1,562 research outputs found

    Methods for Compression of Feedback in Adaptive Multicarrier 4G Schemes

    Get PDF
    In this paper, several algorithms for compressing the feedback of channel quality information are presented and analyzed. These algorithms are developed for a proposed adaptive modulation scheme for future multi-carrier 4G mobile systems. These strategies compress the feedback data and, used together with opportunistic scheduling, drastically reduce the feedback data rate. Thus the adaptive modulation schemes become more suitable and efficient to be implemented in future mobile systems, increasing data throughput and overall system performance.This work has been partly funded by the Spanish government with projects MACAWI (TEC 2005-07477-c02-02), MAMBO2 (CCG06-UC3M-TIC-0698), and European COST Action 289 and is a result of work done within this European actio

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Energy Management in LTE Networks

    Get PDF
    Wireless cellular networks have seen dramatic growth in number of mobile users. As a result, data requirements, and hence the base-station power consumption has increased significantly. It in turn adds to the operational expenditures and also causes global warming. The base station power consumption in long-term evolution (LTE) has, therefore, become a major challenge for vendors to stay green and profitable in competitive cellular industry. It necessitates novel methods to devise energy efficient communication in LTE. Importance of the topic has attracted huge research interests worldwide. Energy saving (ES) approaches proposed in the literature can be broadly classified in categories of energy efficient resource allocation, load balancing, carrier aggregation, and bandwidth expansion. Each of these methods has its own pros and cons leading to a tradeoff between ES and other performance metrics resulting into open research questions. This paper discusses various ES techniques for the LTE systems and critically analyses their usability through a comprehensive comparative study

    Optimize Power Allocation Scheme to Maximize Sum Rate in CoMP with Limited Channel State Information

    Get PDF
    Extensive use of mobile applications throws many challenges in cellular systems like cell edge throughput, inter cell interference and spectral e�ciency. Many of these challenges have been resolved using Coordinated Multi-Point (CoMP), developed in the Third Generation Partnership Project for LTE-Advanced) to a great extent. CoMP cooperatively process signals from base sta- tions that are connected to various multiple terminals (user equipment (UEs)) at transmission and reception. This CoMP improves throughput, reduces or even removes inter-cell interference and increases spectral e�ciency in the downlink of multi-antenna coordinated multipoint systems. Many researchers addressed these issues assuming that BSs have the knowledge of the common control channels dedicated to all UEs and also about the full or partial channel state information (CSI) of all the links. From the CSI available at the BSs, multiuser interference can be managed at the BSs. To make this feasible, UEs are responsible for collecting downlink CSI. But, CSI measurement (instantaneous and/or statistical) is imperfect in nature because of the randomly varying nature of the channels at random times. These incorrect CSI values available at the BSs may, in turn, create multi-user interference. There are many techniques to suppress the multi-user interference, among which the feedback scheme is the one which is gaining a lot of attention. In feedback schemes, CSI information needs to be fed back to the base station from UEs in the uplink. It is obvious, the question arises on the type and amount of feedback need to be used. Research has been progressing in this front and some feedback techniques have been proposed. Three basic CoMP Feedback schemes are available. Explicit or statistical channel information feedback scheme in which channel information like channels's covariance matrix of the channel are shared between the transmitter and receiver. Next, implicit or statistical channel information feedback which contains information such as Channel quality indication or Precoding matrix indicator or Rank indicator. 1st applied to TDD LTE type structure and 2nd of feedback scheme can be applied in the FDD system. Finally, we have UE which tranmit the sounding reference signal (CSI). This type of feedback scheme is applied to exploit channel reciprocity and to reduce channel intercell interference and this can be applied in the TDD system. We have analyzed the scenario of LTE TDD based system. After this, optimization of power is also required because users at the cell edge required more attention than the user locating at the center of the cell. In my work, it shows estimated power gives exponential divercity for high SNR as low SNR too. In this method, a compression feedback method is analyzed to provide multi-cell spatial channel information. It improves the feedback e�ciency and throughput. The rows and columns of the channel matrix are compressed using Eigenmode of the user and codebook based scheme speci�ed in LTE speci�cation. The main drawback of this scheme is that spectral e�ciency is achieved with the cost of increased overheads for feedback and evolved NodeB (eNB). Other factor is complexity of eNodeB which is to be addressed in future work

    Resource Allocation, Scheduling and Feedback Reduction in Multiple Input Multiple Output (MIMO) Orthogonal Frequency-Division Multiplexing (OFDM) Systems

    Get PDF
    The number of wireless systems, services, and users are constantly increasing and therefore the bandwidth requirements have become higher. One of the most robust modulations is Orthogonal Frequency-Division Multiplexing (OFDM). It has been considered as an attractive solution for future broadband wireless communications. This dissertation investigates bit and power allocation, joint resource allocation, user scheduling, and limited feedback problem in multi-user OFDM systems. The following dissertation contributes to improved OFDM systems in the following manner. (1) A low complexity sub-carrier, power, and bit allocation algorithm is proposed. This algorithm has lower computational complexity and results in performance that is comparable to that of the existing algorithms. (2) Variations of the proportional fair scheduling scheme are proposed and analyzed. The proposed scheme improves system throughput and delay time, and achieves higher throughput without sacrificing fairness which makes it a better scheme in terms of efficiency and fairness. (3) A DCT feedback compression algorithm based on sorting is proposed. This algorithm uses sorting to increase the correlation between feedback channel quality information of frequency selective channels. The feedback overhead of system is successfully reduced

    Multiuser MIMO techniques with feedback

    Get PDF
    Kooperative Antennenanlagen haben vor kurzem einen heißen Forschungsthema geworden, da Sie deutlich höhere spektrale Effizienz als herkömmliche zelluläre Systeme versprechen. Der Gewinn wird durch die Eliminierung von Inter-Zelle Störungen (ICI) durch Koordinierung der-Antenne Übertragungen erworben. Vor kurzem, verteilte Organisation Methoden vorgeschlagen. Eine der größten Herausforderungen für das Dezentrale kooperative Antennensystem ist Kanalschätzung für den Downlink Kanal besonders wenn FDD verwendet wird. Alle zugehörigen Basisstationen im genossenschaftlichen Bereich müssen die vollständige Kanal Informationen zu Wissen, die entsprechenden precoding Gewicht Matrix zu berechnen. Diese Information ist von mobilen Stationen übertragen werden Stationen mit Uplink Ressourcen zu stützen. Wird als mehrere Basisstationen und mehreren mobilen Stationen in kooperativen Antennensysteme und jede Basisstation und Mobilstation beteiligt sind, können mit mehreren Antennen ausgestattet sein, die Anzahl der Kanal Parameter wieder gefüttert werden erwartet, groß zu sein. In dieser Arbeit wird ein effizientes Feedback Techniken der downlink Kanal Informationen sind für die Multi-user Multiple Input Multiple Output Fall vorgeschlagen, der insbesondere auf verteilte kooperative Antennensysteme zielt. Zuerst wird ein Unterraum-basiertes Kanalquantisierungsverfahren vorgeschlagen, das ein vorbestimmtes Codebuch verwendet. Ein iterativer Codebuchentwurfsalgorithmus wird vorgeschlagen, der zu einem lokalen optimalen Codebuch konvergiert. Darüber hinaus werden Feedback-Overhead-Reduktionsverfahren entwickelt, die die zeitliche Korrelation des Kanals ausnutzen. Es wird gezeigt, dass das vorgeschlagene adaptive Codebuchverfahren in Verbindung mit einem Datenkomprimierungsschema eine Leistung nahe an dem perfekten Kanalfall erzielt, was viel weniger Rückkopplungsoverhead im Vergleich zu anderen Techniken erfordert. Das auf dem Unterraum basierende Kanalquantisierungsverfahren wird erweitert, indem mehrere Antennen auf der Senderseite und/oder auf der Empfängerseite eingeführt werden, und die Leistung eines Vorcodierungs- (/Decodierungs-) Schemas mit regulierter Blockdiagonalisierung (RBD) wurde untersucht. Es wird ein kosteneffizientes Decodierungsmatrixquantisierungsverfahren vorgeschlagen, dass eine komplexe Berechnung an der Mobilstation vermeiden kann, während es nur eine leichte Verschlechterung zeigt. Die Arbeit wird abgeschlossen, indem die vorgeschlagenen Feedback-Methoden hinsichtlich ihrer Leistung, ihres erforderlichen Feedback-Overheads und ihrer Rechenkomplexität verglichen werden.Cooperative antenna systems have recently become a hot research topic, as they promise significantly higher spectral efficiency than conventional cellular systems. The gain is acquired by eliminating inter-cell interference (ICI) through coordination of the base antenna transmissions. Recently, distributed organization methods have been suggested. One of the main challenges of the distributed cooperative antenna system is channel estimation for the downlink channel especially when FDD is used. All of the associated base stations in the cooperative area need to know the full channel state information to calculate the corresponding precoding weight matrix. This information has to be transferred from mobile stations to base stations by using uplink resources. As several base stations and several mobile stations are involved in cooperative antenna systems and each base station and mobile station may be equipped with multiple antennas, the number of channel state parameters to be fed back is expected to be big. In this thesis, efficient feedback techniques of the downlink channel state information are proposed for the multi-user multiple-input multiple-output case, targeting distributed cooperative antenna systems in particular. First, a subspace based channel quantization method is proposed which employs a predefined codebook. An iterative codebook design algorithm is proposed which converges to a local optimum codebook. Furthermore, feedback overhead reduction methods are devised exploiting temporal correlation of the channel. It is shown that the proposed adaptive codebook method in conjunction with a data compression scheme achieves a performance close to the perfect channel case, requiring much less feedback overhead compared with other techniques. The subspace based channel quantization method is extended by introducing multiple antennas at the transmitter side and/or at the receiver side and the performance of a regularized block diagonalization (RBD) precoding(/decoding) scheme has been investigated as well as a zero-forcing (ZF) precoding scheme. A cost-efficient decoding matrix quantization method is proposed which can avoid a complex computation at the mobile station while showing only a slight degradation. The thesis is concluded by comparing the proposed feedback methods in terms of their performance, their required feedback overhead, and their computational complexity. The techniques that are developed in this thesis can be useful and applicable for 5G, which is envisioned to support the high granularity/resolution codebook and its efficient deployment schemes. Keywords: MU-MIMO, COOPA, limited feedback, CSI, CQ, feedback overhead reduction, Givens rotatio
    corecore