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Abstract: In vibration control of compound structures, inter-substructure damper (ISSD) systems
exploit the out-of-phase response of different substructures to dissipate the kinetic vibrational
energy by means of inter-substructure damping links. For seismic protection of multistory buildings,
distributed sets of interstory fluid viscous dampers (FVDs) are ISSD systems of particular interest.
The connections between distributed FVD systems and decentralized static output-feedback
control allow using advanced controller-design methodologies to obtain passive ISSD systems
with high-performance characteristics. A major issue of that approach is the computational
difficulties associated to the numerical solution of optimization problems with structured bilinear
matrix inequality constraints. In this work, we present a novel iterative linear matrix inequality
procedure that can be applied to obtain enhanced suboptimal solutions for that kind of optimization
problems. To demonstrate the effectiveness of the proposed methodology, we design a system of
supplementary interstory FVDs for the seismic protection of a five-story building by synthesizing a
decentralized static velocity-feedback H∞ controller. In the performance assessment, we compare the
frequency-domain and time-domain responses of the designed FVD system with the behavior of the
optimal static state-feedback H∞ controller. The obtained results indicate that the proposed approach
allows designing passive ISSD systems that are capable to match the level of performance attained by
optimal state-feedback active controllers.

Keywords: passive vibration control; fluid viscous dampers; static output-feedback control; decentralized
control; iterative linear matrix inequalities; interstory damping systems; seismic protection

1. Introduction

Nowadays, it is generally accepted that passive vibration control can provide effective solutions
for advanced seismic protection of buildings and civil structures [1,2]. Broadly speaking, those
solutions can be classified into three main categories: base isolation (BI), tuned dampers (TDs) and
inter-substructure dampers (ISSDs) [3]. Typical implementations of that kind of passive vibration
control strategies for seismic protection of multistory buildings are schematically displayed in Figure 1.

BI systems use a layer of flexible isolation elements to reduce the ground-to-structure transmission
of the seismic disturbance. The main drawback of BI systems is the large base displacements
produced by strong earthquakes, which can require the inclusion of sophisticated control strategies to
achieve a proper trade-off between the desired level of seismic isolation and the base-displacement
constraints [4–7].
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TDs are auxiliary vibrational devices that are attached to the structural system to absorb and
dissipate a significant fraction of the structural kinetic energy induced by the seismic excitation.
TD systems include classical tuned mass dampers (TMDs) [8] and a variety of other configurations
as pendulum TMDs [9], tuned liquid dampers [10] and particle tuned mass dampers [11]. In seismic
protection of multistory buildings, the effectiveness of passive TD systems can be compromised
by a number of relevant factors, as large size and mass requirements, poor performance against
broad-band seismic excitations, and detrimental effects of soil-structure interactions. Frequently, those
limitations are addressed by considering enhanced hybrid TD control systems with active or semiactive
elements [12,13]. Other solutions include hybrid combinations of TD and BI systems [14].

(a) Base isolation. (b) Tuned mass damper. (c) Interstory dampers.

Figure 1. Passive vibration control strategies for seismic protection of multistory buildings.

ISSD systems take advantage of the out-of-phase vibrational response of different parts in
compound structures (for example, adjacent stories in multistory buildings) and use energy-dissipation
devices as inter-substructure links to increase stability and mitigate the overall seismic response of
the structure. Energy-dissipation ISSD links can be implemented using a wide variety of damping
elements [2], including metallic dampers [15], friction dampers [16], viscoelastic dampers [17] and
fluid viscous dampers (FVDs) [18]. It is also possible to design distributed ISSD systems with TD
characteristics by considering inerter elements, which are a promising new class of light and compact
two-terminal TD devices [19]. Passive ISSD systems are simple, reliable, robust, technologically feasible,
easy to install and maintain, and can operate without external power sources [17,18]. Moreover,
properly designed passive ISSD systems can provide a high level of seismic protection, being able
to match the performance of active or semiactive feedback control systems [20]. In this case, a major
difficulty is to design optimal configurations for the distributed ISSD elements. That issue has
motivated a notable theoretical and computational research activity and comprises two challenging
problems: (i) optimal tuning, which aims at determining a suitable set of parameter values for a given
distribution of the ISSD elements; and (ii) optimal allocation, which seeks for optimal distributions of
the damping links in sparse ISSD systems. Recent works in that line include ISSD designs based on a
wide variety of optimization objectives, such as structural performance [21], energy dissipation [22],
total-building performance [23], retrofitting cost [24] and structural reliability [25]. Advanced ISSD
designs consider soil-structure interactions [26], irregular 3D structures [21] and multi-building
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problems [27,28]. Enhanced design strategies include simplifying procedures to deal with the
high computational cost in nonlinear studies [29], design methodologies based on active control
approaches [30,31] and special seismic excitation schemes [32]. Relevant aspects associated to practical
implementations are discussed in [33,34].

In this paper, we present an advanced computational procedure to design distributed systems of
interstory FVDs with high-performance characteristics. The proposed design methodology exploits the
connections between systems of distributed interstory FVDs (see Figure 2a) and decentralized static
velocity-feedback (SVF) control systems with ideal interstory force-actuation devices and collocated
interstory-velocity sensors (see Figure 3a). That approach allows casting the optimal tuning of passive
FVD systems as a decentralized static output-feedback (SOF) controller-design problem, which can be
formulated as a structured optimization problem with bilinear matrix inequality (BMI) constraints.
The BMI optimization problem can later be converted into a structured linear matrix inequality
(LMI) optimization problem by means of a suitable transformation of variables, which contains a
matrix L whose values can be arbitrarily selected to improve the feasibility and effectiveness of the
computational method [35,36]. That line of solution has been applied with positive results to the
design of interstory FVD systems and hybrid interstory-interbuilding FVD systems in multibuilding
problems [20,31,37]. Preliminary works with a null L-matrix revealed feasibility issues in the LMI
optimization problem that were partially solved by introducing a numerical perturbation in the
state-space model [35,37]. Improved feasibility results have been obtained with more advanced
L-matrix choices that use numerical data provided by the optimal state-feedback controller [38].
However, that approach has the computational drawback of requiring the previous design of a
full-state feedback controller [20,31].
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Figure 2. Schematic model of a multistory building equipped with a complete set of interstory fluid
viscous dampers.
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Figure 3. Multistory building equipped with a complete set of ideal interstory force-actuation devices
and collocated interstory-velocity sensors.

The main contribution of the present work is a novel iterative linear matrix inequality (ILMI)
procedure that generates a sequence of improved structured SOF controllers by means of a smart
choice of the L-matrices. Compared with previous works [20,31,35,37], the proposed ILMI procedure
allows a more effective treatment of the feasibility issues, which are now circumscribed to the initial
step and separated from the optimality requirements. The modeling aspects are covered in Section 2,
where we examine the connections between systems of interstory FVDs and decentralized SVF active
controllers, and provide a state-space model for a multistory building equipped with a system of
ideal interstory force-actuation devices and a set of collocated interstory-velocity sensors. The details
of the ILMI procedure are discussed in Section 3, where we introduce a suitable LMI formulation
for structured SOF H∞ controllers, provide a formal proof of the correct definition of the iterates,
and present a solution for the initialization step. In Section 4, the proposed design methodology is
applied to compute the damping constants of a system of interstory FVDs for the seismic protection of a
five-story building. For the obtained FVD system, the frequency response function (FRF) characteristics
and the time-domain responses produced by the full-scale El Centro 1940 seismic record are studied
and compared with the behavior of the optimal static state-feedback H∞ controller. The results in
that section demonstrate the effectiveness of the proposed ILMI procedure and the high-performance
characteristics of the designed passive ISSD system.

2. Connections between Interstory FVDs and Decentralized Velocity-Feedback Controllers

Let us consider the n-story building model schematically depicted in Figure 2a where mi, ki
and ci respectively denote the mass, stiffness and damping coefficients of the ith story, and the red
dashpots represent a system of supplemental interstory FVDs with damping constants ĉi, i = 1, . . . , n.
The interstory FVD implemented in the ith building-level produces a resistant force

ui(t) = −ĉi {q̇i(t)− q̇i−1(t)} , (1)
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where q0(t) ≡ 0, qi(t), i = 1, . . . , n is the top-level displacement of the ith story si with respect to the
ground level s0 (see Figure 2b), and q̇i(t) is the time derivative of qi(t).

To illustrate the connections between interstory FVDs and decentralized SVF controllers, let us
assume that the building is equipped with a system of interstory force-actuation devices di, i = 1 . . . , n.
As schematically displayed in Figure 3a, the actuation device di produces opposed control forces of
magnitude |ui(t)| on the adjacent stories si and si−1. The dynamical response of the controlled building
can be described by the second order model

Mq̈(t) + Cdq̇(t) + Ksq(t) = Pnu(t)−M[1]n×1ẅg(t), (2)

where q(t) = [q1(t), . . . , qn(t)]T is the vector of story displacements with respect to the ground;
u(t) = [u1(t), . . . , un(t)]T is the vector of control actions; ẅg(t) is the seismic ground-acceleration
disturbance; M ∈ Rn×n, Cd ∈ Rn×n and Ks ∈ Rn×n are the building mass, damping and stiffness
matrices, respectively; [1]n×1 is a column vector of size n with all its entries equal to one; and Pn ∈ Rn×n

is the control-input matrix, which has an upper band-diagonal structure with elements
[Pn]i,i = 1, i = 1, . . . , n,

[Pn]i,i+1 = −1, i = 1, . . . , n− 1,

[Pn]i,j = 0, otherwise.

(3)

The mass matrix has the diagonal form

M = diag[m1, . . . , mn] =

 m1
. . .

mn

 , (4)

and the stiffness matrix can be computed as

Ks = Pn diag[k1, . . . , kn]PT
n . (5)

When the story damping coefficients ci, i = 1, , . . . , n are known, the building damping matrix can also
be computed in the form

Cd = Pn diag[c1, . . . , cn]PT
n , (6)

otherwise, approximate damping matrices can be computed following different approaches as,
for example, Rayleigh or Caughey damping [39]. By considering the state vector

x(t) =

[
q(t)
q̇(t)

]
(7)

of dimension nx = 2n, the dynamical response of the controlled building can be described by the
first-order state-space model

ẋ(t) = Ax(t) + Bu(t) + E ẅg(t), (8)

with

A =

[
[0]n×n In

−M−1Ks −M−1Cd

]
, B =

[
[0]n×n

M−1Pn

]
, E =

[
[0]n×1

−[1]n×1

]
, (9)

where [0]p×q denotes a zero matrix of dimensions p × q and In represents the identity matrix of
dimension n. In the static state-feedback (SSF) control approach, we assume that the state information
can be fully accessed and the control actions are computed as

u(t) = Gx(t) (10)
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by means of a constant control-gain matrix G ∈ Rn×nx . Static output-feedback (SOF) control provides
a more realistic and general approach by restricting the feedback information to a vector of measured
outputs y(t) = [y1(t), . . . , yny(t)]

T (typically with ny < nx), which can be expressed as linear
combination of the states in the form

y(t) = Cyx(t) (11)

by using the output matrix Cy ∈ Rny×nx . In that case, the desired control actions are computed as

u(t) = Ky(t), (12)

where K ∈ Rn×ny is a constant control gain matrix. Structured SOF controllers can be designed by
setting a specific zero-nonzero pattern on the gain matrix K. In particular, a fully decentralized SOF
controller is obtained when the gain matrix K is diagonal. Obviously, SSF controllers can be considered
as a case of SOF controllers by setting Cy = Inx .

The interstory drifts r1(t) = q1(t),

ri(t) = qi(t)− qi−1(t), i = 2, . . . , n
(13)

are the relative displacements between consecutive stories (see Figure 3b). The vector of interstory
drifts r(t) = [r1(t), . . . , rn(t)]T can be computed in the form

r(t) = Crx(t) (14)

with the output matrix
Cr =

[
PT

n [0]n×n

]
, (15)

where Pn is the upper band-diagonal matrix defined in Equation (3). Analogously, the vector of
interstory velocities v(t) = [v1(t), . . . , vn(t)]T = ṙ(t) can be computed as

v(t) = Cvx(t) (16)

by means of the output matrix
Cv =

[
[0]n×n PT

n

]
. (17)

By taking v(t) as measured-output vector, we can obtain a static velocity-feedback (SVF) controller
u(t) = Kv(t), which will produce control actions of the form

ui(t) = ki1v1(t) + · · ·+ kinvn(t), i = 1, . . . , n, (18)

where kij denote the elements of the control gain matrix K. When, additionally, the SVF controller is
fully decentralized, K is a diagonal matrix and the control actions take the simplified form

ui(t) = kiivi(t), i = 1, . . . , n. (19)

Considering Equation (1), if the diagonal gains kii are all negative, then the decentralized SVF controller
can be passively implemented by a set of FVDs with damping coefficients

ĉi = −kii, i = 1, . . . , n. (20)

Typically, the design objectives in optimization-based procedures are defined by means of a vector
of controlled outputs z(t) = [z1(t), . . . , znz(t)]

T that describes some relevant properties of the system
behavior. The controlled-output vector
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z(t) = Czx(t) + Dzu(t) (21)

with

Cz =

[
PT

n [0]n×n
[0]n×n [0]n×n

]
, Dz = α

[
[0]n×n

In

]
, (22)

satisfies
zT(t) z(t) = rT(t) r(t) + α2uT(t) u(t) (23)

and allows setting the mitigation of interstory-drift responses and the reduction of control actions
as design objectives. The scaling factor α ∈ R can be used to compensate the differences in order of
magnitude and to establish a proper trade-off between the conflicting design objectives.

Finally, other variables not included in the measured and controlled outputs can be of interest
in the assessment of the obtained solutions. With that purpose, we consider the vector of total
accelerations a(t) = [a1(t), . . . , an(t)]T , where ai(t) is the top-level acceleration of the ith story with
respect to an inertial reference frame. The vector a(t) can be written as

a(t) = q̈(t) + [1]n×1ẅg (24)

and can be computed in the form
a(t) = Cax(t) (25)

with the output matrix
Ca = M−1 {[−Ks − Cd] + PnKCy

}
. (26)

3. Design of Interstory FVD Systems Using a Decentralized SOF H∞ Approach

3.1. Decentralized SOF H∞ Controllers

Let us consider a linear system

S :


ẋ(t) = Ax(t) + Bu(t) + Ew(t)

z(t) = Czx(t) + Dzu(t)

y(t) = Cyx(t)

(27)

where x(t) ∈ Rnx , u(t) ∈ Rnu , w(t) ∈ Rnw , z(t) ∈ Rnz , y(t) ∈ Rny and A, B, E, Cz, Dz and
Cy are constant matrices of appropriate dimensions. A SOF controller u(t) = Ky(t) defines the
closed-loop system

SK :

{
ẋ(t) = AK x(t) + Ew(t)

z(t) = CK x(t)
(28)

with
AK = A + BKCy, CK = Cz + DzKCy, (29)

and the closed-loop frequency response function (FRF)

TK(ω) = CK (2πωjInx − AK)
−1 E, (30)

where ω is the frequency in Hertz and j =
√
−1. In the H∞ approach, the controller performance is

assessed by means of the H∞ norm

γK = sup
‖w‖2 6=0

‖z‖2

‖w‖2
, (31)



Appl. Sci. 2020, 10, 5859 8 of 21

where ‖ f‖2 =
{∫ ∞

0 f T(t) f (t)dt
}1/2 denotes the continuous 2-norm. Using the maximum singular

value σmax of the closed-loop FRF, the H∞-norm γK can be computed in the frequency domain as

γK = sup
ω

σmax [TK(ω)] . (32)

When the closed-loop system SK is asymptotically stable, γK has a finite value that can be interpreted
as the worst-case energy gain from the disturbance input to the controlled output. In that sense,
the H∞ controller design approach aims to obtain a control gain matrix K with an asymptotically stable
closed-loop system and a minimum H∞-norm γopt. According to the Bounded Real Lemma (BRL) [40],
the closed-loop system SK is asymptotically stable and γ2

K < η if and only if there exists a matrix
X ∈ Snx that satisfies

X > 0,

sym(AKX) ∗ ∗
ET −ηInw ∗

CKX [0]nz×nw −Inz

 < 0, (33)

where Snx is the set of symmetric real matrices of dimension nx, the matrix inequality M > 0 (M < 0)
indicates that M is a positive (negative) definite matrix, sym(M) is a shorthand for M + MT , and the
asterisks represent the transpose of the matrices located in the symmetric position. Considering the
BRL, the design of an optimal SOF H∞ controller can be formulated as the following bilinear matrix
inequality (BMI) optimization problem:

Psof :

{
Minimize η

Subject to X > 0 and the BMI in Equation (35).
(34)

sym(AX + BKCyX) ∗ ∗
ET −ηInw ∗

CzX + DzKCyX [0]nz×nw −Inz

 < 0, (35)

where X, K and η are the optimization variables. If the BMI optimization problem Psof attains an
optimal solution for the triplet (X̃, K̃, η̃), then the SOF controller u(t) = K̃y(t) has an optimal H∞-norm
γK̃ = η̃1/2. In the particular case of a SSF controller u(t) = Gx(t), we have Cy = Inx and the BMI
problem Psof takes the form

Pssf :

{
Minimize η

Subject to X > 0 and the BMI in Equation (37).
(36)

sym(AX + BGX) ∗ ∗
ET −ηInw ∗

CzX + DzGX [0]nz×nw −Inz

 < 0, (37)

which, by setting GX = Y , can be transformed into the following linear matrix inequality (LMI)
optimization problem:

P̂ssf :

{
Minimize η

Subject to X > 0 and the LMI in Equation (39).
(38)

sym(AX + BY) ∗ ∗
ET −ηInw ∗

CzX + DzY [0]nz×nw −Inz

 < 0, (39)
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where X, Y and η are the optimization variables. In this case, if the LMI optimization problem P̂ssf
attains an optimal solution for the triplet (X̃, Ỹ , η̃), then the control gain matrix can be computed as

G̃ = Ỹ X̃−1 (40)

and the SSF controller u(t) = G̃x(t) has an H∞-norm γG̃ = γssf, where

γssf = η̃1/2 (41)

is the optimal H∞ norm corresponding to the SSF controllers. Moreover, structured control gain
matrices can be obtained by setting a proper zero-nonzero pattern on the LMI variables X and Y .
Unfortunately, this line of solution cannot be applied to the BMI optimization problem Psof, as the
substitution KCyX = Y does not allow obtaining a general explicit expression for K. According to the
results in [36], when the measured-output matrix Cy has full row-rank and ny < nx, we can obtain an
LMI formulation for SOF controllers by considering the matrix transformation

X = QXQQT + RLXRRT
L , (42)

where XQ ∈ Snx−ny , XR ∈ Sny , Q ∈ Rnx×(nx−ny) is a matrix whose columns contain a basis of ker
(
Cy
)
,

and RL ∈ Rnx×ny can be written in the form

RL = C†
y + QL, (43)

where C†
y = CT

y (CyCT
y )
−1 is the Moore-Penrose pseudoinverse of Cy and L ∈ R(nx−ny)×ny is a matrix

whose values can be arbitrarily selected. By applying that transformation in Psof and performing the
substitution KXR = YR, for a selected L-matrix, we obtain the LMI optimization problem

Psof (L) :

{
Minimize η

Subject to the LMI in Equations (45) and (46).
(44)

QXQQT + RLXRRT
L > 0, (45)sym

(
AQXQQT + ARLXRRT

L + BYRRT
L
)

∗ ∗
ET −ηInw ∗

CzQXQQT + CzRLXRRT
L + DzYRRT

L [0]nz×nw −Inz

 < 0, (46)

where the optimization variables are XQ, XR, YR and η. According to the results in [36], if the LMI
optimization problem Psof (L) attains an optimal solution for the quartet

(
X̂Q, X̂R, ŶR, η̂

)
, then the

triplet
(
X̂, K̂, η̂

)
with

X̂ = QX̂QQT + RLX̂RRT
L , K̂ = ŶRX̂−1

R (47)

is a feasible solution of the BMI problem Psof, and the γ-value corresponding to the SOF controller
u(t) = K̂y(t) satisfies the inequality

γK̂ ≤ η̂1/2. (48)

In the case nu = ny, if the LMI optimization problem Psof (L) can be successfully solved with the
additional constraints

XR ∈ Dnu , YR ∈ Dnu , (49)

where Dn denotes the set of diagonal real matrices of dimension n, then the obtained gain matrix K̂ is
also diagonal and defines a fully decentralized SOF controller.
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Remark 1. It can be easily proved that the LMI in Equation (45) implies that the matrix XR is positive definite
(see Proposition 1 in [36]). Hence, the matrix X̂R in Equation (47) is non-singular and the SOF gain matrix K̂
is well-defined.

Remark 2. It should be observed that the value η̂1/2 provided by the LMI optimization problem Psof(L) is an
upper bound of γK̂. The actual value of γK̂ can be computed by setting G = K̂Cy in the BMI problem Pssf and
solving the resulting LMI optimization problem Pssf (G) with the optimization variables X and η. If an optimal
solution of Pssf (G) is achieved for the pair (X, η̄), then γK̂ = η̄1/2. Moreover, as the γ-value in Equation (41)
is the optimal H∞ norm for SSF controllers, we will have γssf ≤ γK̂ ≤ η̂1/2.

3.2. ILMI Design Procedure

To formulate the proposed ILMI procedure, we define the auxiliary LMI optimization problem

Paux(XR, YR) :

{
Minimize η

Subject to the LMIs in Equations (51)–(54).
(50)

QZQQT + C†
y XR(C†

y)
T + sym

{
QLXR(C†

y)
T
}
> 0, (51)Ξ1 ∗ ∗

ET −ηInw ∗
Ξ2 [0]nz×nw −Inz

 < 0, (52)

Ξ1=sym
{

AQZQQT + AC†
y XR(C†

y)
T + Asym

{
QLXR(C†

y)
T
}
+ BYR(C†

y + QL)T
}

, (53)

Ξ2 = CzQZQQT + CzC†
y XR(C†

y)
T + Cz sym

{
QLXR(C†

y)
T
}
+ DzYR(C†

y + QL)T , (54)

where XR and YR are fixed matrices and the optimization variables are L ∈ R(nx−ny)×ny , ZQ ∈ Snx−ny

and η ∈ R. Moreover, to facilitate the discussion, we assume that nu = ny and introduce the notation
Psof (L,D) to designate the LMI optimization problem Psof (L) in Equation (44) with the additional
structure constraints given in Equation (49). The ILMI procedure is given as follows:

3.2.1. Initialization

The procedure starts with an initial matrix L(0) that produces a feasible LMI optimization
problem Psof (L(0),D). By solving Psof (L(0),D), we obtain the optimal values of the LMI variables(

X(0)
Q , X(0)

R , Y (0)
R , η0

)
and the diagonal gain matrix K(0) = Y (0)

R
{

X(0)
R
}−1 with an associated

γ-value γK(0) ≤
{

η0
}1/2.

3.2.2. Iterations

After the initialization phase, the computations in step i ≥ 1 include two parts:

Step i.a Solve the auxiliary LMI optimization problem Paux(XR, YR) with fixed matrices XR = X(i−1)
R

and YR = Y (i−1)
R to obtain an optimal triplet

(
L(i), Z(i)

Q , η̃i
)
.

Step i.b Solve the structured LMI optimization problem Psof (L,D) with fixed matrix L = L(i) to
obtain an optimal quartet

(
X(i)

Q , X(i)
R , Y (i)

R , ηi
)

and a diagonal gain matrix K(i) = Y (i)
R
{

X(i)
R
}−1

with associated γ-value γK(i) ≤
{

ηi
}1/2.

Assuming that the initialization step has been successfully completed, the following theorem
guarantees that the iterations are well defined and can produce a sequence of improved η-values.
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Theorem 1. If the initial LMI optimization problem Psof (L(0),D) is feasible, then the sequence of LMI
optimization problems Psof (L(i),D), i ≥ 1, are all feasible, and the sequence of optimal η-values
satisfies ηi−1 ≥ ηi.

Proof. Let us consider the LMI in Equation (45). By using the expression of RL in Equation (43),
we have

QXQQT + RLXRRT
L = QXQQT + (C†

y + QL)XR(C†
y + QL)T

= QXQQT + C†
y XR(C†

y)
T + sym

{
QLXR(C†

y)
T
}
+ QLXRLTQT

= Q
(
XQ + LXRLT)QT + C†

y XR(C†
y)

T + sym
{

QLXR(C†
y)

T
} (55)

and, by introducing the new variable

ZQ = XQ + LXRLT , (56)

we obtain
QXQQT + RLXRRT

L = QZQQT + C†
y XR(C†

y)
T + sym

{
QLXR(C†

y)
T
}

. (57)

Hence, if the matrices XQ and XR satisfy the LMI in Equation (45) for a given matrix L, then the
LMI in Equation (51) holds for the matrices ZQ, XR and L. Conversely, if the LMI in Equation (51)
is satisfied by the matrices ZQ, XR and L, then the LMI in Equation (45) holds for the matrices XR,
RL = C†

y + QL and
XQ = ZQ − LXRLT . (58)

Similar relationships can be easily derived for the LMIs in Equations (46) and (52). Therefore, if the
quartet

(
XQ, XR, YR, η

)
is a feasible solution of the LMI problem Psof (L), then the triplet

(
L, ZQ, η

)
with ZQ = XQ + LXRLT is a feasible solution of the LMI problem Paux(XR, YR). Analogously, if the
triplet

(
L, ZQ, η

)
is a feasible solution for the auxiliary LMI problem Paux(XR, YR), then the quartet(

XQ, XR, YR, η
)

with XQ = ZQ − LXRLT is a feasible solution of the LMI problem Psof (L).
Let us now assume that the problem Psof (L(i−1),D) is feasible and it has attained an optimal

solution for the quartet
(
X(i−1)

Q , X(i−1)
R , Y (i−1)

R , ηi−1
)

with diagonal matrices X(i−1)
R and Y (i−1)

R .

Then, the triplet
(

L(i−1), Z̃(i−1)
Q , ηi−1

)
with

Z̃(i−1)
Q = X(i−1)

Q + L(i−1)X(i−1)
R

(
L(i−1))T (59)

is a feasible solution of the LMI problem Paux
(
X(i−1)

R , Y (i−1)
R

)
in Step i.a, which can be solved to obtain

an optimal triplet
(

L(i), Z(i)
Q , η̃i

)
with a minimum η-value η̃i that satisfies

ηi−1 ≥ η̃i. (60)

Next, we observe that the quartet
(
X̃(i)

Q , X(i−1)
R , Y (i−1)

R , η̃i
)

with

X̃(i)
Q = Z(i)

Q − L(i)X(i−1)
R

(
L(i))T (61)

is a feasible solution of the structured LMI problem Psof (L(i),D) in Step i.b, which can be solved to
obtain an optimal quartet

(
X(i)

Q , X(i)
R , Y (i)

R , ηi
)

with diagonal matrices X(i)
R and Y (i)

R and a minimum
η-value ηi that satisfies η̃i ≥ ηi and, considering Equation (60), we obtain ηi−1 ≥ ηi. Finally, if we
assume that the initial structured LMI problem Psof (L(0),D) is feasible, then the LMI optimization
problems Psof (L(i),D), i ≥ 1, are all feasible by induction.
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According to the theorem and the discussion in Remark 2, after a proper initialization,
the proposed ILMI procedure produces a sequence of diagonal gain matrices K(i) with associated
γ-values that satisfy

γssf ≤ γK(i) ≤
{

ηi
}1/2, (62)

where γssf is the optimal H∞-norm of the SSF controllers. The decreasing character of the values ηi
indicates that the proposed procedure can be effective in producing improved controllers, whose
performance level can be assessed by taking the sharp lower bound γssf as a reference.

Regarding to the initialization step, it is worth noting that the difficulty of finding a proper initial
matrix L(0) is significantly reduced by the fact that, at this point, the interest is restricted to obtain a
feasible solution and the performance of the control gain matrix K(0) is not a relevant matter. In the
numerical applications discussed in this paper, we have used the following initial L-matrix:

L(0) = Q†X̂CT
y
(
CyX̂CT

y
)−1, (63)

where Q† =
(
QTQ

)−1QT is the Moore-Penrose pseudo-inverse of Q and X̂ ∈ Snx is the solution of
the continuous Lyapunov equation

AX + X AT = −Inx . (64)

The usage of Lyapunov and Riccati equations in iterative controller-design procedures is a quite
common resource in the literature [41,42]. Moreover, for the considered building structures, the system
matrix A is Hurwitz, which guarantees the existence of X̂. The expression in Equation (63) is based
on the theoretical results presented in [38] and has produced positive results in structural vibration
control using X-matrices associated to optimal SSF controllers [20,31].

4. Numerical Results

4.1. FVD System Design

To illustrate the effectiveness of the proposed ILMI procedure, in this section we design a system
of five interstory FVDs to mitigate the seismic response of a five-story building model with mass
matrix (in kg)

M = 103 ×
[ 215.2 0 0 0 0

0 209.2 0 0 0
0 0 207.0 0 0
0 0 0 204.8 0
0 0 0 0 266.1

]
, (65)

stiffness matrix (in N/m)

Ks = 108 ×
 2.60 −1.13 0 0 0
−1.13 2.12 −0.99 0 0

0 −0.99 1.88 −0.89 0
0 0 −0.89 1.73 −0.84
0 0 0 −0.84 0.84

 , (66)

and damping matrix (in Ns/m)

Cd = 105 ×
 2.602 −0.924 0 0 0
−0.924 2.196 −0.810 0 0

0 −0.810 1.995 −0.728 0
0 0 −0.728 1.867 −0.687
0 0 0 −0.687 1.274

 . (67)

The matrices M and Ks correspond to the mass and stiffness coefficients of the five-story building
model presented in [43], and Cd has been computed as a Rayleigh damping matrix with 2% of
relative damping in the first and fifth modes [44]. The building natural frequencies (in Hz) are
collected in Table 1.
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Table 1. Natural frequencies of the five-story building model.

Mode 1 2 3 4 5

natural frequency (Hz) 1.008 2.825 4.493 5.797 6.773

Following the discussion in Section 2, we assume that the building is equipped with a complete
system of interstory force-actuation devices as schematically displayed in Figure 3a. Our objective
is to design a high-performance FVD system by computing a fully decentralized SVF H∞ controller,
which takes the vector of interstory velocities v(t) as feedback information. To this end, we consider
the system matrices A, B and E in Equation (9) corresponding to the value n = 5, the matrices M, Ks

and Cd in Equations (65)–(67) and the control-input matrix

P5 =

 1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

; (68)

the measured-output matrix Cy = Cv in Equation (17) with n = 5; and the controlled-output matrices
Cz and Dz in Equation (22) corresponding to the values n = 5 and α = 10−7.25. The matrix Q,
computed by the Matlab command null(), has the following form

Q =

[
−I5

[0]5×5

]
(69)

and, by solving the Lyapunov equation in (64) and applying the formula in (63), we obtain the
initial L-matrix

L(0) = 10−2 ×
[ 0.2500 0.1362 0.1097 0.0725 0.0419

0.4246 0.3928 0.2439 0.1735 0.0949
0.5627 0.5400 0.4748 0.2829 0.1612
0.6652 0.6344 0.5756 0.4748 0.2360
0.7089 0.6805 0.6153 0.5134 0.3757

]
, (70)

which produces a feasible LMI problem P(L(0),D) with η1/2
0 = 0.0933. As stated in Theorem 1,

the subsequent LMI problems P(L(i),D), i = 1, . . . , 6 are all feasible and produce the decreasing
sequence of values η1/2

i collected in Table 2. In the sixth step, we obtain the diagonal gain matrix

K(6) = 106 ×
 −8.4144 0 0 0 0

0 −6.6570 0 0 0
0 0 −5.7092 0 0
0 0 0 −5.1799 0
0 0 0 0 −4.9493

 (71)

and, by proceeding as indicated in Remark 2, we get the controller H∞-norn

γK(6) = 0.0890. (72)

Table 2. Values of the upper bounds η1/2
i obtained in the steps i = 0, . . . , 6.

Step 0 1 2 3 4 5 6

Upper bound η1/2
i 0.0933 0.0911 0.0902 0.0900 0.0899 0.0898 0.0898

According to the discussion in Section 2, as all the diagonal elements in K(6) are negative,
the decentralized SVF controller u(t) = K(6)v(t) can be implemented by a system of interbuilding
FVDs with the damping coefficients displayed in Table 3.
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Table 3. Damping coefficients of the interstory FVD system.

Building Level 1 2 3 4 5

Damping coefficient ĉi (×106 Ns/m) 8.4144 6.6570 5.7092 5.1799 4.9493

To assess the performance of the obtained FVD system, we compute a SSF controller by solving
the LMI optimization problem P̂ssf in Equation (38) with the same system matrices A, B, E and
controlled-output matrices Cz and Dz used in the SVF controller design. That LMI optimization
problem produces the SSF gain matrix

Ĝ = 106 ×
 −1.3624 1.1294 0.0298 −0.1321 −0.4593 −0.3984 −0.4896 −0.5908 −0.6849 −0.9904

2.1548 −2.0831 1.1686 −0.2736 −0.4753 −0.1066 −0.6238 −0.7467 −0.8551 −1.2284
1.4879 2.2908 −2.5344 0.7248 −0.5361 −0.1069 −0.2389 −0.8118 −0.8980 −1.2754
0.4214 1.2851 2.3282 −2.8258 0.0721 −0.1017 −0.2123 −0.3096 −0.8843 −1.2178
0.3549 0.2391 0.7108 2.4487 −2.8454 −0.0629 −0.1324 −0.1903 −0.2222 −1.0714

 (73)

and the optimal H∞-norm
γssf = 0.0860. (74)

The frequency response produced by the designed FVD system is displayed in Figure 4, where the red
solid line corresponds to the closed-loop FRF defined by the diagonal SVF gain-matrix K(6), the blue
dash-dotted line represents the closed-loop FRF associated to the optimal SSF gain-matrix Ĝ and the
black dotted line appertains to the open-loop FRF

To(ω) = Cz (2πωjInx − A)−1 E, (75)

which describes the frequency response of the uncontrolled building. The overall view in Figure 4a
shows the building resonant peaks, which are located at the natural frequencies given in Table 1.
The magnitude of the main resonant peak is

γo = 0.3619 (76)

and corresponds to the H∞-norm of the uncontrolled building. Looking at the plots in that figure,
it can be appreciated that the proposed FVD system produces a remarkable reduction of the main
resonant peak and, quite surprisingly, a slightly better overall response than the optimal SSF controller.
The frequency response of the FVD system and the SSF active controller can be more effectively
compared from the close-up view in Figure 4b, where it can be observed that the FVD system produces
a uniformly smaller frequency-response with the exception of a tiny interval around the main resonant
frequency, which is consistent with the γ-values in Equations (72) and (74) and the H∞ optimality of
the SSF controller.
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Figure 4. Maximum singular values of the FRFs corresponding to the uncontrolled building
(black dotted line), the optimal SSF controller (blue dash-dotted line) and the computed FVD system
(red solid line). (a) Overall view. (b) Close-up view of the main resonant peaks.
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4.2. Seismic Response

To illustrate the seismic performance of the designed FVD system, we have computed the
interstory-drift, total-acceleration and actuation-force time responses produced by the full-scale
180-component of the El Centro 1940 ground-acceleration seismic record displayed in Figure 5. As a
natural reference, we have also computed the time responses corresponding to the uncontrolled
building and the optimal SSF H∞ controller. The obtained absolute peak-values

|ri|max = max
0≤t≤50

|ri(t)|, |ai|max = max
0≤t≤50

|ai(t)|, |ui|max = max
0≤t≤50

|ui(t)|, i = 1, . . . , 5 (77)

are displayed in Figure 6, where the red solid lines with asterisks correspond to the FVD system with
the damping coefficients in Table 3, the blue dash-dotted lines with circles represent the optimal SSF
controller with the control gain matrix Ĝ in Equation (73), and the black solid lines with squares
describe the uncontrolled building response. Looking at the plots in Figure 6a, it can be appreciated
that the proposed FVD system produces remarkable reductions of the interstory-drift peak-values,
which according to the values in Table 4, are superior to 66% in all the building levels. The plots in
Figure 6b and the data in Table 5 indicate that the FVD system also produces significant reductions of
the total-acceleration peak-values, which are about a 38% at the building bottom level and superior to
64% in the upper levels.
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Figure 5. El Centro 1940 ground-acceleration seismic record, full-scale 180-component with an absolute
acceleration-peak of 3.417 m/s2.
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Figure 6. Time-response peak-values. (a) Maximum absolute interstory drifts (×10−2 m). (b) Maximum
absolute total accelerations (m/s2). (c) Maximum absolute actuation forces (×106 N).

Table 4. Interstory-drift peak-value reductions with respect to the uncontrolled response.

Building Level 1 2 3 4 5

FVD system 68.89 68.01 66.93 66.65 69.81
SSF controller 70.58 76.76 72.00 63.89 58.61
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When compared with the optimal SSF controller, the obtained time-domain results come to
confirm the high-performance characteristics of the FVD system pointed out by the frequency-domain
responses discussed in Section 4.1. Specifically, despite assuming an ideal active implementation
with full-state feedback information, the optimal SSF controller is only able to produce appreciable
improved results in the interstory-drift peak-values |r2|max and |r3|max. For the rest of considered
peak-values, including the actuation-force peak-values displayed in Figure 6c, the results achieved by
the passive FVD system are similar or superior to those attained by the optimal SSF controller.

Table 5. Total-acceleration peak-value reductions with respect to the uncontrolled response.

Building Level 1 2 3 4 5

FVD system 38.09 58.32 75.70 64.78 65.65
SSF controller 27.43 23.48 60.28 62.54 62.85

To complement the peak-value information and provide a clearer view of the time-domain
responses, the interstory-drift, total-acceleration and actuation-force time histories corresponding
to the 3rd building-level are displayed in Figures 7–9, respectively. To facilitate the comparison,
Figures 7 and 8 present a close-up view of the FVD and SSF responses, and display in the background
the clipped response of the uncontrolled building, which for the 3rd building-level has an
interstory-drift peak-value of 5.11 cm and a total-acceleration peak-value of 9.41 m/s2 (see Figure 6a,b).
Moreover, the corresponding plots of actuation forces versus interstory drifts and interstory velocities
are respectively presented in Figures 10 and 11.

0 10 20 30 40 50

time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

in
te

rs
to

ry
 d

rif
t (

cm
)

(b) Optimal SSF H-infinity controller.
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Figure 7. Close-up view of the interstory-drift time-response r3(t) for the FVD system and the optimal
SSF H∞ controller. The black dotted line in the background represents the clipped response of the
uncontrolled building.
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Figure 8. Close-up view of the total-acceleration time-response a3(t) for the FVD system and the
optimal SSF H∞ controller. The black dotted line in the background represents the clipped response of
the uncontrolled building.
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The interstory-drift plots in Figure 7a,b are quite similar, with slightly larger peaks in the FVD
system response, which are consistent with the percentages of peak-value reduction presented in
Table 4. The total-acceleration plots in Figure 8a,b indicate an overall better performance of the FVD
system, with an appreciable reduced response in several time subintervals. For example, around t = 2 s,
t = 10 s and t = 25 s. Finally, the plots in Figures 9 and 10 demonstrate the larger actuation-force
values required by the SSF controller, and the plot in Figure 11a clearly evidences the passive character
of the designed ISSD system.
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Figure 9. Actuation-force time-history u3(t) for the FVD system and the optimal SSF H∞ controller.
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(b) Optimal SSF H-infinity controller.
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Figure 10. Plots of actuation force versus interstory drift in the 3rd story level corresponding to the
FVD system and the optimal SSF H∞ controller.
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(b) Optimal SSF H-infinity controller.
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Figure 11. Plots of actuation force versus interstory velocity in the 3rd story level corresponding to the
FVD system and the optimal SSF H∞ controller.

Remark 3. The interstory FVD system discussed in this paper has been designed following an H∞ controller
design approach. However, it should be observed that the proposed design methodology can be extended to other
advanced controller design strategies that admit a BMI formulation.
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Remark 4. All the computations have been carried out with Matlab 2020a on a regular desktop computer
equipped with an Intel Core i7-8700 CPU at 3.20 GHz, 16 GB RAM and a 480 GB SSD hard drive.
The optimization LMI problems have been solved with the function mincx() of the Matlab Robust Control
Toolbox [45], setting a relative tolerance of 10−5.

5. Conclusions

In this work, we have introduced a novel iterative linear matrix inequality (ILMI) procedure,
which can be applied to compute enhanced suboptimal solutions for optimization problems with
structured bilinear matrix inequality (BMI) constraints. After discussing the connections between
passive damping systems and decentralized static velocity-feedback (SVF) controllers, the design
of fluid viscous damper (FVD) systems has been set as a decentralized SVF H∞ controller-design
problem, which admits a BMI formulation and can be solved with the proposed ILMI procedure.
The main features of the presented methodology have been demonstrated by designing a system
of supplemental interstory FVDs to mitigate the seismic response of a five-story building model.
In the performance assessment of the obtained passive damping system, we have studied the
frequency-domain and time-domain responses, taking as reference the optimal static state-feedback
H∞ controller. Considering the results achieved in this paper, the following points can be highlighted:
(i) Active controller-design strategies can be applied to design FVD systems with high-performance
characteristics. (ii) The followed H∞ controller-design approach does not depend on particular seismic
records. (iii) For the considered problem, the proposed ILMI procedure can be initialized by solving
a simple matrix Lyapunov equation. (iv) The study of the frequency response functions indicates
that the obtained FVD system produces a relevant reduction of the main and secondary resonant
peaks. (v) The study of the time-history responses indicates that the obtained FVD system produces a
significant and well-balanced reduction of the interstory-drift and absolute-acceleration peak values in
all the building levels. (vi) The performance characteristics of the obtained FVD system are similar,
and sometimes superior, to those attained by the optimal H∞ state-feedback active controller.

Natural extensions of this work are the study of computational effectiveness in large structural
problems and the design of ISSD systems with mixed interstory-interbuilding damping links for
seismic protection of adjacent buildings. Additional research lines associated to the application of the
proposed ILMI procedure to other problems of practical interest include the design of high-performance
automotive suspensions [46] and the combination of health monitoring techniques with ISSD system
design to define scalable and adaptive retrofitting schemes [47,48].
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The following abbreviations are used in this manuscript:

BI base isolation
BMI bilinear matrix inequality
BRL bounded real lemma
FRF frequency response function
FVD fluid viscous damper
ILMI iterative linear matrix inequality
ISSD inter-substructure damper
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LMI linear matrix inequaltiy
SOF static output feedback
SSF static state feedback
SVF static velocity feedback
TD tuned damper
TMD tuned mass damper
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