
5

Applied Computer Science, vol. 14, no. 2, pp. 5–19
doi:10.23743/acs-2018-09

Submitted: 2018-05-14
Revised: 2018-06-03

Accepted: 2018-06-21

time-dependent orienteering problem with time-windows,

evolutionary algorithm, public transport network, tourist trip planning

Krzysztof OSTROWSKI*

AN EFFECTIVE METAHEURISTIC

FOR TOURIST TRIP PLANNING

IN PUBLIC TRANSPORT NETWORKS

Abstract

The Time-Dependent Orienteering Problem with Time Windows (TDOPTW)

is a combinatorial optimization problem defined on graphs. Its real life

applications are particularly associated with tourist trip planning in trans-

port networks, where travel time between two points depends on the moment

of travel start. In the paper an effective TDOPTW solution (evolutionary

algorithm with local search operators) was presented and applied to gen-

erate attractive tours in real public transport networks of Białystok and Athens.

The method achieved very high-quality solutions in a short execution time.

1. INTRODUCTION

The Time-Dependent Orienteering Problem with Time Windows (TDOPTW)

belongs to the Orienteering Problem (OP) family. The classic OP is defined on

a weighted graph with nonnegative profits associated to vertices and nonnegative

costs associated to edges. The goal of the OP is to find a path between given two

vertices that maximizes total profit of visited vertices and its total cost does not

exceed a given limit. The OP solution does not have to contain all vertices (usually

it is impossible because of cost limit) and each vertex can be visited only once.

The Time-Dependent Orienteering Problem with Time Windows (TDOPTW)

is a generalization of the OP defined for time-dependent graphs. Edge costs are

identified with travel times, which depend on the moment of travel start (edge

* Faculty of Computer Science, Białystok University of Technology, Wiejska 45A,

15-001 Białystok, Poland, k.ostrowski@pb.edu.pl

6

weights are time-dependent functions). In addition each vertex has a visit time

and a time-window. Arriving too early means waiting for the time-window to open

while arriving too late makes it impossible to visit a given vertex.

Transport networks are examples of time-dependent graphs are. Travel time

between two points depends on traffic intensity (i.e. longer during rush hours)

and timetables (in case of public transport networks). Problems from the TDOPTW

family have many practical applications including tourist trip planning (Garcia,

Vansteenwegen, Arbelaitz, Souffriau & Linaza, 2013) and transport logistics.

In tourist trip planning each tourist attraction (point of interest – POI) has some

profit (i.e. dependent on its popularity), visit time and opening hours (time-

window). Finding an attractive tour of a limited duration in a time-dependent

transport network is equivalent to solving the TDOPTW.

The paper is organized as follows. In section 2 a mathematical formulation

of the TDOPTW is given. In section 3 a literature review is presented. Section 4

describes public transport network as a time-dependent graph. Section 5 describes

methods applied. In section 6 experimental results are given. Section 7 is the con-

clusion of the paper.

2. PROBLEM DEFINITION

Let G = (V, E) be a directed, weighted graph. Each vertex i has a nonnegative

profit pi, a nonnegative visit time τi and a time-window <oi, ci>. Travel time

between vertices i and j (i, j ∈ V) is a nonnegative function wij(t) dependent

on the moment of travel start t. The goal of the TDOPTW is to find a path from

vertex s to vertex e starting at time t0 which maximizes total profit of visited

vertices without exceeding total travel time (Tmax) and without violating time-

windows of visited vertices. TDOPTW can be formulated as a Mixed Integer

Programming (MIP) problem. Let’s introduce three additional variables. Variable

xij is 1 if a path contains a direct travel from vertex i to vertex j and 0 otherwise.

Let tai and tdi be a time of arrival at vertex i and a time of departure from it – these

functions are defined only for vertices included in the path. It’s assumed that

vertices s and e have no profit, zero visit time and no time-window. The purpose

of the TDOPTW is to maximize formula 1 without violating constraints 2–8:

,

max i ij

i j V

p x


 (1)

1sj ie

j V i V

x x
 

   (2)

7

\{ , }

1ik kj
k V s e i V j V

x x
  

 
  

 
  (3)

0std t (4)

 (5)

\{ , }

(max(,))i i i i
i V s e

td ta o 


  (6)

0 maxeta t T  (7)

\{ , }

()i i
i V s e

ta c


 (8)

Equation 2 guarantees that the solution starts at vertex s and ends at vertex e

while formula 3 means that each vertex can be visited only once. Formula 4 forces

travel to start at time t0 while formulas 5 and 6 defines a relation between arrival

and departure times at subsequent vertices (based on travel times, visit times

and time-windows). Assuming that travel times between different vertices are

positive, formulas 4–6 guarantee that there are no sub-cycles in the path.

Constraints 7 and 8 are associated with maximum travel time and time-windows.

3. LITERATURE REVIEW

Problems from the Orienteering Problem family are NP-hard (Golden, Levy,

Vohra, 1987) and exact algorithms can be very time-consuming for larger graphs.

For this reason most papers are devoted to metaheuristics. Various approaches

for the OP were based i.a. on greedy and randomized construction of solutions

(Campos, Marti, Sanchez-Oro & Duarte, 2014), local search methods (Chao, Golden

& Wasil, 1996; Vensteenwegen, Souffriau, Vanden Berghe & Oudheusden,

2009), tabu search (Gendreau, Laporte & Semet, 1998), ant-colony optimization

(Schilde, Doerner, Hartl & Kiechle, 2009) and genetic algorithms (Tasgetiren, 2001).

Most papers about Time-Dependent versions of the Orienteering Problem

were published in recent years and emphasize practical aspects of the problem,

especially tourist trip planning in transport networks. Garcia et al. (2013)

presented the first paper describing its application in POI and public transport

network of San Sebastian. To solve the problem the authors proposed Iterated

Local Search method (ILS). However, they performed computations on average

daily travel times and assumed periodicity of public transport timetables.

 
,

1 ()ij j i ij i
i j V

x ta td w td


   

8

Gavalas et al. (2015) proposed an approach which uses real time-dependent

travel times in a transport network of Athens. The authors introduced two fast

heuristics (TD_CSCR and TDSlCSCR), which based on ILS and vertex clustering,

and made comparisons of a few methods.

Verbeeck at al. (2014) developed new benchmark instances for the TDOP,

which model street traffic. The authors proposed an ant-colony approach, which

achieved high quality results in a short execution time. Gunawan et al. (2014)

modified Verbeeck's benchmarks (discretization of time) and compared a few

approaches (adaptive ILS proved to be the most effective of them).

The author's previous papers were devoted to metaheuristics for problems from

the OP family. Methods developed by the author (composition of evolutionary

algorithms and local search heuristics) proved successful on the OP (Ostrowski,

Karbowska-Chilinska, Koszelew & Zabielski, 2017; Ostrowski, 2015) as well as

TDOP benchmark instances (Ostrowski, 2017). The algorithms achieved results

close to optimal and outperformed other methods: GRASP (Campos et al, 2014),

GLS (Vensteenwegen et al., 2009), ACS (Verbeeck at al 2014) and Adaptive ILS

(Gunawan et al, 2014). The purpose of this work was to adapt the TDOP algorithm

to the TDOPTW, apply it for tourist trip planning in real public transport and POI

network and verify quality of its solutions.

4. PUBLIC TRANSPORT AND POI NETWORK

AS A TIME-DEPENDENT GRAPH

It’s assumed that a tourist uses means of public transport (buses in the city

of Białystok) when travelling between attractions (POIs). Travel time between

POIs depends on bus timetables. For this reason a network of POIs connected

by public transportation is a time-dependent graph. Here are assumptions made

by the author:

1. A travel between two POIs can consist of two kinds of edges: walk links

and bus connections.

2. Walk links have a limited length (Dmax) and walk times are determined

by assuming that walking speed is 3 km/h. A tourist can walk directly

between POIs, between POIs and bus stops and between bus stops (during

bus transfers).

3. During a travel between a pair of POIs a tourist can use up to k bus transfers

(k+1 bus connections).

4. To compensate for deviations of bus arrival times from timetables a min-

imum waiting time at a bus stop (3 minutes) was introduced.

5. Each graph weight wij(t) is the duration of the shortest travel from POI i

to POI j starting at time t. To compute weights it’s necessary to execute

shortest path algorithm in multimodal time-dependent graph.

9

6. Time is discrete (resolution of 1 minute), which is consistent with time-

tables. For this reason there are 1440n2 graph weights (n is number of POIs

and there are 1440 minutes in a day).

Fig. 1. An exemplary travel between two POIs

In fig. 1. there is an exemplary travel between two POIs consisting of 3 bus

connections (2 transfers) and 3 walk links. A tourist leaves POI 1, walks to bus

stop B1 and gets on a bus (line A). He gets off at bus stop B2 and waits there for

another bus (line B). Afterwards he goes by bus B to bus stop B4. From there he

walks to a nearby bus stop B5, where he gets onto another bus (line C) and travels

to bus stop B7. From there he walks to his destination (POI 2). Computation

of such shortest paths is necessary to get time-dependent weights, which will be

used by the metaheuristic solving the Time-Dependent Orienteering Problem.

5. METHOD DESCRIPTION

To realize tourist trip planning in a public transport network of Białystok two

tasks should be done:

1. Computation of time-dependent weights based on bus timetables and POIs

location.

2. Execution of the TDOP algorithm, which operates on time-dependent

weights and generates attractive tours.

10

5.1. Precomputation of weights

During its execution the TDOP metaheuristic refers to graph weights millions

of times. Computing shortest path in a time-dependent network so many times can

cause an additional time overhead. For this reason the author decided to precompute

and save all 1440n2 weights. Precomputed weights are stored in a 3-dimensional

array. Thanks to the precomputation step the TDOP algorithm has access to all

weights in constant time.

Shortest travels from a given POI at a given start time to all other POIs

In order to compute all weights efficiently the author decided to use modified

Ford-Bellman algorithm and optimize some precomputation steps. The basic

Ford-Bellman procedure computes shortest travels starting at time t0 from a given

start POI s to all other POIs and bus stops. The algorithm has k+1 main iterations

(k – number of bus transfers). It enables to efficiently compute shortest paths

consisted of a limited number of bus connections. During the first iteration bus

connections starting at bus stops not farther than max. walk distance (Dmax) from

s are considered. Only earliest possible buses of given lines are considered.

Afterwards all possible bus stops, where a tourist can get off the bus (exit bus

stops), are analysed. From there destination POIs (within walking distance from

exit bus stops) are checked. In this way all shortest travel times (consisting of one

transport connection) are computed. Analogically the second iteration computes

all shortest travels consisted of at most two transport connections (one bus transfer):

when analysing an exit bus stop the algorithm searches for other bus connections

leaving from the current bus stop and from other neighbouring bus stops (transfer

step). The same steps are performed for subsequent iterations. For optimization

purposes the algorithm only analyses those bus stops, for which travel time

improved in the previous iteration.

Shortest travels from a given POI for all start times

The purpose of precomputation is to compute shortest travels for all 1440 start

times (minutes) in a day. Instead of executing the same shortest path algorithm

(described above) 1440 times an optimization can be done. It arises from a simple

observation (known as FIFO property): t + wij(t) ≤ (t+1) + wij(t+1). The formula

means that earlier travel start implies not later travel finish – in the most

pessimistic case travel starting at time t will use the same bus connections as travel

starting at time t+1 (the only difference is one more minute of waiting at the first

bus stop). Thanks to this property shortest travels for consecutive start times can

be computed much faster. When computing shortest travels starting at time t

the algorithm uses shortest travel times previously computed for start time t+1.

The algorithm considers only those bus connections, which were impossible

11

to catch one minute later. This significantly reduces precomputation time,

especially when frequency of bus connections is less than a minute (which is common

in public transport networks – see fig. 2). In the below figure there is an example of

time-dependent arrival times: the function is nondecreasing (and constant

in intervals). Inside these intervals an equality t + wij(t) = (t+1) + wij(t+1) holds, which

usually means that the same set of connections is used and computation time can

be reduced. What is more, the FIFO property in time-dependent networks implies

existence of polynomial time shortest-paths algorithms (Dean, 2004), which made

it possible to develop fast precomputation procedure.

Fig. 2. Arrival time at POI j as a function of departure time from POI i

Shortest travels between all POIs for all start times

To compute all possible weights for all 1440 start times the above procedures

are executed for all starting POIs. Thanks to the described optimization

precomputation time was significantly reduced.

5.2. TDOPTW metaheuristic for tourist trip planning

To solve the trip planning problem the author used an evolutionary algorithm,

which is based on the method solving the TDOP (Ostrowski, 2017). The author

adapted the method to the presence of time-windows. It uses both random and

local search operators, 2-point heuristic crossover, disturb operator and deter-

ministic crowding as selection mechanism. What is more, infeasible solutions

(too long paths) are present in the population (penalized by the fitness function).

A path representation is used – subsequent genes in a chromosome correspond

to successive vertices in a path. After a random initialization the algorithm

continues computations until a given generations limit (Ng) is achieved or there

was no solution improvement in the last Cg generations.

12

Evaluation

Fitness of a feasible solution s is equal to its profit. Otherwise it is described

by the formula: fitness(s) = p(s)  [Tmax/t(s)]k, where p(s) and t(s) are profit and

travel time of solution s. Parameter k (penalty severity) is initially equal to 1 but

it is adaptive and increases if more than α percent of paths in the population are

infeasible.

Crossover

Parent selection is random. Crossover probability determines the fraction of

population chosen for reproduction (selected individuals arranged in random

pairs). The algorithm uses specialized 2-point heuristic crossover. Crossover

procedure exchanges one pair of path fragments between consecutive common

points of both parents. In fig. 3. an example of crossover is illustrated. There are

three possible crossings (varying in exchanged fragments). Heuristic crossover

chooses the option which maximizes fitness of the better child.

Selection

After crossover children compete with their own parents for places in the pop-

ulation – survivor selection in the form of deterministic crowding (Mahfoud,

1992). Distance metric used bases on the length of longest common subsequence

of two solutions. This form of selection preserve population diversity for longer,

which allows a more effective search of the solution space (Ostrowski, 2015).

Mutation

Mutation probability determines the fraction of individuals which are selected

(randomly) for mutation. Initially, selected paths undergo 2-opt procedure, which

tries to reverse a path fragment in order to reduce total travel time as much as

possible. Afterwards a vertex insertion or vertex deletion is carried out (each with

a probability of 0.5). Both insert and delete operators have two versions: local

search and random. Local search insert from all options of inserting a new vertex

chooses the one that maximizes profit to travel time increase ratio. Analogically

delete searches for a vertex which minimizes profit to travel time reduction ratio.

Random versions choose vertices arbitrary but insertion place is chosen in order

to minimize travel time increase. Probability of local search during mutation

is determined by a parameter (heuristic coefficient).

13

Fig. 3. An example of crossover

Disturb

Disturb procedure is another form of mutation, which applies bigger changes

in individuals but is executed rarely. A small fraction of population (determined

by disturb probability) is randomly chosen and a path fragment (no longer than

10 percent of vertices) is removed from each of them. Path fragment is chosen

randomly or in a heuristic way (to minimize profit to travel time reduction ratio).

Time-Windows

All operators used in the algorithm were modified in order to take into account

time-windows. Given a POI with a time-window <o, c> and arrival time t, arriving

too early (t<o) means that additional waiting time (o-t) was added to the tour

duration. Arriving too late (t>c) made it impossible to visit a vertex and such cases

weren’t allowed by the algorithm operators.

6. EXPERIMENTAL RESULTS

Experiments were conducted on a computer with Intel Core i7 3.5 GHz

processor and the algorithms were implemented in C++. First part of experiments

was devoted to precomputation of travel times between POIs in public transport

network of Białystok and in the second part the TDOPTW metaheuristic was

applied for tourist trip planning in this network (using precomputed weights).

14

6.1. Precomputation and network properties

Public transport and POI network of Białystok consists of 74 POIs (museums,

palaces, churches etc), 37 bus lines and 693 bus stops. Thanks to optimizations

(described in the previous section) precomputation time was only a few seconds.

Shortest travel times between all pairs of POIs for all start times (1440 minutes

in a day) were stored in a 3-dimensional array (occupying 18 MB of RAM).

To find out about interesting features of the network, precomputation was

executed many times for different values of parameters: maximal walk distance

(Dmax) and maximal number of bus transfers (k). Tests were conducted for two

Dmax values (0.3 and 0.6 km) and four k values (0, 1, 2, 3).

In fig. 4. a dependency between percentage of connected POIs and pre-

computation parameters is illustrated. It can be seen that large majority of POI

pairs are connected when travel consists of at most one bus transfer (two transport

connections) and there is no connectivity improvement for more than 2 bus

transfers. Connection percentage improves for larger value of Dmax. Longer walk

links enable to reach larger number of bus stops, which naturally implies more

connection options. One can see that for shorter walk links connectivity is always

less than 100 percent (regardless of number of bus transfers). This is due to the fact

that a few POIs were farther than 0.3 km from nearest bus stop. In fig. 5. it can be

seen that most of shortest travels between POIs are very simple (no bus transfer

or one transfer) and almost no paths consist of more than 2 transfers.

This is due to the fact that Białystok is a relatively compact city. Larger Dmax

value influences paths simplicity for the same reason as it influenced connections

percentage.

Fig. 4. Percentage of connected POI pairs depending on Dmax and k

15

Fig. 5. Percentage of different types of shortest paths depending on Dmax

Fig. 6. Histogram of travel times between POIs for different Dmax values

(computed for daily hours 6:00–18:00).

In fig. 6. it can be seen that travel times of 20–40 minutes are most common

(46–49 percent) and the majority of travels last less than an hour. In addition, there

are more short travels and less long travels when increasing Dmax. It is associated

with the fact that for larger Dmax value travel times are generally shorter (more bus

connections are considered when searching for paths) – average daily travel time

is 45 and 41 minutes (for Dmax 0.3 and 0.6 accordingly).

16

6.2. Trip planning in Białystok

The tested network included 74 POIs and 2 start/end points. For each attraction

a profit, a visit time and a time-window (opening hours) were assigned (link to

network: http://p.wi.pb.edu.pl/krzysztof-ostrowski/node/1252). Trips were 3, 6 and 9

hours long (Tmax) and started at 6:00, 9:00, 12:00 and 15:00 (t0). Time unit used in

test files as well as during computations was a minute i.e. 9:00 is 540 and 4 hours

are 240 minutes. There were two variants of trips: starting and ending in the city

centre (s = e = 1) and in the western part of the city (s = e = 2). The author tested

two methods: the TDOPTW metaheuristic (evolutionary algorithm with local search

heuristics) as well as an exact algorithm (composition of branch-and-bound and

dynamic programming developed by the author). Thanks to the exact algorithm

optimal solutions are known (up to a few hours of computation time for longest trips)

and it’s possible to access the quality of paths generated by the metaheuristic.

Algorithm parameter values were derived from EVO100 in the author’s previous

TDOP article (Ostrowski, 2017) with a small change: mh = 0.8 and ch = 1 instead

of mh = 1 and ch = 0.8 (minor error in the article). For each test case the evolutionary

algorithm was executed 30 times and average result was calculated. Gaps are given

in percent and illustrate relative quality loss to optimal solutions. Execution times are

given in seconds. The author’s metaheuristic is marked as EVO while OPT indicate

profits of optimal tours (expressed as the sum of attractiveness of visited POIs).

In tab. 1. results of trip planning are given (trips start and end in the city centre).

One can see that EVO achieves optimal results in most cases and average gap

is only 0.02 and 0.19 percent (for Dmax = 0.3 and 0.6 km). High-quality results are

achieved in short execution times (0.3–1.4 s). It can be seen that optimal trips are

a few percent better for larger value of Dmax. This is due to shorter travel times

when using longer walk links (as described in the previous subsection), which

enables to visit more POIs within a given time frame.

Tab.1. Trip planning results for s = e = 1

Dmax = 0.3 km Dmax = 0.6 km

 EVO EVO

Tmax t0 Gap Time OPT Tmax t0 Gap Time OPT

3h 6:00 0.0 0.3 327 3 h 6:00 0.0 0.5 342

9:00 0.0 0.4 475 9:00 0.0 0.5 475

12:00 0.0 0.4 475 12:00 0.0 0.5 512

15:00 0.0 0.5 485 15:00 1.6 0.5 506

6 h 6:00 0.0 0.9 741 6 h 6:00 0.1 0.8 769

9:00 0.0 0.8 813 9:00 0.0 0.8 878

12:00 0.1 0.9 850 12:00 0.0 0.7 900

9 h 6:00 0.1 1.4 1089 9 h 6:00 0.0 1.2 1144

9:00 0.0 1.1 1178 9:00 0.0 1.2 1218

Average 0.02 0.75 – Average 0.19 0.75 –

17

In tab. 2. analogical results are presented for trips starting and ending in the

western part of the city (s = e = 2). Optimal solutions were obtained by EVO for

all but 2 test cases in short execution times. Trips quality is lower than it the

previous table because most attractions are located in the city centre and additional

time is needed to get there.

In fig. 7. a trip generated by the algorithm is presented. It is short and all visited

POIs are in the city centre so only one bus connection is needed. It worth noting

that the algorithm usually chooses consecutive POIs which are close to each other

in order to use the time budget effectively. For this reason travels between POIs

found in solutions are usually short (only 5–15 minutes, compared to average

of 40–45 minutes) and simple (a walk link or a single bus connection).

 Tab. 2. Trip planning results for s = e = 2

Dmax = 0.3 km Dmax = 0.6 km

 EVO EVO

Tmax t0 Gap Time OPT Tmax t0 Gap Time OPT

3 h 6:00 0.0 0.3 226 3 h 6:00 0.0 0.4 226

9:00 0.0 0.4 338 9:00 0.0 0.4 350

12:00 0.0 0.4 338 12:00 0.0 0.4 338

15:00 0.0 0.4 358 15:00 0.0 0.4 375

6 h 6:00 0.0 0.7 659 6 h 6:00 0.0 0.6 677

9:00 0.0 0.7 708 9:00 0.5 0.7 721

12:00 0.0 0.8 786 12:00 0.0 0.7 805

9 h 6:00 0.0 1.1 996 9 h 6:00 0.1 1.2 1024

9:00 0.0 1.1 1125 9:00 0.0 1.0 1162

Average 0.0 0.65 – Average 0.07 0.65 –

Fig. 7. A tour generated by the algorithm (Google Maps): walk links in red, bus connections

in blue; icons: camera (POI), bus (bus stop), house (start/end), Tmax = 3h, t0 = 9:00.

18

6.3. Trip planning in the city of Athens

Additional tests were performed on public transport and POI network in Athens

(tests created by Gavalas et al, 2015). The authors proposed 2000 different test

cases (varying in topology and tourist preferences) and the presented results are

average of all 2000 algorithm runs. The evolutionary algorithm was compared

with the following heuristics:

1. Time-dependent heuristics: TD_CSCR, TD_SlCSCR (Gavalas et al, 2015)

and their version working on average travel times (AvgCSCR).

2. ILS algorithm working on average travel times (AvgILS, Garcia et al, 2013)

and its time-dependent version (TD_ILS).

3. Exact algorithm implemented by the author (OPT).

Compared methods were very fast (execution times of less than 0.1 s) and in order

to achieve similar execution times the author tested another version of the evolu-

tionary algorithm with reduced population size (EVO30). Population size and gen-

eration parameters were scaled (Psize = 30, Ng = 1500, Cg = 150).

In tab. 3. experimental results are presented. It can be seen that the proposed

evolutionary algorithm (in both versions) achieves results very close to optimal.

They are 0.6–2.0 percent better than the best of other metaheuristics (TD_SlCSCR

and TD_CSCR). Gaps to other methods are much bigger (3.5–13.5 percent).

It confirms effectiveness of the proposed method.

 Tab. 3. Trip planning results for the city of Athens (Tmax = 5h, t0 = 10:00)

Method Score Gap Method Score Gap

EVO100 344.57 0.02 Avg_CSCR 332.01 3.7

EVO30 344.34 0.1 TD_ILS 326.28 5.3

TD_SlCSCR 342.06 0.7 Avg_ILS 298.53 13.4

TD_CSCR 337.78 2.0 OPT 344.6 –

7. CONCLUSION

In this paper a metaheuristic solving the Time-Dependent Orienteering

Problem with Time Windows (TDOPTW) was presented and applied to tourist trip

planning in public transport networks. The algorithm was tested on public transport

and POI networks of Białystok and Athens and in all cases obtained optimal

or close to optimal solutions (tours) in short execution times. The composition

of evolutionary algorithm and local search heuristics confirmed to be effective for

the problems from the Orienteering Problem family (high-quality results were

previously obtained by the author for the OP and TDOP benchmarks). Further re-

search will concentrate on adaptation of the proposed method to the Time-Dependent

Team Orienteering Problem with Time Windows (TDTOPTW). In this version

of the problem m paths are generated (instead of one) and effective TDTOPTW

solutions can be applied to planning multi-day tours.

19

REFERENCES

Campos, V., Marti, R., Sanchez-Oro, J., & Duarte, A. (2014). Grasp with Path Relinking for the

Orienteering Problem. Journal of the Oper. Res. Society, 65(12), 1800–1813.

doi:10.1057/jors.2013.156

Chao, I., Golden, B., & Wasil, E. (1996). Theory and methodology - a fast and effective heuristic

for the orienteering problem. European Journal of Operational Research, 88(3), 475–489.

doi:10.1016/0377-2217(95)00035-6

Dean, B.C. (2004). Shortest paths in FIFO time-dependent networks: theory and algorithms.

Technical report, MIT Department of Computer Science.

Garcia, A., Vansteenwegen, P., Arbelaitz, O., Souffriau, W., & Linaza, M. T. (2013). Integrating

public transportation in personalised electronic tourist guides. Computers and Operations

Research, 40(3), 758–774. doi:10.1016/j.cor.2011.03.020

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2015). Heuristics for

the time dependent team orienteering problem: Application to tourist route planning.

Computers and Operation Research, 62, 36-50. doi:10.1016/j.cor.2015.03.016

Gendreau, M., Laporte, G., & Semet, F. (1998). A tabu search heuristic for the undirected selective

travelling salesman problem. European Journal of Operational Research, 106(2–3), 539–545.

doi:10.1016/S0377-2217(97)00289-0

Golden, B., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research Logistics, 34,

307-318. doi:10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0. CO;2-D

Gunawan, A., Yuan, Z., & Lau, H. C. (2014). A Mathematical Model and Metaheuristics for Time

Dependent Orienteering Problem. In PATAT 2014: Proceedings of the 10th International

Conference of the Practice and Theory of Automated Timetabling, 26–29 August 2014 (pp.

202–217). Research Collection School Of Information Systems.

Mahfoud, S. W. (1992). Crowding and preselection revisited. In Proceedings of the 2nd

International Conference on Parallel Problem Solving from Nature (PPSN II), Brussels,

Belgium, 1992 (pp. 27–36). Amsterdam: Elsevier.

Ostrowski, K. (2015). Parameters Tuning of Evolutionary Algorithm for the Orienteering Problem.

Advances in Computer Science Research, 12, 53–78.

Ostrowski, K., Karbowska-Chilinska, J., Koszelew, J., & Zabielski, P. (2017). Evolution-inspired

local improvement algorithm solving orienteering problem. Annals of Operations Research,

253(1), 519-543. doi:10.1007/s10479-016-2278-1

Ostrowski, K. (2017). Evolutionary Algorithm for the Time-Dependent Orienteering Problem. In K.

Saeed, W. Homenda, & R. Chaki (Eds.), Computer Information Systems and Industrial

Management. CISIM 2017, Lecture Notes in Computer Science (10244, pp. 50–62). Cham:

Springer. doi:10.1007/978-3-319-59105-6_5

Schilde, M., Doerner, K., Hartl, R., & Kiechle, G. (2009). Metaheuristics for the biobjective

orienteering problem. Swarm Intelligence, 3(3), 179–201. doi:10.1007/s11721-009-0029-5

Tasgetiren, M. (2001). A genetic algorithm with an adaptive penalty function for the orienteering

problem. Journal of Economic and Social Research, 4(2), 1–26.

Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., & Oudheusden, D.V. (2009). A guided local

search metaheuristic for the team orienteering problem. European Journal of the

Operational Research, 196(1), 118–127. doi:10.1016/j.ejor.2008.02.037

Verbeeck, C., Sörensen, K., Aghezzaf, E.H., & Vansteenwegen, P. (2013). A fast solution method

for the time-dependent orienteering problem. European Journal of Operational Research,

236(2), 419–432. doi:10.1016/j.ejor.2013.11.038

