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ABSTRACT
The design of specialized accelerators is essential to the suc-
cess of many modern Systems-on-Chip. Electronic system-
level design methodologies and high-level synthesis tools are
critical for the efficient design and optimization of an accel-
erator. Still, these methodologies and tools offer only lim-
ited support for the optimization of the memory structures,
which are often responsible for most of the area occupied by
an accelerator. To address these limitations, we present a
novel methodology to automatically derive the memory sub-
systems of SoC accelerators. Our approach enables compo-
sitional design-space exploration and promotes design reuse
of the accelerator specifications. We illustrate its effective-
ness by presenting experimental results on the design of two
accelerators for a high-performance embedded application.

Categories and Subject Descriptors
B.5 [RTL Implementation]: Design Aids

General Terms
Algorithms, Design, Experimentation

Keywords
High-Level Synthesis, Memory Optimization, System-on-Chip.

1. INTRODUCTION
System-on-chip (SoC) architectures are becoming increas-

ingly heterogeneous as they combine multiple processor cores
with a variety of accelerators. These are specialized hard-
ware components that are dedicated to the execution of se-
lected computational kernels. Since power dissipation is the
biggest concern in SoC design and specialized hardware can
offer 2 to 3 orders-of-magnitude higher efficiency than a cor-
responding software implementation [15], the number of ac-
celerators in a given SoC is expected to continue to grow [25].

While beneficial in terms of energy-efficient performance,
the presence of accelerators exacerbates the complexity of
SoC design. To counterbalance this effect, designers will
increasingly rely on Electronic System Level (ESL) method-
ologies that promote: the specification and validation of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CODES+ISSS’14, October 12-17 2014, New Delhi, India.
Copyright 2014 ACM 978-1-4503-3051-0/14/10...$15.00.
http://dx.doi.org/10.1145/2593069.2593071

design at level of abstraction higher than RTL [4], the use of
high-level synthesis (HLS) tools [11, 14, 20], and the reuse
of pre-designed and pre-validated components, also known
as intellectual property (IP) blocks [23].

Recent works have proposed compositional design method-
ologies to derive optimal implementations of specialized hard-
ware by combining components that are expressed in a high-
level language, such as a set of SystemC processes, and syn-
thesized with HLS tools [17, 19]. From a single high-level
specification, HLS tools can be used to obtain a set of al-
ternative Pareto-optimal implementations that offers many
different choices in terms of performance versus cost (area,
power) tradeoffs [19]. This process is called accelerator char-
acterization and is the key to design reuse because it aug-
ments the applicability of a given accelerator design: the
architect of a given SoC may prefer a faster implementation
of the given accelerator while the architect of another SoC
may choose a slower but smaller one. State-of-the-art HLS
tools offer a rich set of knobs for intra-process optimization,
e.g. for loop manipulation, state insertion, array implemen-
tation, and function inlining. On the other hand, they have
limited capabilities for inter-process optimization. In partic-
ular, they lack proper support for the synthesis of commu-
nication channels [13] and the optimization of the memory
hierarchy [9]. The impact of these limitations is destined to
grow with the complexity and size of SoC accelerators. For
instance, a complex accelerator for image processing or me-
dia applications typically consists of multiple processes that
interact by producing and consuming large data structures
such as image frames [13].

As storage elements may occupy more than 70% of a
chip [16], it is critical to optimize their area. While the use
of distributed registers is convenient to store small and fre-
quently accessed data, large arrays and other complex data
elements require the allocation of pre-defined memory IPs.
These can be Static Random-Access Memories (SRAMs), in
the case of SoC design based on standard cells, or Block
Random-Access Memories (BRAMs), in the case of FPGA
implementations. These memory IPs allow fast data ac-
cesses with reduced memory footprint, but their complex-
ity and area grow quadratically with the number of their
ports [24]. Hence, most target technologies usually offer only
single- or dual-port memories, which can be instanced in
different sizes using memory generators. The reduced num-
ber of ports, however, constrains the potential parallelism
of memory operations, thereby limiting the overall accelera-
tor performance. In particular, HLS tools allow the binding
of a data structure, such an array, to a generic memory in-
stance but introduce tight constraints on the use of these
memories: e.g., for most tools the total number of process
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interfaces that can access a data structure cannot exceed the
number of ports of the corresponding memory instance.

To increase the number of parallel accesses that can be
performed by the accelerator logic, designers combine many
small SRAMs or BRAMs in multi-bank architectures, in-
stead of using a single large memory. This, however, is a
manual design effort that is not supported well by HLS tools.
Techniques like data duplication [5] or data distribution [5,
7, 26] have been proposed for optimizing the memory ac-
cesses of a single process, but they remain to be extended
to the case of accelerators composed of multiple processes.
Furthermore, they are usually applied before the invocation
of HLS tools [26, 27] as they require the rewriting of the
synthesizable code in order to specify explicitly the accesses
to the different banks. This limits design reuse because ev-
ery time the memory sub-system is modified the accelerator
characterization and validation must be repeated by rerun-
ning the HLS tools (since the modified specification of its
processes may result in different RTL micro-architectures).

To address these limitations we present a novel method-
ology for optimizing the memory subsystems of SoC accel-
erators. The goal is to bridge the gap between the data
structures that are defined as part of the system-level spec-
ification of the accelerator processes and the physical mem-
ory IPs that are available for the synthesis with a given
technology. Additionally, the methodology promotes de-
sign reuse because it does not require designers to make
any modifications to the specification of the accelerator pro-
cesses in terms of how they access their data structures.
Indeed, our approach enables the pre-characterization and
validation of each process through the automatic synthesis of
multiple Pareto-optimal implementations with various HLS
knobs configurations. Some of these implementations may
be based on the assumption that a particular data structure
is mapped on a memory instance which may have a number
of ports higher than what is available for the actual memory
IPs of the target technology. This, however, is not a prob-
lem for our methodology which is capable of building multi-
bank architectures that can satisfy multi-port requirements
through the automatic allocation of multiple memory IPs.
These physical instances are encapsulated within a controller
that can coordinate multiple processes in their accessing of
the data stored in the various banks.

Specific contributions of this work include:

1. a flexible memory controller that can be configured
to orchestrate the data accesses of all the processes
insisting on the same underlying physical memories;

2. an algorithm to automatically determine an optimal
architecture of the memory subsystem given a formal
description of the data exchanges among the accelera-
tor processes. If the description includes multiple ac-
celerators that operate in time-multiplexing, our algo-
rithm is capable of discovering opportunities to enforce
the sharing of physical memories among the accelera-
tor processes to reduce the overall memory footprint;

3. a prototype CAD tool that embodies the proposed
methodology by combining the algorithm with the flex-
ible memory controller.

To demonstrate the proposed methodology we applied it to
the design of two accelerators for Wide Area Motion Im-
agery, a high-performance embedded application.

Listing 1: Synthesizable SystemC code of two simple
processes P and C.

1 #include <systemc.h>
2 SC_MODULE(accelerator) {
3 sc_in <bool > clk , rst;
4 // ...
5 SC_CTOR(accelerator) {
6 SC_CTHREAD(P, clk.pos ());i
7 reset_signal_is(rst , false);
8 SC_CTHREAD(C, clk.pos ());
9 reset_signal_is(rst , false);

10 // ...
11 }
12 void P(void) {
13 // reset ...
14 bool pp_flag = false; // ping -pong flag
15 unsigned pp_offset = 0; // ping -pong offset
16 wait ();
17 while(true) {
18 // input ...
19 // computation ...
20 LOOP1: for (int i=pp_offset; i<( pp_offset +5); i++)
21 LOOP2: for (int j=0; j<512; j++)
22 { data[i][j] = f(...); } // write to data
23 // output ...
24 // (wait for ready from C then notify as valid)
25 pp_flag != pp_flag;
26 pp_offset = pp_flag ?5:0;
27 }
28 }
29 void C(void) {
30 // reset ...
31 bool pp_flag = false; // ping -pong flag
32 unsigned pp_offset = 0; // ping -pong offset
33 wait ();
34 while(true) {
35 // input ...
36 // (wait for valid from P then notify as ready)
37 // computation ... // process one row
38 LOOP3: for (int i=pp_offset; i<( pp_offset +5); i++)
39 LOOP4: for (int j=0; j<512; j++)
40 { g(data[i][j], ...); } // read from data
41 // output ... (valid to P)
42 pp_flag != pp_flag;
43 pp_offset = pp_flag ?5:0;
44 }
45 }
46 private:
47 sc_signal <bool > valid , ready;
48 int data [10][512]; // ping -pong buffer
49 int offset;
50 };

2. MOTIVATING EXAMPLE
Listing 1 reports a portion of synthesizable SystemC code

for a simple accelerator, which is composed of two processes
P and C. The same accelerator is graphically represented in
Fig. 1(a). Process P produces a chunk of data (i.e. 5× 512
integers that can represent 5 rows and 512 columns of an
image) that is stored in array data (lines 20-22) and then
consumed by process C (lines 38-40). The two processes
synchronize their execution through explicit signals (valid,
ready) such that C cannot start its computation before P
has produced the required amount of data. The processes
work in pipeline. For this reason array data (line 48) is
implemented as a ping-pong buffer of size 10× 512, which is
two times the size of the produced/consumed chunk of data.

HLS tools can apply multiple “knobs” to generate alterna-
tive hardware implementations for each process in order to
trade off performance metrics (e.g. latency) and area/power
costs. The resulting implementations form a Pareto-optimal
set of choices that the designer can compose to create the
final system [17, 19], as shown in Fig. 1(b).
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Fig. 1: A motivating example.

Example. Let us consider the implementations of process C.

Implementation g is obtained by unrolling LOOP4 for two itera-

tions, which requires two concurrent memory-read operations. It

also adopts resource sharing to limit the area. Implementation m

is obtained by unrolling LOOP4 for four iterations to maximize the

performance at the cost of more area, but allowing no more than

two concurrent memory-read operations. As a result, this im-

poses a bottleneck in the computation, because the four memory

operations cannot be all scheduled in the same clock cycle. Fi-

nally, implementation i, which Pareto-dominates implementation

m, is obtained by unrolling LOOP4 for four iterations and allowing

four concurrent memory-read operations. 2

This design space exploration imposes additional chal-
lenges to the designer for the generation of the underlying
memory subsystem since the technology libraries for HLS
may only offer memories with a limited number of ports.
For example, in case of ASIC, memory compilers (e.g. Em-
bedded Memory IP [3]) can be adopted to create at most ef-
ficient dual-port SRAMs. Similarly, modern FPGAs feature
configurable memories, called BRAMs [28], which still have
at most two read/write ports. For this reason, the effective
selection of implementation i requires to build a multi-bank
memory architecture that increases the number of available
physical ports and thus the bandwidth for the processes.
The generation of such memory subsystems, however, is a
laborious task, especially when multiple processes commu-
nicate through a shared memory. Indeed, in this case, the
designer needs to combine the requirements of the different
processes in terms of memory ports to determine the proper
memory organization.

Example. A designer who has to select an implementation for

each process must consider that each implementation may have

different requirements in terms of memory operations. For exam-

ple, implementations a of P and g of C require one memory-write

operation and two concurrent memory-read operations, respec-

tively. Since the two processes execute in pipeline and thus they

need to independently access the memory, we need to implement

the memory subsystem with two parallel banks and to partition

the data between the two banks to allow the parallel accesses.

To accomplish this, we apply a cyclic partitioning to the original

data [26]: this affects both read and write operations because P

has to write alternatively into the two banks. The resulting sys-

tem is shown in Fig. 1(c), where banks B0 and B1 consist of 2560

words each. On the other hand, if the designer selects implemen-

tation i that requires four parallel interfaces, we need to include

four banks of 1280 words, as shown in Fig. 1(d). 2

It is worth noting that in both cases, process P is realized
with the same implementation Pa, but, given the combined
requirements of interfaces and the resulting memory subsys-
tems, its memory operations have to be changed to write
the values in the correct bank. Specifically, it is necessary
to correctly remap the logical addresses provided by P to
the physical addresses required to access the proper physi-
cal banks. For example, let’s consider four write operations
from process P (from logical addresses 0 to 3). In the former
case, these need to be translated into four consecutive write
operations to the physical addresses 〈B0,0x000〉, 〈B1,0x000〉,
〈B0,0x001〉 and 〈B1,0x001〉. In the latter case, the same log-
ical addresses need to be translated into write operations to
the physical addresses 〈B2,0x000〉, 〈B3,0x000〉, 〈B4,0x000〉
and 〈B5,0x000〉.

To effectively enable a compositional synthesis of vari-
ous processes and the optimization of the resulting mem-
ory subsystem, we developed a flexible memory controller
that can be instanced and configure to absorb these differ-
ences. This controller allows the reuse of the same physical
banks to store different data structures by correctly manag-
ing the memory operations requested by each process. This
possibility of reuse can be adopted to reduce the memory
footprint of an accelerator. Consequently we developed a
design methodology to allocate the data structures to the
storage resources and determine the proper organization of
the memory subsystem.

3. FLEXIBLE MEMORY CONTROLLER
Composing pre-characterized processes may require to gen-

erate different memory subsystems with multiple banks to
provide enough bandwidth for read and write operations.
As described in Section 2, processes perform the memory re-
quests through logical addresses as they have no information
about the organization of the memory subsystem. Then, the
memory controller is in charge of translating these addresses
into the corresponding physical addresses to access the banks
where the data is effectively stored. This is performed in a
transparent way with respect to the synthesis and execution
of the processes and no modifications are required for their
synthesis, which improves the reusability of the components.

Fig. 2 shows the organization of the memory subsystem
for the example shown in Fig. 1(d). The memory controller
features one write interface for process P and four read in-
terfaces for process C. The memory subsystem contains four
1280x32 banks such that process C can perform four read
operations in parallel while process P writes the subsequent
chunk of data (i.e. ping-pong buffer to support pipelined ex-
ecution). Both process and memory interfaces are designed
to feature the following signals:

• Chip Enable (CE): it represents when there is an active
request on the corresponding interface. The request
is considered active (and the corresponding address is
valid) only when the corresponding CE is active.

• Address (A): for processes, it represents the logical
address to be accessed, while, for memories, it corre-
sponds to the physical address to be accessed. In case
of processes, since they have no information about the
memory organization, the bitwidth of A corresponds
to the size of the data to be accessed. In case of mem-
ories, the bitwidth of A corresponds to the actual size
of the memory IP.
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Fig. 2: The RTL architecture of the flexible memory
controller.

• Input Data (D): it represents the data to be written
into the memory and thus it is present only in write
interfaces.

• Output Data (Q): it represents the data read from the
memory and thus it is present only in read interfaces.

• Write Enable (WE): if active, it specifies that the re-
quest is effectively a write operation and the corre-
sponding input data D is valid.

Each time the memory controller receives a request from
an interface (i.e. the corresponding CE is active), it must
analyze the provided address A and determine: (1) the bank
to be effectively accessed (enabling the corresponding CE)
and (2) the physical address inside this bank (providing the
correct translation). This functionality is implemented by
an Address Translation Unit (ATU) that is instantiated for
each memory port. Each ATU collects the requests of all
interfaces insisting on the corresponding memory port to
determine when the bank is selected and provide the correct
translation from logical to physical address. It is necessary
to guarantee that the read operations from distinct inter-
faces never access the same bank at the same clock cycle.
Indeed, in each bank, one port is reserved for write opera-
tions and, thus, only one read operation can be performed at
each clock cycle. Supporting multiple requests on the same
bank at the same clock cycle would require a proper circuitry
to serialize the requests in a transparent way with respect
to the computation of the process (as in [22]). However,
this requires also to modify the specification of the process
which must be stallable when performing a memory request
because it has to be insensitive to the latency of memory
operations [8]. This has been thus left as a future work. In
this work, instead, we support a cyclic partitioning of the
data to ensure independent accesses. This is especially valid
for single accesses to arrays contained in loops that have
been unrolled for a certain number of iterations, as the one
in Listing 1. More complex patterns, like the ones in sten-
cil codes, can be supported with more advanced algorithms
for data partitioning, as the one presented in [26]. From
our viewpoint, this only affects how the ATU translates the
logical addresses into the corresponding physical addresses.

Within an instance of a memory controller we have a ho-
mogeneous organization where all physical banks have the
same size. This has multiple advantages: it eases the reor-
ganization of the banks to store different data structures; it
benefits the floorplanning of the modules by enforcing a reg-
ular design [1]; and it simplifies the logic required to trans-
late the logical addresses into the physical ones. In fact,
in order to reduce the memory footprint, the same memory
banks can be also rearranged and reused to store a different

B4

B3 B2

0x000
0x002

0x001
0x003

0xA00
0xA02

0xA00
0xA03

......

......

M=2 Æ 1 bit
N=2 Æ 1 bit

0010

01

1 1100...
A=0xA03

B5 B4 B2

0x0000x0010x0020x003
0x0040x0050x006...

B3

M=4 Æ 2 bits
N=1 Æ 0 bits

0 1010...

00011011

A=0x005

(a) (b)

12
80

0x000
0x001

0x4FF

...

0x000
0x001

0x4FF

...

0x000
0x001

0x4FF

... B5
11

(A>>1)-(1280*1)

A>>2

Fig. 3: Logical-to-physical address translation.

data structure, as shown in Fig. 3. For instance, let’s con-
sider two processes that require only two parallel banks to
satisfy their combined requirements in terms of ports and
that are never executed at the same time with respect to P
and C. Therefore, the two remaining banks can be used to
virtually increase the capacity of each parallel bank up to
2560 elements through block partitioning [5, 26].

As a result, given this combined block-cyclic partitioning
of the data, a generic logical address can be decomposed as
shown in Fig. 3. In this example, we assumed that the num-
ber of parallel blocks is a power of two. A different number
of parallel banks only affects the functions and the logic to
identify the parallel block and its internal addresses. Specif-
ically, let’s consider a memory subsystem that is configured
to store a data buffer of size B by using M × N banks of
size S, where M represents the number of parallel banks and
each of them is replicated N times to increase its capacity,
as in Fig. 3(b). The logical address to access the buffer will
need dlog2(B)e bits to address the entire address space. The
address is decomposed as follow:

dlog2(B)e = log2(N) + dlog2(S)e+ log2(M) (1)

Due to the cyclic data partitioning, log2(M) less significant
bits are used to determine which is the parallel bank to
be accessed. Then, due to the block data partitioning, the
log2(N) most significant bits are used to identify which of
the N repetitions used to increase the bank capacity has to
be effectively accessed. Finally, the remaining dlog2(S)e bits
are used to address the data inside the actual physical bank
that has been identified. As a result, given a data layout, it
is possible to associate a tag composed of log2(N)+ log2(M)
bits with each bank. The tags resulting from two different
organizations of the same memory banks are shown in Fig. 3.

Example. Let’s assume that array data (5120 elements) is

stored into four parallel banks (each of them has size of 1280)

and process C requires to read the logical address A = 5 (13 bit).

The 2 less significant bits (01) are adopted to identify bank B3,

where the data is effectively stored (see Fig. 3(a)). Then, the

remaining 11 bits are used to read the data from the second loca-

tion of B3. Conversely, let’s assume that the same data structure

only requires two parallel banks (as in the solution in Fig. 1(c)),

but the designer aims at reusing the same banks with size of 1280.

They will be thus reorganized as shown in Fig 3(b). If C requires

to read the logical address A = 2563, the combination of the most

and less significant bits are used to identify bank B5 where the

data can be effectively accessed. 2

Since each memory port only performs one operation per
clock cycle, the CE signal of the corresponding interface,
combined with bank tags, can be used also to correctly drive
the data. As shown in Fig. 2, a multiplexer is used to drive
the data to the proper bank in case of write operations. Sim-
ilarly, a demultiplexer is used to determine which interface
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must receive the value read from a bank. In case of read
operations, the data will be provided after as many clock
cycles as the latency of the read operation. For this rea-
son, it is necessary to buffer the tag to ensure the correct
identification of the bank that is serving the data.

Extension for Data Merging. The architecture of the
proposed memory controller can be extended to support the
merging of multiple write operations into a single one to
reduce the number of ports. For example, let’s consider a
process that needs to write at the same clock cycle two dif-
ferent 16-bit values, always at consecutive addresses, while
the rest of the data structures are 32-bit buffers. In this
situation, it is possible to use a unique 32-bit memory bank,
where the two 16-bit values are merged and written in paral-
lel using only one physical port. Similarly to the case where
multiple banks are instantiated in parallel, during a read
operation the less significant bits will be used to determine
which is the actual 16-bit data that needs to be accessed, as
shown in Fig. 4. In particular, when D values are merged in
parallel, the proper bits are adopted for selecting the mem-
ory location to be read, as explained above. The log2(D)
less significant bits, combined with simple slice operations,
are then used to address and extract the merged value to be
effectively provided to the proper process interface.

In this section, we described the architecture of a flexible
memory controller that can be configured to bridge the gap
between the combined requirements of the processes and the
available memory IPs. We also showed how the same physi-
cal banks can be efficiently used for multiple data structures.

4. SOC MEMORY ALLOCATION
Based on the memory controller described in Section 3,

we developed a methodology to optimize the memory orga-
nization of the entire accelerator. In particular, after the
designer has selected an implementation for each process, it
is possible to determine the number of parallel memory inter-
faces that each data structure requires to ensure a sufficient
amount of memory bandwidth to the processes. Then, it is
possible to determine the requirements in terms of physical
banks to meet the performance constraints of the memory
accesses and how these banks can be reused across differ-
ent data structures to minimize the memory footprint of the
entire accelerator.

Specifically, given an accelerator to be implemented, it is
necessary to perform the following steps to determine and
optimize the corresponding memory subsystem:

1. Identification of parallel banks. The minimum
number of memory banks is identified to satisfy the
combined requirements of the processes in terms of
bandwidth (i.e., number of parallel accesses). This re-
quires to consider information about data access pat-
terns to determine the technique for data mapping
(distribution or duplication [5]).

System 
analyses

Mem. Comp. 
Graph

Graph 
Partitioning

Clique Cost 
Computation

Memory
IPs

Design1 Design2 Designk...

Mem Ctrl1 Mem Ctrl2 Mem Ctrln...

Fig. 5: Overview of the methodology for memory
allocation and optimization at system level.

2. Identification of physical banks. The size of the
actual banks is based on the size of the data structure,
the amount of data that can be stored by each bank,
and the area characterization stored in the library in
order to minimize the memory footprint.

3. Memory merging for reuse. The same physical
banks can be reused to store multiple data structures
when they are not active at the same time. This aims
at reducing the memory footprint of the entire system.

4. Definition of data mapping. Once the number of
actual physical banks has been determined, the data
mapping is performed (block and/or cyclic partition-
ing). The ATU functions (i.e. logical-to-physical ad-
dress translation) are derived, along with the logic to
control the banks.

These steps are highly interdependent. For example, the
number of actual physical banks affects the possibilities for
memory reuse, while sharing the same memory elements for
different data structures may impose a different organization
of the banks, as discussed in Section 2.

Fig. 5 shows our proposed methodology for system-level
memory allocation and optimization. First, we analyze the
system descriptions of the accelerators to be implemented
as the methodology can easily support and optimize the
memory subsystem for multiple accelerators to be executed
in mutual exclusion in the SoC. This analysis aims at de-
termining which data structures are compatible (i.e. their
lifetimes are non-overlapping) and, therefore, can share the
same storage resources. The result of this analysis is a mem-
ory compatibility graph [12].

Definition 1. A memory compatibility graph is a graph
G = (V,E) where each node v ∈ V represents a data struc-
ture to be stored in memory, while an edge e ∈ E connects
two nodes if and only if the corresponding data structures
can share the same storage resources.

Then, this graph is analyzed to determine the organization
of the memory subsystem. Before defining the problem, let
us recall the definition of clique.



Definition 2. A clique Ci of a graph G = (V,E) is a non-
empty subset of nodes (i.e. Ci ⊆ V ) inducing a complete
subgraph (not necessarily maximal) of G.

In this context, each clique represents a set of compatible
data structures that can share the same storage resources.
For this reason, each clique will correspond to an instance
of the memory controller described in Section 3.

Given a clique Ci, each data structure v ∈ Ci is character-
ized by a combined requirement of read and write interfaces.
This determines the minimum number of parallel banks for
each data structure v that can satisfy these requirements.
This information is used to compute the organization of
the entire memory subsystem to minimize the cost of the
clique, which corresponds to its memory footprint Ai. Fi-
nally, we can formulate system-level memory allocation as a
graph partitioning problem.

Definition 3. The optimal memory allocation consists in
finding a partition of V into disjoint cliques C = (C1, . . . , Cn)
of minimum cost. Here, the cost A of a partition is the sum
of the costs of the cliques in the partition defined as follows:

A =

n∑
i=1

Ai (2)

where n is the number of cliques and A corresponds to the
footprint of the entire memory subsystem to be minimized.

Note that n corresponds also to the number of memory
controllers that need to be generated (see Section 3).

The different steps to create and solve this problem are
detailed in the following subsections.

4.1 Creation of Memory Compatibility Graph
The creation of the compatibility graph is crucial to de-

termine the possibilities of reusing the storage resources.
Hence, in most cases the designer has to provide insights
on the application’s behavior. Indeed, increasing the num-
ber of edges into the graph G corresponds to increasing the
number of compatible data structures. This can potentially
induce the creation of larger cliques at lower cost as the
same banks can be reused across different data structures.
Before describing the creation of the graph, we introduce
the definition of local, input and output data structures.

Definition 4. Let P be a process to be implemented in the
final system. A local data structure is a data structure that
is read and written only by process P . An input (output)
data structure is a data structure that is read (written) by P
and shared with other processes.

We start building the graph by adding all nodes V , i.e.,
the data structures of the different accelerators to be im-
plemented that need to be stored in memory, and no edges.
We adopt a conservative approach: solving the formulation
with no edges corresponds to implementing each data struc-
ture with its own memory subsystem. Then, any additional
analysis on the processes or the system topologies can only
increase the number of compatibility edges and, in turn, the
possibilities of sharing.

It is possible to perform different analyses on the system
topologies to determine which processes are never executed
at the same time. For example, let’s consider the two designs
shown in Fig. 1(a) and assume that they are connected to

a1 a2

b1 b2

array1 array2

Fig. 6: Example of memory compatibility graph.
Each clique represents which data structures can
share the same memory banks.

the rest of the system, which repeatedly provides data to P
and receives data from C. Processes P and C cannot use the
same physical banks for their local data structures because
P starts a new iteration and it is processing a new batch
of data during the execution of C. Conversely, if additional
signals are introduced such that P is forced to wait until the
termination of C, P cannot start a new iteration. In this
case, the local data structures of P and C are compatible
and they can share the same memory banks.

Currently, we assume that all local data structures of the
same process are alive from the activation of a process until
its termination. So they cannot share the same storage re-
sources. Moreover, we assume that all input data structures
of a process are adopted to create all output data structures
of the same process, and they cannot share the same re-
sources as well. On the other hand, analyses of the code to
be synthesized can identify local data structures of a process
that are never active at the same time, as well as the exact
dependences between input and output ones. For example,
when different computations are performed based on control
conditions, different data structures may be read/written
and, in this case, they can share the same storage resources
because these are always accessed in mutual exclusion.

Finally, in case of multiple accelerators, since we assume
that they are never executed simultaneously, all data struc-
tures belonging to different accelerators are compatible. This
allows the minimization of the memory footprint across mul-
tiple accelerators.

Note that in some cases, it is also possible to increase the
compatibility of some data structures by forcing the serial-
ization of some parallel processes through explicit signals.
This improves the possibilities for sharing, which can po-
tentially reduce the memory footprint, but it requires to
restructure the design of the accelerator with possible im-
pact on the performance. The study of this transformation
has been left for future work.

4.2 Computation of Clique Cost
As described above, a clique Ci of the nodes V corresponds

to a memory subsystem that can be generated to reuse the
same storage resources across multiple data structures. To
efficiently implement the memory subsystem corresponding
to a clique, we developed the algorithm shown in Listing 1,
which determines both the number of banks and their size.

Algorithm Description. Given a clique Ci of data
structures, the algorithm determines both the organization
of the memory subsystem Si (DetermineBanks) and the as-
sociated cost Ai (lines 3-5) for its implementation. First,
for all data structures, we compute the number of interfaces



Algorithm 1: Algorithm to determine the memory
subsystem associated with each clique and its cost.

1 Procedure CostClique(Ci)
Data: Ci is the clique to be implemented
Result: Si is the memory subsystem associated with Ci

Result: Mi is the cost of implementing Si

2 Si ← DetermineBanks(Ci)
3 Ai ← 0
4 foreach bank ∈ GetListOfBanks(Si) do
5 Ai ← Ai+ GetArea(bank)

6 return 〈Si, Ai〉
7 Procedure DetermineBanks(Ci)

Data: Ci is the clique to be implemented
Result: Si is the memory subsystem associated with Ci

8 Ri ← DetermineInterfaceReq(Ci)
9 Pi ← ComputeMinimumBanks(Ci,Ri)

10 v ← GetFirst(OrderByNumBank(Nodes(Ci),Pi))
11 B ← GetBanks(v) // B is the current number of banks
12 Size← 0 // Size is the current capacity of each bank
13 if IsPartitioned(v) then
14 Size← GetDataSize(v) / B
15 else
16 Size← GetDataSize(v)

17 foreach v ∈ OrderByNumBank(Nodes(Ci),Pi) do
18 N ← Floor(B/ GetBanks(v))
19 if IsPartitioned(v) then
20 if GetDataSize(v) / GetBanks(v) > Size ∗N then
21 Size← GetDataSize(v) / (GetBanks(v) ∗N)

22 else
23 if GetDataSize(v) > Size ∗N then
24 Size← GetDataSize(v) /N

25 〈B,Size〉 ← SplitBanks(B,Size)
26 Si ← GenerateMemoryController(Ci, B, Size)
27 return Si

required by the process implementations as well as the com-
bined requirements in terms of concurrent read and write
operations (DetermineInterfaceReq, line 8). Based on this
information and the data access pattern, it is possible to
determine the minimum number of parallel banks that is
needed to satisfy the bandwidth requirements of each data
structure (ComputeMinimumBanks, line 9), which corresponds
to value M in Fig. 3. Then, we sort the data structures in
a descending order (OrderByNumbBank), from the one that
requires the maximum number of parallel banks to the one
with the minimum number. This allows the definition of
the maximum number of parallel blocks and, thus, the min-
imum number of banks that are required to provide this
bandwidth (line 10-12). The goal is then to enforce the
reuse of these banks as much as possible from parallel to
serial as described in Section 2. We also determine an ini-
tial size for these banks based on the data mapping to be
implemented (lines 13-16). Then, we then analyze all data
structures following the same descending order and we aim
at reorganizing the existing banks from parallel to serial (as
shown in Fig. 3) to determine if the data structure can fit
into this new configuration (line 18). If not, the size of the
banks is updated accordingly to the data mapping solution.

Example. Let’s assume that the current number of banks is

four (each of them having size of 128) and we need to store a

data structure which has size of 900, partitioned in three parallel

banks. The existing four banks cannot be rearranged in multiple

lines as done in Fig. 3 and for this reason N = 1. However, this

organization is not sufficient to store then entire data structure

(line 20) and for this reason, each of the four banks is now enlarged

to store 300 elements (line 21). 2

On the other hand, if the banks can be rearranged and
reused, it is not necessary to change their size.

Example. Let’s assume that we now have four banks, which

have a size of 300, and we need to store a data structure of 512

elements, which requires two parallel banks (M = 2) but with

data duplication because data partitioning cannot be adopted.

In this case, the four banks can be rearranged as in the right-

hand side of Fig. 3 (N = 2); the two serial banks provides a

virtual capacity of 600 for each parallel block. It is thus possible

to store the entire amount of data with a serial reorganization

of the banks and, thus, no changes are applied to the size of the

banks (line 23). 2

Next, the banks are rearranged if the current size is greater
than the largest one available into the library, by increasing
the number of banks (SplitBanks, line 25). Finally, the
actual instance of the memory controller is generated, in-
cluding the logic for logical-to-physical address translation
(line 26), as described in Section 3.

4.3 Memory Allocation and Optimization
To obtain an efficient system-level allocation of the mem-

ory elements, it is necessary to partition the memory com-
patibility graph in cliques such that the total cost is mini-
mized. This problem is generally NP-hard because it con-
tains the classic NP-hard problems partition into cliques (or
clique cover) and graph coloring [10].

Given the organization of the memory controller described
in Section 3, the most critical elements in terms of timing
effects are the multiplexers and the demultiplexers for the
correct routing of the data. Even if the processes are syn-
thesized with a certain margin for memory operations, this
logic grows with the number of the banks and the number
of the interfaces and this may affect the critical path of the
design. For this reason, the designer may impose a limit to
the amount of memory sharing. This corresponds to impos-
ing a maximum value B to the cardinality of the cliques,
which needs to be empirically determined by the designer.

The resulting formulation is the partition into cliques of
bounded size PCliq(G, f,B) problem (where f is the func-
tion to determine the clique cost as described in Section 4.2).
This is a well-known problem in combinatorial optimization
that can be approached with the algorithm presented in [10].
The resulting cliques correspond to the memory subsystems
to be generated and a memory controller is generated for
each of them.

5. EXPERIMENTAL EVALUATION
We developed a prototype CAD tool in C++ based on the

proposed methodology. This tool has been applied to two
accelerators, which we designed in SystemC starting from
the kernel implementations included in The PERFECT
benchmark suite [6]. The benchmark chosen are Debayer
and Change Detection from Wide Area Motion Imagery.
Their system-level specifications are depicted in Fig. 7(a)
and Fig. 8, respectively. Both benchmarks elaborate im-
ages of size 512x512 pixels. Debayer consists of three pro-
cesses, which access two data structures a and b of size
12288∗sizeof(u16) and 2∗12264∗ (3∗sizeof(u16)), respec-
tively. We developed the synthesizable SystemC code in
order to maximize the performance: we allowed pipelining
of the processes by accessing a and b as circular buffers and
we kept a limit to the total size of local variables to be allo-
cated on memories. As shown in Fig. 7, process D1 needs to
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Fig. 7: Debayer system-level view (a) and with mem-
ory banks mapping (b).

perform two write operations on array a, while D2 could be
concurrently reading one element. During the process spec-
ification we did not consider other feasibility constraints,
such as the available memory sizes or maximum number of
ports, because we rely on our tool to perform the appro-
priate mapping of the data structures. Change Detection is
also composed of three processes, but it includes one array
f of size 2 ∗ 512∗sizeof(u16), one array g of size 2 ∗ 512 ∗ 1
and six arrays u in, s in, w in, u out, s out, w out, of size
2∗2560∗sizeof(u32). We allowed the pipelined execution of
the processes, this time through a ping-pong mechanism that
alternatively loads a portion of the data while it computes
the results on the other portion. On the other hand, we also
designed a version of this benchmark where we prevent the
pipelined execution of the processes through explicit signals
between C3 and C1. This solution was developed to evalu-
ate the capabilities of our tool with respect to sharing the
physical banks across the processes.

In our experiments, we used a commercial HLS tool to
generate the different implementations of each process, aim-
ing at targeting a frequency of 1GHz for an industrial 32nm
CMOS and a frequency of 100MHz for a Xilinx Virtex-7
FPGA. We then adopted the available IPs provided by the
two technology libraries to implement the memory banks.
Specifically, we limited our analysis to SRAMs and BRAMs
with two independent read-write ports, each capable of serv-
ing one read or one write request per clock cycle and with
both synchronous write and synchronous read interfaces.
Asynchronous RAMs were ignored because they are only
available for FPGA and usually lead to very high (and ineffi-
cient) device utilization. On the other hand, double-pumped
two-ports SRAMs are available for ASIC only. Two-port
memories can accept one read and one write on the same
cell in one clock cycle, but at the cost of a big increase in
area occupation. Single-port SRAMs, instead, are very com-
pact, but they limit the access to each bank to one single
process at a time, which can potentially lead to wrong imple-
mentations when different processes have to read and write
the same memory bank at the same time. For the 32nm
CMOS technology, we adopted a memory generator to cre-
ate SRAMs of alternative sizes, as those produced by the
allocation algorithm proposed in Section 4. In the FPGA
case, we used the available BRAMs on the target device.

C1 C2

f[2][512]

valid

ready C3valid

ready

g[2][512]
u_in[2][2560]
s_in[2][2560]
w_in[2][2560]

u_out[2][2560]
s_out[2][2560]
w_out[2][2560]

Fig. 8: Change Detection system-level view.

We designed a set of experiments to show that our tool can
efficiently allocate memory banks based on the constraints
derived from both the design and the configuration of HLS
knobs, without the need to change the SystemC code.

For the Debayer, array a can be safely mapped to a bank
with half of the words but a doubled bit-width thanks to the
regular write pattern of D1. We indeed exploit the merge
of data structures as described in Section 3. Thus the two
logical write operations are performed by a single physical
one and array a is mapped to the bank B0. Banks B′

0 and
B′′

0 are not considered in this phase. The access to array
b requires three write and two read operations. This time,
we performed data distribution and split the bi-dimensional
array into three uni-dimensional arrays. This allows an effi-
cient mapping of the data structure to six banks (from B1

to B6) that satisfies processes’ access requirements.
Next, we performed a simple design space exploration that

takes advantage of our tool. Debayer’s process D2 contains
several loops which interleave computation to accesses to
local data a. The latency of the accelerator is therefore
severely affected by the number of possible memory accesses
per clock cycle. Without changing the initial SystemC code
we instrumented our tool to map array a with two and three
read ports. At the same time, we set the HLS knobs to allow
D2 to read respectively two and three elements in parallel.
In this case, however, data duplication is the only viable
solution to allow multiple read accesses in parallel. Data
distribution is not applicable for this particular algorithm
because it is impossible to guarantee that two concurrent
read operations never insist on the same physical bank. At
this point, we used our tool to analyze these constraints and
generate the proper memory controllers for each of the tar-
get technologies. The resulting memory subsystems have
been integrated with the rest of the system (i.e. RTL de-
scriptions of the synthesized processes); logic synthesis and
RTL simulation have been performed to obtain the area oc-
cupation of the memories and the performance of the sys-
tems, respectively. As reported in Table 1, when 2 parallel
read operations can occur on array a (2R), the accelerator’s
total latency is reduced by approximately 40% on FPGA
and by 45% on ASIC. Adding an additional read port (3R)
brings latency down by 55% on FPGA and 60% on ASIC.
The speedup introduces a cost in terms of memory resources
that is at most 50% of the initial resources for both FPGA
and ASIC, as reported in Table 1.

The two versions of Change Detection are identified as pipe
and share, respectively. The former allows the pipelined ex-
ecution of the processes through the ping-pong buffer, while
the latter allows the sharing of the memory banks across the
different processes since an iteration has to be completed



Table 1: Performance and memory occupation of the accelerators. In case of FPGA, the memory occupation
corresponds to the number of BRAMs, while in case of ASIC, it corresponds to the memory footprint in µm2.

Debayer Change Detection
FPGA Virtex7 CMOS 32nm FPGA Virtex7 CMOS 32nm

1R 2R 3R 1R 2R 3R pipe share pipe share

# Cycles 13,826,802 8,275,396 6,210,884 11,888,292 6,727,012 4,662,500 8,279,465,640 9,093,107,980 7,618,917,820 8,432,508,900
Diff. - -40.15% -55.08% - -43.41% -60.78% - +9.83% - +10.68%

Memory 64 80 96 785,347 981,698 1,178,085 66 33 984,786 508,224
Diff. - +25.00% +50.00% - +24.58% +49.36% - -50.00% - -48.55%

before the subsequent one can start the computation. Sim-
ilarly, we applied our tool to both system descriptions in
order to determine the memory subsystems. The results in
Table 1 show that preventing the pipelined execution of the
processes degrades the performance by almost 10%, but al-
lows a significant reduction in terms of memory resources
(around 50%).

Finally, to verify the correctness of our designs, we inte-
grated the two accelerators into a complete system that has
been prototyped on a Xilinx Virtex-7 FPGA. It features a
LEON3 processor [2] and an AMBA 2.0 bus as communi-
cation subsystem. The LEON3 processor provides the data
to the accelerators, controls their execution, and retrieves
the results when their computation is completed. All de-
signs that have been evaluated in this section completed the
execution without errors. This means that the memory con-
trollers correctly perform the memory operations in all the
cases.

The results show that the proposed approach can design
efficient memory subsystems for component-based accelera-
tors. In particular, it can deal with different requirements of
the processes in terms of read and write interfaces and can
update the memory subsystem accordingly. For doing this,
it combines multi-bank memory architectures with a mem-
ory controller that manages the organization of the data
in a transparent way with respect to the processes. As a
result, the designer can focus on the development of the ac-
celerators and easily evaluate the effects of applying HLS
knobs (e.g. loop transformations) or design solutions (e.g.
pipelined execution) in terms of performance and require-
ments of resources. He or she does not have to take care
of the organization of the actual memory subsystem that is
generated automatically by our tool.

6. RELATED WORK
The specialization of memory architecture has been widely

studied in embedded systems due to its impact on area,
power, and performance [21].

Panda et al. have proposed various solutions to create
custom architectures and improve the system’s performance,
both in terms of memory organization and data layout [21].
Similarly, Benini et al. proposed a technique to customize
the memory sub-system with respect to an application pro-
filing while accounting for layout information to minimize
power consumption [7]. The possibility of sharing and reusing
memory elements have been explored by Desnos et al. [12].
They target MPSoCs and aim at minimizing the amount of
memory to be allocated. As a consequence, multi-banks ar-
chitectures and the constraints imposed by the limited num-
ber of the physical ports are not taken into account.

Customizing the storage structures in hardware accelera-
tors has been explored by Baradaran and Diniz who propose

data duplication and data distribution to improve perfor-
mance while considering the capacity and bandwidth con-
straints of the storage resources [5]. They adopt a compiler-
based approach to modify the source code. Similarly, Wang
et al. [27] propose an automated methodology for data reuse,
memory partitioning, and memory merging for FPGA. This
approach has been also extended to consider the concur-
rent optimization of multiple processes [29], but only to op-
timize the fine-grained communication, not the storage ele-
ments. On the other hand, Wang et al. presented a complete
theory for data partitioning which includes the support for
more complex data access patterns [26]. This method can
be added to our approach as a technique to determine how
the logical addresses need to be translated into the corre-
sponding physical addresses. All these solutions are applied
to the behavioral specification, before high-level synthesis.
This is efficient and elegant, but it imposes several limits
to the reusability of the components as they need to be re-
synthesized each time the memory subsystem is modified.

Recently, different approaches have been proposed to ef-
fectively enable the reuse of pre-characterized components
in SoCs. Liu et al. compose pre-characterized components
to create a Pareto set of the entire system [19]. However,
memory aspects are not taken into account. Li et al. adopt
a similar approach to create systems by composing pre-
characterized IPs through a pre-defined architectural tem-
plate [17]. The approach has been further extended to deter-
mine the organization of the memory subsystem [18]. How-
ever, it is not clear how the authors can deal with memories
having different latencies, especially considering the explicit
synchronization of the entire system through a finite state
machine. Moreover, it seems that parameters like the num-
ber of ports are not explored as this constraint is not consid-
ered when determining the memory elements. Conversely,
our approach effectively enables a component-based design
since it efficiently determines the organization of the mem-
ory subsystem. In addition, it also enables to share the same
memory elements across multiple components, even if they
belong to different designs that are deployed together onto
the SoC.

7. CONCLUSIONS AND FUTURE WORK
We presented a solution to efficiently design the memory

subsystems of one or more accelerators for heterogeneous
SoCs. In particular, our approach accommodates the pre-
characterization of all accelerator processes and handles the
physical constraints (capacity and bandwidth) imposed by
the physical memories available for a given target technol-
ogy. To do so, we developed an algorithm that determines
the proper organization of the memory subsystem in terms of
a multi-bank architecture to satisfy these constraints while
minimizing the memory footprint through the reuse of the



banks. The algorithm leverages a configurable memory con-
troller that is capable of dealing with the combined require-
ments of all the processes that need to access the same mem-
ory elements. Future work will involve the support for more
complex data-access patterns and the identification of the
proper system organization (i.e., trade-off between accel-
erator logic and memory elements) under strict area con-
straints.
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