1,047 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Cognitive Radio : A Solution for Issues in Network Convergence

    Get PDF
    While planning for strategic communication no nation or organisation can ignore the problems of dynamic radio resource allocation and interference. Among lot number of technologies as a solution Cognitive Radio (CR) is the best one, which helps to overcome the problem of interference, and also allow efficient and dynamic radio resource allocation. Applying Cognitive Radio Networks (CRN) to strategic communications as a solution, this roadmap has been proposed by nations and organizations. For fast network deployment it is mandatory to overcome traffic problem in spectrum, increase communication reshaping mechanism and also strategic radio should act as multi-functional Radio-Frequency(RF) Unit, these are the themes for which CRN is the choice. Wireless Sensor Networks(WSNs) present day have many challenges, if it get clubbed with CR, many problems can be solved. Theme of our research is to empower CRN, so that it will help to solve above problems and also help to manage traffic in network convergence services without ignoring or compromising security

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Un nuevo esquema de agrupación para redes sensoras inalámbricas de radio cognitivas heterogéneas

    Get PDF
    Introduction: This article is the product of the research “Learning-based Spectrum Analysis and Prediction in Cognitive Radio Sensor Networks”, developed at Sejong University in the year 2019. Problem: Most of the clustering schemes for distributed cognitive radio-enabled wireless sensor networks consider homogeneous cognitive radio-enabled wireless sensors. Many clustering schemes for such homogeneouscognitive radio-enabled wireless sensor networks waste resources and suffer from energy inefficiency because of the unnecessary overheads. Objective: The objective of the research is to propose a node clustering scheme that conserves energy and prolongs network lifetime. Methodology: A heterogeneous cognitive radio-enabled wireless sensor network in which only a few nodes have a cognitive radio module and the other nodes are normal sensor nodes. Along with the hardware cost, theproposed scheme is efficient in energy consumption. Results: We simulated the proposed scheme and compared it with the homogeneous cognitive radio-enabled wireless sensor networks. The results show that the proposed scheme is efficient in terms of energyconsumption. Conclusion: The proposed node clustering scheme performs better in terms of network energy conservation and network partition. Originality: There are heterogeneous node clustering schemes in the literature for cooperative spectrum sensing and energy efficiency, but to the best of our knowledge, there is no study that proposes a non-cognitiveradio-enabled sensor clustering for energy conservation along with cognitive radio-enabled wireless sensors. Limitations: The deployment of the proposed special device for cognitive radio-enabled wireless sensors is complicated and requires special hardware with better battery powered cognitive sensor nodes
    corecore