2,397 research outputs found

    Simple shock isolator synthesis with bilinear stiffness and variable damping

    Get PDF
    Simple shock isolator synthesis with bilinear stiffness and variable dampin

    Stochastic MPC Design for a Two-Component Granulation Process

    Full text link
    We address the issue of control of a stochastic two-component granulation process in pharmaceutical applications through using Stochastic Model Predictive Control (SMPC) and model reduction to obtain the desired particle distribution. We first use the method of moments to reduce the governing integro-differential equation down to a nonlinear ordinary differential equation (ODE). This reduced-order model is employed in the SMPC formulation. The probabilistic constraints in this formulation keep the variance of particles' drug concentration in an admissible range. To solve the resulting stochastic optimization problem, we first employ polynomial chaos expansion to obtain the Probability Distribution Function (PDF) of the future state variables using the uncertain variables' distributions. As a result, the original stochastic optimization problem for a particulate system is converted to a deterministic dynamic optimization. This approximation lessens the computation burden of the controller and makes its real time application possible.Comment: American control Conference, May, 201

    A novel iterative linear matrix inequality design procedure for passive inter-substructure vibration control

    Get PDF
    In vibration control of compound structures, inter-substructure damper (ISSD) systems exploit the out-of-phase response of different substructures to dissipate the kinetic vibrational energy by means of inter-substructure damping links. For seismic protection of multistory buildings, distributed sets of interstory fluid viscous dampers (FVDs) are ISSD systems of particular interest. The connections between distributed FVD systems and decentralized static output-feedback control allow using advanced controller-design methodologies to obtain passive ISSD systems with high-performance characteristics. A major issue of that approach is the computational dificulties associated to the numerical solution of optimization problems with structured bilinear matrix inequality constraints. In this work, we present a novel iterative linear matrix inequality procedure that can be applied to obtain enhanced suboptimal solutions for that kind of optimization problems. To demonstrate the effectiveness of the proposed methodology, we design a system of supplementary interstory FVDs for the seismic protection of a five-story building by synthesizing a decentralized static velocity-feedback H∞ controller. In the performance assessment, we compare the frequency-domain and time-domain responses of the designed FVD system with the behavior of the optimal static state-feedback H∞ controller. The obtained results indicate that the proposed approach allows designing passive ISSD systems that are capable to match the level of performance attained by optimal state-feedback active controllers.This research was partially supported by the Spanish Ministry of Economy and Competitiveness under Grant DPI2015-64170-R/FEDER and by the Italian Ministry of Education, University and Research under the Project “Department of Excellence LIS4.0—Lightweight and Smart Structures for Industry 4.0”Peer ReviewedPostprint (published version
    corecore