125,284 research outputs found

    DESIGN SPACE EXPLORATION FOR SIGNAL PROCESSING SYSTEMS USING LIGHTWEIGHT DATAFLOW GRAPHS

    Get PDF
    Digital signal processing (DSP) is widely used in many types of devices, including mobile phones, tablets, personal computers, and numerous forms of embedded systems. Implementation of modern DSP applications is very challenging in part due to the complex design spaces that are involved. These design spaces involve many kinds of configurable parameters associated with the signal processing algorithms that are used, as well as different ways of mapping the algorithms onto the targeted platforms. In this thesis, we develop new algorithms, software tools and design methodologies to systematically explore the complex design spaces that are involved in design and implementation of signal processing systems. To improve the efficiency of design space exploration, we develop and apply compact system level models, which are carefully formulated to concisely capture key properties of signal processing algorithms, target platforms, and algorithm-platform interactions. Throughout the thesis, we develop design methodologies and tools for integrating new compact system level models and design space exploration methods with lightweight dataflow (LWDF) techniques for design and implementation of signal processing systems. LWDF is a previously-introduced approach for integrating new forms of design space exploration and system-level optimization into design processes for DSP systems. LWDF provides a compact set of retargetable application programming interfaces (APIs) that facilitates the integration of dataflow-based models and methods. Dataflow provides an important formal foundation for advanced DSP system design, and the flexible support for dataflow in LWDF facilitates experimentation with and application of novel design methods that are founded in dataflow concepts. Our developed methodologies apply LWDF programming to facilitate their application to different types of platforms and their efficient integration with platform-based tools for hardware/software implementation. Additionally, we introduce novel extensions to LWDF to improve its utility for digital hardware design and adaptive signal processing implementation. To address the aforementioned challenges of design space exploration and system optimization, we present a systematic multiobjective optimization framework for dataflow-based architectures. This framework builds on the methodology of multiobjective evolutionary algorithms and derives key system parameters subject to time-varying and multidimensional constraints on system performance. We demonstrate the framework by applying LWDF techniques to develop a dataflow-based architecture that can be dynamically reconfigured to realize strategic configurations in the underlying parameter space based on changing operational requirements. Secondly, we apply Markov decision processes (MDPs) for design space exploration in adaptive embedded signal processing systems. We propose a framework, known as the Hierarchical MDP framework for Compact System-level Modeling (HMCSM), which embraces MDPs to enable autonomous adaptation of embedded signal processing under multidimensional constraints and optimization objectives. The framework integrates automated, MDP-based generation of optimal reconfiguration policies, dataflow-based application modeling, and implementation of embedded control software that carries out the generated reconfiguration policies. Third, we present a new methodology for design and implementation of signal processing systems that are targeted to system-on-chip (SoC) platforms. The methodology is centered on the use of LWDF concepts and methods for applying principles of dataflow design at different layers of abstraction. The development processes integrated in our approach are software implementation, hardware implementation, hardware-software co-design, and optimized application mapping. The proposed methodology facilitates development and integration of signal processing hardware and software modules that involve heterogeneous programming languages and platforms. Through three case studies involving complex applications, we demonstrate the effectiveness of the proposed contributions for compact system level design and design space exploration: a digital predistortion (DPD) system, a reconfigurable channelizer for wireless communication, and a deep neural network (DNN) for vehicle classification

    System-level memory optimization for high-level synthesis of component-based SoCs

    Get PDF
    The design of specialized accelerators is essential to the success of many modern Systems-on-Chip. Electronic system-level design methodologies and high-level synthesis tools are critical for the efficient design and optimization of an accelerator. Still, these methodologies and tools offer only limited support for the optimization of the memory structures, which are often responsible for most of the area occupied by an accelerator. To address these limitations, we present a novel methodology to automatically derive the memory subsystems of SoC accelerators. Our approach enables compositional design-space exploration and promotes design reuse of the accelerator specifications. We illustrate its effective-ness by presenting experimental results on the design of two accelerators for a high-performance embedded application. Copyright 2014 ACM

    An Adaptive Design Methodology for Reduction of Product Development Risk

    Full text link
    Embedded systems interaction with environment inherently complicates understanding of requirements and their correct implementation. However, product uncertainty is highest during early stages of development. Design verification is an essential step in the development of any system, especially for Embedded System. This paper introduces a novel adaptive design methodology, which incorporates step-wise prototyping and verification. With each adaptive step product-realization level is enhanced while decreasing the level of product uncertainty, thereby reducing the overall costs. The back-bone of this frame-work is the development of Domain Specific Operational (DOP) Model and the associated Verification Instrumentation for Test and Evaluation, developed based on the DOP model. Together they generate functionally valid test-sequence for carrying out prototype evaluation. With the help of a case study 'Multimode Detection Subsystem' the application of this method is sketched. The design methodologies can be compared by defining and computing a generic performance criterion like Average design-cycle Risk. For the case study, by computing Average design-cycle Risk, it is shown that the adaptive method reduces the product development risk for a small increase in the total design cycle time.Comment: 21 pages, 9 figure

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Special Session on Industry 4.0

    Get PDF
    No abstract available
    • …
    corecore