31,003 research outputs found

    SINVAD: Search-based Image Space Navigation for DNN Image Classifier Test Input Generation

    Full text link
    The testing of Deep Neural Networks (DNNs) has become increasingly important as DNNs are widely adopted by safety critical systems. While many test adequacy criteria have been suggested, automated test input generation for many types of DNNs remains a challenge because the raw input space is too large to randomly sample or to navigate and search for plausible inputs. Consequently, current testing techniques for DNNs depend on small local perturbations to existing inputs, based on the metamorphic testing principle. We propose new ways to search not over the entire image space, but rather over a plausible input space that resembles the true training distribution. This space is constructed using Variational Autoencoders (VAEs), and navigated through their latent vector space. We show that this space helps efficiently produce test inputs that can reveal information about the robustness of DNNs when dealing with realistic tests, opening the field to meaningful exploration through the space of highly structured images

    Learning labelled dependencies in machine translation evaluation

    Get PDF
    Recently novel MT evaluation metrics have been presented which go beyond pure string matching, and which correlate better than other existing metrics with human judgements. Other research in this area has presented machine learning methods which learn directly from human judgements. In this paper, we present a novel combination of dependency- and machine learning-based approaches to automatic MT evaluation, and demonstrate greater correlations with human judgement than the existing state-of-the-art methods. In addition, we examine the extent to which our novel method can be generalised across different tasks and domains

    Search algorithms for regression test case prioritization

    Get PDF
    Regression testing is an expensive, but important, process. Unfortunately, there may be insufficient resources to allow for the re-execution of all test cases during regression testing. In this situation, test case prioritisation techniques aim to improve the effectiveness of regression testing, by ordering the test cases so that the most beneficial are executed first. Previous work on regression test case prioritisation has focused on Greedy Algorithms. However, it is known that these algorithms may produce sub-optimal results, because they may construct results that denote only local minima within the search space. By contrast, meta-heuristic and evolutionary search algorithms aim to avoid such problems. This paper presents results from an empirical study of the application of several greedy, meta-heuristic and evolutionary search algorithms to six programs, ranging from 374 to 11,148 lines of code for 3 choices of fitness metric. The paper addresses the problems of choice of fitness metric, characterisation of landscape modality and determination of the most suitable search technique to apply. The empirical results replicate previous results concerning Greedy Algorithms. They shed light on the nature of the regression testing search space, indicating that it is multi-modal. The results also show that Genetic Algorithms perform well, although Greedy approaches are surprisingly effective, given the multi-modal nature of the landscape

    Dynamic Clustering of Histogram Data Based on Adaptive Squared Wasserstein Distances

    Full text link
    This paper deals with clustering methods based on adaptive distances for histogram data using a dynamic clustering algorithm. Histogram data describes individuals in terms of empirical distributions. These kind of data can be considered as complex descriptions of phenomena observed on complex objects: images, groups of individuals, spatial or temporal variant data, results of queries, environmental data, and so on. The Wasserstein distance is used to compare two histograms. The Wasserstein distance between histograms is constituted by two components: the first based on the means, and the second, to internal dispersions (standard deviation, skewness, kurtosis, and so on) of the histograms. To cluster sets of histogram data, we propose to use Dynamic Clustering Algorithm, (based on adaptive squared Wasserstein distances) that is a k-means-like algorithm for clustering a set of individuals into KK classes that are apriori fixed. The main aim of this research is to provide a tool for clustering histograms, emphasizing the different contributions of the histogram variables, and their components, to the definition of the clusters. We demonstrate that this can be achieved using adaptive distances. Two kind of adaptive distances are considered: the first takes into account the variability of each component of each descriptor for the whole set of individuals; the second takes into account the variability of each component of each descriptor in each cluster. We furnish interpretative tools of the obtained partition based on an extension of the classical measures (indexes) to the use of adaptive distances in the clustering criterion function. Applications on synthetic and real-world data corroborate the proposed procedure
    • …
    corecore