13 research outputs found

    Development of Maximum Power Extraction Algorithms for PV system With Non-Uniform Solar Irradiances

    Get PDF
    This thesis addresses the problem of extraction of maximum power from PV arrays subjected to non-uniform solar irradiances e.g partial shading. In the past, a number of maximum power point tracking algorithms (MPPTs) such as Perturb & Observe, Hill climbing, Incremental Conductance, etc. have been proposed. These are extensively used for obtaining maximum power from a PV module to maximize power yield from PV systems under uniform solar irradiance. However, these techniques have not considered partial shading conditions and the stochastic nature of solar insolation. In the event of non-uniform solar insolation, a number multiple maximum power points (MPPs) appear in the power-voltage characteristic of the PV module. In the present thesis, the stochastic nature of the solar insolation is considered to obtain the global MPP of a PV module with a focus on developing global optimization techniques for MPPT that would handle the multiple MPPs. Thus, the thesis will address the above problem by developing a number of global MPPT algorithms. In this thesis, an extensive review on MPPT algorithms for both uniform and non-uniform insolation levels is presented. Subsequently, an analysis with respect to their merits, demerits and applications have been provided in order to design new MPPTs to achieve higher MPPT efficiency under non-uniform solar irradiances. Firstly, PV modules are modelled with and without bypass diodes for handling Partial shading conditions (PSCs). Then, a new Ring pattern (RP) configuration has been proposed which is compared with different existing configurations such as Series parallel (SP), Total cross tied(TCT) and Bridge linked(BL) configurations on the basis of maximum power and fill factor. As described earlier, under non-uniform irradiances the MPPT problem boil down to determining the global MPP. Thus, the MPPT problem can be cast as a global optimization problem. It may be noted that evolutionary computing approaches are extensively used for obtaining global optimum solutions. One of the most recent evolutionary optimization techniques called grey wolf optimization technique has gained enormous popularity as an efficient global optimization approach. In view of this, Grey wolf optimization is employed to design a global MPPT such that maximum power from PV modules can be extracted which will work under partial shading conditions. Its performance has been compared with two existing MPPTs namely P&O and IPSO based MPPT methods. From the obtained simulation and experimental results, it was found that the GWO based MPPT exhibits superior MPPT performance as compared to both P&O and IPSO MPPTs on the basis of dynamic response, faster convergence to GP and higher tracking efficiency. Further, in order to scale down the search space of GWO which helps to speed up for achieving convergence towards the GP, a fusion of GWO-MPPT with P&O MPPT for obtaining maximum power from a PV system with different possible patterns is developed. An experimental setup of 600W solar simulator is used in the laboratory having characteristics of generating partial shading situation. Firstly, the developed algorithms were implemented for a PV system using MATLAB/SIMULINK. Subsequently, the aforesaid experimental setup is used to implement the proposed global MPPT algorithms. From the obtained simulation and experimental results it is observed that the Hybrid-MPPT converges to the GP with least time enabling highest possible maximum power from the solar PV system. In this thesis, analytical modeling of PV modules for handling non-uniform irradiances is pursued as well as a new RP configuration of PV modules is developed to achieve maximum power and fill factor. In order to extract maximum power from PV panels subjected to non-uniform solar irradiances, two new MPPT algorithms are developed namely Grey wolf optimization based MPPT (GWO-MPPT) and GWO assisted PO (GWO-PO)

    Social Grouping Algorithm Aided Maximum Power Point Tracking Scheme for Partial Shaded Photovoltaic Array

    Get PDF
    Photovoltaic (PV) systems-based energy generation is relatively easy to install, even at a large scale, because it is scalable in size and is thus easy to transport. Harnessing maximum power is only possible if maximum power tracking (MPPT) functionality is available as part of the power converter control that interfaces the PV panels to the grid. Solar exposure covering all PV panels is unlikely to happen all the time, which is known as a partial shading (PS) phenomenon. As a result, depending on the MPPT algorithm adopted, it may fail to find a maximum global power peak, being locked into a local power peak. This research work discusses an alternative MPPT control technique inspired in the social group optimization (SGO) algorithm. SGO belongs to the meta-heuristic optimization techniques family. In this sense, the SGO method ability for solving global optimization problems is explored to find the global maximum power point (GMPP) under the presence of local MPPs. The introduced SGO–MPPT was subjected to different PS conditions and complex shading patterns. Then, its performance was compared to other global search MPPT techniques, which include particle swarm optimization (PSO), the dragon fly algorithm (DFO) and the artificial bee colony algorithm (ABC). The simulation outcomes for the SGO–MPPT characterization showed good results, namely rapid global power tracking in less than 0.2 s with reduced oscillation; the efficiency of solar energy harness was slightly above 99%

    Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications

    Get PDF
    This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators

    Hardware Implementation of a Solar-Powered Buck-Boost Converter for Enhanced Cathodic Protection Using Texas Instruments C2000 Board

    Get PDF
    This article delves into the hardware implementation of a buck-boost converter on a Texas Instruments C2000 board, tailored for impressed current cathodic protection to safeguard submerged metal structures against corrosion. Impressed current cathodic protection is vital for combating corrosion in buried or submerged metal structures, where a reliable power supply is crucial. The use of solar energy captured by photovoltaic panels emerges as an environmentally sustainable and economically viable solution for this critical application. The paper examines the design, hardware implementation, and system performance, focusing on the integration of the Texas Instruments C2000 board which is, pivotal for the automation and success of the impressed current cathodic protection system. The developed work aims to advance the sustainability of submerged metal structures by presenting a solution combining impressed current cathodic protection with the ecological advantages of solar energy

    Machine Learning and Data Mining Applications in Power Systems

    Get PDF
    This Special Issue was intended as a forum to advance research and apply machine-learning and data-mining methods to facilitate the development of modern electric power systems, grids and devices, and smart grids and protection devices, as well as to develop tools for more accurate and efficient power system analysis. Conventional signal processing is no longer adequate to extract all the relevant information from distorted signals through filtering, estimation, and detection to facilitate decision-making and control actions. Machine learning algorithms, optimization techniques and efficient numerical algorithms, distributed signal processing, machine learning, data-mining statistical signal detection, and estimation may help to solve contemporary challenges in modern power systems. The increased use of digital information and control technology can improve the grid’s reliability, security, and efficiency; the dynamic optimization of grid operations; demand response; the incorporation of demand-side resources and integration of energy-efficient resources; distribution automation; and the integration of smart appliances and consumer devices. Signal processing offers the tools needed to convert measurement data to information, and to transform information into actionable intelligence. This Special Issue includes fifteen articles, authored by international research teams from several countries

    Recent Development of Hybrid Renewable Energy Systems

    Get PDF
    Abstract: The use of renewable energies continues to increase. However, the energy obtained from renewable resources is variable over time. The amount of energy produced from the renewable energy sources (RES) over time depends on the meteorological conditions of the region chosen, the season, the relief, etc. So, variable power and nonguaranteed energy produced by renewable sources implies intermittence of the grid. The key lies in supply sources integrated to a hybrid system (HS)
    corecore