3,001 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Decentralized energy supply and electricity market structures

    Get PDF
    Small decentralized power generation units (DG) are politically promoted because of their potential to reduce GHG-emissions and the existing dependency on fossil fuels. A long term goal of this promotion should be the creation of a level playing field for DG and conventional power generation. Due to the impact of DG on the electricity grid infrastructure, future regulation should consider the costs and benefits of the integration of decentralized energy generation units. Without an adequate consideration, the overall costs of the electricity generation system will be unnecessarily high. The present paper analyses, based on detailed modelling of decentralized demand and supply as well as of the overall system, the marginal costs or savings resulting from decentralized production. Thereby particular focus is laid on taking adequately into account the stochasticity both of energy demand and energy supply. An efficient grid pricing system should then remunerate long-term grid cost savings to operators of decentralized energy production or/and charge long-term additional grid costs to these operators. With detailed models of decentralized demand and supply as well as the overall system, the marginal costs or savings resulting from decentralized production are determined and their dependency on characteristics of the grid and of the decentralized supply are discussed.electricity markets, decentralized power production, demand side management

    Generation Management in Distributed Networks

    Get PDF
    Due to the increase in electricity production from renewable energy sources, the share of volatile electricity supply rises in German distribution networks. Since these networks are, for historical reasons, not designed for the supply of distributed generation, this already leads to an overloading of the network resources, today. In this work, different distributed generation management concepts are presented, which should avoid this overloading by temporarily reducing the power supply. To simulate these methods, the supply from solar, wind, biomass and cogeneration power plants is modeled. The implementation of these distributed generation management concepts depends on the available information from measurement points. Finally, an evaluation of the different generation management methods is made, taking the implementin

    Improved Observability for State Estimation in Active Distribution Grid Management

    Get PDF

    Power electronics-based large-scale integration of renewables in power grids

    Get PDF

    Microgrids: Planning, Protection and Control

    Get PDF
    This Special Issue will include papers related to the planning, protection, and control of smart grids and microgrids, and their applications in the industry, transportation, water, waste, and urban and residential infrastructures. Authors are encouraged to present their latest research; reviews on topics including methods, approaches, systems, and technology; and interfaces to other domains such as big data, cybersecurity, human–machine, sustainability, and smart cities. The planning side of microgrids might include technology selection, scheduling, interconnected microgrids, and their integration with regional energy infrastructures. The protection side of microgrids might include topics related to protection strategies, risk management, protection technologies, abnormal scenario assessments, equipment and system protection layers, fault diagnosis, validation and verification, and intelligent safety systems. The control side of smart grids and microgrids might include control strategies, intelligent control algorithms and systems, control architectures, technologies, embedded systems, monitoring, and deployment and implementation

    Power control for wind turbines in weak grids: Project summary

    Get PDF
    Abstract In many parts of the world and certainly in Europe large areas exist where the wind resources are good or very good and the grid is relatively weak due to a small population. In these areas the capacity of the grid can very often be a limiting factor for the exploitation of the wind resource. There are two main problems concerned with wind power and weak grids. The first is the steady state voltage level. When the power consumption is low e.g. during the night the voltage of the grid can increase to levels above the limits if the wind power input is high. The other main problem is voltage fluctuations. Because the wind is fluctuating the output from the wind turbines is also fluctuating. This to-gether with wind turbine cut-ins can result in voltage fluctuations that are above the flicker limit. Some or all of the these problems can be avoided if a so-called power control concept is applied together with the wind farm. The idea behind the power control concept is to eliminate the violations of the steady state voltage level by buffering the power from the wind turbines in periods where the voltage limits might be violated and then release it when the voltage leve

    A Review of Smart Energy Projects & Smart Energy State-of-the-Art

    Get PDF

    Impact of operation strategies of large scale battery systems on distribution grid planning in Germany

    Get PDF
    Due to the increasing penetration of fluctuating distributed generation electrical grids require reinforcement, in order to secure a grid operation in accordance with given technical specifications. This grid reinforcement often leads to over-dimensioning of the distribution grids. Therefore, traditional and recent advances in distribution grid planning are analysed and possible alternative applications with large scale battery storage systems are reviewed. The review starts with an examination of possible revenue streams along the value chain of the German electricity market. The resulting operation strategies of the two most promising business cases are discussed in detail, and a project overview in which these strategies are applied is presented. Finally, the impact of the operation strategies are assessed with regard to distribution grid planning.Postprint (author's final draft
    corecore