214,547 research outputs found

    Necrotrophic growth of periodontopathogens is a novel virulence factor in oral biofilms

    Get PDF
    The oral use of antimicrobial agents embedded in toothpastes and mouth rinses results in an oral microbial massacre with high amounts of dead bacteria in close proximity to few surviving bacteria. It was hypothesized that this provides the surviving pathogenic bacteria a large amount of dead microbial biomass as a nutritional source for growth (necrotrophy). This study demonstrated the necrotrophic growth of periodontal pathogens in the presence of different dead oral species. In addition, the presence of dead bacteria resulted in an outgrowth of several periodontal pathogens in complex multispecies biofilms. Additionally, upon contact with dead oral bacteria, virulence genes of P. intermedia and P. gingivalis were up-regulated (necrovirulence). This resulted in a more pronounced epithelial cytotoxicity (necrotoxicity). These findings indicate that presence of dead bacteria induce necrotrophy, necrovirulence and necrotoxicity in several oral pathogens

    Model-based analysis of the potential of macroinvertebrates as indicators for microbial pathogens in rivers

    Get PDF
    The quality of water prior to its use for drinking, farming or recreational purposes must comply with several physicochemical and microbiological standards to safeguard society and the environment. In order to satisfy these standards, expensive analyses and highly trained personnel in laboratories are required. Whereas macroinvertebrates have been used as ecological indicators to review the health of aquatic ecosystems. In this research, the relationship between microbial pathogens and macrobenthic invertebrate taxa was examined in the Machangara River located in the southern Andes of Ecuador, in which 33 sites, according to their land use, were chosen to collect physicochemical, microbiological and biological parameters. Decision tree models (DTMs) were used to generate rules that link the presence and abundance of some benthic families to microbial pathogen standards. The aforementioned DTMs provide an indirect, approximate, and quick way of checking the fulfillment of Ecuadorian regulations for water use related to microbial pathogens. The models built and optimized with the WEKA package, were evaluated based on both statistical and ecological criteria to make them as clear and simple as possible. As a result, two different and reliable models were obtained, which could be used as proxy indicators in a preliminary assessment of pollution of microbial pathogens in rivers. The DTMs can be easily applied by staff with minimal training in the identification of the sensitive taxa selected by the models. The presence of selected macroinvertebrate taxa in conjunction with the decision trees can be used as a screening tool to evaluate sites that require additional follow up analyses to confirm whether microbial water quality standards are met

    Avoiding Pandemic Fears in the Subway and Conquering the Platypus.

    Get PDF
    Metagenomics is increasingly used not just to show patterns of microbial diversity but also as a culture-independent method to detect individual organisms of intense clinical, epidemiological, conservation, forensic, or regulatory interest. A widely reported metagenomic study of the New York subway suggested that the pathogens Yersinia pestis and Bacillus anthracis were part of the "normal subway microbiome." In their article in mSystems, Hsu and collaborators (mSystems 1(3):e00018-16, 2016, http://dx.doi.org/10.1128/mSystems.00018-16) showed that microbial communities on transit surfaces in the Boston subway system are maintained from a metapopulation of human skin commensals and environmental generalists and that reanalysis of the New York subway data with appropriate methods did not detect the pathogens. We note that commonly used software pipelines can produce results that lack prima facie validity (e.g., reporting widespread distribution of notorious endemic species such as the platypus or the presence of pathogens) but that appropriate use of inclusion and exclusion sets can avoid this issue

    Cross-talk between signaling pathways leading to defense against pathogens and insects

    Get PDF
    In nature, plants interact with a wide range of organisms, some of which are harmful (e.g. pathogens, herbivorous insects), while others are beneficial (e.g. growth-promoting rhizobacteria, mycorrhizal fungi, and predatory enemies of herbivores). During the evolutionary arms race between plants and their attackers, primary and secondary immune responses evolved to recognize common or highly specialized features of microbial pathogens (Chisholm et al., 2006), resulting in sophisticated mechanisms of defense

    Methods for eradication of the biofilms formed by opportunistic pathogens using novel techniques – A review

    Get PDF
    The inconvenient environmental conditions force microorganisms to colonize either abiotic surfaces or animal and plant tissues and, therefore, form more resistant structures – biofilms. The phenomenon of microbial adherence, opportunistic pathogens in particular, is of a great concern. Colonization of medical devices and biofilm formation on their surface, may lead to severe infections mainly in humans with impaired immune system. Although, current research consider various methods for prevention of microbial biofilms formation, still, once a biofilm is formed, its elimination is almost impossible. This study focuses on the overview of novel methods applied for eradication of mature opportunistic pathogens' biofilms. Among various techniques the following: cold plasma, electric field, ultrasounds, ozonated water treatment, phagotherapy, matrix targeting enzymes, bacteriocins, synthetic chemicals and natural origin compounds used for biofilm matrix disruption were briefly described

    Bacterial Foodborne Disease: Medical Costs and Productivity Losses

    Get PDF
    Microbial pathogens in food cause an estimated 6.5-33 million cases of human illness and up to 9,000 deaths in the United States each year. Over 40 different foodborne microbial pathogens, including fungi, viruses, parasites, and bacteria, are believed to cause human illnesses. For six bacterial pathogens, the costs of human illness are estimated to be 9.39.3-12.9 billion annually. Of these costs, 2.92.9-6.7 billion are attributed to foodborne bacteria. These estimates were developed to provide analytical support for USDA's Hazard Analysis and Critical Control Point (HACCP) systems rule for meat and poultry. (Note that the parasite Toxoplasma gondii is not included in this report.) To estimate medical costs and productivity losses, ERS uses four severity categories for acute illnesses: those who did not visit a physician, visited a physician, were hospitalized, or died prematurely. The lifetime consequences of chronic disease are included in the cost estimates for E. coli O157:H7 and fetal listeriosis.cost-of-illness, foodborne pathogens, lost productivity, medical costs, Food Consumption/Nutrition/Food Safety, Health Economics and Policy,

    Evolution of Microbial Pathogens

    Get PDF

    Influence of the lung microbiome on antibiotic susceptibility of cystic fibrosis pathogens

    Get PDF
    The lungs of patients with cystic fibrosis (CF) are colonised by a microbial community comprised of pathogenic species, such as Pseudomonas aeruginosa and Staphylococcus aureus, and microorganisms that are typically not associated with worse clinical outcomes (considered as commensals). Antibiotics directed at CF pathogens are often not effective and a discrepancy is observed between activity of these agents in vitro and in the patient. This review describes how interspecies interactions within the lung microbiome might influence the outcome of antibiotic treatment targeted at common CF pathogens. Protective mechanisms by members of the microbiome such as antibiotic degradation (indirect pathogenicity), alterations of the cell wall, production of matrix components decreasing antibiotic penetration, and changes in metabolism are discussed. Interspecies interactions that increase bacterial susceptibility are also addressed. Furthermore, we discuss how experimental conditions, such as culture media, oxygen levels, incorporation of host-pathogen interactions, and microbial community composition may influence the outcome of microbial interaction studies related to antibiotic activity. Hereby, the importance to create in vitro conditions reflective of the CF lung microenvironment is highlighted. Understanding the role of the CF lung microbiome in antibiotic efficacy may help find novel therapeutic and diagnostic approaches to better tackle chronic lung infections in this patient population

    Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition

    Get PDF
    peer-reviewedMicrobial enteropathogens can enter the environment via landspreading of animal slurries and manures. Biotic interactions with the soil microbial community can contribute to their subsequent decay. This study aimed to determine the relative impact of biotic, specifically microbial community structure, and physico-chemical properties associated with soils derived from 12 contrasting land-uses on enteropathogen survival. Phenotypic profiles of microbial communities (via phospholipid fatty acid (PLFA) profiling), and total biomass (by fumigation-extraction), in the soils were determined, as well as a range of physicochemical properties. The persistence of Salmonella Dublin, Listeria monocytogenes, and Escherichia coli was measured over 110 days within soil microcosms. Physicochemical and biotic data were used in stepwise regression analysis to determine the predominant factor related to pathogen-specific death rates. Phenotypic structure, associated with a diverse range of constituent PLFAs, was identified as the most significant factor in pathogen decay for S. Dublin, L. monocytogenes, non-toxigenic E. coli O157 but not for environmentally-persistent E. coli. This demonstrates the importance of entire community-scale interactions in pathogen suppression, and that such interactions are context-specific
    corecore