1,979 research outputs found

    A study on exponential-size neighborhoods for the bin packing problem with conflicts

    Full text link
    We propose an iterated local search based on several classes of local and large neighborhoods for the bin packing problem with conflicts. This problem, which combines the characteristics of both bin packing and vertex coloring, arises in various application contexts such as logistics and transportation, timetabling, and resource allocation for cloud computing. We introduce O(1)O(1) evaluation procedures for classical local-search moves, polynomial variants of ejection chains and assignment neighborhoods, an adaptive set covering-based neighborhood, and finally a controlled use of 0-cost moves to further diversify the search. The overall method produces solutions of good quality on the classical benchmark instances and scales very well with an increase of problem size. Extensive computational experiments are conducted to measure the respective contribution of each proposed neighborhood. In particular, the 0-cost moves and the large neighborhood based on set covering contribute very significantly to the search. Several research perspectives are open in relation to possible hybridizations with other state-of-the-art mathematical programming heuristics for this problem.Comment: 26 pages, 8 figure

    A Neuroevolutionary Approach to Stochastic Inventory Control in Multi-Echelon Systems

    Get PDF
    Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neuroevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find high-quality plans using networks of a very simple form

    Variable Annealing Length and Parallelism in Simulated Annealing

    Full text link
    In this paper, we propose: (a) a restart schedule for an adaptive simulated annealer, and (b) parallel simulated annealing, with an adaptive and parameter-free annealing schedule. The foundation of our approach is the Modified Lam annealing schedule, which adaptively controls the temperature parameter to track a theoretically ideal rate of acceptance of neighboring states. A sequential implementation of Modified Lam simulated annealing is almost parameter-free. However, it requires prior knowledge of the annealing length. We eliminate this parameter using restarts, with an exponentially increasing schedule of annealing lengths. We then extend this restart schedule to parallel implementation, executing several Modified Lam simulated annealers in parallel, with varying initial annealing lengths, and our proposed parallel annealing length schedule. To validate our approach, we conduct experiments on an NP-Hard scheduling problem with sequence-dependent setup constraints. We compare our approach to fixed length restarts, both sequentially and in parallel. Our results show that our approach can achieve substantial performance gains, throughout the course of the run, demonstrating our approach to be an effective anytime algorithm.Comment: Tenth International Symposium on Combinatorial Search, pages 2-10. June 201

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    Assigning proctors to exams with scatter search

    Get PDF
    In this paper we present an algorithm to assign proctors to exams. This NP-hard problem is related to the generalized assignment problem with multiple objectives. The problem consists of assigning teaching assistants to proctor final exams at a university. We formulate this problem as a multiobjective integer program (IP) with a preference function and a workload-fairness function. We then consider also a weighted objective that combines both functions. We develop a scatter search procedure and compare its outcome with solutions found by solving the IP model with CPLEX 6.5. Our test problems are real instances from a University in Spain.Multiobjective combinatorial optimization, metaheuristics, scatter search

    Train-scheduling optimization model for railway networks with multiplatform stations

    Get PDF
    This paper focuses on optimizing the schedule of trains on railway networks composed of busy complex stations. A mathematical formulation of this problem is provided as a Mixed Integer Linear Program (MILP). However, the creation of an optimal new timetable is an NP-hard problem; therefore, the MILP can be solved for easy cases, computation time being impractical for more complex examples. In these cases, a heuristic approach is provided that makes use of genetic algorithms to find a good solution jointly with heuristic techniques to generate an initial population. The algorithm was applied to a number of problem instances producing feasible, though not optimal, solutions in several seconds on a laptop, and compared to other proposals. Some improvements are suggested to obtain better results and further improve computation time. Rail transport is recognized as a sustainable and energy-efficient means of transport. Moreover, each freight train can take a large number of trucks off the roads, making them safer. Studies in this field can help to make railways more attractive to travelers by reducing operative cost, and increasing the number of services and their punctuality. To improve the transit system and service, it is necessary to build optimal train scheduling. There is an interest from the industry in automating the scheduling process. Fast computerized train scheduling, moreover, can be used to explore the effects of alternative draft timetables, operating policies, station layouts, and random delays or failures.Postprint (published version

    A simheuristic algorithm for solving an integrated resource allocation and scheduling problem

    Get PDF
    Modern companies have to face challenging configuration issues in their manufacturing chains. One of these challenges is related to the integrated allocation and scheduling of resources such as machines, workers, energy, etc. These integrated optimization problems are difficult to solve, but they can be even more challenging when real-life uncertainty is considered. In this paper, we study an integrated allocation and scheduling optimization problem with stochastic processing times. A simheuristic algorithm is proposed in order to effectively solve this integrated and stochastic problem. Our approach relies on the hybridization of simulation with a metaheuristic to deal with the stochastic version of the allocation-scheduling problem. A series of numerical experiments contribute to illustrate the efficiency of our methodology as well as their potential applications in real-life enterprise settings
    • 

    corecore