331 research outputs found

    AN EFFECTIVE METAHEURISTIC FOR TOURIST TRIP PLANNING IN PUBLIC TRANSPORT NETWORKS

    Get PDF
    The Time-Dependent Orienteering Problem with Time Windows (TDOPTW) is a combinatorial optimization problem defined on graphs. Its real life applications are particularly associated with tourist trip planning in trans-port networks, where travel time between two points depends on the moment of travel start. In the paper an effective TDOPTW solution (evolutionary algorithm with local search operators) was presented and applied to gen-erate attractive tours in real public transport networks of Białystok and Athens. The method achieved very high-quality solutions in a short execution time

    Determining reliable solutions for the team orienteering problem with probabilistic delays

    Get PDF
    In the team orienteering problem, a fixed fleet of vehicles departs from an origin depot towards a destination, and each vehicle has to visit nodes along its route in order to collect rewards. Typically, the maximum distance that each vehicle can cover is limited. Alternatively, there is a threshold for the maximum time a vehicle can employ before reaching its destination. Due to this driving range constraint, not all potential nodes offering rewards can be visited. Hence, the typical goal is to maximize the total reward collected without exceeding the vehicle’s capacity. The TOP can be used to model operations related to fleets of unmanned aerial vehicles, road electric vehicles with limited driving range, or ride-sharing operations in which the vehicle has to reach its destination on or before a certain deadline. However, in some realistic scenarios, travel times are better modeled as random variables, which introduce additional challenges into the problem. This paper analyzes a stochastic version of the team orienteering problem in which random delays are considered. Being a stochastic environment, we are interested in generating solutions with a high expected reward that, at the same time, are highly reliable (i.e., offer a high probability of not suffering any route delay larger than a user-defined threshold). In order to tackle this stochastic optimization problem, which contains a probabilistic constraint on the random delays, we propose an extended simheuristic algorithm that also employs concepts from reliability analysis.This work has been partially funded by the Spanish Ministry of Science (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033), the Barcelona City Council and Fundació “la Caixa” under the framework of the Barcelona Science Plan 2020–2023 (grant 21S09355-001), and the Generalitat Valenciana (PROMETEO/2021/065).Peer ReviewedPostprint (published version

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays

    Full text link
    [EN] In the team orienteering problem, a fixed fleet of vehicles departs from an origin depot towards a destination, and each vehicle has to visit nodes along its route in order to collect rewards. Typically, the maximum distance that each vehicle can cover is limited. Alternatively, there is a threshold for the maximum time a vehicle can employ before reaching its destination. Due to this driving range constraint, not all potential nodes offering rewards can be visited. Hence, the typical goal is to maximize the total reward collected without exceeding the vehicle's capacity. The TOP can be used to model operations related to fleets of unmanned aerial vehicles, road electric vehicles with limited driving range, or ride-sharing operations in which the vehicle has to reach its destination on or before a certain deadline. However, in some realistic scenarios, travel times are better modeled as random variables, which introduce additional challenges into the problem. This paper analyzes a stochastic version of the team orienteering problem in which random delays are considered. Being a stochastic environment, we are interested in generating solutions with a high expected reward that, at the same time, are highly reliable (i.e., offer a high probability of not suffering any route delay larger than a user-defined threshold). In order to tackle this stochastic optimization problem, which contains a probabilistic constraint on the random delays, we propose an extended simheuristic algorithm that also employs concepts from reliability analysis.This work has been partially funded by the Spanish Ministry of Science (PID2019-111100RBC21-C22/AEI/10.13039/501100011033), the Barcelona City Council and Fundacio "la Caixa" under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001), and the Generalitat Valenciana (PROMETEO/2021/065).Herrera, EM.; Panadero, J.; Carracedo-Garnateo, P.; Juan-Pérez, ÁA.; Pérez Bernabeu, E. (2022). Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays. Mathematics. 10(20). https://doi.org/10.3390/math10203788102

    Practical Route Planning Algorithm

    Get PDF
    Routing algorithms are traditionally considered to apply thesum of profits gathered at visited locations as an objectivefunction since the Traveling Salesman Problem. This heritagedisregards many practical considerations, hence the result ofthese models meet with user’s needs rarely.Thus considering the importance of this theoretical and modelingproblem, a novel objective function will be presented inthis paper as an extension of the one inherited from the TSPthat is more aligned with user preferences and aims to maximizethe tourist’s satisfaction. We also propose a heuristicalgorithm to solve the Team Orienteering Problem with relativelylow computation time in case of high number of verticeson the graph and multiple tour days. Based on the key performanceindicators and user feedback the algorithm is suitableto be implemented in a GIS application considering that even a3-day tour is designed less than 4 seconds

    Review on Automatic and Customized Itinerary Planning Using Clustering Algorithm and Package Recommendation for Tourism Services

    Get PDF
    Itinerary planning is a strongly studied problem concerned with how to create the most optimum itinerary for a user taking into account their various preferences. There are number of constraints which are to be considered such as maximum monetary value user willing for paying, maximum duration to spend, and details about different POIs. Since the search space of all probable itineraries is too costly to fully explore to make straightforward the complexity most work assume that user's trip is incomplete to some significant POIs and will complete within a days. Therefore to overcome this problem, in this service, each POI is considered and ranked based on the user’s preferences. Since the many users are planning for a trip with different requirements then their search complexity is increased. To overcome this limitation, the concept of grouping or clustering the users based on user’s requirement similarity is proposed. To reduce the processing cost, a two-stage planning scheme is been proposed. These are preprocessing stage and online stage. This paper also proposes the work that concentrates on recommending an itinerary to a user given the user’s travel preferences and constraints. Finally packages containing optimum tour path satisfying customer needs are generated efficiently
    corecore