for passengers who miss a connection, one has to determine how pas-

sengers react if a connecting train is missed. Early delay management models assume that

such passengers wait for the next train on the same line (Schöbel, 2001). The delay can

then be approximated by the cycle time of the timetable. This approximation is correct if

the never-meet-property holds (Schöbel, 2007). However, in dense railway networks such

as the Dutch, this property is mostly not respected. Gatto et al. (2005) show that the

general delay management problem is NP-hard, even under the assumption that passen-

gers wait a complete cycle time. To overcome the difficulty of computing the delay in the

case of missed connections, Ginkel and Schöbel (2007) consider the delay management

problem as a bi-criteria problem, and optimize the delay of the trains and the number of

missed connections simultaneously.

The delay management models mentioned so far ignore the limited infrastructure capacity

of the railway system: The limited number of tracks and platforms are not taken into
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account. In order to obtain solutions to the delay management problem that are feasible

in practice, one should consider the infrastructure capacity explicitly. A first approach

to take the limited capacity of the tracks into account is presented in Schöbel (2009).

Computational tests and heuristics are described in Schachtebeck and Schöbel (2010). In

Chapter 4, the limited capacity of the stations is taken into account. Another line of

research originates from the conflict detection and resolution literature (D’Ariano et al.,

2008), which takes a microscopic view of the railway network to find conflict-free dispo-

sition timetables. In Corman et al. (2010b), this microscopic view is applied to minimize

the train delay and number of missed connection simultaneously.

Another extension to the classical delay management problem concerns the computation

of the delay for passengers who miss a connection. In Chapter 2, we compute this delay

more realistically: It is assumed that passengers who miss a connection will take the

fastest alternative route to their destinations. To do so, we included the routing deci-

sions of the passengers in the integer programming formulation from Schöbel (2007). In

this way, a route is determined for all passengers explicitly. In an experimental study,

it is shown that determining the routing decisions already during the optimization of

the wait-depart decisions reduces the delay for the passengers significantly. However, for

large-scale real-world instances, the integer programs become too large to be solved by

standard integer programming techniques.

In this chapter, we propose several heuristic solution approaches for the delay manage-

ment problem that incorporate the routes of the passengers. Our aim is to find solution

methods that balance the computation time on one hand and the quality of the solution on

the other hand. We will compare the heuristic solutions to the ones obtained by the exact

algorithm for the delay management problem with passenger rerouting and to solutions

that are obtained by simple dispatching rules. We will show that a solution can be found

for large-scale real-world instances in a reasonable amount of time without compromising

the solution quality too much.

The remainder of this chapter is organized as follows. In Section 3.2, we describe the delay

management model and review the integer programming formulation for delay manage-

ment with passenger rerouting. Section 3.3 introduces the heuristic solution methods

that we consider. In Section 3.4 we describe our experimental setup and compare the

various solution methods. Finally, in Section 3.5 we draw some conclusions and discuss

possibilities for further research.
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3.2 Delay Management Model

We will now first describe our delay management model formally and then present an

integer programming formulation. The integer programming formulation will be used

as a benchmark for our heuristic methods and will serve as the basis for some of the

heuristics.

Most approaches model the off-line delay management problem with an event-activity

network N = (E ,A). In this directed graph, the events are the departures and arrivals of

the trains, that need to be scheduled. We denote the set of arrival and departure events

as Edep and Earr, respectively. The events are connected by activities, that represent

constraints on the times when these events take place. For example, a waiting activity

makes sure that the departure of a train from a station takes place after its arrival there.

Driving activities ensure that a minimal driving time between the departure of a train

from a station and its arrival at the next station is respected. We denote the waiting

and driving activities by Await and Adrive, respectively. The transfers from one train to

another are represented by activities that can be removed from the network and denoted

by Achange. Only transfers that are maintained pose restrictions on the departure times

of the connecting trains. For each activity a ∈ A = Await∪Adrive∪Achange, we denote the

minimal time required for that activity by La.

The passenger data is represented as a set P of origin-destination pairs (OD-pairs). Each

OD-pair p ∈ P represents a group of wp passengers that want to travel from an origin

to a destination at a given time. To determine a route for the passengers explicitly,

we solve a shortest-path problem in the event-activity network N . In order to do this,

we introduce for each OD-pair an artificial source and sink node in the network. These

nodes are referred to as origin and destination events, respectively, and denoted by Org(p)

and Dest(p). The source and sink nodes are connected to the regular events by origin

and destination arcs. The origin arcs connect the source Org(p) for an OD-pair p to all

departure events e ∈ Edep that correspond to a departure from the origin station of p after

the time when the passengers in p start their journey. Aorigin denotes the set of all origin

arcs. Similarly, all arrival events at the destination station of OD-pair p are connected to

the sink node. Adestination denotes the set of destination arcs.

Note that the arcs a ∈ Await ∪ Adrive ∪ Achange can be used by any OD-pair p. On the

contrary, an origin arc a = (Org(p), e) ∈ Aorigin can only be used by OD-pair p ∈ P . To

ease the notation later on, we denote the set of activities that can be used by an OD-pair

p ∈ P by

A(p) = Await ∪ Adrive ∪ Achange ∪ δout(Org(p)) ∪ δin(Dest(p)).
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We assume that the original timetable and a set of delays is given. For each event

e ∈ E = Edep∪Earr, the time when event e is planned is denoted by πe. The delay at event

e is denoted by de. Note that de = 0 for events e ∈ E that are not delayed.

For each changing activity a ∈ Achange, we now determine whether the corresponding

transfer is maintained. In order to do so, we introduce for each a ∈ Achange a binary

decision variable

za =

{
1 if connection a is maintained,

0 otherwise.

For each event e ∈ E , we determine a new time xe when event e takes place. The values

xe together determine the disposition timetable. Furthermore, for each OD-pair p ∈ P ,

we determine which trains the passengers in that OD-pair take. This corresponds to

determining a path in the event-activity network for each OD-pair. To model this, we

introduce for each OD-pair p ∈ P and each activity a ∈ A(p) a binary decision variable

qap =

{
1 if OD-pair p uses activity a,

0 otherwise.

Finally, for each OD-pair p ∈ P , we introduce an auxiliary variable tp that represents the

arrival time for passengers in OD-pair p. The integer programming formulation for delay

management with passenger rerouting reads as follows (see Chapter 2 for more details).

min
∑
p∈P

wptp (3.1)
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such that

xe ≥ πe + de, ∀e ∈ E , (3.2)

xe ≥ xe′ + La, ∀a = (e′, e) ∈ Await ∪ Adrive, (3.3)

M(1− za) + xe ≥ xe′ + La, ∀a = (e′, e) ∈ Achange, (3.4)

qap ≤ za, ∀p ∈ P , a ∈ Achange, (3.5)

1 =
∑

a∈δout(Org(p))

qap, ∀p ∈ P , (3.6)

∑
a∈δin(e)∩A(p)

qap =
∑

a∈δout(e)∩A(p)

qap, ∀p ∈ P , e ∈ E , (3.7)

∑
a∈δin(Dest(p))

qap = 1, ∀p ∈ P , (3.8)

tp ≥ xe −M(1− qap), ∀a = (e,Dest(p)) ∈ Adestination, (3.9)

xe ∈ N, ∀e ∈ E , (3.10)

za ∈ {0, 1}, ∀a ∈ Achange, (3.11)

qap ∈ {0, 1}, ∀p ∈ P , a ∈ A(p) (3.12)

tp ∈ N, ∀p ∈ P . (3.13)

The objective function (3.1) minimizes the weighted sum of realized arrival times. As

the planned arrival times are fixed, this is equivalent to minimizing the weighted sum of

delays. Constraints (3.2) make sure that no event e takes place earlier than planned and

that the source delays are taken into account. (3.3) propagate delays along waiting and

driving activities a, while (3.4) propagate them along maintained changing activities a.

Constraints (3.5) state that passengers of OD-pair p can only use a changing activity a if

the corresponding transfer is maintained. Equations (3.6)-(3.8) formulate a shortest-path

problem for each OD-pair p. Finally, Constraints (3.9) compute the arrival times of the

passengers. The constant M in (3.4) and (3.9) is a sufficiently large number. In Chapter

2, we propose a finite value for M that is large enough.

3.3 Heuristic solution approaches

In this section we will describe several heuristic methods to solve the delay management

problem. Recall from Section 3.1 that the delay management problem asks for wait-

depart decisions, a disposition timetable and new routes for the passengers. At this stage

we should note that if the wait-depart decisions are given, finding the optimal timetable
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and routes is trivial. The disposition timetable can be found by the critical path method

(Schöbel, 2007), while the routes for the passengers can be found by solving a shortest-path

problem in the event-activity network. This implies that every method that determines

the wait-depart decisions can be used as a heuristic.

An easy policy to implement in practice is not to consider the connections at all. In

that case, delays are propagated through the network only by the driving and waiting

activities. As a consequence, all trains depart as early as possible. We call this heuristic a

no-wait policy (NW). We will use this heuristic as a benchmark for all the methods that

we develop next.

3.3.1 Simple dispatching rules

In the current operations, railway traffic controllers usually apply simple dispatching rules

to determine whether or not to maintain a connection. In Kliewer and Suhl (2011), a large

set of such dispatching rules is compared. We have implemented two rules to compare

our heuristic solutions to. The first one, the Waiting Time Rule (WTR), corresponds to

the current practice at Netherlands Railways.

Under a WTR policy, a maximal waiting time is determined for each connection. This

maximal waiting time can be differentiated for different types of connections or even

for each connection individually. However, we will assume a constant time dmax for all

connections for simplicity. Let now a changing activity a = (e, e′) ∈ Achange be given and

assume that the arrival event e is delayed. It is easy to determine the time that event e′

has to be delayed in order to maintain the connection. Denoting this delay to maintain

connection a by da, it holds that

da = πe + de + La − πe′ .

A connection a is maintained if da ≤ dmax and dropped otherwise. We have experimented

with different values of dmax. Note that dmax = 0 corresponds to a no-wait policy.

The drawback of the previous dispatching rule is that it does not take into account the

number of transferring passengers. To improve the solutions, the second rule that we

consider is the Ratio of Transferring Passengers (RTP). For each connection, first the

number of passengers who use a connection is determined. This number is then compared

to the number of passengers that have planned to take the connecting train. For a
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connection a = (e′, e) ∈ Achange, we thus compute the following ratio

ρa =
Number of passengers that planned to use connection a

Number of passengers that planned to use driving activity (e, f)
.

Note that for each departure event e, there is exactly one driving activity (e, f) ∈ Adrive.

If the ratio of these numbers is larger than a certain threshold ρmin, i.e., ρa ≥ ρmin, then

connection a is maintained. Again, for values ρmin larger than 1, we obtain the no-wait

policy.

3.3.2 The classical model as a heuristic

The next heuristic method applies the delay management model from Schöbel (2007).

Recall from the introduction that this model assumes that passengers wait for a complete

cycle time when they miss their connection. As input, the model needs the number of

passengers we that plan to end their journey at event e ∈ Earr and the number of passengers

a ∈ wa that use a connection a ∈ Achange. Given the set of OD-pairs P , these numbers

can be computed as

we =
∑

p∈P(e)

wp, wa =
∑

p∈P(a)

wp,

where P(e) denotes the set of OD-pairs that planned to arrive at their destination with

event e and P(a) denote that set of OD-pairs that planned to use a connection a ∈

Achange. Denoting T for the cycle time of the timetable, the delay for the passengers is

approximated by ∑
e∈Earr

∑
p∈P(e)

wpxe +
∑

a∈Achange

∑
p∈P(a)

wpT (1− za). (3.14)

An integer programming formulation for the classical model is now given by the objective

function (3.14) together with the constraints (3.2)-(3.4) and (3.10)-(3.11). Note that

passengers who miss a connection are counted twice in the above objective function:

Both the train they planned to arrive with is included in the first term, and the transfer

that they missed is included in the second term. The model is correct if the so-called

never-meet-property holds (Schöbel, 2007), but for dense railway networks as the one in

the Netherlands, this property is often not satisfied.

The classical model assumes that passengers who miss a connection have to wait for one

cycle time T , and therefore adds a penalty T to the objective function for every connection

that is dropped. Instead of assuming that passengers wait for one cycle time, we can also

assume that there is an estimate D of the additional delay for passengers who miss a

connection, and add this estimate as a penalty to the objective function for every missed
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connection. The objective function then becomes

∑
e∈Earr

∑
p∈P(e)

wpxe +
∑

a∈Achange

∑
p∈P(a)

wpD(1− za).

We now view the estimate D as a parameter and find the best value D∗ by enumeration.

Note that the classical model gives both the wait-depart decisions and the disposition

timetable. Given the disposition timetable, it is easy to determine the fastest path for

each OD-pair p ∈ P in order to evaluate the total delay.

3.3.3 An iterative heuristic

The previous set of heuristics assumes a fixed estimate D for the additional delay: This

delay is equal for all OD-pairs. We will now relax this assumption, and allow for an

estimate Dp that differs among the OD-pairs p ∈ P . Given a set of values Dp, we can

solve the classical delay management model with objective function

∑
e∈Earr

∑
p∈P(e)

wpxe +
∑

a∈Achange

∑
p∈P(a)

wpDp(1− za).

We will find the best value for Dp with an iterative approach. Given the values Dp,

we can solve the classical delay management model. With the wait-depart decisions and

disposition timetable that we then obtain, we can determine new routes for the passengers.

If we find an OD-pair that misses a connection, we can compute the actual delay for this

OD-pair, and use this to update the estimate Dp. This process can be repeated until the

best values Dp are found. A more formal outline of the iterative algorithm is given below.

1. Initialize: Set Dp = 0 for all p ∈ P .

2. Repeat until convergence or until a maximum number of iterations has been reached:

(a) Solve the classical delay management model with the current values Dp.

(b) Compute the fastest routes for the passengers. This gives the additional delay

dp for an OD-pair p that misses a connection.

(c) Update the values Dp for all passengers who miss a connection:

Dp = dp − xe,

where e is the arrival event that OD-pair p planned to arrive with.
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Figure 3.1: The railway network that is considered in the numerical experiments

In the initialization step, all values Dp are set to 0. This means that passengers are not

delayed if they miss a connection. In particular, the first solution of the classical delay

management model will drop all connections and the timetable that we then find will

equal that of a no-wait policy. For the passengers in an OD-pair p ∈ P who miss a

connection in this no-wait policy, the value Dp will be updated in Step 2c. Recall that an

OD-pair p is counted twice in the objective function. Dp should therefore be an estimate

of the additional delay of OD-pair p ∈ P . This explains the term xe in the update of the

estimates in the final step. In the subsequent iterations, the classical model will find a

balance between this additional delay for OD-pair p and the delay that is obtained when

the connection is maintained.

3.4 Numerical experiments

We have performed an experimental study to compare the performance of the heuristics

that are described in the previous section. We will now first describe our experimental

setup and then discuss the results.

3.4.1 Cases

We obtained detailed passenger data from Netherlands Railways, the largest passenger

operator in the Netherlands. We have created six real-world instances of varying size to

determine how the solution time and solution quality depend on the size of the networks

and on the number of passengers. Five of these instances are also used in Chapter 21.

In Figure 3.1, the railway network that we consider is depicted. The graph represents

part of the Dutch railway network in the mid-Western part of the country. It contains

1Five of these instances were also used in Chapter 2, but given a different number. Below you find
between brackets the corresponding case in Chapter 2 I(II), II(IV), III(V), IV(III), V(-), VI(VI).
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a node for each transfer station in the network. Two nodes are connected by an edge if

there is a train service between the stations. On most links, both a long distance and a

regional train service is operated, typically with a frequency of two trains per hour. Note

that there can be many smaller stations on a link, that are serviced by the regional trains

only.

All cases consider a period of four hours in the evening. In the first three cases, we

consider all stations indicated by a black dot in this figure. The first case includes all

long distance trains. As passenger weights, we consider for each OD-pair the average

number of passengers. The second and third case consider both the long distance and the

regional trains on this network. In the second case, we again take the average number of

passengers as the weights. Recall however that the regional trains stop at all stations in

the network. As a consequence, the number of OD-pairs is much larger than in the first

case. For many of them, the average number of passengers is relatively small. In order

to deal with this enormous amount of OD-pairs, in the third case we consider a possible

realization of passenger figures for one day. The realization is constructed in such a way

that the expectation of the passenger figures equals the average. We refer to the previous

chapter for more details on the process of generating the realizations of the passenger

figures.

The remaining three cases consider the entire network in Figure 3.1. The fourth case

includes only the long distance trains. The fifth case considers also the regional trains.

Both cases use the average passenger figures as weights. Finally, the sixth case considers

all trains on the network, but considers a possible realization of the passenger demand.

In Table 3.1, some characteristics of the cases are given. For each case, we list the number

of stations, the number of trains, the number of OD-pairs, the number of passengers, and

the number of departures and transfers in the event-activity network. The number of

passengers has been scaled for secrecy and does not represent the true numer of passen-

gers. In the columns with the number of passengers and the number of OD-pairs, we have

indicated in brackets the percentage of passengers that have to transfer during their trip.

It can be seen that the percentage of passengers that transfer is much smaller than the

percentage of OD-pairs with a transfer. This implies that the passenger weights wp are

much larger for OD-pairs p ∈ P that need no transfer.

To evaluate the heuristic methods, we have simulated 100 delay scenarios for each case.

The scenarios are constructed as follows. First, each arrival has a probability of 10% to be

delayed. Second, if a train is delayed, its delay is a uniformly distributed number between

1 and 15 minutes.
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Case Stations Trains OD-pairs Passengers Departures Transfers
I 10 117 355 (36%) 147 (12%) 219 1074
II 34 284 3940 (65%) 261 (12%) 1022 8068
III 34 284 908 (28%) 289 (12%) 1022 8068
IV 16 168 914 (55%) 345 (21%) 349 1723
V 82 404 22256 (81%) 705 (17%) 2053 13812
VI 82 404 2875 (39%) 775 (17%) 2053 13812

Table 3.1: Some characteristics of the instances

dmax I II III IV V VI
0 177053 558667 6068 540393 1917679 20736
1 175178 551059 5992 531780 1877530 20293
2 174863 554903 6033 526938 1869495 20206
3 178453 574323 6246 527224 1903082 20578
4 182580 612444 6662 533188 1986597 21501
5 189927 670575 7298 543174 2119217 22969

Table 3.2: The results of the Waiting Time Rule for the first three cases. For each case,

the best result is underlined.

3.4.2 Dispatching rules

Our first heuristics apply simple dispatching rules to find the wait-depart decisions. These

heuristics maintain a connection if a property of this connection exceeds a certain thresh-

old value. We will now show how to find the best values for these threshold values.

Waiting Time Rule

The Waiting Time Rule (WTR) maintains a connection if the connecting train has to

wait at most dmax minutes. To find the best value for the threshold parameter dmax, we

have evaluated the heuristics for values ranging from 0 to 5 minutes. In Table 3.2, the

results are presented. The first column in this table gives the value of the parameter dmax.

Then, the average objective value is given for each of the cases. Recall that for dmax = 0,

WTR corresponds to a no-wait policy. For the first three cases, with a value dmax > 2 for

the threshold, the WTR heuristic performs worse than the no-wait policy. It turns out

that allowing all connecting trains to wait for more than 2 minutes for a delayed feeder

train gives a bad policy. For Cases IV and for Cases V and VI, WTR performs worse

than the no-wait policy if dmax ≥ 5 and dmax ≥ 4, respectively. In all cases, the WTR

performs better than a no-wait policy for dmax ∈ {1, 2}: The delay is reduced on average
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Figure 3.2: The results of the Waiting Time Rule

by 1.9%. For the second and third case, the best results are found for dmax = 1. For all

other cases, dmax = 2 gives the best performance.

For easier comparison of the results among the cases, we have normalized the objective

value and plotted these relative objective values in Figure 3.2. The objective value for the

no-wait policy is set to 100 percent. For values of dmax > 0, we have computed the delay

relative to the no-wait policy. One immediately notices that the behavior of the policy is

very similar for Cases II and III, and for Cases V and VI. Recall that these cases consider

the same railway system, and differ only in the OD-pairs that are considered. It follows

from this graph that a small subset of OD-pairs can be used to evaluate the performance

of the heuristic for the case that includes all OD-pairs.

Ratio of Transferring Passengers

The Ratio of Transferring Passengers (RTP) heuristic computes the ratio of the number

of passengers who plan to use a connection and the number of passengers who plan to

use the connecting train. If this ratio exceeds a given threshold ρmin, the connection is

maintained; otherwise it is dropped. We experimented with values of ρmin between 0 and

100 percent. Note that we obtain a no-wait policy if ρmin > 100%. In order to compare
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Figure 3.3: Results for the Ratio of Transferring Passengers rule

the results to the no-wait policy, we therefore also applied the heuristic with ρmin = 110%.

In Figure 3.3, the results of the RTP heuristic are presented for all cases. From the graph

we see that with the best value for the parameter ρmin, the RTP dispatching rule performs

about 4% better than the no-wait policy. Contrary to the WTR rule, the best value for

the parameter ρmin differs among the cases. For Cases I and IV, that consider only the

long distance trains, the best value is found at 30% and 20%, respectively. For the other

cases, that include also the regional trains, the best heuristics are found with ρmin equal

to 40% or 50%. We conclude that if both long distance and regional trains are considered,

the optimal ratio ρmin should be higher. In order to explain this, recall that the regional

trains stop at all stations along the railway line. Consider a transfer at a large station

to a regional train that then travels in the direction of another large stations and stops

at some smaller stations along the way. Many passengers will enter the regional train

in one of the smaller stations and travel towards the larger station. When we determine

whether to maintain the connection at the transfer station or not, these passengers are

not considered, as they will enter the train at a later time. However, if the connection is

maintained, they will be delayed. The RTP heuristic then underestimates the delay that

arises if the connection is maintained. Choosing a higher value for ρmin makes up for this

underestimation.
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Figure 3.4: The results for the heuristic that applies the classical model

With the optimal value for the parameter, the RTP rule reduces the delay roughly by 4%.

Comparing the RTP rule to the WTR rule, we see that the performance of the RTP rule

is much better. It thus pays off to compare the number of passengers that want to use a

connection to the number of passengers that are delayed if the connecting train waits.

3.4.3 Classical Delay Management

Our second set of heuristics applies the classical delay management model, but views the

penalty D in the objective function as a parameter. In the original model, this parameter

was set to T , the cycle time of the timetable. If we set D = 0, the heuristic equals the

no-wait policy. That allows us again to normalize the objective value, in order to be able

to compare the results among the cases. We have experimented with values for D ranging

from 0 to 60 minutes. Note that T = 60 minutes in our timetable.

In Figure 3.4, the results for all cases are presented. To find the best value for the

parameter D, we have evaluated the heuristic for more values around D = 20. For all

cases, we found that 18 ≤ D∗ ≤ 21. Furthermore, the differences in objective value are

very small among these values. We conclude that the additional delay for passengers that

miss a connection is about 20 minutes. The performance of the heuristic with the best
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I II III IV V VI
Instances that did not convergence 0 0 1 0 1 0

Average number of iterations 2.23 3.48 3.09 2.78 3.90 4.24

Table 3.3: The number of instances for which the iterative heuristic did not converge

and the average number of iterations

value for the parameter D is much better for the last three cases. For the smaller network,

the quality of the solutions is 6% better than a no-wait policy. For the larger network,

the objective values are reduced by 9%.

Considering the shape of the graph for each case individually, one sees that the graph

for Cases I and IV is very flat at the end. If the value of D is increased, this does not

give objective values that are much worse. On the contrary, for the other cases the ob-

jective value increases if the value of the parameter is increased. Furthermore, we again

see that the results are very similar for Cases II and III, and for Cases V and VI. This

suggests that one can use a small set of OD-pairs to find the best value of the parameterD.

3.4.4 Iterative heuristic

Our final heuristics applies the classical delay management model in an iterative fashion.

Contrary to the previous heuristic, it uses a parameterDp that differs among the OD-pairs

p ∈ P . In each iteration, the heuristic first solves the classical model and then reroutes the

passengers. It stops when the method converges or when the maximal number of iterations

has been reached. In Table 3.3, we present the number of iterations that the heuristic

needs. The first row gives the number of instances that did not converge. The second row

gives the average number of iterations among the instances that did converge. We see

in the table that the heuristic converges for almost all instances. Only in Cases III and

V, there is one instance that does not converge. For these instances, the heuristic cycles

between two solutions, that have almost identical objective values. In both instances,

there is one OD-pair that is rerouted in one solution, and takes the planned route in the

other. On the other instances, the iterative heuristic converges on average in less than

five iterations.
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I II III IV V VI
No-wait 177053 558667 6068 540393 1917679 20736
WTR 174863 551059 5992 526938 1869495 20206
RTP 169477 536135 5852 516173 1841761 19853

Classical 166601 518809 5638 498031 1731831 18692
Iterative 165610 515573 5600 496529 1720748 18534
Exact 165110 512878 5567 495111 - 18343
No-wait 100.0 100.0 100.0 100.0 100.0 100.0
WTR 98.8 98.6 98.7 97.5 97.5 97.4
RTP 95.7 96.0 96.4 95.5 96.0 95.7

Classical 94.1 92.9 92.9 92.2 90.3 90.1
Iterative 93.5 92.3 92.3 91.9 89.7 89.4
Exact 93.3 91.8 91.7 91.6 - 88.5

Table 3.4: The absolute and relative objective value for each heuristic

3.4.5 Comparison of the heuristics

In the previous sections we have shown how to find the best parameters for the simple

dispatching rules and for the heuristic based on the classical model. We will now compare

both the quality and the running time of the heuristics to each other and to the exact

approach. In Table 3.4, the best objective value is presented for each heuristic and for

each case. The upper rows contain the absolute objective values, the lower ones contain

relative objective values. Again, we used the no-wait policy to normalize the objective

values.

We see in the table that the simple dispatching rules give the worst results. Although

they are easy to implement, the quality of the solutions they produce is bad. Using the

classical model as a heuristic, by viewing the penalty D as a parameter, reduces the

delay on average by 8%. The iterative heuristic improves slightly over the classical model,

reducing the delay by an additional 0.5%. For the first five cases, the problem could

also be solved by the exact algorithm. Comparing the objective values obtained with

the iterative and exact algorithm for those cases, we see that the iterative heuristic finds

solutions that are close to optimal. The relative deviation is on average only 0.4%.

Our aim with the off-line delay management heuristics is to apply them in an algorithm

for the on-line delay management problem. As the on-line delay management problem

should be solved in a short computation time, we are also interested in the running times

for the different heuristics. For the heuristics that apply simple dispatching rules, the

running times are neglectable. For each case, the running time was so short that it could

not reliably be measured. We thus compare only the running times for the classical and
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I II III IV V VI
Classical 0.04 0.5 0.25 0.08 3 0.5
Iterative 0.05 1 0.3 0.11 6.1 1
Exact 0.48 357 10 1.4 - 62

Table 3.5: The average running times for the classical, iterative and exact algorithm, in

seconds

iterative heuristic and for the exact algorithm. In Table 3.5, these average running times

are reported.

The running times for the classical and iterative model are very short. Even the largest

case can be solved within seconds. For the larger cases, the classical heuristic is about

two times faster than the iterative heuristic. The exact algorithm needs much more

computation time. It takes on average almost six minutes to solve Case III. For the real-

time setting of delay management, such computation times are too long. The running

times of the classical and iterative heuristic allow a real-time application.

3.5 Conclusions

To evaluate the quality of any delay management policy, the routes that passengers choose

have to be taken into account. This rerouting aspect of delay management should be con-

sidered when solution methods for the delay management problem are developed. In this

chapter, we have constructed several heuristic methods to solve the off-line delay man-

agement problem. We have compared these heuristics among each other and to the exact

algorithm in an experimental study. In this study, it is shown that an iterative heuristic,

that solves the classical delay management model iteratively, leads to good solutions. On

average, the performance of the iterative algorithm is only 0.4% worse than the exact

algorithm. This decrease in quality is compensated by the running time of the method;

the iterative approach could solve all instances within seconds. We have also implemented

simple dispatching rules, that are currently used in practice. For example, the Waiting

Time Rule is applied at Netherlands Railways. In our numerical experiments, it is shown

that these dispatching rules do not perform well.

Our delay management model ignores the limited capacity of the railway infrastructure.

To obtain solutions that can be implemented in practice, these capacity considerations

should be incorporated in the delay management models with passenger rerouting. An

exact algorithm for delay management models that includes both passenger rerouting and
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capacity constraints might be too ambitious. However, any algorithm for the capacitated

delay management problem without rerouting can be applied in an iterative fashion to ob-

tain a heuristic for the capacitated delay management problem with passenger rerouting.

Our results on the uncapacitated delay management problem suggest that the total delay

for the passengers can then be reduced significantly. In the next chapters, we develop sev-

eral delay management models that incorporate the limited capacity of the infrastructure

inside the stations.





Chapter 4

Delay Management including

Capacities of Stations

4.1 Introduction and Motivation

Since the first integer programming formulation for delay management in 2001 (Schöbel,

2001), there has been a significant amount of research on extensions of the basic delay

management problem. Delay management deals with the question whether a train should

better wait for a delayed feeder train or depart on time (wait-depart decisions). The

goal is to minimize total (weighted) passenger delay. Because missing a connection is an

enormous frustration for railway passengers, delay management has also received much

attention from railway companies. Unfortunately, the models so far do not include sta-

tion capacities, which is a crucial aspect in practice, because station capacities are often

limited. The topic of this chapter is delay management with station capacities.

In most European countries, railway transport plays an important role. Many people

travel by train for distances between 20 and 800 kilometers, especially during peak hours

when there are many traffic jams on the highways. Passengers prefer a direct connection,

however it is impossible that there is a direct connection between all possible origin-

destination pairs. The Dutch line plan is constructed in such a way that most passengers

(about 75%) have a direct connection. In addition, the most important transfers are

cross-platform and have a short connection time. A typical example is station Amersfoort,

where trains from the North and East arrive at the same time, and continue towards the

directions of Utrecht and Schiphol Airport. Passengers in the train from Zwolle towards

Utrecht (see Figure 4.1) that have Amsterdam Central Station as their final destination,



72 Delay Management including Capacities of Stations

The Hague

Rotterdam

Schiphol

Utrecht

Amsterdam

Amersfoort
Apeldoorn

Amersfoort Schothorst

Zwolle

Figure 4.1: Part of the railway network in the Netherlands.

22 24 28 29 Time

Zwolle - Utrecht

Apeldoorn - Schiphol

Amersfoort Schothorst - Amsterdam

Figure 4.2: A schematic representation of the assignment of trains to platform tracks

at Amersfoort. The left track is depicted below the platform, the right track above it.

can change on the same platform, where their train to Amsterdam departs a few minutes

later.

We use this example to illustrate why station capacities should be taken into account in

a delay management model. In the regular timetable the trains from Zwolle to Utrecht

and from Apeldoorn to Schiphol Airport depart and arrive on the left and right side of

the same platform in Amersfoort (see Figure 4.2) at minute .22 and .24, respectively.

The train from Amersfoort Schothorst towards Amsterdam arrives on the left side of this

platform at minute .28 and leaves at .29. Now suppose that the train from Zwolle has a

delay of 10 minutes and that there are many transferring passengers towards Amsterdam.

• The optimal solution of a basic delay management model suggests that the train

towards Amsterdam waits for the transferring passengers from Zwolle. In addition,

it assumes that this train arrives on time in Amersfoort. However, if this train

would arrive on time and waits for the connecting train from Zwolle, this feeder

train could never arrive, because the platform track is blocked.
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• A possible strategy to obtain a feasible solution is to use the delay management

model only to obtain the wait-depart decisions, but take the regular order of the

trains. In that case, the train from Zwolle arrives at .32 with 10 minutes delay

and then departs at .34. Then, after this train has departed, the train towards

Amsterdam arrives at the same platform track. As a minimum headway time of 3

minutes is required between two trains using the same platform track, this means

that this train will never arrive before minute .37. As a consequence, the train to

Amsterdam will depart with a large delay.

• However, the right side of the platform is already empty for some time. If the

train towards Amsterdam is rescheduled to this platform track, it can wait for

the transferring passengers there. As the train from Zwolle arrives at .32 and two

minutes of minimal transfer time are required, the train towards Amsterdam can

leave at .34. This solution gives the minimum possible delay for the situation.

Of course, the real-time rescheduling of the platform assignment contains also some dis-

advantages. It requires additional work for dispatchers of the traffic control centers, and

it is annoying for the passengers, especially, if they have to move to another platform.

From this example, we can draw the following conclusions.

• The optimal solution value of basic delay management models provides a lower

bound on the optimal solution value of delay management with station capacities.

However, this solution can be infeasible in practice.

• Fixing the wait-depart decisions of an optimal delay management solution and fixing

the order of the trains leads to feasible solutions. These solutions are typically of

low quality: Passengers face very large delays in these solutions.

• When re-assigning platform tracks is allowed, this may result in less passenger de-

lays.

In this chapter, we incorporate station capacities in the delay management model. We

compare solutions with a fixed platform assignment to solutions in which we can re-assign

a platform track during the operations. The contributions of this chapter are as follows.

Firstly, we present a new integer programming formulation for the delay management

problem taking into account station capacity constraints. Secondly, we develop an it-

erative approach to solve this problem heuristically. Thirdly, we compare the optimal

solution of the new model and the solution of the iterative heuristic with methods based

on the traditional delay management model. Finally, we investigate the effect of flexibil-

ity in the platform assignment on the total passenger delay in several real-world problem
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instances of Netherlands Railways. Based on our findings, railway companies can make a

trade-off between changing platform tracks at the last moment versus the total passenger

delay.

The remainder of the chapter is structured as follows. Section 4.2 reviews the relevant

literature. In Section 4.3 we present an integer programming formulation for the delay

management model with station capacities. In Section 4.4 we discuss an iterative approach

to solve this model. Computational results are discussed in Section 4.5. In Section 4.6,

we discuss the balance between the passenger delay on the one hand and the number of

platform track changes on the other. Finally, we finish the chapter with some concluding

remarks and suggestions for further research in Section 4.7.

4.2 Literature Review

There exist various models and solution approaches for delay management. The main

question, which has been treated in the literature so far, is to decide which trains should

wait for delayed feeder trains and which trains better depart on time. A first integer

programming formulation for this problem has been given in Schöbel (2001) and has been

further developed by De Giovanni et al. (2008) and Schöbel (2007); see also Schöbel (2006)

for an overview about various models. The complexity of the problem has been investi-

gated in Gatto et al. (2005). An online version of the problem has been studied by Gatto

et al. (2007), Gatto (2007), Kliewer and Suhl (2011), and Krumke et al. (2011). Berger

et al. (2011) show that it is PSPACE-hard. All models mentioned so far assume that

passengers have to wait a complete cycle time in case they miss their connection. In order

to compute the delay for the passengers more accurately, we reroute passengers that have

missed a connection in Chapter 2. In order to solve large-case real-world instances, several

heuristics for this delay management model with passenger rerouting are presented in 3.

In railway transportation, an important issue concerns the limited capacity of the track

system. Schöbel (2009) presents a first model for delay management that includes capac-

ity constraints. Schachtebeck and Schöbel (2010) and Schachtebeck (2010) give an integer

programming formulation and propose heuristic methods for the capacitated delay man-

agement problem. The idea is to add headway constraints, which make sure that there is

enough distance between two train departures and hence prevent two trains from using

the same piece of track at the same time. Using machine scheduling models, it turns out

that the model with headway constraints is NP-hard even in the case that no wait-depart

decisions have to be made, see Conte and Schöbel (2007).

Another line of research dealing with railway operations is based on the alternative graph
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formulation (Mascis and Pacciarelli, 2002), originally used to model job shop variants.

A branch-and-bound algorithm for finding a conflict-free train schedule, minimizing the

largest delay, is developed in D’Ariano et al. (2007) and Caimi et al. (2011). In Corman

et al. (2010a), the authors suggest a tabu search to solve both the train sequencing and

train routing problem, where a set of possible routes is given as input. The alternative

graph formulation has been used in Corman et al. (2010b) in the context of delay man-

agement, in a bi-objective approach that optimizes the maximal delay and the number

of missed connections simultaneously. A similar bi-objective approach is presented by

Ginkel and Schöbel (2007) for the macroscopic model. Here, the total train delay and the

number of missed connections are minimized.

In Chapter 5, we make a first step towards a complete integration of delay management

and train scheduling. We will propose an optimization framework that iteratively solves

first a delay management model and then a train scheduling model.

The problem of taking station capacities into account is also relevant in timetabling. Here,

one has to check for a given timetable whether the capacity in every station is sufficient.

Instead of considering the number of platforms as the capacities of the stations, it is even

more realistic to look at the train routing problem, i.e., to find routes through the stations

for all the trains using the detailed track topology. This feasibility problem has been

extensively studied. In Kroon et al. (1997), a set of inbound and outbound routes is given

for each train. If a train chooses one of these routes, all track sections of it are reserved

at once but released section-wise. It is shown that deciding whether a feasible schedule

exists is NP-complete already for three possible routes per train. In Caprara et al. (2011),

the problem is modeled as an integer program using clique inequalities in a conflict graph.

For a recent survey on railway track allocation problems, see Lusby et al. (2011).

4.3 Integer Programming Formulations

In this section we present an integer programming formulation for the delay management

problem that takes the capacities within stations into account. As basis for this model we

use the integer programming formulation that includes capacities of the tracks as it was

introduced in Schachtebeck and Schöbel (2010). Note that other formulations of the DM

problem can analogously be extended to take the stations’ capacities into account. We

now first describe the integer programming formulation without station capacities and

then show how to incorporate the limited capacity of the station infrastructure.



76 Delay Management including Capacities of Stations

dep s1 arr s3 dep s3

arr s4

dep s1 arr s2 dep s2 arr s3 dep s3

arr s5

Figure 4.3: An event-activity network with a transfer activity and headway activities

4.3.1 Formulation without station capacities

For modeling delay management problems as integer programs, usually an event-activity

network N = (E ,A) is used as underlying directed graph. The set of nodes E corre-

sponds to the arrival and departure events of all trains at all stations. In Figure 4.3, an

event-activity network is depicted for two trains. The lower train is a long-distance train

traveling from s1 to s4 via s3. The upper train is a regional train that also travels from s1

to s3, but stops at station s2 also. After s3, it continues in the direction of s5. The events

are represented as rectangles in the picture. The set A consists of the following activities.

Between the arrival i and the departure j of a train in the same station, there is a waiting

activity a = (i, j) ∈ Await; between a departure i of a train in a station and its arrival j

in the next station there is a driving activity a = (i, j) ∈ Adrive. The set A furthermore

contains transfer activities Achange linking an arrival of a train in a station to a departure

of another train in the same station. In Figure 4.3, there is a transfer at s3 from the

regional to the long-distance train, which is depicted by a dashed arrow. Finally, headway

activities are needed for any pair of trains competing for the same infrastructure. These

headway activities represent pairs of precedence relations, one of which must be selected.

To illustrate this, let i and j be two departures that continue over a common track. We

denote the corresponding arrivals at the next common station by i′ and j′, respectively. In

Figure 4.3, i′ and j′ are the arrivals of the trains at s3. If departure i takes place before de-

parture j, then arrival i′ should also be scheduled before arrival j′. This choice for the order

of the trains is represented by a pair of headway activities a1 = (i, j), a2 = (j, i) ∈ Ahead.

For each pair of headway activities, we define both a pair of constraints for the departures

of the trains and a pair for the arrivals of the trains. In our example, these two pairs of

constraints corresponding to one pair of headway activities are shown with dotted arcs.

Each activity a ∈ A requires a minimal duration that is denoted by La.
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The most important decision in delay management is which connections need to be main-

tained. For each changing activity a ∈ Achange we thus introduce a binary decision variable

za, which is defined as follows.

za =

{
0 if connection a is maintained,

1 otherwise.

In order to take the capacity constraints on the tracks into account, one defines a binary

decision variable gij for each headway activity (i, j) ∈ Ahead, given as

gij =

{
0 if event i takes place before event j,

1 otherwise.

For each event i ∈ Earr∪Edep, we define xi ∈ N as the rescheduled time when event i takes

place. The set of variables x = (xi) defines the disposition timetable. If the wait-depart

decisions za and the priority decisions gij are fixed, the values of xi, i ∈ E can easily be

calculated by the critical path method (see Schöbel (2006)).

Given the original timetable πi, i ∈ E and a set of exogenous source delays di at events

and da at activities (being zero if there is no delay), the integer programming formulation

(DM) without station capacities reads as follows.

(DM) min f(x, z, g) =
∑
i∈Earr

ci(xi − πi) +
∑

a∈Achange

zacaT (4.1)

such that

xi ≥ πi + di ∀i ∈ E , (4.2)

xj − xi ≥ La + da ∀a = (i, j) ∈ Await ∪ Adrive, (4.3)

Mza + xj − xi ≥ La ∀a = (i, j) ∈ Atransfer, (4.4)

Mgij + xj − xi ≥ La ∀a = (i, j) ∈ Ahead, (4.5)

Mgij + xj′ − xi′ ≥ La ∀a = (i, j) ∈ Ahead, (4.6)

gij + gji = 1 ∀(i, j) ∈ Ahead, (4.7)

xi ∈ N ∀i ∈ E , (4.8)

za ∈ {0, 1} ∀a ∈ Achange, (4.9)

gij ∈ {0, 1} ∀(i, j) ∈ Ahead. (4.10)
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The objective function in this model counts the sum of delays of all events (weighted with

the number of passengers ci who arrive at their final destination at event i) and adds a

penalty of T for every passenger who misses a connection. In a periodic timetable, T

is often chosen as its cycle time. We weigh the transfer activity a with the number of

passengers ca who planned to use it. The objective is an approximation of the overall delay

of all passengers and is commonly used in delay management. It gives the exact value if

the never-meet property for headways holds (see Schachtebeck and Schöbel (2010)). A

more realistic model taking into account the real paths that passengers would use in case

of delays has been developed in Chapter 2. It can also be used as basis for our extension,

but it is technically more difficult and computationally harder to solve.

The interpretation of the constraints is as follows. (4.2) makes sure that trains do not

depart earlier than planned and that source delays at events are taken into account. (4.3)

propagates the delay along waiting and driving activities while (4.4) propagates the delay

along maintained changing activities. For each pair of departure events competing for the

same infrastructure, (4.7) makes sure that exactly one of the two precedence relations is

respected. (4.5) propagates the delay along the corresponding headway activity between

the departures of the trains. Similarly, (4.6) propagates the delay between the arrivals of

the trains. Here i′ and j′ are the arrivals that follow the departures i and j, respectively.

4.3.2 Formulation with a dynamic platform assignment

To include the limited capacity within the stations, we now present a formulation for

delay management which allows a dynamic assignment of trains to platform tracks. Pre-

liminary computational results showed that this assignment-based formulation performs

much better than a packing-based formulation modeling the same problem (see Dollevoet

et al. (2011)). Our assignment-based integer programming formulation views a station

as a set of platforms, and introduces headway constraints for trains that make use of the

same platform track. As a consequence, this formulation determines an explicit allocation

of the events to the available platforms.

In order to allocate the trains to the platforms, we first define for each station s ∈ S the

set Ps of platforms at s and the set Es
arr of arrival events at s. Then, we introduce binary

decision variables yip for each event i ∈ Es
arr and p ∈ Ps, that are defined as

yip =

{
1 if arrival i and the corresponding departure are assigned to platform track p,

0 otherwise.
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Figure 4.4: Illustration of the enter time, the leave time and the time during which the

platform track is occupied.
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Figure 4.5: When two trains use the same platform track, a pair of headway activities

is introduced from the departure of one train to the arrival of the other.

Of course, each arrival event must be assigned to exactly one platform track. This is

enforced by the following constraint.

∑
p∈Ps

yip = 1, ∀s ∈ S, i ∈ Es
arr. (4.11)

In order to model the limited capacity of the stations, we determine the order in which

the trains arrive at a certain platform track. Consider a pair of trains (t1, t2) that arrive

at the same station corresponding to two events i and j. If the two trains are assigned to

the same platform track, we must determine the order in which the events i and j take

place. To this end, we introduce a pair of binary variables ḡij and ḡji that are defined as

follows

ḡij =

{
0 if arrival i takes place before arrival j on the same platform track,

1 otherwise.

If the trains are assigned to the same platform track, either t1 must have departed before

t2 arrives, or t2 must have departed before t1 arrives. It should be noted that a train

starts entering a station at a time hi before it stops there at time xi and passengers can

board. The time hi when the train starts to enter the station is called enter time. In the
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same way, the departure time xi′ of a train is smaller than the leave time hi′ , which is the

time when the last car of the train leaves the platform track and hence the time when the

next train can start to enter. Thus [hi, hi′ ] denotes the interval during which a platform

track is occupied (see Figure 4.4).

We define li = xi − hi for arrival events and li′ = hi′ − xi′ for departure events. By

construction, li and li′ are non-negative. We define the headway time Lij = li + lj′ as the

time that is minimally needed between the departure i and the arrival j.

In Figure 4.5 the event-activity network for the trains t1 and t2 is depicted. Let ai = (i, i′)

be the waiting activity of train t1 and let aj = (j, j′) be the waiting activity of train t2.

We define a pair of platform track activities a1 = (i′, j), a2 = (j′, i) ∈ Aplat and introduce

the following set of constraints.

Mḡij + xj − xi′ ≥ Lij = li′ + lj , (4.12)

Mḡji + xi − xj′ ≥ Lji = lj′ + li, (4.13)

ḡij + ḡji ≤ 3− yip − yjp ∀p. (4.14)

These constraints can be interpreted in the following way. Assume first that trains t1 and

t2 are not assigned to the same platform track. Then 3 − yip − yjp ≥ 2 for all p. Hence,

both ḡij and ḡji can be set to 1 and (4.12) and (4.13) are satisfied. Otherwise, if trains t1

and t2 are assigned to the same platform track p, then 3− yip− yjp = 1 for that p, forcing

either ḡij or ḡji to zero. In that case, one of the headway constraints enforces a minimal

headway time between the two trains.

The above constraints must be introduced for each pair of trains (t1, t2) that dwell at a

common station s ∈ S. Recall that the set of platform track activities is denoted by Aplat.

This formulation thus introduces one binary variable ḡij for each a = (i, j) ∈ Aplat and one

binary variable yip for each i ∈ Earr and p ∈ Ps, where s ∈ S is the station corresponding

to arrival i. Furthermore, it adds one constraint for each arrival event i ∈ Earr and 2+ |Ps|

constraints for each pair of trains (t1, t2) that dwell at a common station s ∈ S. Note that

this type of constraints are referred to as blocking constraints in the context of job-shop

scheduling (see Mascis and Pacciarelli (2002)).

Adding the constraints (4.11)-(4.14), yip ∈ {0, 1} for all s ∈ S, i ∈ Es
arr, p ∈ Ps and

ḡij ∈ {0, 1} for all (i, j) ∈ Aplat to the formulation (4.1)-(4.10) we obtain an integer

programming formulation (DM-Cap) for the delay management problem with a dynamic

platform assignment.
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4.3.3 Formulation with a static platform assignment

Note that the planned timetable provides us with a platform assignment. To avoid plat-

form track changes for the passengers and, at the same time, simplify our calculations,

we could fix this platform assignment, i.e., the variables yip. More generally, we call the

delay management problem for which a platform assignment is determined in advance de-

lay management with a static platform assignment. For delay management with a static

platform assignment, the above integer programming formulation reduces to a problem

of type (DM).

Lemma 4.1 For fixed variables yip for all i ∈ Es
arr, p ∈ Ps the formulation (DM-Cap)

reduces to an instance of (DM), i.e., can be solved as a delay management problem with

headway constraints.

Proof If all yip variables are fixed we have two possibilities for (4.14): Either both yip

variables are 1, then ḡij+ ḡji ≤ 1 and (4.12)-(4.13) reduce to a headway constraint of type

(4.5)-(4.7), or at least one of the yip variables is 0, then (4.12)-(4.14) becomes redundant.

�

According to this lemma, we can derive the following two bounds for delay management

with a dynamic platform assignment, which can easily be calculated using an algorithm

that solves problem (DM). First, it is clear that (DM) is a relaxation of (DM-Cap),

hence its objective value zDM is a lower bound. Second, if we fix the assignment y of

trains to stations in (DM-Cap) and solve the delay management problem with a static

platform assignment, we obtain an upper bound z∗(y) which can also be calculated by

any algorithm for (DM) according to Lemma 4.1. Hence, we can compute an upper and

a lower bound, i.e., zDM ≤ z∗ ≤ z∗(y).

4.4 An iterative approach

In the previous section we developed a model that simultaneously optimizes the platform

assignment and the priority decisions in the stations. It is well known in timetabling

that this problem is computationally challenging. As we consider a real-time setting,

solutions to the delay management problem should be available within a short computa-

tion time. For large instances, optimizing the wait-depart decisions, the priority decisions

and the platform assignments simultaneously might be intractable. For these instances,

we propose an iterative approach: We first fix the assignment of trains to platforms as
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given in the original timetable. This results in a problem of type (DM) which can be

solved according to Schachtebeck and Schöbel (2010). For the resulting solution we then

try to improve the platform assignment within the stations and iterate until no further

improvement is found. Using formulation (DM-Cap) we obtain:

1. Fix the station assignment yip in (DM-Cap) according to the planned timetable.

2. Solve the resulting problem (DM-Cap) with fixed yip and obtain a solution with

disposition timetable xi, wait depart decisions za and priority decisions gij and ḡij

3. For every station, determine a more promising platform assignment yip and new

priority decisions ḡij within the station such that (x, z, y, g, ḡ) is feasible.

4. Go to Step 2. Stop if no further improvement has been found.

If for large delay management instances decomposing the problem into two steps still

results in long running times, we can use the approach of Schachtebeck (2010) to de-

compose Step 2 of the algorithm further into two smaller subproblems making first the

priority decisions and then the wait-depart decisions.

In Step 3, a natural idea would be to adjust not only the platform assignment but also

the timetable locally. Unfortunately, this can lead to infeasible solutions. Therefore, in

Step 3 of the algorithm, we leave the timetable unchanged and adjust only the platform

assignment in a way that allows the subsequent delay management step to shift events

forward in time, if possible.

In the following we discuss Step 3, i.e., how to find an assignment of trains to platforms

at a given station s which is feasible for the given disposition timetable x and potentially

yields a better disposition timetable in Step 2 of the next iteration. Recall from (4.12)

and (4.13) that the headway times Lij between two trains are the sum of a headway time

li′ that is needed for the first train to leave the station after its departure event i′ and

a headway time lj representing the time that the second train needs to completely enter

the station before its arrival event j can take place, i.e., Lij = li′ + lj . Thus instead of

scheduling the arrival and departure events xi, we can instead schedule the enter time

hi = xi − li for arrival events i and the leave time hi′ = xi′ + li′ for departure events i′

in a way that the intervals (hi, hi′) and (hj, hj′) do not overlap for two trains with arrival

and departure events i, i′ and j, j′, respectively, that are assigned to the same platform

track. We process each station separately as follows. In a first step we identify for which

arrivals i ∈ E in this station a new assignment might be beneficial. These are arrivals

of delayed trains that directly follow another delayed train. For these train arrivals we
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Figure 4.6: Illustration for two trains occupying the same platform track.

determine their wish (enter) times wi. In a second step we find a new assignment for all

trains together with new enter times qi ≥ wi for these trains which should be as close to

the wish times as possible. We now first show how the wish times are identified.

Let Ps be the set of platforms and Es
arr be the set of arrival events in station s. Note

that every such event corresponds to one train. For every arrival event i, let i′ be the

departure event following i (i.e., (i, i′) ∈ Await describes the waiting activity of the train in

the station). From the timetable and the headway times we know that the train occupies

the station during the time interval (hi, hi′). If a train is delayed, we distinguish two cases

(see Figure 4.6).

• There is another train which is in the station during the interval (hj, hj′) with

hj′ = hi, and is on the same platform track p, i.e., yip = yjp = 1. In this case, a new

assignment might help to reduce the delay of i. Assuming that a = (k, i) ∈ Adrive is

the preceding driving activity of the train we define the wish time of i as

wi := xk + La + da − li.

• If no other train is on the same platform track directly before xi, the delay of i is

not due to the station assignment, and hence wi := hi.

Also if the train is not delayed we set wi := hi. The platform assignment problem (PA)

can now be formulated as follows.

(PA) Given a set of platforms Ps = {1, . . . , P} and for every arrival event i ∈ Es
arr an

interval [hi, hi′ ] and a wish time wi ≤ hi as well as a weight ci corresponding to the

affected customers on the train, find numbers qi ∈ [wi, hi] for all i ∈ Es
arr and a new

platform assignment yip for all i ∈ Es
arr and p ∈ Ps such that

qj ∈ (qi, hi′) =⇒ yip + yjp ≤ 1 (4.15)
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holds for all i, j ∈ Es
arr and p ∈ Ps and

∑
i∈Es

arr
ciqi is minimal.

Note that qj ∈ (qi, hi′) or qi ∈ (qj, hj′) ⇐⇒ (qi, hi′) ∩ (qj, hj′) 
= ∅, i.e., the two trains

belonging to i and j cannot be scheduled on the same platform track if and only if the

arrival of one train is scheduled at a time when the other train is occupying the platform

track.

This problem can be formulated as a mixed-integer program as it is but the formulation

does not seem to be promising due to condition (4.15). Instead we show that (PA) is

polynomially solvable by first identifying a finite dominating set C for the qi variables.

This set C contains a polynomial number of elements. We then notice that for every

choice of the qi variables, we can check feasibility by solving a coloring problem. Naively,

in order to check all possible q ∈ C|E
s
arr|, we would have to solve an exponential number of

coloring problems. Instead, we use that the graph under consideration is an interval graph

and code the solvability of the coloring problem in the constraints of an IP formulation.

This problem can be solved easily, as the coefficient matrix is totally unimodular. We first

identify a dominating set C with a polynomial number of elements. In order to reduce the

problem size, we also show that for each qi, a smaller dominating set Ci can be defined.

Lemma 4.2 Let C :=
⋃

i∈Es
arr
{wi, hi, hi′} be the set of all given wish and planned arrival

and departure times. Then there exists an optimal solution (q, y) to (PA) with qi ∈ Ci :=

C ∩ [wi, hi] for all i ∈ Es
arr.

Proof Let (q, y) be a feasible solution to (PA). Clearly, wi ≤ qi ≤ hi for all i. Furthermore,

with p the platform track for which yip = 1, qi ≥ max{hj′ : yjp = 1 and hj′ ≤ qi}. Now

assume that qi 
∈ C for some i ∈ Es
arr. Let p be the platform track with yip = 1. Define

q̃i := max {wi,max{hj′ : yjp = 1 and hj′ ≤ qi}} . (4.16)

Then q̃i ∈ [wi, hi] and for all j condition (4.15) is still satisfied. Hence, replacing qi by q̃i

is a feasible solution to (PA) with better objective value and with q̃i ∈ Ci. Doing this for

all values q shows the result. �

Now assume that some values qi ∈ Ci, i ∈ E
s
arr are given. How can we check whether q is

feasible? This means that we have to check whether there is a platform assignment y such

that (4.15) is satisfied. To this end we transform our problem into a coloring problem in

the graph G(q) = (Es
arr, E). For every i ∈ Es

arr there exists a node. We add an edge {i, j}

between two nodes if (qi, hi′) ∩ (qj, hj′) 
= ∅, i.e., if the two corresponding trains cannot

be assigned to the same platform track. In order to find out whether there is a feasible
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platform assignment for q we thus have to find out whether G(q) is P -colorable. Note

that by construction this graph is an interval graph and thus perfect (see e.g. Schrijver

(2003)). Thus χ(G(q)) = ω(G(q)) with χ(G(q)) denoting the chromatic number of G(q)

and ω(G(q)) the number of nodes in the biggest clique of G(q). We hence have to check

whether the number of nodes in the biggest clique in G(q) is not greater than P .

Let us order the values in C = {q1, . . . , q|C|} in increasing order and let us define

intervals Il := (ql, ql+1) for l = 1, . . . |C| − 1. For a given q we define a matrix A(q) = (ali)

with |C| − 1 rows and |Es
arr| columns and entries

ali =

{
1 if (qi, hi′) ∩ Il 
= ∅,

0 otherwise.
(4.17)

Then we can determine the chromatic number of G(q) as follows.

Lemma 4.3

ω(G(q)) = max
l=1,...,|C|−1

∑
i∈Es

arr

ali.

Proof Due to Lemma 4.2 we can assume that all values of qi are in C, hence there is an

edge between i and j in G(q) if and only if there exists an interval Il such that ali = alj = 1.

Now let E ′ ⊆ Es
arr. As G(q) is an interval graph, E ′ is a clique in G(q) if and only if there

exists one interval Il such that ali = 1 for all i ∈ E ′. �

Now we can finally rewrite (PA) as an integer program in which we look for a choice of

q-values from the set C checking feasibility by Lemma 4.3. Denote by qki the entries of

the set Ci = {q
1
i , q

2
i , . . . , q

|Ci|
i }. Then for every arrival event i and every candidate qki ∈ Ci

we define the variable

ηki =

{
1 if candidate qki ∈ Ci is chosen,

0 otherwise.

These are the variables of our integer program. In order to directly see properties of the

resulting constraint matrix, we order our variables such that all variables ηki having the

same index i are grouped together. We need to extend the matrix defined in (4.17) to all

possible choices of q. To this end, we define for every (i, k) a column with

ãlik =

{
1 if (qki , hi′) ∩ Il 
= ∅,

0 otherwise.
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Doing this for all i = 1, . . . , |Es
arr| we obtain a matrix Ã = (ãlik) with |C| − 1 rows and∑

i∈Es
arr
|Ci| columns. Note that qki = qk

′

j with qki ∈ Ci, q
k′

j ∈ Cj is possible but would lead

to two (maybe different) columns in Ã.

(PA) can hence be rewritten as

min
∑
i∈Es

arr

ci

|Ci|∑
k=1

qki η
k
i (4.18)

such that

|Ci|∑
k=1

ηki = 1 ∀i ∈ Es
arr, (4.19)

∑
i∈Es

arr

|Ci|∑
k=1

ãlikη
k
i ≤ P l = 1, . . . , |C| − 1, (4.20)

ηki ∈ {0, 1} ∀i ∈ Es
arr, ∀k ∈ Ci. (4.21)

Lemma 4.4 The constraint matrix A′ defined by the inequalities (4.19)-(4.20) is totally

unimodular.

Proof To avoid notational confusion, for the matrix A′ we use u as an index for the rows

and v as an index for the columns. We show that A′ is totally unimodular by showing

that every subset U of rows of A′ can be partitioned into two sets U1, U2 with U1∩U2 = ∅,

U1 ∪ U2 = U and
∑

u∈U1
a′uv −

∑
u∈U2

a′uv ∈ {−1, 0, 1} for all columns v (see for example

Schrijver (2003)).

The columns of A′ are associated with the variables of our integer program. For every

i = 1, . . . , |Es
arr| we denote by C(i) the indices v of the columns of A′ associated with a

variable ηki for some k.

The rows represent the constraints. The first rows u = 1, . . . , |Es
arr| contain the constraints

that for every i ∈ Es
arr, exactly one variable ηki is set to 1. We thus have

a′uv =

{
1 if the column v belongs to variable ηku for a k, i.e., if v ∈ C(u),

0 otherwise.

for u = 1, . . . , |Es
arr|, i.e., for u corresponding to a constraint for an i ∈ Es

arr.

Starting from row |Es
arr| + 1, the matrix A′ consists of the matrix Ã. We notice that Ã

has the column-wise consecutive ones property. Furthermore, we note that every column

v ∈ C(i) of A′ has its last 1-entry in the row that represents the constraint for the interval
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with end point hi.

Let U be an index set of rows of A′ and UA = U \ {1, . . . , |Es
arr|}, that is the part of the

chosen set of rows that is contained in Ã. We alternatingly assign the rows in UA to two

sets UA
1 and UA

2 . Then for every i ∈ Es
arr either⎧⎨

⎩
∑
u∈UA

1

a′uv −
∑
u∈UA

2

a′uv : v ∈ C(i)

⎫⎬
⎭ ⊆ {−1, 0} (4.22)

or

⎧⎨
⎩

∑
u∈UA

1

a′uv −
∑
u∈UA

2

a′uv : v ∈ C(i)

⎫⎬
⎭ ⊆ {1, 0} (4.23)

because of the consecutive ones property and because for a given i, the last entry of

column v is in the same row for all v ∈ C(i).

We set U1 := UA
1 and U2 := UA

2 and add the indices of the first |Es
arr| rows in the following

way to these sets: If for row u (4.22) holds, we assign the u-th row to U1, if (4.23) holds

we assign it to U2. We obtain

{∑
u∈U1

a′uv −
∑
u∈U2

a′uv : v ∈ C(i)

}
⊆ {1, 0} for all i ∈ {1, . . . , |Es

arr|} with (4.22)

{∑
u∈U1

a′uv −
∑
u∈U2

a′uv : v ∈ C(i)

}
⊆ {−1, 0} for all i ∈ {1, . . . , |Es

arr|} with (4.23).

This proves total unimodularity. �

Corollary 4.5 (PA) can be solved by linear programming.

We conclude that the problem in Step 3 of the iterative algorithm can be solved by linear

programming. This completes the description of the iterative algorithm. An alternative

way to solve Step 3 of the iterative algorithm is by modeling (PA) as a network flow

problem. This approach has been proposed by Kroon (1990) in the context of aircraft

maintenance. Note that the network flow formulation allows for a solution approach that

does not need an LP solver.

4.5 Computational results

We have performed a computational study to test whether it is important to consider the

capacity within stations explicitly and to compare the different approaches presented in
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this chapter. We first describe the cases that were used in this study. Then we show that

a dynamic platform assignment significantly improves a static one. Finally, we evaluate

the performance of the iterative heuristic.

4.5.1 Cases

In our numerical experiments we consider the railway system in the Randstad, which is

the mid-Western part of the Netherlands. Figure 4.1 gives a schematic representation

of the railway network in this region. The dots in this figure indicate a station where

long-distance trains stop. The stations where only regional trains stop are not depicted.

A line indicates that there is a direct link between two stations. For each link, there are

two or four long-distance trains and two regional trains per hour. It can be seen in the

picture that the railway network contains direct links between many of the stations. As

a consequence, the infrastructure is heavily utilized, especially in the stations.

We have generated four cases, that vary in the size of the network and the type of trains

that are included. The first case considers only the stations in the network that are in-

dicated by a black dot in Figure 4.1 and includes only the long-distance trains. Case

B considers the same network, but includes both long-distance and regional trains. The

third and fourth case include all stations that are indicated by a black or a white dot.

Again, Case C considers only the long-distance trains, while Case D includes the regional

trains, too. These cases resemble those that are used in Chapter 2.

We obtained the timetable and detailed information on the passenger demand from

Netherlands Railways. The passenger figures are not the real numbers, but have been

scaled for secrecy. For each pair of stations in the network, we were given the average

number of passengers who want to travel between these stations on a regular day. From

these origin-destination figures we obtained the average number of passengers wi who

arrive at their destination station with arrival event i ∈ Earr and the number of passengers

wa who use transfer a ∈ Achange.

In order to evaluate the performance of our delay management models, we have simulated

for each case 100 delay scenarios. These scenarios were constructed as follows. Each driv-

ing and dwell activity has a probability of 10% to be delayed. If the activity is delayed,

the size of the delay is a uniformly distributed random variable between 1 and 10 min-

utes. Note that delays on activities are additive: If two consecutive driving activities are

delayed, the delay of the train is at least the sum of the two delays. We did not include

delays at events.

Table 4.1 gives an impression of the sizes of the instances. For each of the four cases we
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Size of the program Static model Dynamic model
Case Stations Trains |E| |Ahead| |Aplat| Bin. Con. Bin. Con.
A 10 82 344 1508 6962 1998 5470 9597 33924
B 34 193 1374 3432 28830 8045 21568 37972 175614
C 16 119 576 2296 11688 3345 8895 15913 55301
D 82 275 2804 5848 35138 12877 36510 48841 231101

Table 4.1: Some characteristics of the cases and the resulting integer programs. Bin.

and Con. give the number of binary variables and constraints in the integer program,

respectively.

report the number of stations and trains in the railway network. Besides, we report the

number of events |E| and headway activities |Ahead| in the resulting event-activity net-

work. The column |Aplat| gives the number of platform track activities. Recall that there

is a pair of platform track activities for each pair of trains (t1, t2) that dwell at a common

station. |Aplat| is therefore twice the number of times that Constraints (4.12)-(4.14) are

added to formulation (4.1)-(4.10). Cases B and D consider all trains in a large part of

the network. Cases of these sizes arise in practical applications. Comparing Cases A and

B, one sees that the number of trains is increased roughly by 50%. The number of nodes

in the event-activity network is about 4 times as large. The reason is that the regional

trains stop at far more stations than the long-distance trains. As priority decisions are

only necessary at the larger stations, where overtaking can take place, the number of

headway activities is related to the number of trains.

For each instance we have two different models to obtain a solution to the delay man-

agement problem with station capacities. Our first model fixes the platform assignment

as planned. According to Lemma 4.1, this leads to a delay management problem with

headway activities only. According to Section 4.3.3, we refer to this model as the static

model. In the second, dynamic model, we allow the platform tracks to be rescheduled

dynamically as introduced in Section 4.3.2. In Table 4.1, we also list the number of binary

variables and constraints in the resulting integer programs. One sees immediately that

the number of binary variables and constraints is much larger for the dynamic model.

As a consequence, the dynamic model is expected to be computationally much harder to

solve.
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Objective value Optimality gap
Case A B C D A B C D

Static model 192291 1007849 595904 3635493 0% 0% 0% 0.3%
Dynamic model 192046 982983 585987 3572731 0% 0.1% 0% 1.3%

Table 4.2: The objective value and the optimality gap for the static and dynamic delay

management model

Case A B C D
Improvement 0.1% 2.5% 1.7% 1.7%

Platform track changes 167 342 269 380

Table 4.3: The improvement of the dynamic model with respect to the static model and

the number of platform track changes in the solution of the dynamic model

4.5.2 Static and dynamic platform assignments

We have used Cplex 12.2 on an Intel Core i5-2410M with 4 GB of RAM to solve the

integer programs from Section 4.3. The maximal computation time was set to 20 minutes

for each individual delay scenario. Such times are too long for practical purposes, but

allow us to find solutions that are close to optimal. The objective value for a case is

computed as the average total delay over all scenarios. For each case, we compare the

solutions that are obtained with a static and with a dynamic platform assignment.

In Table 4.2, the objective values are presented for both solution approaches. In Table

4.3, the relative improvement of the dynamic model is given, as well as the number of

platform track changes in the solutions of the dynamic model. The results show clearly

that rescheduling the platform assignment dynamically reduces the delay for the passen-

gers. For Case A, the reduction is negligible, the average delay is reduced only by 0.1%.

For Case B, the delay is reduced by 2.5%. This is a significant improvement over the

static model. In the Cases C and D, the reduction is 1.7%. The optimality gap in the

first three cases can be neglected. In Case D, the optimality gap for the dynamic model

is 1.3%. The improvement of the dynamic model over the static model could therefore be

larger than 1.7 %.

Besides the delay, platform track changes are also inconvenient for the passengers. The

static model does not allow to reschedule the platform assignment, so in the static so-

lutions there are no platform track changes. On the contrary, in the dynamic model a

complete new platform assignment is determined. As we do not penalize changes in the

platform assignment, the dynamic model introduced hundreds of platform track changes
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Case A B C D
Static model 1.0 (1.6) 62.9 (1162) 2.0 (3.5) 765.6 (1204)

Dynamic model 3.1 (5.4) 608.7 (1353) 13.9 (112.7) 1408 (1478)

Table 4.4: The average running times and between brackets the maximal running times

in seconds

for every case.

As solutions to the delay management problem should be readily available, solution meth-

ods should be able to solve the delay management problem within a short computation

time. In Table 4.4, the average and maximal running times are given for each case. Recall

that we have set the maximal running time to 20 minutes for each delay scenario. For

Cases A and C, which include only the long-distance trains, both models can be solved

very fast. Both the average and maximal running time are less than two minutes. Such

running times are acceptable in practice.

When the regional trains are included, the running times increase significantly. In order

to speed up the solution process for Cases B and D, we first computed a solution to the

static delay management model in which the order of trains in the stations and on the

tracks is fixed. This results in an integer program that is much easier and can be solved

within seconds. The solution to this model is also feasible for the dynamic model and can

be used to decrease the solution times. In a similar fashion, a solution from the static

model can be used when solving the dynamic model. When solving the dynamic model,

we first ran the algorithm for the static model for 5 minutes. This explains why the

maximal running times for the dynamic model are larger than 20 minutes.

For Case B, the static model can be solved within one minute on average. The dynamic

model needs 10 minutes on average. For both models, some delay scenarios need much

more computation time. For Case D, the static model can be solved within 12 minutes

on average, while the dynamic model takes the full computation time of 25 minutes. In a

real-time setting, such computation times are too long.

4.5.3 Performance of the iterative heuristic

In the previous section we have seen how a dynamic platform assignment can reduce the

delay for the passengers. However, for larger cases, solving the dynamic model takes too

much time. In these situations, the iterative heuristic from Section 4.4 can be applied to

improve on the static solutions while still keeping the computation times within limits.

In Table 4.5, the results for the iterative heuristic are given. For all cases, the iterative
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Case A B C D
Absolute objective 192088 992757 587307 3594245
Relative objective 100.0 % 101.0 % 100.2 % 100.6 %

Number of platform track changes 0.32 17.5 3.2 21.0
Number of iterations 2.06 4.14 2.72 4.81
Total solution time 2.2 174.1 4.76 1198

Table 4.5: The absolute objective value, the relative objective values with respect to

the dynamic model, the number of platform track changes in the solutions and some

characteristics of the iterative solution process

heuristic finds solutions that are at most 1.0% worse than the dynamic model. For the

cases that consider only the long-distance trains, the iterative solutions are very close to

the optimal ones. It is interesting to see that the iterative algorithm changes the platform

assignment less often than the dynamic model. The iterative algorithm only schedules

a train at a different platform track if it looks promising to do so. The slight decrease

in quality is thus compensated by a platform assignment that looks much more like the

original one.

Considering the computation times, the iterative approach solves the problem much faster

than the dynamic model. For Cases A and C, the iterative algorithm can be executed

within seconds. For Case B, the total running time of the iterative heuristic is on average

less than 3 minutes. This is a reduction of 70% with respect to solving the dynamic

model. A solution time of 3 minutes is acceptable in practice. For Case D, solving the

static model to optimality already takes a longer time. We therefore allowed only 5

minutes of computation time per iteration. As a consequence, the first solution in the

iterative procedure is slightly worse than the solution of the static model. The average

total running time for Case D equals 20 minutes and is thus smaller than that of the

dynamic model. It is, however, still too long for practical applications. We conclude that

for cases with only long distance trains, both the performance and the running time of

the dynamic model and the iterative algorithm are comparable. For Case B, solutions

with slightly worse quality are obtained within much less computation time. For this case,

the iterative algorithm finds good solutions within computation times that are acceptable

in practice. Finally, for Case D, solutions are found that have a good quality, but the

iterative algorithm needs too much time to find these solutions.

In Figure 4.7, we have plotted the progress of the iterative method. On the horizontal

axis are the iterations, while the objective value is shown on the vertical axis. In order

to show the progress for all cases in one figure, we have normalized the objective value.
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Figure 4.7: The progress of the iterative solution

The objective value of the first iteration is equal to that of the static model. This value is

indicated by the upper line, labeled with 1. A lower bound on the objective value from the

iterative approach is given by the solutions of the dynamic model. This value is depicted

by the lower line, labeled with 0.

For Cases A and C, the iterative algorithm improves the solution from the static model

only in the first iteration. The solution that is then obtained is very close to the optimal

solution. For Cases B and D, the biggest improvement is found in the first iteration.

The improvement in the second iteration is much smaller. From then on, the solution

does not change much. This suggests that one could also run only one iteration of the

iterative algorithm, in order to improve over the static solution within a short computation

time. For Case D, it takes on average 10 minutes to perform one iteration. In practical

applications, computation times of 10 minutes are acceptable.

4.5.4 Quality of the wait-depart decisions

The dynamic model optimizes the wait-depart decisions, the priority decisions and the

platform assignment simultaneously. The original aim of delay management is, however,

to decide on the wait-depart decisions only. In this section we will compare the quality of

the wait-depart decisions from the dynamic model to those that are obtained with other

delay management models from literature. If an optimization algorithm is available to

determine the priority decisions and the platform assignment, the results in this section

prescribe which delay management model should complement the train scheduling algo-

rithm and optimize the wait-depart decisions.
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Case A B C D
No-wait policy 120.1 140.4 124.5 134.4

DM without capacity constraints 102.6 108.7 101.7 108.7
DM with tracks priorities only 100.0 100.0 100.0 100.3

Dynamic model 100.0 100.0 100.0 100.0

Table 4.6: Comparing the dynamic model to other delay management models

In order to compare the quality of the different delay management models, we first decide

on the wait-depart decisions with the various models. Then we fix the variables for the

wait-depart decisions in the dynamic model in order to obtain the priority decisions and

the platform assignment. We emphasize that we use the dynamic model only to compute

the priority decisions and the platform assignment; the wait-depart decisions have been

fixed by the model that we are interested in. We thus employ the dynamic model as a

very basic train scheduling algorithm.

The first model that we consider implements a no-wait policy. With a no-wait policy,

trains never wait for delayed trains. We use this policy as a benchmark for the other

policies. The second model is a delay management model without any capacity consid-

erations. This model is given by (4.1)-(4.4) and (4.8)-(4.9). The third model is a delay

management model with priority decisions for tracks only. This model is presented in Sec-

tion 4.3.1. Finally, the fourth model is the dynamic model that is introduced in Section

4.3.2.

In Table 4.6, the objective values are given for the four models. We have normalized the

objective value and set the objective value of the dynamic model to 100. We see in the

table that a no-wait policy performs very badly. The total delay is up to 40% higher

than in the dynamic model. A delay management model without capacity considerations

performs better. For Cases A and C, the delay is increased with 2%, while an increase of

about 9% is observed for Cases B and D. Finally, the model that incorporates capacity

constraints for tracks only performs very well. The maximal increase in delay is 0.3%.

For the first three cases, the increase is even negligible.

We conclude that the model that includes headway constraints on the tracks only finds

wait-depart decisions that are very close to optimal. Furthermore, the model without

station capacities is much simpler and solving it requires less computation time. When

deciding on the wait-depart decisions, one thus need not consider the capacity within the

stations explicitly.
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4.6 Analyzing the trade off between passenger delays

and platform track changes

In Section 4.5.2 we have seen that allowing a re-assignment of trains to platforms yields

a significant improvement with respect to the passengers’ delay, compared to the model

where the platform assignment is fixed. On the one hand, this certainly increases the

passengers’ comfort. However, on the other hand, the improvement with respect to the

delay is accompanied by many platform track changes with respect to the announced

timetable. These platform track changes are certainly not convenient for the passengers.

In that respect, the solutions from the iterative algorithm, with a worse objective value

but less platform track changes, might be preferable in practice. Delay management

with station capacities could hence be considered a bi-objective problem with the two

objectives of minimizing

1. the passengers’ delay, and

2. the number of changes in the platform assignment.

In Section 4.6.1 we discuss how this extension of our model can be integrated in the

proposed solution approaches. Computational results are presented in Section 4.6.2.

4.6.1 Theoretical Modification of the models

We first consider the exact model for delay management with station capacities which is

provided by the assignment-based integer programming formulation. We describe how a

restriction on the number of platform track changes can be easily included.

Since in this formulation the information about the platforms where an event i ∈ E takes

place is already coded in the variables yip, a restriction on the number of platform track

changes can be modeled easily by adding one additional constraint. To this end, let C

denote the maximal number of platform track changes and let P (i) denote the set of good

platforms for event i. If we want to count all platform track changes, P (i) consists only

of the platform track pi where event i was scheduled initially. However, P (i) could as well

contain more platforms that are easily reached from pi, e.g., the track on the opposite

side of the platform.

We add the following constraint to the integer program described in Section 4.3.2.

∑
i∈Edep

∑
p/∈P (i)

dipyip ≤ C. (4.24)
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Here, dip is a weight that represents the importance of scheduling the departure event i

on a good platform track. For example, dip could represent the number of passengers that

have to move to another platform if the platform track is changed. Since yip takes the value

1 if event i is scheduled on platform track p and 0 otherwise, this constraint determines

the weighted number of departure events which do not take place on a good platform

track and restricts this number to C. This method is an example of the ε-constraint

approach. If dip = 1 for all i ∈ Edep and p /∈ P (i) and 0 otherwise, the summation in

the left hand side just counts the number of departure events that are not scheduled at

a good platform. This allows us to find all non-dominated solutions, as the number of

platform track changes is discrete.

It is also possible to take into account the number of platform track changes in the iterative

approach. When searching for a new platform assignment in the third step of the iterative

algorithm, instead of minimizing the potential departure times only, we could additionally

consider the number of platform track changes. However, since in the linear programming

formulation (4.18)-(4.21) for the third step of the iterative approach we do not explicitly

define an assignment to the platforms, for every candidate qki we replace the variable ηki

by a set of |Ps| variables

(ηki )p =

{
1 if candidate qki ∈ Ci is chosen and event i takes place at platform track p,

0 otherwise.

Then constraints (4.19-4.21) can be rewritten as

∑
p∈Ps

|Ci|∑
k=1

(ηki )p = 1 ∀i ∈ Es
arr, (4.25)

∑
i∈Es

arr

|Ci|∑
k=1

akil(η
k
i )p ≤ 1 ∀l ∈ {1, . . . , |C| − 1}, ∀p ∈ Ps (4.26)

(ηki )p ∈ {0, 1} ∀i ∈ Es
arr, ∀k ∈ Ci, ∀p ∈ Ps. (4.27)

In order to incorporate our second objective of minimizing the number of platform track

changes, we could again add a constraint that restricts the number of platform track

changes at each station. However, this requires a distribution of the C allowed platform

track changes to the stations. Hence we include the minimization of the number of

platform track changes in the objective function (4.28), considering a weighted sum of
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both objectives:

min
∑
i∈Es

arr

ci
∑
p∈Ps

|Ci|∑
k=1

qki (η
k
i )p + λ

∑
i∈Edep

|Ci|∑
k=1

∑
p/∈P (i)

(dki )p(η
k
i )p (4.28)

where (dki )p is set to 1 if we just want to penalize platform track changes but could also be

modified to represent passenger weights or to penalize only the platform track changes of

non-delayed trains. The parameter λ can be used to control the influence of the different

objective functions on the new platform assignment.

It should be noted that the integer program (4.25)-(4.28) is not totally unimodular. How-

ever, it is shown for similar formulations that most optimal solutions will be integral (see

Kroon (1990)). This suggests that the problem can be solved with an IP solver.

4.6.2 Computational Results

We have used the cases from Section 4.5.1 to compare the solution approaches that balance

the delay on the one hand and the number of platform track changes on the other. For

Cases A and C, we considered all 100 delay scenarios. For Cases B and D, we restricted

ourselves to 30 delay scenarios to reduce the amount of computation time needed. We

first present the results for the exact solution approach and then consider the iterative

procedure.

In Figure 4.8, we have plotted the average delay for all passengers as a function of the
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Figure 4.8: The average objective value as a function of the number of platform track

changes that are allowed in the dynamic model.

maximal number of platform track changes. For Cases A and C, the optimal solution can
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be obtained with at most 3 platform track changes for all delay scenarios. By allowing

only 1 platform track change, the solutions for Case A are optimal. For Case C, the

optimal solution with at most one platform track change are within 0.4% of optimality on

average. For Case B, 9 platform track changes are needed to obtain the optimal solution.

Again, more than half of the delay reduction can be obtained with only one platform

track change. For Case D, the results look somewhat different. We again find the optimal

solution with only 9 platform track changes. However, for Case D, the delay reduction

with only one platform track change is relatively small. Furthermore, we observe that

the solution with at most 10 platform track changes has a worse objective value than

the solution with at most 9 platform track changes. Recall from Section 4.5.2 that the

dynamic model cannot be solved to optimality for Case D. When we limit the number of

platform track changes, the average optimality gap equals 0.5%. This explains the small

increase in objective value when increasing the number of platform track changes from 9

to 10. We think the aberrant progress for Case D is also caused by our inability to solve

the integer program to optimality.

In general, in order to find the optimal solution, much less platform track changes are

needed than were found by the dynamic model. Furthermore, the graph shows that a

large part of the delay reduction can be obtained with only a small number of platform

track changes.
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Figure 4.9: The average objective value and number of platform track changes for

various values for the parameter λ. The lower x-axis corresponds to Case A; the upper

x-axis to Case C

In Figure 4.9, we have plotted the results for the iterative algorithm for Cases A and C. We

have executed the iterative algorithm for each value of the parameter λ ∈ {0.5, 1.5, 2.5, 4.5, 9.5, 19.5, 39.5,
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Figure 4.10: The average objective value and number of platform track changes for

various values for the parameter λ for Cases B and D

For each value of λ, we ran the iterative algorithm and computed both the total passenger

delay and the number of platform track changes for each delay scenario. The total delay is

normalized in the same way as in Figure 4.7. The averages of the total delay and platform

track changes are plotted in the figure. Similarly, in Figure 4.10, the results are depicted

for Cases B and D.

We see in these figures that the number of platform track changes can be reduced by in-

corporating them in our iterative algorithm. For low values of the parameter λ, we obtain

the same objective value as with the original iterative algorithm, but find less platform

track changes. When the value of λ is increased, the number of platform track changes is

reduced. However, this comes at the cost of more passenger delay.

For Case A, we find three interesting classes of solutions. The first class, found with

λ ≥ 4.5, resembles the static solution. Solutions in the second class, obtained for λ ≤ 1.5,

have an objective value that is comparable to that of the dynamic model, but introduce

only few platform track changes. For λ = 2.5, a solution is found that balances the objec-

tive and the number of platform track changes. Note that for all values of λ, the average

number of platform track changes is smaller than 1. This indicates that for most delay

scenarios, there are no platform track changes at all. For Case C, only two classes of

solutions are distinguished. For λ ≥ 9.5, solutions are found with the same objective as

the static approach. For λ ≤ 4.5, we find an objective value that is close to the optimal

objective, but the number of platform track changes is reduced significantly. For Cases B

and D, the progress is more gradual. For all intermediate values of λ, a solution is found

with a unique balance between the objective and the number of platform track changes.
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Comparing both solution approaches for the bi-objective problem, we see that the exact

algorithm finds solutions with less platform track changes. In terms of quality, the exact

approach is thus preferable.

For Cases A and C, both the exact method and the iterative approach solve the instances

within one minute. For Case B, the running time for the exact algorithm is in the order

of 10 minutes, while the iterative approach can solve the model within 3 minutes. For

practical applications, when computational time is scarce, it is thus better to apply the

iterative algorithm. Finally, for Case D, both methods require 20 minutes of computation

time. Such running times are too long for practical applications.

4.7 Conclusion and Further Research

In this chapter, we introduced a delay management model that incorporates the limited

capacity of railway stations. Two models are presented. The first model fixes the as-

signment of trains to platforms and reduces to a delay management model with headway

constraints. In the second model it is allowed to reschedule the platform assignment. In

a computational study, we show that the delay for the passengers can be reduced when

the platform assignment is rescheduled dynamically.

As solutions to the delay management problem should be available within a very short

computation time, we also proposed an iterative solution method for the delay manage-

ment problem with station capacities. This heuristic iterates between solving a delay

management problem with a given platform assignment and optimizing the platform as-

signment given the timetable and wait-depart decisions. We show that for each station

separately, an optimal platform assignment can be found in polynomial time. Compu-

tational tests show that the iterative heuristic can be applied to improve on a solution

that is obtained by the static delay management model, especially for cases that include

regional trains.

A drawback of the dynamic model is that it reschedules a lot of trains to other platforms in

order to reduce the total delay. Although delays are a source of frustration for the passen-

gers, many platform track changes are frustrating, too. Furthermore, these track changes

put pressure on the dispatching organization of the railway operator. In our view, delay

management with station capacities should therefore be viewed as a bi-objective optimiza-

tion problem. We show that much of the delay reduction can be obtained by allowing

only a few platform track changes. To resolve the remaining delays, many platform track

changes are required. We therefore propose to limit the number of platform track changes

that are allowed, in order to balance the delay for the passengers on the one hand and
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the number of platform track changes on the other.

We distinguish two directions for future research. The first direction searches for faster

solution methods. Although our model can solve real-world instances within computation

times that are allowed in practice, solution methods for even larger instances might be

required. Furthermore, we approximate the delay for passengers who miss a connection

by the cycle time T . In reality, these passengers will probably select an alternative route.

To cope with this problem, our model can be used in an iterative solution approach as

proposed in Chapter 3, but then it should be solved several times. In such a setting,

faster solution methods are necessary. We think that further attempts to solve delay

management with station capacities heuristically could be developed that make use of

relaxation-based solution approaches.

The second direction applies our methods to the timetabling problem. Station capacities

are also an important issue in timetabling. Therefore it would be interesting to apply our

exact and heuristic solution methods to the timetabling problem with station capacities

and to compare them to existing solution approaches.





Chapter 5

An iterative optimization framework

for delay management and train

scheduling

5.1 Introduction

Most regular train passengers will recognize the frustration of missing a connecting train

when their feeder train arrives at the transfer station with a small delay. In low-frequency

railway systems, missing a connection can have a severe impact on the travel time of the

passengers, even if the delay of the incoming train is only small. In such cases, an alter-

native would be to delay the departure of the connecting train, so that passengers from

the delayed train can transfer to the connecting one. If a train waits for passengers from a

delayed feeder train, the punctuality will be reduced; if it does not wait, passengers need

to wait for the next service to their destination. Determining whether a train should wait

for a delayed feeder train or should depart on time is the subject of Delay Management

(DM). Netherlands Railways, the largest passenger operator in the Netherlands, endorses

the importance of a reliable railway system and has recently introduced the passenger

punctuality as a new performance indicator. The passenger punctuality measures the

ratio of passengers who arrive at their destination with a delay smaller than a certain

threshold value.

We propose in this chapter an innovative approach that computes a connection plan that

solves the DM problem, and considers the limited capacity of the railway infrastructure.

This latter is modeled as the Train Scheduling (TS) problem at a microscopic level, i.e.

modeling the status of the signals and safety system. In our optimization framework
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the DM solution and TS solution iteratively set boundary conditions for each other. By

coupling the two models, a solution is found that is locally feasible. Furthermore, by it-

eratively solving the DM and TS problems, delays for trains and passengers are reduced.

The objective is multi-fold: (i) the computation of a feasible train schedule inside the

stations, (ii) the minimization of train delays in station areas, (iii) the minimization of

travel times for passenger flows at the network level.

We now review the main contributions on the DM and TS problems. In Schöbel (2001),

a first integer programming formulation for the DM problem is given. This formulation

is further developed in De Giovanni et al. (2008) and Schöbel (2007). In these models, it

is assumed that passengers will wait for one cycle time whenever they miss a connection.

In Chapter 2, we relaxed this assumption and assumed that passengers take the fastest

route to their destination. We presented an integer programming formulation that allows

for passenger rerouting and show that the delay is reduced significantly with respect to

earlier models. In Chapter 3, we developed several heuristics to solve the DM problem

with passenger rerouting.

Other extensions of the classical DM model incorporate the limited infrastructure capac-

ity. Schöbel (2009) proposes to apply headway constraints to model the limited capacity

on the tracks. An integer programming formulation that includes these headway con-

straints and several computational tests are given in Schachtebeck and Schöbel (2010).

In Dollevoet et al. (2011), a first attempt to take the limited number of platforms in a

station into account is presented. This approach was further developed in Chapter 4.

The DM models described so far are all macroscopic. The detailed characteristics of the

railway infrastructure are abstracted to make sure that large parts of the network can

be considered at once. Such a global scope is necessary for DM, as the passengers travel

through large parts of the network. However, as a consequence, some of the complications

arising from the infrastructure layout cannot be taken into account.

On the contrary, the train scheduling (TS) problem is to compute precisely the effects

of delay propagation and the adjustments of train speed profiles at a microscopic level,

by considering the capacity of the infrastructure and the behavior of the signaling sys-

tem. This requires the definition of a microscopic scheduling problem, in which detailed

information about the tracks and the switches is taken into account. This way, all char-

acteristics of the infrastructure can be modeled.

Simulation models (see e.g. Hansen and Pachl (2008) for an overview) proved to be a

suitable tool to represent the dynamics of train operations, but they are still limited es-

pecially when large stations and heavy traffic are considered, and are based on myopic

rules that might result in large delays.
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Concerning the optimization models for the TS problem, Törnquist (2012) resorts on

heuristic procedures for computing schedules in a short time, compatible with operations.

To this end, microscopic detail is considered for the most complex stations. Studies on

a test case in Sweden report that for a time horizon of traffic prediction of 90 minutes,

a feasible schedule is found within 30 seconds, even for instances where commercial opti-

mization suites fail in finding a solution.

A fully microscopic model is used in Corman et al. (2011) to model train traffic over a

complex and dense area of the Dutch railway network, with up to hundreds of trains. A

truncated branch and bound procedure (D’Ariano et al., 2007) is used that achieves very

often optimal solutions, substantially reducing delay propagation, compared to practice

or simple dispatching rules. Building on that result, a bi-level programming is introduced

in Corman et al. (2012) that allows control over very large instances, divided into many

local areas. A coordination level is in charge of defining constraints at the border of

the local areas to ensure a feasible global solution. The bi-level formulation allows to

check feasibility and optimality at local and global network levels, leading to a branch

and bound procedure that achieves quickly a good solution for up to one hour of traffic

prediction.

Only recently, the DM problem has attracted some attention in the train scheduling liter-

ature. In Corman et al. (2010b), a bi-objective TS model is developed that minimizes the

delay of the trains on the one hand and the number of missed connections on the other

hand. However, as only the connections and trains within a station area are considered,

the global behavior of the passenger flows cannot fully be captured.

For the existing TS approaches, the size of instances solvable within a real-time compu-

tation horizon is still smaller (in time horizon or geographical extent) compared to the

macroscopic DM models. Moreover, typical objectives of TS models regard the reduc-

tion of (possibly weighted) delays and delay propagation, and generally exclude passenger

flows. Inclusion of continuous passenger flows would increase further the complexity by

taking into account multiple objectives.

In this chapter, we present an iterative optimization framework based on DM and TS

models. It closes the gap between the theory on DM on the one hand, and on TS on the

other hand. In doing so, the global scope of DM is combined with the high level of detail

from TS. This way, we can model both the passenger flows at a network level and the

detailed infrastructure locally at the stations. To the best of our knowledge, this is the

first attempt to consider both levels in an integrated approach.

In a macroscopic DM model, we first determine which connections to maintain and derive

the departure and arrival times of trains at the stations. Given the connections that
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should be maintained, these departure and arrival times are then validated using a mi-

croscopic TS model. Given the outcome of this microscopic validation, the process is

repeated until a feasible solution is found. Doing so, we find solutions to the DM problem

that respect the limited capacity of the station infrastructure, even for some of the most

complicated and densely occupied stations in The Netherlands.

The remainder of this chapter is organized as follows. First, Section 5.2 describes the

macroscopic DM model and Section 5.3 the microscopic TS model. Section 5.4 gives an

illustrative example for both models. Then, Section 5.5 shows how these models are cou-

pled in our iterative optimization framework. Section 5.6 reports the experimental setup

to evaluate the framework. Section 5.7 concludes with remarks on the framework and

on the computational results. Further research directions are also outlined for practical

applications of the proposed methodology.

5.2 Delay management model

The central question of the DM models is which connections to maintain in case the

railway system faces delays. It is assumed that the original timetable and the passenger

demand are known. The passenger data is represented as a set of origin-destination pairs

(OD-pairs) P . Each OD-pair p ∈ P represents a group of np passengers who want to

travel from a common origin station to a destination station at a specified time. Given

a set of initial delays, the aim is to determine for each connection whether it should be

maintained or not. Besides, a so-called disposition timetable is determined that prescribes

the expected departure and arrival times of the trains at each station. Finally, for each

OD-pair we determine a passenger route that connects their origin and destination, pos-

sibly including transfers at intermediate stations.

The DM problem is commonly modeled with an event-activity network. In this directed

graph, the nodes correspond to the events that have to be scheduled and are denoted by

E . We distinguish between departure events Edep and arrival events Earr, that correspond

to the departure from and the arrival at a station, respectively. For each event e ∈ E ,

we denote the time when the event is planned to take place by πe. The variables π thus

denote the timetable as it was planned to be operated. For each event e ∈ E , the initial

delay is denoted by de.

The arcs in the graph, denoted by A, represent precedence constraints (or activities) be-

tween these events and ensure that a minimal time between the events is respected. We

distinguish between driving arcs, waiting arcs and changing arcs. Driving arcs in Adrive

connect a train’s departure from one station to its arrival at the next station. Waiting
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arcs connect the arrival of a train at a station to its departure from that same station

and make sure that time is available for the passengers to get off and on the train. We

denote the set of waiting arcs by Await. Finally, changing arcs, contained in Achange, allow

passengers to transfer from one train to another. Driving and dwell arcs correspond to

operational constraints that cannot be neglected. On the contrary, transfer arcs model

possible transfers for the passengers. In case of delays, the railway operator can decide

to not maintain a transfer. For each activity a ∈ Adrive ∪ Await ∪ Achange, we denote the

minimal time required for that activity by La.

In order to compute the delay for the passengers correctly, We proposed to determine

a passenger route for each OD-pair explicitly in Chapter 2. In order to do so, the

event-activity network is extended with auxiliary events and activities. For each OD-

pair p ∈ P , both an origin event Org(p) and a destination event Dest(p) are added to

the event-activity network. These auxiliary events act as a source and a sink in a unit

flow problem. The origin event is connected to the departure events from the station

where the passengers in p want to start their trip. Similarly, all arrivals at the destination

station are connected to the destination event. The set of origin and destination arcs for

OD-pair p ∈ P are denoted by Aorigin(p) and Adestination(p), respectively. For notational

convenience, we define

A(p) = Adrive ∪ Await ∪ Achange ∪ Aorigin(p) ∪ Adestination(p).

In the extended event-activity network, a possible passenger route corresponds to a unit

flow from the origin event to the destination event.

We are now ready to present an integer programming formulation for the DM problem

with passenger rerouting. The main decision is which connections to maintain. We

therefore introduce a binary decision variable

za =

{
1 if connection a is maintained,

0 otherwise.

For each event e ∈ E , we determine the actual time xe that is in general equal to the

planned time πe plus a delay; the set xe thus defines the disposition timetable.

For each OD-pair p ∈ P , we determine a passenger route through the event-activity

network. This corresponds to determining a unit flow from the origin event Org(p) to the

destination event Dest(p) in the event-activity network. To model this, we introduce for
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each activity a ∈ A(p) a binary decision variable

qap =

{
1 if OD-pair p uses activity a,

0 otherwise.

For each OD-pair p ∈ P , we introduce an auxiliary variable Tp that represents the arrival

time for passengers in OD-pair p.

The integer program then reads as follows (see Chapter 2).

min
∑
p∈P

npTp (5.1)

such that

xe ≥ πe + de, ∀e ∈ E , (5.2)

xe ≥ xe′ + La, ∀a = (e′, e) ∈ Await ∪ Adrive, (5.3)

M(1− za) + xe ≥ xe′ + La, ∀a = (e′, e) ∈ Achange, (5.4)

qap ≤ za, ∀p ∈ P , a ∈ Achange, (5.5)

1 =
∑

a∈δout(Org(p))

qap, ∀p ∈ P , (5.6)

∑
a∈δin(e)∩A(p)

qap =
∑

a∈δout(e)∩A(p)

qap, ∀p ∈ P , e ∈ E , (5.7)

∑
a∈δin(Dest(p))

qap = 1, ∀p ∈ P , (5.8)

Tp ≥ xe −M(1− qap), ∀a = (e,Dest(p)) ∈ Adestination, (5.9)

xe ∈ N, ∀e ∈ E , (5.10)

za ∈ {0, 1}, ∀a ∈ Achange, (5.11)

qap ∈ {0, 1}, ∀p ∈ P , a ∈ A(p), (5.12)

Tp ∈ N, ∀p ∈ P . (5.13)

The objective function (5.1) is to minimize the weighted sum of the passengers’ arrival

times. The planned arrival times are fixed, so this is equivalent to minimizing the average

or total passenger delay. Constraints (5.2) incorporate the initial delays and make sure

that no train departs earlier than planned. Constraints (5.3) propagate the delay along

driving and waiting activities. For maintained connections, Constraints (5.4) propagate

the delay from the arriving to the departing train. Constraints (5.5) make sure that

a connection can only be used by passenger if it is maintained. Constraints (5.6)-(5.8)
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determine a unit flow from the origin event Org(p) to the destination event Dest(p), for

each OD-pair p ∈ P . Here δin(e) and δout(e) denote the set of arcs into and out of node

e ∈ E , respectively. Finally, Constraints (5.9) linearize the arrival times of the passengers.

In Constraints (5.4) and (5.9), the parameter M is a sufficiently large number. We refer

to Chapter 2 for more details on the integer programming formulation.

5.3 Train scheduling model

Given the actual train delays, the train scheduling problem is to compute a new feasible

schedule compatible with the status of the network, with the signaling system, and the

dynamics of trains. Potential conflicts between train paths are detected by a conflict

detection procedure for a given period of traffic prediction. In case of fixed block signaling,

tracks are divided into block sections; each block section cannot host two trains at the

same time. A potential conflict occurs whenever two or more trains require the same block

section and a decision on the train order has to be taken. The train that will traverse the

block section as second will be held outside the block section by the signaling system. In

fact, while this train approaches the occupied block section, first a yellow signal will be

shown, prescribing to slow down to an approaching speed (e.g. 40 km/h); and finally the

signal just before the block section will show a red signal that prescribes a complete stop

before the block section, as long as the preceding train has not exited the block section and

a minimum setup time has elapsed. A set of ordering decisions might furthermore result

in a deadlock. A deadlock is the situation in which a set of trains is mutually waiting for

a train in the set to move, and no movement for the trains in the set is possible.

To model those situations, a microscopic model is required, that has a precision of seconds

in modeling the travel times and considers train movements at the level of block sections.

This is the level of detail required to model properly the triggers of the safety system

and represent the signal aspects of the signaling system. The final outcome is a detailed

schedule of train movements, without deadlock situations, where all potential conflicts

have been solved. In this way, precise times can be predicted and delays are estimated

accurately.

We use a job shop scheduling model of the TS problem that can be represented as an event-

activity network with additional constraints. Mascis and Pacciarelli (2002) show that this

so-called alternative graph is a suitable model for the job shop scheduling problem with

additional constraints, such as blocking, also occurring in the railway context. The main

value of this formulation is the detailed representation of the train traffic, the network

topology and the signaling system.
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This formulation requires that a sequence of successive block sections is defined for each

train. The time required by each train to traverse each block section can be computed

in advance, except for a possible additional waiting time between operations in order to

solve train conflicts. In the alternative graph model, this results in a chain of operations

(passage of a train on a block section, modeled by nodes n ∈ N) and associated precedence

constraints (modeled by fixed arcs in Fix), similarly to the event-activity network of the

DM problem.

For every potential conflict, a passing order must be defined between the trains, which is

modeled in the graph by introducing a suitable pair of alternative arcs (in the set Alt) for

each pair of trains traversing a block section, that define each of the two possible orders

between the trains. Those arcs result in minimum headways between different trains,

according to the signaling system.

A deadlock-free and conflict-free schedule is finally obtained by selecting one alternative

arc from each pair, and updating the speed profile of the trains to the actual aspects of

the signaling system (see Corman et al. (2011)). Formally, the TS problem corresponds

to a particular disjunctive program, i.e., a linear program with logical conditions involving

operation “or” (∨, disjunction), as follows.

min tn − t0 (5.14)

such that

tj − ti ≥ wij, (i, j) ∈ Fix, (5.15)

(tj − tσ(i) ≥ wσ(i)j) ∨ (ti − tσ(j) ≥ wσ(j)i), ((σ(i), j), (σ(j), i)) ∈ Alt. (5.16)

In Problem (5.14)-(5.16), a variable ti, for i = 1, . . . , n−1, is the start time of operation i

and corresponds to the entrance time of a train in the associated block section, similar to xe

in the DM model. We use σ(i) to refer to the successor of operation i on the route followed

by a particular train, i.e. the operation on the block section after i. Moreover, operation 0

is a dummy operation that precedes all the other operations, to give a common temporal

reference; and operation n is a dummy operation that follows all the other operations,

and is used to keep track of delays, as explained later. In the scheduling model, all ti are

expressed in seconds, while the precision of xe in the DM model is in minutes.

Fixed constraints in Fix are a general family of constraints associated to characteristic

processes of railway operations, as follows.
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• Running constraints naturally define a chain of driving operations between operation

i of a train, and its successor σ(i) on the path followed by the train. For such

driving process, we consider precedence relations of the form tσ(i) ≥ ti + wiσ(i),

where wiσ(i) > 0 is the time required to traverse the block section associated to that

operation, at its actual speed profile.

• Dwell constraints at a station model the boarding and alighting of passengers, where

wiσ(i) is the minimal time required between the arrival operation and the departure

operation of the same train.

• Release constraints of the form ti − t0 ≥ w0i relate to operation 0 and represent

minimal start time for operation i, i.e. model the entrance time of a train into the

area. This is analogous to the πe in the DM model.

• Due date constraints of the form tn− ti ≥ win relate to operation n and represent a

due date for operation i. Such constraints are used to compute the delay associated

to train traffic.

• Connection constraints, as defined in the DM problem, fix the departure time of a

connected train to be larger than the arrival of a feeder train, plus a given minimum

connecting time. These constraints are the changing constraints specified by the

DM problem (the variables za). Such connections are normally associated to an

arrival event of a train at a station platform, and a successive departure of another

train at another platform of the same station.

Differently, the set Alt is disjunctive, i.e., is composed of pairs of alternative constraints,

each of them representing an ordering decision between trains. For each pair i and j

of operations associated with the entrance of two trains in the same block section, we

introduce the disjunction (tj − tσ(i) ≥ wσ(i)j) ∨ (ti − tσ(j) ≥ wσ(j)i), where wσ(i)j > 0 and

wσ(j)i > 0 are the minimum headway times. Those headway times are a function of a

variety of factors, such as the length of the block section, the speed profile of the train,

the driver behavior, and the length of the train, as specified by the blocking time theory

(see e.g. Hansen and Pachl (2008)). Finally, running and headway times are a function

of the speed profiles of trains, that again depend on the ordering decisions taken. The

solutions computed are fully compliant with the operational rules, the dynamics of trains,

and the actual signal aspects shown.

A TS solution corresponds to fixing the start time of each operation. The schedule is

feasible if it satisfies all conjunctions in Fix and exactly one constraint for each disjunctive

pair in Alt, and does not result in positive length cycles. Due to the structure of the arcs
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(i, n), the (positive) train delay can be computed at a set of relevant points (scheduled

stops and the exit of the network). It is interesting to consider the consecutive delay only,

i.e. the delay introduced when solving conflicts in the dispatching area, caused by the

propagation of the initial delays of late trains to the other trains in the railway area. The

objective function of the TS problem is the minimization of the maximum consecutive

delay, that corresponds to the length of the longest path between the dummy nodes 0 and

n, i.e. tn − t0.

5.4 Illustrative example

Figure 5.1 gives an illustrative example of the two models of Section 5.2 and 5.3. In the

top part of Figure 5.1, two trains V and T are running on a line connecting station P with

station Q. Train T stops at both stations, while train V stops only at station Q; thus,

at this latter station there is a possibility to enforce a connection between the two trains.

The dotted line defines the station area, i.e., a region in which switches connect different

tracks, that merge and cross each other. In fact, train T follows the lower path in the

network, while train V follows the upper path in the network; both are using the block

section b just before station Q. To ensure minimum train separation and safe movements

over the network, the fixed-block signaling system is used.

The middle part of Figure 5.1 refers to the macroscopic model used for the DM problem.

Events are represented as nodes, and activities in the set A as arcs connecting them; train

V is represented as the upper chain of events (including arrival event A3 and departure

event D3), and train T as the lower chain (including A1, D1, A2, D2). More in detail, the

graph shows a Wait activity at station P for train T , a Drive activity between station P

and station Q for train T , and waiting activities at station Q for both trains (reported as

Wait3 and Wait2). A connection activity in Achange is also considered, resulting in the

arc labeled Connection 3→ 2.

The bottom part of Figure 5.1 considers instead the microscopic model as used for the

TS problem, only for the area around station Q. The trains considered in the example

define two chain of nodes and arcs (again, the upper chain for train V and the lower

one for train T ), plus the two dummy nodes 0 and n. Successive nodes of each train are

connected by arcs representing Run activities, plus the two Dwell activities at station Q.

The ordering decision on the block section b is modeled by a pair of alternative, dotted

arcs, representing the two possible orders between trains. The same connection constraint

(Connection 3 → 2) as in the DM model is included, constraining train T not to leave

station Q before train V has arrived and a minimal time has passed. There are four
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release arcs, that connect dummy node 0 to the first node of a train, representing the

entrance time of the train in the area considered, and to the departure from the stations,

modeling the published departure time. Finally, two due date arcs connect the exit from

the area considered to dummy node n.

A1 D1

A3

A2 D2

D3

Connection 3->2

Connection 3->2

Wait 1

Wait 3

Wait 2Drive 1->2

Dwell 3

Dwell 2Run Run Run Run Run

RunRunRun
Run

Release

Release

DueDate

DueDate

Station P Station Q

0 n

Ordering
decisions

Train T

Train V

block section b

A3

A2 D2

D3

Train T

Train V

Train T

Train V

Release

Release

Figure 5.1: (top) Network of the illustrative example; (center) Macroscopic model used

in the DM problem; (bottom) Microscopic model used for the area of station Q, in the

microscopic model for the TS problem

5.5 Iterative DM and TS optimization approach

The previous sections presented the DM and TS models individually. We now introduce

the optimization framework that iterates between solving a macroscopic DM problem on

the one hand and a microscopic TS problem on the other. We will first give a general

overview of the combined system and then an example is presented.

A schematic outline of our optimization framework is presented in Figure 5.2. The original

timetable and the passenger demands are used as input for the algorithm. The passenger

demand is given as a set of OD-pairs p ∈ P , each of them representing np passengers
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Iterative optimization framework

Macroscopic delay 
management problem

Microscopic train
scheduling problem

Timetable+
Passenger demand+
Initial Delays

Disposition timetable
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        of train delays

Passenger delays

Expected
 entrance/exit
   times

Propagated delays

Connection
      plan

Figure 5.2: Schematic representation of the optimization framework.

who want to travel from an origin to a destination at a specified time. The timetable

prescribes for each arrival and departure at a station at what time and at which platform

it should take place. Furthermore, a set of initial delays is given. We assume that only

the arrival events in the network have an initial delay. Equivalently, we assume that the

initial delays are zero for all departure events.

The upper (macroscopic) part solves a DM problem to determine the connections to

be maintained and computes a macroscopic disposition timetable. The DM solution

minimizes the total delay for the passengers. In doing so, it allows the passengers to

change their routes through the network.

The DM solution results in a set of passenger connections that should be maintained (i.e.

a set of values for the variables za) and an expected macroscopic timetable (corresponding

to a set of event times xe for all events e). Those variables are used to define a TS problem.

To this end, we focus on those stations in the network where the infrastructure capacity is

a bottleneck, and the possibility of facing conflicts for the scarcely available infrastructure

is the highest.

Each TS problem considers part of the railway network around a station, in order to

represent most of the potential train conflicts. The release time for an arriving train

e ∈ Earr into the area is computed based on the expected arrival time xe of that train

in the DM solution, minus a fixed time τe that corresponds to the minimal running time

between the entrance of the microscopic network and the arrival at the station platform.

Similarly, we associate due dates to departing trains e ∈ Edep, based on xe, the expected

departure time computed by the DM solution, plus a time τe equal to the minimal running

time from the platform until the exit of the microscopic network. The set of connections

to be maintained, i.e. those for which za = 1, is also used in the TS problem. These



5.5 Iterative DM and TS optimization approach 115

A1

A2

D1

D2

A3 D3

tA2 = xA2 + d̄A2

tA1 = xA1

tA3 = xA3

La + d̄A2

La − d̄A2

La + d̄A2

Figure 5.3: Part of the event-activity network within a station. d̄A2 is the extra delay

computed by the TS model.

transfer activities are added as fixed arcs to the set Fix.

The solution to the TS problem is a set of starting times of all operations, that are feasible

with regard to the signaling system and the dynamics of trains. In particular, the solution

contains starting times for the arrival and departure events e ∈ E , that are considered in

the DM problem. We will denote these starting times by te for all e ∈ E .

This updated plan of operations will in general have conflicts in the station area and

propagate some of the delays. The actual arrival and departure times t are going to be

different from those original times x considered in the DM model. We thus find additional

delays d̄e = te − xe for each event e ∈ E that is considered in the DM problem of the

next iteration. To take these deviations into account, we update the minimal duration

of the process times La for activities a ∈ Achange ∪ Adrive, while avoiding to explicitly fix

variables in the DM model.

To explain how these additional delays are incorporated, consider a train that departs later

from a station than it was expected in the previous iteration. In that case, more passengers

are able to transfer to that departing train. Furthermore, the train will probably arrive

later at the next station in the macroscopic network.

We explain how we incorporate these intuitive ideas using Figure 5.3 that refers to a

DM model. Part of an event-activity network is shown, that contains the arrivals and

departures of three trains (respectively, A1, D1; A2, D2; A3, D3). The diagonal lines

connect events of different trains and represent possible transfers for the passengers. We

assume that the solution computed by the TS model contains some propagated delays

d̄A2 and d̄D2, i.e. the actual times tA2 and tD2 are different from the plan xA2 and xD2,

respectively. All other events e have d̄e = 0, i.e. they occur at their planned time xe.

There are two possible connections represented (between A1 and D2; and between A2

and D3). Recall that La denotes the minimal transfer time for a transfer activity a =

(e, e′) ∈ Achange. This means that the connection is maintained if and only if xe′−xe ≥ La.
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Figure 5.4: Iterative solution approach for the combined DM (left column) and TS

(right column) problems. Iterations increase clockwise.

Our aim is now to anticipate the delays from the TS model in the DM model. In the

microscopic timetable, the transfer time for passengers equals te′ − te. Incorporating the

delays from the TS model, we thus find that the connection is maintained, if and only if

La ≤ te′ − te = xe′ + de′ − xe − de ⇔ La − de′ + de ≤ xe′ − xe.

This suggests to use La − de′ + de as the minimal transfer time in the next iteration. For

the transfer to the delayed train (i.e. A1 → D2), the transfer time is thus decreased by

the propagation of delays, as more passengers will be able to transfer. For the transfer

from the delayed train (i.e. A2 → D3), the transfer time is increased by the amount of

delay. Finally, for the driving activity that connects the departure D2 to the arrival at

the next station, the minimal driving time La is increased with the amount of delay.

We next illustrate the steps graphically, referring to Figure 5.4. We start from the top-left

of Figure 5.4, which shows a solution to the DM problem, corresponding to a decision to

maintain connection 3 → 2, and a proposed disposition timetable computed at macro-

scopic level, that corresponds to expected arrival and departure times (respectively, xA3,

xD3, xA2, and xD2) for the two trains of the example reported in Figure 5.1.

We use this solution to define a TS problem, in which only a station area is considered.

This is reported in the top-right of Figure 5.4. The two trains enter the network at their

release times (Release3 for the upper path corresponding to train V , and Release2 sim-
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ilarly for the lower path and train T ), that are computed based on the expected arrival

time (xA3 and xA2 respectively) and the fixed times τA3 and τA2 related to running be-

tween the entrance of the microscopic network and the arrival at the station platform.

Similarly, due dates are computed based on the expected departure time (xD3 and xD2)

and fixed times τD3 and τD2 related to running time from the platform to the exit of the

microscopic network.

The TS problem is to compute the times of each operation, and orders between trains on

shared infrastructure elements, that are represented by alternative arcs. The connections

defined by the DM solution are included in the TS problem as fixed arcs. A solution to

the TS problem is shown in the bottom-right figure, showing the order V → T chosen

(i.e. train V precedes train T on block section b). This defines a microscopically feasible

arrival time of the trains at the platform (respectively tA3 and tA2), and similarly feasible

departure times from the platform (tD3 and tD2, respectively).

We then use the microscopically feasible times of the TS solution to define a new instance

of the DM problem in the bottom-left of Figure 5.4. In general there will be a difference

between the actual times t and the expected times x that were considered at the previous

iteration, as trains might face yellow or red signals to avoid potential conflicts. Those

differences result in propagated delays, that define new process times for driving and

changing activities. Based on these updated data, the DM solution might keep the same

set of connections as in the iteration before, or choose for new ones. The resulting solution

would be the one shown on the top-left of Figure 5.4, leading to another iteration.

5.6 Computational experiments

We assess the performance of our optimization framework using real-world instances from

the Netherlands. Railway activities in the Netherlands are split between an infrastructure

manager (ProRail) on the one hand and several railway operators on the other hand. We

obtained detailed information on the infrastructure from ProRail and the timetable and

passenger information from Netherlands Railways. Netherlands Railways is the largest

passenger operator in the Netherlands and transports over a million passengers per day.

We now first describe the instances that we used to evaluate our optimization framework.

Then we present the computational results. In all our experiments, our main objective

will be to minimize the total passenger delay.
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Figure 5.5: A large and busy part of the Dutch railway network

5.6.1 Instances

The instances consider the railway network that is depicted in Figure 5.5. This picture

shows a dense part of the railway network that contains Utrecht Central Station, which is

in the centre of the Netherlands. The dots in the picture represent larger stations, where

passengers have the possibility to transfer from one train to another. Two stations are

connected by a line if there is a direct train between them. On most lines, both long

distance trains and regional trains are operated with a high frequency. The long distance

trains stop at the stations in the picture only. On the contrary, regional trains stop on

smaller stations along the line, too. In total, we consider 46 stations. Because there are

both long distance trains and regional trains with a high frequency, the station infras-

tructure in major stations is utilized heavily, especially in Utrecht Central Station.

In order to assess the performance of the iterative approach, we generate a set of delay

scenarios and solve the corresponding delay management problem with the proposed op-

timization framework. We generate two samples: one sample with small initial delays

and one with large initial delays. Both samples contain ten scenarios. We have generated

the delay scenarios as follows. In all scenarios, each arrival of a train at a station has a

probability of 10% to be delayed. If an arrival is delayed, the initial delay is uniformly

distributed between 1 and 5 minutes in the sample with small initial delays. Similarly, in

the sample with large initial delays, the initial delay is uniformly distributed between 1

and 15 minutes.

In Table 5.1, we first present some characteristics of the resulting delay management

problem. In total, 377 trains are considered. Together, these correspond to 1221 departure

events, 1221 arrival events and 1221 driving arcs. Besides, there are 844 dwell arcs,
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Characteristics of the macroscopic model
Time horizon 4 hours

Stations 46
Trains 377

Train driving activities |Adrive| 1221
Dwell activities |Await| 844

Connections activities |Achange| 9643
OD-pairs |P| 7086

Table 5.1: Some characteristics of the delay management model

leading to 2065 operational activities. Furthermore, the network contains 9643 possible

connections. We consider 7086 OD-pairs, of which 1732 have a direct train from their

origin to their destination. This shows that 76% of the OD-pairs should transfer at least

once. It turns out that OD-pairs with a direct trip attract much more passengers: Only

20% of the passengers in the railway network have to transfer.

Considering the microscopic validation of the solution of the DM model, we focus on

the bottleneck of Utrecht Central Station, that is the station in which the infrastructure

is used most heavily. In fact, five main lines arrive and depart from the 14 platforms

of Utrecht Central Station, passing through two large interlocking areas at the sides of

the station with a total of about a hundred switches. The TS model refers to a railway

network that includes the station area of Utrecht Central Station, and about 10 kilometers

of the railway lines, as in Figure 5.6.

The network considered results in train scheduling problems with the characteristics re-

ported in Table 5.2. On top of the main station of Utrecht, 10 more minor stations are

considered along the lines. Compared to the DM problem, for the same time horizon,

only the trains passing through the area are considered; anyway, the microscopic detail

leads to more individual operations considered, with about 22 operations considered for

each train, on average. The amount of ordering decisions increases polynomially with the

amount of trains running on the block sections, resulting in more than 52,000 variables

defining the order of trains.

5.6.2 Results for instances with small delays

Typical behavior of the iterative optimization framework for instances with small delays

is presented in Figure 5.7. This figure shows the objective value in each iteration for

a single case. Along the vertical axis is the total delay for the passengers in minutes.

The solid line gives a lower bound on the optimal objective value, obtained by solving the



120 An iterative optimization framework for delay management and train scheduling

Figure 5.6: Microscopic detail in the area around Utrecht Central Station, and location

of the borders.

Characteristics of the microscopic model
Time horizon 4 hours

Stations 11
Block sections 531

Trains 257
Operations |N | 5681

Ordering decisions |Alt| 52600

Table 5.2: Some characteristics of the train scheduling model

delay management problem without considering the station capacity. The objective values

from the DM model in each iteration are represented by asterisks and connected by the

lower dashed line. Recall that the corresponding solutions are in general microscopically

infeasible. In order to obtain feasible solutions, we apply the TS model, obtaining a set of

consecutive delays for the trains in Utrecht Central Station. By propagating these delays

through the network, we obtain a solution to the DM problem that is microscopically

feasible. The objective value for this solution can be found by computing for each OD-

pair the earliest arrival time and the corresponding delay. Adding these delays over all

OD-pairs gives the objective value for this solution. These objective values are indicated
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Figure 5.7: The total delay for the passengers in each of the iterations for a scenario

with small delays

by the crosses in the figure.

We start the iterative approach with a solution in which no connections are maintained. In

the second iteration, the possibility to maintain a connection is included and the solution

value for the DM problem decreases significantly. However, the gap to the solution of

the TS problem is rather large. In the next iteration, the consecutive delays found by

the TS algorithm are anticipated, leading to a solution that is slightly better. From then

onwards, the algorithm oscillates between two solutions.

The average objective values over 10 scenarios are presented in Table 5.3. In the second

column we report the objective value that is found in a specific iteration. The iterative

procedure does not improve the solution in every iteration. The third column therefore

contains the best objective value that is obtained until that iteration. Finally, we present

the best normalized passenger delays in the last column. As can be seen, in the second

iteration the delay is reduced with 26% with respect to the first iteration. In the next

iterations, the total passenger delay is reduced by another 1.0%. The best solution is

found in the second iteration for 3 instances, in the third iteration for 5 instances and

once in the fourth and sixth iteration.

Characteristics of the solution procedure for instances with small delays are reported in

Table 5.4. Solutions to the DM problem can be found in 125 seconds on average. Solving



122 An iterative optimization framework for delay management and train scheduling

Iteration Objective Best objective Best normalized objective
1 324734 324734 100
2 240836 240836 74.2
3 241027 238985 73.6
4 241205 238793 73.5
5 242023 238793 73.5
6 239075 237670 73.2

Table 5.3: The average objective value over 10 instances with small delays

Characteristics of the solution procedure
Computation time for one DM iteration (seconds) 125
Computation time for one TS iteration (seconds) 240
Average consecutive train delay in Utrecht (seconds) 4.0
Gap between DM and TS solution (total passenger delay) 8%
Gap to the lower bound (total passenger delay) 15%
Difference between first and best solution (average train delay) 20%

Table 5.4: Some characteristics of the solution procedure for the instances with small

delays

an instance of the TS problem takes on average 240 seconds of computation time. The

resulting solutions have a maximum consecutive delay of 212 seconds and an average

consecutive delay of 4 seconds. In the first iteration, the solution value after solving the

TS problem is about 6% worse than the objective value from DM. In other iterations, the

solution value is increased by about 9%. The gap between the final solution and the lower

bound is on average 15%. Recall that the lower bound is obtained by solving the DM

problem from Section 5.2 without considering the station capacity. We also compare the

average train delay between the first iteration and the iteration in which the best solution

is found. For instances with small delays, the average train delay is increased with 20%.

5.6.3 Results for instances with large delays

For the scenarios with larger delays, the algorithm behaves less consistently. In Figure

5.8, we show the solution values for an instance where the iterative approach improves

over the first solution. Again, we start the process with a solution that maintains no

connections. In the following three iterations, the solution value decreases. After that,

worse solutions are found. Such behavior is observed for 40% of the scenarios.
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Figure 5.8: The total delay for the passengers for an instance with large delays where

the iterative approach improves over the start solution
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Figure 5.9: The total delay for the passengers for an instance with large delays where

the iterative approach cannot improve over the start solution
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Iteration Objective Best objective Best normalized objective
1 900634 900634 100
2 903771 878029 97.5
3 907546 874899 97.1
4 892270 871588 96.8
5 897342 871588 96.8
6 909596 871588 96.8

Table 5.5: The average objective value over 10 instances with large delays

Characteristics of the solution procedure
Computation time for one DM iteration (seconds) -
Computation time for one TS iteration (seconds) 300
Average consecutive train delay in Utrecht (seconds) 8.7
Gap between DM and TS solution (total passenger delay) 10 %
Gap to the lower bound (total passenger delay) 13 %
Difference between first and best solution (average train delay) 21%

Table 5.6: Some characteristics of the solution procedure for instancs with large delays

For the other instances we find worse solutions after the first iteration. A typical example

is given in Figure 5.9. The course of the solution values for these instances is very unstable.

Furthermore, the iterative approach does not improve over the start solution.

In Table 5.5 we report the average objective values in each iteration. Only in the third

and fourth iterations, the average objective value is better than that of the start solution.

In the fourth column we report for each iteration the best relative solution value obtained

until that iteration. Here we see that, on average, the solutions in the final iteration are

3.2 % better than the solutions found in the first iteration. The gap between the DM and

TS solution is 4% in the first iteration and on average 11% in the other iterations.

In Table 5.6, some characteristics of the solution procedure are reported. Solving an

instance of the train scheduling problem takes on average 300 seconds of computation

time for large delays. The resulting solution has a maximum consecutive delay of 354

seconds and an average consecutive delay of 8.7 seconds. Solving the delay management

problem to optimality takes much time. Therefore, we limit the time for the DM problem

for each iteration to 20 minutes. Within this time, solutions are found that are close to

optimal, with gaps smaller than 1% for all instances. Furthermore, the best solution is

found within several minutes. Comparing the average train delay between the first and

the best iteration, we observe an increase of 21%.
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5.7 Conclusions

In this chapter we developed an iterative optimization framework for delay management

and train scheduling. We propose a mechanism to incorporate consecutive delays from

the train scheduling solution in the delay management problem. By combining the global

scope of delay management and the local scope of train scheduling, we were able to

find solutions to the delay management problem that respect the limited capacity of

the station infrastructure. Besides these wait-depart decisions, the solution framework

provides a feasible train schedule at the stations, where the infrastructure is used heavily.

This train schedule allows for the precise evaluation of train delays, and thus also of the

passenger delays.

We first consider scenarios with small initial delays. For those scenarios, our framework

obtains a solution to the DM problem that is microscopically feasible. In the iterative

optimization procedure, the delay for the passengers is reduced by 27% with respect to a

naive approach where only one iteration is performed. For scenarios with larger delays,

the behavior of the solution procedure is less consistent. However, we are able to compute

and evaluate a solution to the delay management problem that is feasible at the station

level.

Several directions for further research are available. First, the interaction between the

models should be investigated in more detail for scenarios with large delays. Considering a

more general feedback mechanism could potentially lead to better solutions. For example,

one could define weights on the connections in the train scheduling model or penalize

changes in the wait-depart decisions in the delay management model. Second, the iterative

framework could be tested on a railway network with more bottlenecks. For each station

where the infrastructure is scarce, a local scheduler could be applied to compute a feasible

train schedule. As the updates from different station can be conflicting, these updates

should be fully coordinated.





Chapter 6

Summary and Conclusions

In this thesis, we studied delay management and dispatching in railways. Delay man-

agement and dispatching deal with small delays that occur in the daily operations of a

railway operator. When a delayed feeder train arrives at a station, delay management

models decide whether connecting trains should either wait or depart on time. These

wait-depart decisions should balance the delay for the transferring passengers on the one

hand and the delay for passengers in the connecting train on the other. The aim is to

minimize total passenger delay. Dispatching reschedules the infrastructure assignment of

the trains in order to minimize the propagation of train delays. Especially in the areas

around major stations, the available infrastructure is heavily utilized. Without proper

rescheduling, a delay of one train may then propagate to many other trains. By changing

the order in which trains enter and leave the station, the impact of such a train delay

may be reduced.

In Chapters 2-4, we developed several models and solution methods for delay management.

In Chapter 5 we make a first step towards integrating dispatching aspects into delay man-

agement. We now collect the main findings from these chapters and then suggest some

directions for future research.

6.1 Main findings

In Chapter 2, we introduce Delay Management with Rerouting of Passengers. When a

passenger misses a connection, he has to find an alternative way to reach his destination.

Previous delay management models assume that passengers wait for a complete cycle time

and take a similar train as the one they missed. In the Netherlands, this assumption is not

realistic: On many lines there are more trains in each direction and most passengers will

select the fastest of these alternatives to get to their destination. We therefore develop a
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delay management model that incorporates the routing decisions of the passengers. As-

suming that all passengers select the fastest alternative, we show that the wait-depart

decisions from our integrated model reduce the delays for the passengers with respect to

a model without passenger rerouting. A drawback of the model with passenger rerouting

is its complexity: The integer programs are much larger and therefore computationally

harder to solve.

To cope with the complexity arising from the routing decisions, we develop heuristics for

delay management with passenger rerouting in Chapter 3. Recall that models without

rerouting generally assume that passengers wait for a complete cycle time when a transfer

cannot be made. These models add a penalty of one cycle time to the total delay for each

passenger that misses a connection. Instead of adding a fixed penalty that is equal to the

cycle time, we propose a penalty that is different for each connection. The values of the

penalties are updated in an iterative procedure. In a computational study, we show that

this heuristic finds wait-depart decisions that lead to a delay very close to the minimal

delay, in only a fraction of the time. Furthermore, we compare our models to the policies

that are currently used in practice. These policies apply simple rules of thumb to decide

whether a train should wait or not. We show that delay management models outperform

such a rule-based policy.

In Chapter 4, we describe a delay management model that takes the limited capacity of

the stations into account. Because the infrastructure at the railway stations is scarce,

delays of connecting trains may propagate to other trains in the area. In order to take

the effects of these secondary delays into account, we propose a delay management model

that includes the stations’ capacities. We model each station as a set of parallel tracks

and apply headway constraints to make sure that two trains do not use the same platform

track at the same time. Modeling the available infrastructure in this way allows us to

reschedule the platform assignment, too. We perform computational tests to show that

passenger delays can be reduced by allowing changes in the platform assignment. How-

ever, platform changes put pressure on the dispatching organization at the infrastructure

manager and are annoying for the passengers. We therefore also introduce a bi-objective

delay management model, which minimizes the passenger delay on the one hand, and the

number of changes in the platform assignment on the other.

Integrating dispatching aspects into delay management models is the topic of Chapter 5.

Microscopic train scheduling models capture all details of the railway infrastructure by

modeling each junction and block signal individually. Doing so, these models are able to

compute delay propagation with high accuracy. Because all details of the infrastructure

are modeled explicitly, train scheduling models can only be applied to small parts of a
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railway network. In contrast, delay management models should range over larger parts of

the network, because passengers travel through the entire network. We propose to inte-

grate train scheduling models into delay management, in order to combine the benefits of

both. We developed a solution approach for delay management that iterates between a

macroscopic delay management module and a microscopic train scheduling module. The

delay management module makes the wait-depart decisions and determines a timetable,

which is then validated locally at the stations by the train scheduling module. If the train

scheduling module detects many secondary delays, these delays are fed back to the delay

management module and the process is repeated. For large delays, the system behaves

unstable, but for small source delays, this coupling is shown to be effective.

Summarizing, we develop delay management models that include passenger rerouting and

incorporate the limited capacities of the stations. In a comparative study, we show that

these models reduce passenger delays with respect to basic models and that the models

outperform simple rules of thumb that are currently applied in practice. Finally, we con-

clude that by tuning the parameters of the basic models we find wait-depart decisions that

are almost as good as those obtained by more complex models that incorporate passenger

rerouting and the infrastructure capacity.

6.2 Recommendations

In this thesis, we have developed several extensions of the classical delay management

models from Schöbel (2007) and Schachtebeck and Schöbel (2010). We have shown that

the wait-depart decisions obtained with these extended models reduce the total delay for

the passengers. A disadvantage of the extended models is their complexity: Solving the

models to optimality takes too much time. We have therefore developed several heuristics,

which apply solution methodologies for the classical models. In general, these heuristics

perform very well. First, the quality of the solution is fairly good: The delay increase

with respect to the optimal solutions is below 1%. Second, the computation times of the

heuristics are much smaller than those of the exact methods. In practical applications,

where decisions should be available within a short time, it is therefore better to apply the

heuristics based on simpler models. The contribution of the exact methods in this setting

is their ability to evaluate the performance of the heuristics: The solutions found with

the heuristics can be compared to the optimal solutions. If the quality of the heuristics

decreases, research should be devoted to developing better heuristics or faster optimal

solution methods.

A first step towards the application of delay management models in practice would be
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the validation of our results. Although numerous computational experiments support

our findings, our models should be embedded in a simulation environment to decisively

conclude that they can be applied to reduce passenger delays in reality. In such an

environment, the wait-depart decisions can be re-optimized every time a new source delay

appears. By precisely implementing the rules of thumb that are currently used, a fair

comparison can be made between our model-based approach and the current practice.

If the validation proposed above supports our conclusion that the total delay for the

passengers can be reduced by applying delay management models, we advise railway

operators to experiment with these models in their dispatching centers. To this end,

a conflict detection system should be installed that identifies connections that are not

maintained in the current situation. Then, this system should be coupled to our delay

management modules. If a connection conflict is detected, an optimization run is executed

to determine whether connections should be maintained or not, given the real-time train

delays. If it is decided that a train better waits for a delayed feeder train, a message is

sent to the dispatcher with the number of involved passengers, the total delay reduction

and the waiting time for the train. Based on this information, the dispatcher can then

decide whether or not to implement the decision to maintain the connection.

6.3 Future Research

We see many possible directions for future research. First, our delay management model

incorporating the station infrastructure views each station as a set of parallel tracks.

However, large stations also contain huge interlocking areas with hundreds of switches.

Our model neglects these areas, but in reality there may be many train conflicts that

propagate delays to other trains. To model the propagation of delays due to the limited

station capacity correctly, these interlocking areas could therefore be taken into account.

Second, the integration of train scheduling into delay management should be studied in

more detail. Our iterative approach finds satisfactory solutions for small source delays,

but is unable to solve instances with larger delays. By coupling the models more closely,

for example by adapting the feedback loop from the train scheduling module to the delay

management module, the iterative approach can be improved. Doing so, our approach

can be adapted in such a way that instances with larger delays can be solved, too.

Finally, the online version of delay management should be studied. Our models assume

that all source delays are known for a given period of time. Given these source delays,

we decide which trains should wait for delayed feeder trains during the planning horizon.

In real-world applications, the current delays of all trains are indeed known and some



6.3 Future Research 131

future delays may be anticipated. However, also new source delays will appear during

the planning horizon under consideration. One way to deal with these source delays is

to apply our model to find new wait-depart decisions every time a new source delay is

identified. The performance of applying delay management models iteratively should be

evaluated on real-world instances.
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L. K. Nielsen, L. G. Kroon, and G. Maróti. A rollign horizon approach for disruption

management of railway rolling stock. European Journal of Operational Research, 220:

469–509, 2012.

L. W. P. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus University

Rotterdam, the Netherlands, 2003.

D. Potthoff. Railway crew rescheduling: Novel approaches and extensions. PhD thesis,

Erasmus University Rotterdam, the Netherlands, 2010.

D. Potthoff, D. Huisman, and G. Desaulniers. Column generation with dynamic duty

selection for railway crew rescheduling. Transportation Science, 44(4):493–505, 2010.

M. Schachtebeck. Delay Management in Public Transportation: Capacities, Robustness,

and Integration. PhD thesis, Universität Göttingen, Germany, 2010.
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lem. In F. Geraets, L. G. Kroon, A. Schöbel, D. Wagner, and C. Zaroliagis, editors,

Algorithmic Methods for Railway Optimization, number 4359 in Lecture Notes in Com-

puter Science, pages 145–170. Springer, 2007.
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Nederlandse Samenvatting

(Summary in Dutch)

Tijdens mijn studietijd heb ik, samen met vele andere studenten en forenzen, erg veel

met de trein gereisd. Een voor mij populaire treinreis begon in Rosmalen, waar ik in een

stoptrein richting ’s-Hertogenbosch stapte. In ’s-Hertogenbosch stapte ik vervolgens over

op een Intercity naar Utrecht en vanaf daar ging ik verder naar de Utrechtse Uithof of in

de richting van Rotterdam. (Zie ook figuur 1.1 op bladzijde 2; de stoptrein via Rosmalen

vertrekt vanuit Nijmegen.) Voor de overstap in ’s-Hertogenbosch had ik 5 minuten en de

trein naar Utrecht vertrok vanaf de overzijde van het perron waar de trein uit Rosmalen

aankwam. Als de trein uit Rosmalen meer dan vijf minuten vertraging had vond ik dat

niet zo erg, want een kwartier na mijn geplande trein naar Utrecht ging er alweer een

volgende.

Op de terugreis herhaalden deze stappen zich in omgekeerde volgorde. Vanaf Utrecht nam

ik een sneltrein naar ’s-Hertogenbosch en daar stapte ik over op een stoptrein naar Ros-

malen. Ook in deze richting was de geplande overstaptijd 5 minuten, maar in dit geval

vertrok de stoptrein niet vanaf hetzelfde perron. Het kwam daardoor regelmatig voor dat

ik de stoptrein net miste als de Intercity vertraging had. Als het spits was stormde ik dan

in een enorme groep mensen richting de stoptrein en zag daar dat de deuren juist werden

gesloten op het moment dat wij de roltrap afrenden. Dit was extra vervelend omdat de

stoptrein maar twee keer per uur rijdt en ik dus een half uur moest wachten. Vaak vroeg

ik me dan gefrustreerd af: “Waarom kan die stoptrein niet één minuut wachten op al deze

reizigers?”

Bovenstaande vraag is de centrale vraag in dit proefschrift: Als een trein met vertraging

aankomt op een station waar veel reizigers willen overstappen, is het dan beter om de

volgende trein op tijd te laten vertrekken of kan beter gewacht worden op de vertraagde

reizigers. Een wachtende trein zal met vertraging vertrekken en daarmee enerzijds de

treinpunctualiteit verlagen. Anderzijds zal dit een positief effect hebben op de reizigers-
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punctualiteit. De reizigerspunctualiteit meet het percentage reizigers dat met een vertrag-

ing van ten hoogste vijf minuten op de eindbestemming aankomt.

Het onderzoeksgebied dat bestudeert of treinen op overstappende passagiers zouden moeten

wachten is een onderdeel van Mathematische Besliskunde en heet in het Engels “Delay

Management” (door mij vertaald als “het besturen van aansluitingen” in de titel van

dit proefschrift). De doelstelling is hierbij het minimaliseren van de totale vertraging

van reizigers. In het voorbeeld hierboven worden al enige belangrijke aspecten van dit

vraagstuk benoemd: (1) het aantal reizigers dat wil overstappen, (2) de tijd die reizigers

moeten wachten op de volgende trein en (3) de vertrekvertraging die de wachtende trein

oploopt. Twee andere aspecten die voor reizigers minder zichtbaar zijn, zijn (4) de

aankomstvertraging van de wachtende trein op het volgende station en (5) de invloed

die de vertraagde trein heeft op andere treinen die gebruik maken van hetzelfde spoor-

netwerk. Het kan bijvoorbeeld gebeuren dat een Intercity als gevolg van het wachten

kort ná een stoptrein vertrekt in plaats van ervoor. Hierdoor zal de Intercity nog meer

vertraging oplopen. Dit laatste is overigens de reden dat de stoptrein in ’s-Hertogenbosch

uit het voorbeeld niet wacht: alle treinen die vanuit ’s-Hertogenbosch in noordelijke richt-

ing vertrekken gaan over hetzelfde spoor op de Diezebrug. Als de stoptrein zou wachten,

zouden de Intercity’s naar Utrecht en Zwolle daardoor ook vertraging oplopen.

Er is veel onderzoek gedaan naar Delay Management in de spoorsector. In de literatuur

vinden we voornamelijk modellen voor Delay Management die uitgaan van een cyclische

dienstregeling. We noemen een dienstregeling cyclisch als deze zichzelf na een bepaalde

tijd herhaalt. Als de herhalingstijd één uur bedraagt, zoals in Nederland, ziet de dienst-

regeling tussen 8 en 9 uur er hetzelfde uit als de dienstregeling tussen 9 en 10 uur. De

modellen uit de literatuur nemen nu aan dat reizigers een vertraging oplopen van pre-

cies één uur wanneer ze een aansluiting missen. We noemen het model dat uitgaat van

deze aanname het klassieke model. We zagen in het voorbeeld al dat deze aanname niet

altijd geldig is. Reizigers die bijvoorbeeld de overstap op de Intercity naar Utrecht mis-

sen hoeven niet een uur te wachten, maar slechts 15 minuten. In hoofdstuk 2 van dit

proefschrift wordt daarom een model voorgesteld dat de vertraging voor reizigers die een

overstap missen niet benadert, maar exact uitrekent. Om dit te doen wordt in het model

voor alle reizigers die een overstap missen een alternatieve route bepaald. Hierdoor kun-

nen de nadelige effecten van het missen van een overstap exact worden berekend, en kan

precies worden bepaald welke treinen moeten wachten en welke treinen beter op tijd kun-

nen vertrekken. We laten in een simulatie zien dat we hiermee de totale vertraging voor

reizigers met 8% kunnen verminderen. Voor deze simulatie, en alle andere die volgen,

hebben we gebruik gemaakt van data die we van NS hebben gekregen.
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Het grootste nadeel van ons model uit hoofdstuk 2 is de verhoogde complexiteit. Omdat

we bij deze aanpak voor veel reizigers een alternatieve route moeten bepalen, duurt het

veel langer om te berekenen welke aansluitingen moeten worden gehandhaafd. Als we ons

model in de praktijk willen toepassen, kunnen we ons deze tijd niet veroorloven: als een

trein binnen enkele minuten zal vertrekken kunnen de bijstuurders van een spoorwegver-

voerder niet eerst een kwartier wachten tot er is uitgerekend of de trein zal wachten of

niet. Daarom stellen we in hoofdstuk 3 een aantal heuristieken voor, die niet de absoluut

minimale vertraging opleveren, maar wel proberen daarbij zeer dicht in de buurt te komen.

Een voorbeeld is een iteratieve heuristiek die het originele model herhaaldelijk toepast met

veranderende parameters. Door de parameters precies de goede waarden te geven, vinden

we een oplossing die hoogstens 1% slechter is dan de optimale oplossing. De rekentijd die

de heuristiek nodig heeft is in dit geval slechts enkele seconden. De heuristiek is dus in

de praktijk wel bruikbaar en in onze experimenten hebben we laten zien dat de kwaliteit

van de oplossing slechts marginaal wordt verlaagd.

Alle modellen die tot nu toe zijn beschreven negeren de effecten die vertraagde treinen

hebben op de andere treinen op hetzelfde spoornetwerk. De modellen gaan er dus bij-

voorbeeld van uit dat een Intercity die achter een stoptrein komt daardoor geen extra

vertraging oploopt. In de praktijk zal dat natuurlijk wel gebeuren. Tegelijkertijd met het

onderzoek dat in dit proefschrift wordt gepresenteerd, zijn er modellen ontwikkeld die de

onderlinge invloed van treinen op de vrije baan meewegen. Met de vrije baan bedoelen

we hier de stukken spoor tussen twee stations. In deze modellen wordt ervoor gezorgd

dat een trein die eerder vertrekt van een bepaald station, ook eerder op het volgende

station zal aankomen. Als een Intercity achter een stoptrein komt, zal deze dus tot het

volgende station achter de stoptrein blijven, en hierdoor extra vertraging oplopen. In

hoofdstuk 4 breiden we dit model uit door ook de beperkte capaciteit binnen de stations

te modelleren. We vatten een station hierbij op als een aantal parallelle sporen. Treinen

die gebruik maken van hetzelfde spoor in het station, kunnen elkaar niet inhalen. Als aan

twee treinen verschillende sporen worden toegewezen, is het mogelijk dat de ene trein de

andere in het station inhaalt. Een bijkomend voordeel van dit model is dat kan worden

bepaald hoeveel treinen vanaf een ander perron vertrekken. Als een trein niet vanaf het

geplande perron vertrekt, is dit zowel voor de bijstuurders als voor de reizigers vervelend.

Met ons nieuwe model kan een afweging worden gemaakt tussen de totale vertraging voor

reizigers enerzijds en het aantal wisselingen in de perrontoewijzing anderzijds.

Het model uit hoofdstuk 4 neemt wel het beperkte aantal sporen in een station mee, maar

niet hoe de infrastructuur er rond het station precies uitziet. Net buiten de grote sta-

tions vinden we gebieden met fly-overs en tientallen wissels. Ook in deze gebieden zullen
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vertraagde treinen rode seinen veroorzaken voor andere treinen. Het is vooralsnog niet

mogelijk om deze gebieden op een exacte manier in ons model mee te nemen. Daarom

ontwikkelen we in hoofdstuk 5 een oplosmethode die itereert tussen een globale aanpak

voor het delay management probleem en een lokale aanpak voor de precieze routering

van treinen door de stations. Op deze manier kunnen we de oplossingen van ons delay

management model evalueren door de precieze vertraging voor treinen en passagiers met

een microscopisch model te bepalen. We tonen hierbij aan dat het globale delay man-

agement model de vertraging voor reizigers goed benadert. Daarnaast kunnen we met

de iteratieve aanpak de globale oplossing uit de eerste iteratie verbeteren. Voor kleine

vertragingen werkt deze aanpak goed en kunnen we de vertraging inderdaad verminderen.

Als we de aanpak toepassen met grotere vertragingen werkt deze methodiek echter niet.

Om ook met grotere vertragingen om te kunnen gaan, zullen we de iteratieve aanpak dus

nog nader moeten onderzoeken.

Samenvattend hebben we in dit proefschrift de modellen voor Delay Management op een

aantal manieren uitgebreid. We hebben algoritmen ontwikkeld om deze modellen op te

lossen, waarmee de totale vertraging voor reizigers kan worden verminderd. Onze aan-

beveling is nu om deze methoden in een simulatiemodel te testen en te vergelijken met de

huidige aanpak van de vervoerders. Als uit de simulatie dezelfde conclusies volgen als uit

onze testen, namelijk dat toepassing van de modellen leidt tot minder reizigersvertraging,

kunnen de modellen worden ingebouwd in de bijsturingssystemen.
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l)DELAY MANAGEMENT AND DISPATCHING IN RAILWAYS

Passenger railway transportation plays a crucial role in the mobility in Europe. Since the
privatization of the railway sector in the 90s, passenger satisfaction has become an
important performance indicator in this sector. A key aspect for passengers is the reliabil -
ity of transfers between  trains. When a train arrives at the station with a delay,
passengers might miss their connection if the next train departs on time. These passengers
then prefer the connecting train to wait, but this introduces delays for many other passen -
gers. Delay Management is a field in railway operations that deals with this situation. It
determines whether a connecting train should wait for the passengers that arrive with a
delayed train or should depart on time.

In this thesis, we apply techniques from Operations Research to develop models and
solution approaches for Delay Management. The objective in our models is the minimiza -
tion of passenger delay. First, we extend the classical delay management model with
passenger rerouting. This allows us to compute the exact delays for passengers. We devel -
op an exact algorithm and several heuristics to solve this extension. Then, we incorporate
the limited capacity of the stations in our models. Stations are the bottlenecks of the
railway infrastructure, where delays of one train can easily propagate to other trains.
When optimizing the wait-depart decisions, these secondary delays should be considered.
We therefore develop an integrated model that includes headway constraints for trains on
the same track in the station and an iterative approach that evaluates the timetable
microscopically.
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