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Abstract

The autonomy and lifetime of a fuel cell hybrid electric vehicle (FCHEV) depend on the
design of an appropriate energy management strategy (EMS), which is normally premised
on the proton exchange membrane (PEM) fuel cell (FC) model. However, dependency of the
PEMFC energetic performance on its operating conditions and impact of aging have made
the design of a precise model immensely complicated. In this respect, a new paradigm has
been proposed to avoid the complex modeling of PEMFCs. The idea is to integrate an online
PEMFC model identification into the EMS loop to use updated models with close
performance to reality. Driven by this motivation, this thesis is meant to contribute to the
integration of such online modeling into the design of EMSs. [n this respect, firstly, the
potential of EMS adaptation into PEMFC performance drifts and systemic management is
investigated in terms of fuel economy. After indicating the importance of the hypothesis, a
benchmark problem is conducted to select a suitable multi-input PEMFC model and an online
identification method. Moreover, the challenges regarding the initialization of the
identification methods are investigated. However, this analysis only deals with the electrical
side of the FC generator while PEMFC is a multiphysics system with multi inputs and
outputs. Therefore, next, a concurrent temperature and current management strategy is
developed to consider the PEMFC as a complete system and not just an electric generator.
The main objective is to enhance the efficiency of the system, while supplying the requested
power, by choosing the right combination of reference temperature and current levels through
an updatable 3D power map. The last stage of this work copes with the incorporation of the
above-mentioned phases into the design of an EMS. The necessity of updating the PEMFC
model while designing an EMS as well as the influence of the discussed simultaneous
systemic management over the efficiency upgrade of a FCHEV are thoroughly scrutinized
in this phase. The experimental outcomes of this thesis indicate that the performance drifts
occurred in a FC system can cause considerable mismatches on the operation of a FCHEV
and they can be avoided by using the proposed online PEMFC model in the first stage of this
work. Moreover, the put forward concurrent management in the second phase can enhance

the fuel economy of a FCHEV up to almost four percent in the tested driving cycles.
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Chapter 1 - Introduction

1.1 Motivation

Anthropogenic emission of carbon dioxide has been voiced as one of the underlying
causes of global warming. In this light, transportation sector is widely blamed for the
combustion of petroleum-derived commodities, like gasoline, in internal combustion
engines, which produce a fair amount of this heat-trapping gas. Passenger cars are perceived
as the most significant source of transportation-related greenhouse gas discharge. Hence
superseding the dirty energy sources by cleaner ones in order for powering the vehicles is an

important measure to tackle this worldwide crisis [1, 2].

Electric and hybrid electric vehicles could be appropriate substitutes for conventional
vehicles. However, the latter still relies on fossil tuels and the former suffers from restricted
driving range as well as long charging time. These pitfalls have paved the way for the
emergence of alternative power sources like fuel cells (FCs), which are run on hydrogen, in
vehicular applications. Among various types of fuel cells, proton exchange membrane fuel
cell (PEMFC) possesses a great potential (low-temperature operation, high power density,

and solid electrolyte [3]) to be employed in vehicular application.

However, challenges keep arising in the evolution of the hydrogen vehicles and have
stopped them from a full penetration into the automotive markets [4]. Some of the key
challenges facing these vehicles are hydrogen production, infrastructures, storage, cost,

reliability, and performance. In this regard, ongoing researches and projects are being



conducted with the aim of delivering renewable hydrogen to market at less than the cost of
fueling a conventional vehicle, providing thousands of hydrogen stations, and shifting the
hydrogen storage technology from high-pressure tanks to material-based storage. Apart from
the mentioned ongoing objectives, hydrogen vehicles need to win consumers’ trust by
providing them with a feasible alternative, particularly in terms of performance, reliability,
and cost, to survive in this ultra-competitive market. The stated indexes are related to some

of the inherent shortcomings of the PEMFCs as follows:
e Slow response to the demanded power
e Fluctuation of output voltage with respect to the load variations
e Self-Cold start issues in cold weather countries

e Incapability of energy recovery through regenerative braking, compared to other

sources such as batteries

Therefore, utilizing a sole fuel cell system as a power source cannot satisfy all the
requirements of a vehicle due to its intrinsic characteristics and employing a secondary power
source, such as battery, supercapacitor (SC), etc., is necessary in order of satisfying the fast
dynamic load in vehicles, reducing degradation rate of the PEMFC by absorbing the power
peaks, increasing the fuel economy, powering the load during cold start, and energy recovery.
Common structures for hybridization of hydrogen vehicles are FC-battery, FC-SC, and FC-
battery-SC. The vehicles with such structures are known as fuel cell hybrid electric vehicles
(FCHEVs) in which a PEMFC stack acts as the primary power source and a battery pack
or/and supercapacitor bank as the secondary power source. FCHEVs do not have the

limitations of their competitors and benefit from definite merits, such as high efficiency,



pollution free essence, and convenient maintenance, by comparison [5]. Forklifts have
already given PEMFC technology a welcome boost as the early adopters of this energy
system. Moreover, FCHEVs are presenting a steadily growing division of the road vehicles
market to the extent that a large number of prototypes of different brands and sizes have been

developed, such as Hyundai Nexo, Honda Clarity, Mercedes-Benz F-Cell, and Toyota Mirai.

All of the above-mentioned hybrid structures have their own advantages and
disadvantages [6]. However, among them, FC-battery structure has been widely employed in
practical FCHEVs [7, 8]. This structure benefits from a low cost of powertrain and a low fuel
consumption in comparison to the FC-SC system. FC-battery-SC structures have lower fuel
consumption and are able to extend the battery lifetime compared to FC-battery systems [6].
Nevertheless, the latter has lower powertrain cost, less mass, and more compact volume, due
to using solely one converter without a SC. Among the existing rechargeable batteries, Li-
ion battery is considered as a potential secondary source in FCHEVs since it is being used in
many hydrogen cars, such as Hyundai Nexo, Honda Clarity, and Mercedes-Benz F-Cell, due
to the merits of high capacity, several charge—discharge cycles and acceptable cost [9].
Toyota has tried to be flexible since it uses Li-ion battery in some models (Prius Prime) and

Nickel-metal hydride (NiMH) in others (Mirai).

With all the favorable attributes of hybridizing the sources, the performance of an
FCHEV is impacted by several interrelated factors, which put the design of an energy
management strategy (EMS) in a critical position to enhance the performance and reduce

cost [10].



1.2 Literature study

The overall performance of FCHEVs regarding fuel or energy consumption heavily relies
on the particular powertrain components efficiency and accurate coordination. Traditionally,
the overall aim of an EMS design is to ameliorate fuel economy and lifetime during a driving
profile, without sacrificing vehicle performance, by controlling the power flow between the

PEMEFC, battery, and the drive train. The EMS should ensure the following goals:
e The output power of the electric motor always satisfies the demanded power.

e The level of energy is always maintained within the good operating region in the

battery.
e The PEMFC system operates within its efficient operating region.

Several EMSs have been utilized for splitting the power in the previously-discussed
structures in FCHEVs. These EMSs fall under three categories of rule-based, optimization-
based and intelligent-based [1 1-16]. The rule-based EMSs are typically designed based on
human intelligence and heuristic techniques which are not guaranteed to be optimal or
perfect, but instead adequate for attaining an immediate purpose [17]. Optimization-based
strategies aim at minimizing a defined cost function. They can be divided into two groups of
global and real-time strategies. The former optimizes the cost function over a fixed driving
cycle. The latter, however, employs an instantaneous cost function based on the variables of
the system. Optimization-based EMSs theoretically offer near-optimal solutions and are also
capable of drawing up new guidelines for revising the set of rules and inferential knowledge
of the rule-based methods [18]. Depending on the purpose of the project, dynamic

programming (as an optimal theory-based strategy) [19, 20] and metaheuristic algorithms,



such as genetic algorithm (GA) [21], (as near optimal strategies) have been abundantly used
for the development of off-line global EMSs. Real-time strategies have been also formulated
by using optimal theory-based methods, such as quadratic programming (QP) [22-25],
Pontryagin's minimum principle (PMP) [26, 27], and equivalent consumption minimization
strategy (ECMS) [28, 29] with respect to the formulation of the cost function. Intelligent-
based strategies normally use the car navigation data and the history of motion for
recognizing and predicting the driving condition [30, 31]. They can be incorporated into the
both of ruled-based and optimization-based strategies to compensate for sensitivities and
problems related to the driving condition prediction. Several EMSs based on the discussed
categories and their combinations are available in the literature for hybrid vehicles. A brief
summary of the very recent developed strategies is given in the following paragraph to clearly

highlight the contribution ot this manuscript.

In [32], a multi-mode fuzzy logic controller (FLC) is used to perform the power split in
a FCHEV. The mode of the FLC is determined by a multi-layer perceptron (MLP) neural
network using the historical velocity window and the rule base is optimized by GA. This
strategy has improved fuel economy by 8.89%, compared to a single-mode fuzzy EMS. In
[33], a multi-state (i.e., coasting, braking, and station parking) ECMS is formulated by using
a quadratic form energy consumption curve of the PEMFC stack in a tram which has led to
2.5% energy consumption decline compared to a rule-based power following EMS. In [34],
convex optimization is proposed to minimize the cost of energy by optimizing the control
decisions and the cost power sources (PEMFC stack and battery pack) by finding the
optimum size of the components. This study shows that appropriate rated power of the

PEMEC can decrease the hydrogen cost up to 61%. In [35], the performance of an ECMS for



a FC-SC tram is improved by combining the ECMS with a rule-based state machine strategy
to increase the PEMFC operating time in the high-efficiency range. In [36], an EMS is
proposed premised on slap swarm algorithm, which is a recent metaheuristic optimization
method. This strategy attempts to minimize the total hydrogen consumption by maximizing
the power supplied by the SC and battery pack and shows a superior performance compared
to state machine, FLC, GA, and ECMS. In [37], a heuristic strategy called bounded load
following strategy is proposed for a FC-battery vehicle where the PEMFC power is bounded
between two limits according to the efficiency curve of the stack. The boundaries of this
strategy are also refined with respect to the optimal trajectory obtained by dynamic
programming (DP) and it is indicated that its performance is very close to DP. An online
EMS based on data tusion approach has been suggested in [38]. In this work, three FLCs
have been optimized for three different driving conditions, namely highway, suburban and
city offline by means of genetic algorithm. Afterwards, probabilistic support vector machine
is used to provide probabilistic prediction of the driving condition. Finally, Dempster-Shafer
evidence theory is used to fuse the offline optimized FLC parameters to adapt to the driving
prediction. It should be noted that the considered constraints to design the controller in this
work come from a static efficiency-power map of a PEMFC. In [39], an adaptive control
method based on tuning the FLLC parameters for normal, regenerative, and overload driving
conditions is proposed. It has been mentioned in this work that the output voltage of the
PEMEC will decline after long periods of driving and under this condition some of the rule-
based values should be reconsidered. In [40], an online EMS based on extremum seeking
method is suggested to maintain the PEMFC operating points in high efficiency region and
thus increase the fuel economy. Three schemes of first-order, high-pass filter based, and

band-pass filter based extremum seeking method are compared and concluded that the band-



pass filter is preferred to enhance both performance and durability of the system. A two-layer
EMS composed of rule-based approach and particle swarm optimization has been proposed
for real-time control of FCHEVs in [41]. The rule-based layer is responsible for restricting
the search space to ensure a fast convergence of the metaheuristic layer. The metaheuristic
layer purpose is to determine the optimal PEMFC power and battery state of charge to reach
the minimum fuel consumption. The rule-based of this work has been designed based on a
static PEMFC map. In [42], an EMS based on neural networks is introduced for a FC-battery
vehicle. In this respect, the neural networks have been trained by means of the obtained
optimal power splitting between a PEMFC and a battery system, which minimizes the overall
equivalent energy consumption. The optimal solution has been achieved by conducting a
gradient-based method minimization over eight various driving profiles. In [43], a rule-based
EMS based on frequency decoupling is proposed, in which the SC serves as high frequency
power backup. The frequency-based approach utilizes the energy sources in different
frequency ranges and avoid oxygen starvation or operation outside the safe limits. In [44], an
EMS is proposed based on short-term energy estimation to maintain the state of energy of
the SC within an active limits in a FC-battery structure. The PEMFC limit is based on a quasi-
static model in this work and it has been stated that it is not obvious how to precisely establish
the power rate limits to avoid premature ageing of PEMFC. In [45], an EMS, based on
stochastic dynamic programming, is suggested to optimize the fuel consumption as well as
the PEMFC lifetime. A simple model is proposed in this work to estimate the effect of EMS
on the PEMFC degradation. In [46], a multi-objective strategy is proposed to enhance the
fuel economy and system durability of a FC-battery vehicle. In this work, a so-called soft-
run strategy, which is a rule-based strategy derived from the results of an offline dynamic

programming optimization, is proposed for real-time EMS purposes.



In the light of the above-discussed articles, it is evident that the majority of the existent
EMSs in the literature, namely rule-based, optimization-based, and intelligent based, are
premised upon PEMFC parametric models, especially static models [47-49]. In this respect,
PEMFC modeling is of vital importance and a wise selection of the model should be made
with regard to the particular goals of the project. However, some factors such as dependency
of a PEMFC energetic performance on its operating conditions (temperature, pressure,
current, etc.), impact of aging and degradation phenomena on its performance, and so forth
have made the design of a complete PEMFC model immensely complicated. In other words,
a complete model of a fuel cell system is not still available and is considered as a study
limitation. It should be noted that various models have been proposed for a fuel cell system
which are capable of dealing with the variations of the operating conditions [50]. These
models are by some means convincing, though not perfect, with regard to coping with the
operating conditions influences. However, aging phenomenon, which is a very complicated
process, has not been resolved yet and there is no model to perfectly consider the effect of
aging.

In this respect, some considerable efforts have been made to make the EMS design
immune to PEMFC performance drifts by adding a degradation model to the system [S1-54].
However, degradation and ageing mechanisms are very complex to be modeled. Moreover,
the operation parameters and conditions which are not included in the PEMFC model, such
as humidity or ambient temperature, can also change the maximum efficiency (ME) and
maximum power (MP) ranges of the stack that are normally among the utilized limitations
in the EMS design. To evade the mentioned issues regarding the degradation and conditions

modeling, two approaches of extremum seeking and PEMFC model parameters online



identification have come under attention. The former consists in the use of extremum seeking
methods in which an optimal operating point is sought after using a periodic perturbation
signal in real-time [40, 55, 56]. Such strategies are of interest mostly due to their
straightforward implementation while they are not very effective when concurrent
identification of several operating points is required in online applications. The thing is that
a separate search line for each intended characteristic such as ME and MP is needed in this
method. To avoid this problem, some researches have been conducted by utilizing recursive
filters for online identification of the PEMFC parameters and extracting the necessary
characteristics from the updated model. [57-61] have been done in the Hydrogen Research
Institute (IRH). In [57], Ettihir et al. have proposed the utilization of a semi-empirical model,
which is only a function of current, with a recursive least square method to get the
characteristics of the PEMFC online. They have integrated this work into the EMS design of
a FCHEV as well and achieved interesting results [58-60]. Kelouwani et al. have suggested
an experimental study based on tracing the maximum efficiency of the PEMFC. In this study,
a polynomial model of the PEMFC efficiency is introduced and the best efficiency is looked
after by adjusting the control variables, namely current, stoichiometry, and temperature [61].
Methekar et al. has introduced an adaptive control of a fuel cell system with a Wiener model
and suggested a numerical validation [62]. Dazi et al. have developed a predictive control to
ascertain the maximum power operation of a fuel cell system [63]. In [64], an adaptive
supervisory control strategy for a FC-battery bus based on equivalent consumption
minimization is proposed. In this paper, an algorithm has been used for charge-sustaining
and arecursive least square has been employed for performance identification of the PEMFC.

The utilized PEMFC model of this work is a very simple semi-empirical model, which is



only a function of current, and there is no experimental validation for the PEMFC

performance.

1.3 Problem statement and conceptual framework of the thesis

With respect to the investigated works, it can be inferred that the employment of real-
time techniques needs to be paid more attention with a specific view to adapting the design
of EMSs to the real behavior of the PEMFCs. As pointed out earlier, some operational
characteristics of the PEMFC stack, such as maximum efficiency and maximum power
points, are typically considered as the design variables while developing an EMS.
Nevertheless, these characteristics vary through time owing to several reasons, such as
operating conditions variation (temperature, pressure, humidity etc.), ageing, and degradation
phenomena. Figure 1.1 shows the performance drifts of a 500-W Horizon PEMFC stack in
terms of power delivery. Moreover, the change of rated power of the stack with regard to the
variation of the operating current and stack temperature is visible in this figure. Figure 1.1a
indicates a 20-percent drift in the maximum power of the stack based on which the beginning
of life (BOL) and end of life (EOL) have been defined. Figure 1.1b represents the drifts as
the result of season change which means the ambient conditions have mostly altered (27°C
in Summer and 20°C in Winter). The stars represent the location of maximum power which
changes in each case. Regardless of the reason for the variations of the PEMFC stack
characteristics, it is vital to consider them in the EMS as they act like uncertainties. When
these variations are not tracked, they cause mismanagement in the operation of the vehicle
since they change the assumed limits in the controller. There exists several proposed online
and real-time EMSs for the application of FCHEVs. However, only few of them have tried

to take the real characteristics of the PEMFC into account while designing the EMS.
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Moreover, the few existing works regarding the PEMFC investigation behavior are mainly

simulation based and lack the experimental validation.
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Figure 1.1 The variation of a PEMFC stack characteristics through time, a)
lifetime variation, b) seasonal variation.

Another aspect that has escaped the attention of many researchers in the domain of EMS
design for FCHEVs is adopting a systemic approach towards the management of the PEMFC
stack while developing a strategy. The existing EMSs normally define the required current
from the PEMFC stack. Nonetheless, regarding the PEMFC as a system provides several
degrees of freedom in terms of supplying the power since the influential operating points in
the performance of the PEMFC, such as current and temperature, can come under control in
this way. A specific requested power from the PEMFC can be supplied by different
combinations of these operating conditions to improve the efficiency [65]. It should be noted
there exists many works concerning the thermal/current management of the PEMFC stacks
[66-69]. However, to the best of the authors’ knowledge, the integration of a simultaneous

current and temperature management, which have different physical dynamics, into the



design of an EMS has not been considered so far. Figure 1.2 indicates the general concept
put forward by this thesis to upgrade the efficiency of the existing EMSs and make them
more robust against the performance drifts of a PEMFC stack. The whole process is
conducted online while the PEMFC is under operation. The global EMS comprises three
stages, namely parameter identification along with the local management, information
extraction, and power split strategy. The objective is to do an online parameter identification
to adapt the model to the performance drifts of the PEMFC, and then define the best operating
points in the information extraction stage while having a local management over the
operating parameters of the stack. Afterwards, the obtained data can be used in the power
split strategy stage to control the power flow between the sources. This three-stage process

is called global EMS.
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Figure 1.2 The general concept for designing a global EMS for a FCHEV.



1.4 Contribution of the project

Literature consideration indicates that there are a variety of approaches, online and
offline, to distribute the power between two sources ina FCHEV. Moreover, there are several
research methods to determine the best performance of the PEMFECs or improve its efficiency
through local managements of the stack. However, it should be noted that there are only a
few EMSs that attempt to link the power splitting in a FCHEV with the real-time performance
identification of the PEMFC. In this regard, this work aims to utilize parameter estimation
algorithms, which has been suggested to deal with the problems caused by operating
conditions variations, degradation and aging, to cope with performance drifts of the PEMFC.
It should be noted there are some works in this regard [57-60], as discussed in the previous
section. However, a meticulous attention has not been paid to the choice of model and
estimation method since the aim has been to reach the proof of concept by applying it to the

EMS design.

Apart from the mentioned point, one central feature that the researchers have failed to
notice so far in the domain of EMS design for FCHEVs is to consider a systemic method for
the management of a PEMFC stack while developing a strategy. In literature, operating
current and stack temperature are normally perceived as independent control variables where
the existing works focus on controlling either of them. Nevertheless, PEMFC is a multi-
physical system with strong dynamic interactions between current and temperature. Having
a systemic look at the PEMFC stack makes the design of multi-output EMSs possible which
means the requested power from the stack can be supplied by higher efficiency as it can use

different combinations of operating parameters such as current and temperature.

In this regard, two principal directions have been followed in this thesis:



e Providing a scientific rigor for the proposed basis by the previous studies, to
choose a proper PEMFC model and identification method, by performing a

benchmark analysis.

e Pushing the concept forward by integrating a multi-input model and its current

and thermal managements into the EMS design.

1.4.1 Aims and objectives

This thesis attempts to bridge the gaps which have been brought into attention by
pursuing the above-mentioned directions. In this respect, the main objective is to integrate
the online parameters estimation and systemic management of a PEMFC stack into the design

of an online EMS in a FCHEV. To this end, the following goals are set:
» Performing a benchmark analysis to give a strong structure to the concept:

The previous studies are based on a single-input model, which is only dependent
on the current, and the other operating conditions, such as temperature, pressure,
etc., are considered as perturbations. In this work, a benchmark analysis is
conducted with the aim of selecting a multi-input model, which embraces the
main operating conditions, such as current, temperature, and pressure, and
Integrate a suitable parameter identification method into it to compensate the
model uncertainties due to degradation and the operating conditions which are
not considered in the model, like humidity. Since this work aims at designing a

multi-input EMS, it is necessary to have a dependable multi-input model.

» Concurrent thermal and current management of the PEMFC stack:



The benchmark analysis leads to the selection of a parameter estimation method
as well as a multi-input model for predicting the behavior of the PEMFC.
Temperature is one of the inputs of the chosen multi-input electrochemical model,
and its value comes from the measurement from a real PEMFC. However, the
regulation of temperature, which has an important role in its performance since
very low or high operating temperature can deteriorate the performance and
decrease the lifetime of the PEMFC, is not possible with only the electrochemical
model. In this regard, a thermal model of the PEMFC, which allows controlling
the temperature by acting on the fan, is in demand. The second objective of this
work 1s to use a thermal model besides the PEMFC electrochemical model to
provide a local thermal and current management. This systemic management
helps to reach the desired power level efficiently by choosing the right level foi

temperature and current.
[ntegration into EMS design for a FCHEV:

The package of online voltage model and the thermal model along with the local
management over the stack is used to design a global EMS. The main idea is to
perform a real-time mode] identification to find the best operating points through
an information extraction stage. Subsequently, the power split strategy can use
the provided data from the updated PEMFC model to optimally distribute the
power flow. In addition to work with the updated data, the other contribution of
this EMS compared to the available ones in the literature is that it works with

more than one reference signal. In fact, it determines the reference temperature of



the PEMFC through the defined local management as well as the reference

operating current.

1.5 Methodology

After discussing the motivation and conducting a comprehensive literature survey to
highlight the gaps in this line of work in the first step (Chapter 1), the second step deals with
providing a concrete basis for supporting the hypothesis that online modeling of a PEMFC
stack and its systemic management can lead to the performance enhancement of an EMS in
a FCHEV. In this respect, an optimal EMS based on DP is formulated to compare the
hydrogen consumption of a simulated FCHEV for different scenarios. In the first scenario,
the fuel economy of the vehicle is investigated by developing a unidimensional DP to
determine the optimal trajectory of the PEMFC current while using two PEMFC stacks with
different levels of degradation in which the rated powers are not the same. This analysis will
show the effect of PEMFC stack degradation on the vehicle’s fuel economy. In the second
scenario, a bidimensional DP is developed for the new PEMFC case in the first scenario to
determine the optimal trajectory of PEMFC current and cooling fan duty cycle. Then the
results are compared with the unidimensional EMS to realize the influence of conceiving the

PEMEFC as a system while designing an EMS.

The third step of this work focuses on the online parameters’ identification of a PEMFC
stack. As there are a few studies within this scope, this step provides a conclusive rigor to
this methodology by: 1) Reviewing the literature to determine the present-day state of
information about the proposed topic. Subsequently, the considered methods are categorized
in terms of precision, applicability in online situations and energy management purposes; 2)

performing a benchmark problem analysis based on the suitable recognized candidates of the



first step to select a suitable multi-input PEMFC model and an identification method for

further stages; 3) experimental validation of the selected model and identification technique.

The fourth step of this thesis copes with the initialization and customization of recursive
filters for the online PEMFC parameters’ estimation problem. In this respect, a benchmark
study of three well-known metaheuristic optimization algorithms is performed to introduce
a dependable technique for the initial tuning of the model parameters and the recursive filter
variables. It should be noted that metaheuristic algorithms are the most common approach in
the literature to extract the parameters of a PEMFC model. The quality of online PEMFC

characteristics estimation is scrutinized for different initial tuning of the parameters.

The last step of this work deals with the development of a simultaneous current and
temperature management through mapping the PEMFC characteristics and the integration of
this approach to the EMS design of a FCHEV. The main challenge for the systemic
management development is different physical dynamics of current, which is very fast, and
temperature, which is very slow. The systemic management provides the opportunity to have
a local control over the PEMFC system to enhance its performance in real-time. Such a
systemic management is suitable for energy management purposes. In this respect, the
obtained temperature and current management from this stage paves the way for designing
EMSs which can lead to very realistic outcomes. The put forward EMS in this stage mainly
attempts to enhance the performance of a FCHEV in terms of fuel economy by utilizing an
online systemic management of the PEMFC stack. This strategy is in fact the ultimate goal
of this thesis as it takes into consideration both the performance drifts of a PEMFC system
and its thermal management. One distinguishing feature of this EMS is generating two

reference signals (PEMFC current and temperature) to achieve optimality in power splitting,
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as opposed to the existing EMSs which only have one control variable (PEMFC current). It
is worth reminding that the designed energy management is tested on a developed hardware-
in-the-loop (HIL) set-up of Némo vehicle of the IRH, which is a laboratory-scaled hydrogen

vehicle for validation.

1.6 Thesis structure

The remainder of this thesis is organized as follows. Chapter 2 describes the importance of
adapting the EMS to the real performance of a PEMFC stack as well as adopting a systemic
approach for EMS design through presenting an article entitled “’Investigating the Impact of
Aging and Thermal Management of a Fuel Cell System in Energy Management Strategies’’.
Chapter 3 reviews the modelling and parameter estimation approaches of the PEMFC, along
with the discussion of the achieved results of a performed benchmark analysis through
presenting an article entitled “’Overview and Benchmark Analysis of Fuel Cell Parameters
Estimation for Energy Management Purposes’ respectively. Chapter 4 explains the
customization of recursive filters for online parameters identification of PEMFC stacks by
presenting an article entitled ‘’Benchmark of Proton Exchange Membrane Fuel Cell
Parameters Extraction with Metaheuristic Optimization Algorithms’’. Chapter 5 proposes an
approach for simultaneous management and control of a PEMFC operating current and stack
temperature through presenting an article entitled ’Efficiency Enhancement of an Open
Cathode Fuel Cell through a Systemic Management’’. Moreover, the integration of the
developed bases in this thesis into the design of an EMS is coped with by representing an
article entitled “’Efficiency Upgrade of Hybrid Fuel Cell Vehicles’ Energy Management

Strategies by Online Systemic Management of Fuel Cell”’. Finally, the conclusion is drawn



in Chapter 6 with a detailed description of the future steps concerning the further

improvement of this work.



Chapter 2 - The significance of performance drifts and
thermal management consideration in
energy management strategy design

2.1 Introduction

The presented literature survey in the previous chapter illustrated that there is indeed a
gap concerning the online characteristics estimation and systemic management of a PEMFC
stack while designing an EMS for a FCHEV. In fact, the energetic performance of a PEMFC
depends on these factors. Therefore, ignoring them, while developing an EMS, could lead to

sub-optimal performances. In this regard, this chapter pursues two important objectives.

The first objective is to demonstrate how serious an aged PEMFC can deteriorate the
fuel economy of a FCHEV. In fact, the performance, dependability, and fuel economy of
FCHEVs are vastly reliant on the design of an EMS which is in turn influenced by the control
and state of the health (SOH) of the on-board PEMFC stack. Thus, many studies have been
done on how to optimally distribute the power among the drivetrain components. However,
PEMECs experience irreversible degradation in terms of power delivery as they age, and
therefore the performance of the FCHEV will be negatively impacted even with an optimal
EMS. The rate of PEMFC aging is dictated by several factors including operating and
environmental conditions. Therefore, it stands to reason to consider the effect of PEMFC

degradation over the performance of an EMS.
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The second objective is to show the amount of hydrogen consumption decline due to the
inclusion of temperature dimension (systemic management) into developing a strategy.
Indeed, an overriding factor for improving the performance of a FCHEV is to adopt a
systemic standpoint for controlling the PEMFC stack. The present-day EMSs typically
determine the required current from the PEMFC to meet the requested power by the driver.
However, a specific level of power can be supplied by different combinations of operating
parameters, such as current, temperature, pressure, and so forth. Having a systemic viewpoint
towards PEMFC stack opens up a unique opportunity to efficiently supply the power by
finding the right combination as more degrees of freedom are accessible. To this end, the
effect of PEMFC thermal management on the vehicle performance is studied by formulating
an EMS which determines the cooling fan duty cycle as well as the required current from the

PEMFC stack.

The effectiveness of the targets of this chapter is elucidated through presenting an article
entitled “Investigating the Impact of Aging and Thermal Management of a Fuel Cell System
in Energy Management Strategies”. Before presenting the paper, the employed methodology
is explained. Subsequently, the main results are briefly discussed. The paper, which includes

the details of the proposed work, is then presented. Finally, a conclusion is given.
2.2 Article 1: Investigating the Impact of Aging and Thermal Management of a
Fuel Cell System in Energy Management Strategies
Journal: Applied Energy (Elsevier) (https://www.journals.elsevier.com/applied-energy)
Authors: M. Kandidayeni, A. Macias, L. Boulon, and S. Kelouwani.

Submission date: 29/Nov/2019 (Under review)



2.2.1 Methodology

EMS of a FCHEV is, by itself, a delicate problem which needs the reference solution
from an optimal control method with multiple states, control inputs, limits, and disturbances.
Considering the fact that dynamic programming is one of the optimal control approaches that
can guarantee global optimality regardless of problem complexity level, it is used for the

purpose of this paper, as shown in Figure 2.1.
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Figure 2.1 The utilized simulator for formulating a multi-dimensional DP.

As previously started, this chapter investigates the impact of two significant aspects,
namely FC degradation phenomenon and thermal management, over the performance of an
EMS ina FCHEV. To do so, firstly, a vehicle model is developed in simulation environment
for a FCHEV composed of a FC stack and a battery pack. Subsequently, deterministic
dynamic programming (DP) is used to formulate an optimal EMS to minimize the hydrogen
consumption while respecting the operating constraints of the power sources. The

performance of DP is assessed in two different scenarios.
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The first scenario clarifies the effect of FC stack degradation on the performance of
vehicle. In this regard, DP determines the required current from the FC stack for two FCs
with different levels of degradation while battery state of charge (SOC) and FC power are
the states of the system. The first scenario is composed of three cases, namely unidimensional
DP (one control variable) for new PEMFC (1D — New FC), unidimensional DP for aged
PEMFC (1D — Aged FC), and unidimensional DP with the false input (1D — FI). In 1D — FI
case, the obtained optimal control policy of 1D — New FC case is employed while the used

PEMEFC is the aged one.

The second scenario evaluates the thermal management contribution in improving the
hydrogen economy. In this respect, a bidimensional DP is developed for the new PEMFC
(2D — New FC). It has two control variables (FC current and cooling fan duty cycle) and
three states (battery SOC, FC power, and FC stack temperature). The results of this case study
are comparable with 1D — New FC case and illustrate the influence of temperature dimension
inclusion over the performance of the vehicle. The bidimensional DP formulation for the
aged PEMFC and false input cases has not been repeated to avoid the discussion of similar

analyses.

2.2.2  Synopsis of the results analysis

The performance of the formulated EMS based on DP is explored under two driving
cycles, namely worldwide harmonized light-duty vehicles test cycles (WLTC class 2) and
West Virginia Interstate Driving Schedule (CYC_WVUINTER). It is worth mentioning that
the cooling fan duty factor for the case of unidimensional strategy is kept constant (34%) and
only if the temperature reaches 60 °C, the duty cycle switches to 100% to avoid reaching the

limiting stack temperature, which is 65 °C. This policy for controlling the cooling fan duty
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cycle has been adopted based on the observation of the 500-W Horizon PEMFC operation

with its commercial controller.

Figure 2.2 compares the consumed hydrogen, which is the most important factor in this
work, for all the previously-discussed cases of scenario 1 and scenario 2. According to this
figure, the hydrogen economy decreases as the PEMFC gets aged. By comparing the
unidimensional DP of new and aged FC cases, it can be seen that hydrogen consumption
increases by 14.7% in WLTC class 2 and 11.7% in CYC WVUINTER. Moreover, it is
observed if the PEMFC gets aged and the DP policy remains the same (1D — FI case study),
the hydrogen consumption increases by 24.8% compared to 1D — New FC case and 8.7%
compared to 1D — Aged FC in WLTC class 2. In CYC_WVUINTER, 1D — FI case study
escalates the hydrogen consumption by 20.2% and 7.6% compared to 1D — New FC and
1D — Aged FC respectively. The obtained results from 1D — FI case study shows that the
energy management policy should be adapted to the real state of health of the PEMFC stack,
otherwise it leads to poor performance of the strategy. Regarding the influence of thermal
management incorporation into the EMS formulation, it is seen that the hydrogen
consumption declines by 2.91% and 4.1% in WLTC class 2 and CYC WVUINTER

respectively.
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Figure 2.2 Hydrogen consumption a) WLTC class 2 driving profile, and b)

CYC_WVUINTER driving profile.
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Abstract

Energetic efficiency of a fuel cell (FC) stack is affected by several factors such as degradation and operating
conditions variation. However, most of the existing energy management strategies (EMSs) for a fuel cell
hybrid electric vehicle (FCHEV) are based on constant quasi-static models, which are valid in a limited
operational range. Moreover, the available strategies solely determine the reference power/current from the
FC stack, while FC is a multiphysical system and its efficiency and power delivery are affected by many
parameters such as current, temperature, pressure, and so forth. In this regard, this paper investigates the
impact of two significant aspects, namely FC degradation phenomenon and thermal management, over the
performance of an EMS in a FCHEV. To do so, firstly, a vehicle model is developed in simulation
environment for a low-speed FCHEV composed ofa FC stack and a battery pack. Subsequently, deterministic
dynamic programming (DP) is used to formulate an optimal EMS to minimize the hydrogen consumption
while respecting the operating constraints of the power sources. The performance of DP is assessed in two
different scenarios. The first scenario clarifies the effect of FC stack degradation on the performance of
vehicle. In this regard, DP determines the required current from the FC stack for two FCs with different levels
of degradation while battery state of charge (SOC) and FC power are the states of the system. The second
scenario evaluates the thermal management contribution in improving the performance. In this respect, a DP
with two control variables (FC current and cooling fan duty cycle) and three states (battery SOC, FC power,
and FC stack temperature) is developed for the new FC and compared with the considered cases in scenario
one. The results of this study indicale that not updating an EMS policy as the PEMFC gets aged can
deteriorate the performance of an EMS up to 24.8%. Moreover, the integration of temperature dimension into
the EMS can diminish the hydrogen consumption by 4.1%.

Keywords: Bidimensional energy management strategy, dynamic programming, fuel cell hybrid
electric vehicle, thermal management.



1. Introduction
1. 1. Motivation and challenges

The buildup of carbon dioxide (CO2) and other greenhouse gases is causing a rise in the average
temperature of the climate system, known as global warming [1]. Transportation sector is counted as one of
the major contributors to the anthropogenic emission of these gases [2]. Electrification of vehicles through
the introduction of hybrid electric and pure electric vehicle technologies has been considered as a potential
solution for decarbonization of the conventional vehicles [3]. However, the limitations of these technologies,
such as fossil fuel dependency in the former and limited driving autonomy as well as slow recharging rate in
the latter, have paved the way for the emergence of other sources such as proton exchange membrane (PEM)
fuel cells (FCs) in electrified vehicles [4]. Fuel cell hybrid electric vehicles (FCHEVs), which are still at an
initial phase of marketing progress, typically utilize a PEMFC stack as the primary source of power and a
battery pack and/or a supercapacitor (SC) as the secondary one [5, 6]. Therefore, the performance of a
FCHEYV is affected by many interconnected factors due to different nature of powertrain components. An
appropriate energy management between power sources can enhance fuel economy and lifetime of the
system. The available energy management strategies (EMSs) for FCHEVs can be classified into three types
ofrule-based, optimization-based, and intelligent-based [7-9]. Rule-based EMSs are typically designed based
on heuristic techniques which are not guaranteed to be optimal or perfect, but instead adequate for attaining
an immediate purpose [10]. Optimization-based EMSs theoretically ofter near-optimal solutions and are also
capable of drawing up new guidelines for revising the set of rules and inferential knowledge of the rule-based
methods [11]. Optimization-based EMSs fall into two groups of global, optimizing the cost function over a
fixed driving cycle, and real-time strategies, defining an instantaneous cost function based on the variables
of the system. The former is not suitable for real-time purposes owing to the necessity to know the driving
cycle in advance, but nevertheless is highly helpful for defining the optimal policy. Depending on the purpose
of the project, dynamic programming (DP) (as an optimal theory-based strategy) [12, 13] and metaheuristic
algorithms, such as genetic algorithm (GA) [14], (as near optimal strategies) have been abundantly used for
the development of off-line global EMSs. Real-time strategies have been also formulated by using optimal
theory-based methods, such as quadratic programming (QP) [15-18], Pontryagin's minimum principle (PMP)
[19,20], and equivalent consumption minimization strategy (ECMS) [21, 22] with respect to the formulation
ofthe cost function. Intelligent-based strategies normally use the car navigation data and the history of motion
for recognizing and predicting the driving condition [23, 24]. They can be incorporated into the both of ruled-
based and optimization-based strategies to compensate for sensitivities and problems related to the driving
condition prediction. Several EMSs based on the discussed categories and their combinations are available
in the literature for hybrid vehicles. A brief summary of very recent developed strategies is given in the
following paragraph to clearly highlight the contribution of this manuscript.

1.2. Literature survey

A multi-mode fuzzy EMS is proposed in [25] to minimize the hydrogen consumption in a FCHEV where
a neural network-based driving condition recognition tool is utilized to select the most suitable mode of the
controller. This strategy has reduced hydrogen consumption by 8.89%, compared to a normal fuzzy EMS. In
[26], a new configuration composed of three PEMFC stacks and a battery pack is put forward. In this work,
a hysteresis EMS is designed to increase the durability of the PEMFC system by utilizing each PEMFC only
at a fixed operating point. In [27], a state machine based EMS is suggested for a FC-SC-battery vehicular
system to extend the lifetime of the power sources by using them in their desired operational range. Moreover,
the output net power of the PEMFC is maximized by regulating the oxygen excess ratio through a PID
controller. In [28], a quadratic energy consumption curve of the PEMFC stack is employed in a multi-state
ECMS to formulate the power management in a tram. The strategy has led to 2.5% energy consumption
reduction compared to a rule-based power following strategy. In [29], an EMS is developed by using adaptive
control theory and fuzzy logic control (FLC). The authors recommend updating the values for defining the
FLC rules owing to the PEMFC voltage declines due to degradation after a while and under this condition
the rule-based values should be reconsidered. In [30], a self-organizing map is developed as the driving
condition recognizer tool to select the most suitable mode of a multi-mode FLC and an online PEMFC model



is used to estimate the maximum power and efficiency points of the stack which change over time. The output
of the FLC is constantly adapted to the real PEMFC state of health (SOH) and the results show an eight-
percent improvement in fuel economy compared to a similar strategy without an online model. In [31], a
novel degradation model of PEMFC stack is proposed to be combined in the EMS design of a FCHEV. This
model is based on wavelet analysis, extreme learning machine, and genetic algorithm and considers the
influence of PEMFC load current, relative humidity, temperature, and hydrogen pressure. In [32], an EMS is
formulated based on model predictive control and a cost function is proposed inclusive of hydrogen, PEMFC
degradation, and battery degradation costs. In [33, 34], two degradation models are proposed for PEMFC
and battery and incorporated in the sizing problem of a FCHEV. [n [35], an online adaptive ECMS is
proposed for a FCHEV powered by PEMFC, battery, and SC. The SOH of PEMFC and battery are traced
online by an adaptive filter and the results show that without SOH estimation, the charge sustenance objective
of battery cannot be achieved when the power sources go under degradation. A review of health-conscious
EMSs for FCHEVs is presented in [36] and it has been concluded that accurate degradation estimation should
be integrated into the existing EMSs to enhance the durability of the system.

1.3. Contribution

In the light of the discussed papers, it is clear that the vast majority of the existing studies do not take the
degradation of the power sources into account while designing an EMS for a FCHEV. However, recently,
some studies have attempted to bring the importance of this inclusion into attention [32-35]. Moreover, the
developed EMSs are mainly one dimensional as they just determine the reference current from the PEMFC
stack while PEMFC is a multiphysics system and there is an interdependence between its power delivery and
operating conditions. Fig. | presents the relation of power delivery with operating current and stack
temperature in a 500-W PEMFC with two different levels of ageing. As it is observed, stack current and
temperature have influence over the drawn power from the stack and the location of maximum power, which
1s shown by stars, changes noticeably by the time the PEMFC gets degraded. In this respect, the contributions
of this work lie into the consideration of two substantial aspects. The first one is inspecting the influence of
PEMFC degradation over the performance of an optimal EMS. This is worthwhile since it clarifies the
degradation impact of PEMFC, which is a new and expensive technology, over the operation of the vehicle
without combining it with the ageing eftect of battery pack. The second contribution of this work is the
incorporation of PEMFC thermal management into the EMS design. This is vital to be considered as PEMFC
is a system and its performance is influenced not only by current but also by temperature and even other
operating parameters.
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Fig. 1. The experimental characteristics of a PEMFC stack with two different degradation levels.



1.4. Methodology and paper structure

This paper proposes the formulation of a bidimensional EMS (two control variables) based on DP for a
FCHEV. The control variables are PEMFC current and stack temperature, which have crucial role in the
performance of the stack. The results of the proposed bidimensional strategy are compared with a
unidimensional strategy, which only considers the operating current similar to the existing strategies in the
literature, under two standard driving cycles. The formulation of DP is done for two cases of new and aged
PEMFC stacks to represent the effect of ageing as well as adding the temperature dimension on the operation
of the ECHEV.

The remainder of this paper is as follows. Section 2 describes the powertrain modeling of the studied
FCHEV along with the characteristics of the employed power sources. Section 3 deals with the development
of an optimal EMS based on DP. Section 4 discusses the obtained results of the work, and finally the main
conclusions from the performed study are drawn in section 5.

2. Powertrain system modeling

The studied FCHEV in this work is based on a low-speed vehicle called Nemo. The structure of this
vehicle is shown in Fig. 2. The electric motor is driven by both of PEMFC stack and battery pack. The
PEMFC stack is linked to the DC bus via a DC-DC converter while the battery pack is directly connected to
the bus. The vehicle tractive force (F,,), which is required to move the vehicle forward, needs to overcome
the slope resistance (F;, ), rolling resistance (F,..), aerodynamic drag (F,,), and the acceleration force (F,..).
F,, is calculated by sum of the four forces as:

Fop = F + B + Fog + Faec
o = 1y sn ()

180°

Fr=-C( M, gcos (%) (D
1ifv>0

Faa = 0.5 pg Ca A v*(t) sgn(v) where sgn(v) {—1lifvv <0

Face =8 M, a(t)

where M, is the vehicle mass (kg), g is the gravitational acceleration (m/s?), « is the road angle in degrees,
Cy is the rolling friction coefficient, p,, is the air density (kg/m’), C4 is the aerodynamic drag coefticient, Af
is the vehicle frontal area (m?), v(t) is the vehicle velocity (m/s), § is the mass factor, and a(t) is vehicle
acceleration (m/s?). Table | provides the principal powertrain parameters of this vehicle.
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Fig. 2. The simulator for testing the EMS.
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Table 1
Parameters of the vehicle

Specification Parameter Value
Rolling resistance 0.015
Aerodynamic drag 0.42
Frontal area (m*) 4
S ] Density of air (kg/m?®) 1.2
Vehicl t <
emeie’s parameters Mass factor 1.035
Mass (kg) 896
Maximum speed
4
(km/h) 0
3-phase induction Power (W) 5690
machine Frequency(Hz) 131.1
FC system Rated power (kW) 4
voltage (V) 73
Batte ;
atery Capacity (Ah) 6

The requested power in the bus (Pg,) by the drive of the induction machine 1s calculated by:

P — Pwheel
{ BUS ™ nemmenpc-ac 2)
Pyneer = Frr X v(6)

where Py pee 15 the required power at wheels, 1, is the transmission efficiency (92%), ngy is the motor
average efficiency (90%), and npc_4¢ 15 the inverter efficiency (95%). As shown in Fig. 2, the PEMFC stack
and batlery pack are connected to the DC bus. Therefore, the relationship of PEMFC power (Pg¢), battery
power (Pg,,), and the requested power in the bus can be expressed as:

Pous = PrcNpc-pe + Prar (3)

2.1. PEMFC modeling

As the main objectives of this paper are to investigate the effect of degradation and thermal management
over the performance of an EMS, the experimental data of two 500-W Horizon PEMFCs with different levels
of degradation are employed to form a realistic perception of these effects. The experimental data of this FC
are gathered from a developed test bench in Hydrogen Research Institute of Université du Québec a Trois-
Rivieres (UQTR), as shown in Fig. 3. In this set-up, a Horizon H-500 air breathing PEMFC is connected to
a National Instrument CompactRIO through its controller. The PEMFC controller carries out the following
tasks:

e  Controlling the stack temperature by acting on the blower.
e  Opening the hydrogen valve.
e Controlling the purging interval of the purge valve.
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Fig. 3. The developed PEMFC test bench in Hydrogen Research [nstitute of UQTR



The mounted axial fan is responsible for cooling down the stack and supplying the necessary oxygen. The
information between the CompactRIO and the PC is transferred by an Ethernet connection every 100
milliseconds. Temperature, current, and voltage of the FC system are recorded and used for the modeling.
An 8514 BK Precision DC Electronic Load is used to request load profiles from the PEMFC. Fig. 4 presents
the experimental characteristics of the aged and new PEMFCs in terms of power delivery and hydrogen
consumption. Fig. 4a shows the relationship of power, temperature, and current for better appreciation of the
current and temperature interdependence. From Fig. 4a, it is realized that a specific level of requested power
from the PEMFC can be supplied by different combinations of current and temperature. The circle and
diamond markers in Fig 4a show the location of optimal current and its corresponded temperature for
supplying each power level. Fig. 4b indicates the optimal line of hydrogen consumption for each of the new
and aged PEMFCs. The circles and markers correspond to the optimal points of each level shown in Fig. 4a.
From this figure, it is observed that there is a noticeable different between the hydrogen consumption of a
new and an aged PEMFC. The specifications of this PEMFC are listed in Table 2. According to Table 1,
Nemo vehicle requires a 4-kW FC system. Hence, the PEMFC output voltage in the emulator of this work is
scaled up after the DC-DC converter to satisfy the requested power in the bus. This emulator utilizes the
temperature, current, and pressure as inputs and estimates the voltage of the stack. It is based on a semi-
empirical equation, suggested by Mann et al [37], which calculates the stack voltage for a number of cells
connected In series.
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Fig. 4. The experimental characteristics of new and aged PEMFCs, a) temperature-current relationship, and b) Hydrogen flow-
current relationship

Table 2
The specifications of the Horizon H-500 PEMFC
PEMFC Technical specification

Type of FC PEM

Number of cells 36

Max Current (shutdown) 29 A

Hydrogen pressure 50-60 kPa (0.5-0.6 Bar)

Rated Hz consumption 7 SLPM

Ambient temperature Sto30°C

Max stack temperature 65°C

Cooling Air (integrated cooling fan)
Vec = N(Enernse + Vace + Vonmic + Veon) 4
Enernse = 1.229 — 0.85 x 1073(T — 298.15) + 4.3085 X 107 5T[In(Py,) + 0.5In(Pyy)] (5)



Vaer = & + &T + E3TIn(COy) + &,TIn(ipc)

_ Po2 (6)

€0, = 5.08x1076 exp(—498/T)
Vormic = —ircRinternat = —irc(§1 + T + (Gipc) (7)
Veon = Bln(1 — <) (8)

Where Vg is the output voltage (V), N is the number of cells, Fyerng is the reversible cell potential (V),
Vaee 1s the activation loss (V), V,pmic is the ohmic loss (V), V.,,, 1s the concentration loss (V), T is the stack
temperature (K), Py, is the hydrogen partial pressure in anode side (N m™2), P,, is the oxygen partial pressure
in cathode side (Nm™2), &,(n =1..4) are the semi-empirical coefficients based on fluid mechanics,
thermodynamics, and electrochemistry, €0, is the oxygen concentration (mol cm™3), irc 1s the PEMFC
operating current (A), Rinrerna 1 the internal resistor (Q), ¢, (n = 1 ... 3) are the parametric coefficients, B
is a parametric coefficient (V), ipc is the actual current (A), and igc mgy 1S the maximum. The stack
temperature 1s calculated based on the energy conservation law [38, 39], where the forced convection
equation includes the effect of the blower in the model.

mStCSt det/dt = Qreac - Pst - QNat - QForced (9)

Where my, is stack mass (4.2 kg), C,, is specific heat capacity of stack (J/kgK) [39], Ty, is stack
temperature (K), Q,oqc 18 the released energy from electrochemical reaction (1), Py, is the generated electrical
power (W), Quq. 1s the natural convection (J), and Qry,ceq 1S the forced convection (J). The energy generated
by electrochemical reaction and the electrical power of the stack are expressed by:

Qreac = Vax tec N (10)
Vinax = AH /nF (1)
Psy = Vec lpe (12)

where V,,,, 1s the maximum voltage obtained by hydrogen high heating value (HHV=1.48V), AH is the
formation enthalpy, n is the number of electrons per molecule, and F is the Faraday’s constant. Convective
heat transfer comprises natural and forced convection and is calculated by:

Onar = Myae Anae (Toe — Tea) (13)
Qrorcea = @ D/’an. Pair Arorced Cp (T = Tea) (14)

where hy,, is the natural heat transfer coefficient (14 W/m?K) [38], Ay, is the total surface area of the 500-
W Horizon PEMFC (0.1426 m?) which has been calculated by the available dimensions in the manual of the
device, T, is the ambient temperature (K), a is an empirical coefticient obtained by experiment, Dy, is the
fan duty cycle, pg;, is the ambient air density (1.267 kg/m?®), Aryrceq 1S the area exposed to the forced
convection (0.22mx0.13mx2), and (, is the air specific heat capacity (1005 ]/kgK). Hydrogen flow

(Ha, r10w) is calculated by an empirical equation as:
HZ,flow =ai,.-c+bDfan+C (]5)
where a, b, and c are fitting parameters attained by experimental data and the unit of hydrogen flow is SLPM.

2.2. Battery modeling

A lithium-ion battery pack is employed to assist the PEMFC stack to deliver the requested power from the
electric motor side. The specifications of the battery are listed in Table 3. An internal resistance based model
is used for modeling the behavior of this battery [40]. Fig. 5 shows the relationship of battery SOC with each
of open circuit voltage (Uyqe_oc). nternal resistance (R,,.) changes in charge, and internal resistance
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changes in discharge. The battery current (I, ), bus voltage (U, ), and SOC are determined as:

/ (UBatvOC_JUBat-OC2_4XRBatXPBaL 6
Bat — 2XRgat ( )
Ugus = Ugar-o¢ = Igac X Rpar (17)

_ ffto Ipacdt
S0C(tr) = SOC(tp) — ne =t — (18)

where Pg,, is the battery pack power, Cg,, 1s the capacity, and 7. is the coulombic efficiency.

Table 3
The specifications of the employed battery
Specification Parameter Value
Max1mu'm current A
continuous
SAFT Rech bl Capacity 6 Ah
e Nominal voltage 365V
hium-ion batiery ce No. of cells in series 20
Cell mass 034 kg
Coulombic efficiency 0.99
0.08 v : . . 4
Rbat charge

Rbal discharge

__0.06
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Fig. 5. The relationship of SOC with Upg,_o¢ and Ry, per cell.
3. Energy management strategy

The model of a FCHEV can be expressed as a nonlinear state space model. One of the most common
methods which focuses on the optimal control of nonlinear, time-variant, constrained, discrete-time
approximations of continuous-time dynamic models is deterministic DP. Such DP tools have been already
employed successfully in the energy management problem of different HEVs [12, 13, 417. In this work, the
MATLAB function introduced in [12] is utilized to solve the discrete-time optimal-control problem using
DP algorithm. The proposed DP here minimizes the hydrogen consumption by determining the optimal
trajectories of PEMFC stack current and cooling fan duty cycle. [t should be noted that more complex cost
functions have not been considered in this study as the main purpose is to clarify the impacts of degradation
and temperature dimension consideration in the hydrogen consumption rather than reducing the degradation
through time. However, this work paves the way for formulating more complex cost functions in future to
reduce both hydrogen consumption and the occurrence of degradation in the PEMFC to the utmost.

The main states of the system are battery SOC and stack temperature. Moreover, the PEMFC power is
also considered as a state to be able to prevent sudden and big changes in the drawn power from the stack. It
should be noted that according to [42], a dynamic limitation of 50 Ws™!, which means a maximum of 10%
of the maximum power per second for rising, and also 30% of the maximum power per second for falling, as



suggested in [43], have been considered for the operation of the PEMFC stack. The steady space model
equations can be described as:

Xiear = [ (e U Vies Qs i) + X
x = [SOC, Ty, Pecsv] (19)

u= [[Fc,cv: Dfan]

where x, is the state vector, u, is the control variable vector, v, is the vehicle velocity, a,, is the vehivle
acceleration, iy is the gear number, Pgc 5, is the PEMFC power as a state variable, and /¢ o is the state
current as a control variable. As the driving cycle is known in advance, the vehicle velocity (vy,), acceleration
(ay) and gear number (i) can be included in the model function and as a result the steady space model will
be simplified to:

xk+1 = f(xk,uk) + X[(, k = 0,1, N -1 (20)
N=2E41 1)
TS

where T; is the final time of the driving cycle and Ty is the sampling time. The minimization of the hydrogen
consumption is formulated as:

J =min YN Hy(uy, k) (22)

The applied constrains to the control variables are as follows:

{ lecmin < lecov (k) < lpcmax (23)

Dfan,min < Dfan(k) = Dfan,max

where ¢c min and Igc ey are the minimum and maximum current of the PEMFC stack (/¢ ¢y € [0, 27]), and
Dy an,min @nd Dfap max are the minimum and maximum duty cycle of the cooling fan (Dyq4y, € [20,100]). The
constraints on the state variables are defined as:

SOC, < SOC(K) < SOCpa, (SOCppin = 50 %, SOC, 0y = 90 %)
Tst,min < Tst(k) < Tst,maxf (Tst,min =25 DC'Tst,max =65 DC) (24)
Pec sy min < Pecsy(K) < Pecsymax (Pec.svmin = OW, Pecsymax = 500 W)

APrcsymin < BPecsy(K) < BPicsymax  (BPrcsymin = =150 Ws™, APpc gy max = 50 Ws™)

4. Results and discussion

The performance of the formulated EMS based on DP is explored under two driving cycles, namely
worldwide harmonized light-duty vehicles test cycles (WLTC class 2) and West Virginia Interstate Driving
Schedule (CYC_WVUINTER). Herein, two scenarios are considered to highlight the objectives of the paper.
The first scenario is composed of three cases, namely unidimensional DP (one control variable) for new
PEMFC (1D — New FC), unidimensional DP for aged PEMFC (1D — Aged FC), and unidimensional DP with
the false mput (1D — FI). In 1D — FI case, the obtained optimal control policy of 1D — New FC case is
employed while the used PEMFC is the aged one. This case study shows the effect of PEMFC degradation
on the performance of the optimal EMS. The second scenario investigates the performance of bidimensional
strategy (two control variables) for new PEMFC (2D — New FC). The results of this case study are
comparable with 1D — New FC case and illustrate the influence of temperature dimension inclusion over the
performance of the vehicle. The bidimensional DP formulation for the aged PEMFC and false input cases
has not been repeated to avoid the discussion of similar analyses in the paper. It is worth mentioning that the
cooling fan duty factor is kept constant (34%) for the case of unidimensional strategy and only if the
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temperature reaches 60 °C, the duty cycle switches to 100% to avoid reaching the limiting stack temperature,
which is 65 °C. This policy for controlling the cooling fan duty cycle has been adopted based on the
observation of the 500-W Horizon PEMFC operation with its controller.

Fig. 6 shows the employed driving cycles and their corresponding requested power curves. According to
this figure, WLTC class 2 contains three driving regimes of low, medium, and high speed. However,
CYC_WVUINTER is mainly composed of high driving speed. Fig. 7 illustrates the obtained results from
running unidirectional DP for WLTC class 2 driving cycle in different cases of scenario |. Fig. 7a presents
the scaled-up drawn power signals from the PEMFC for each case study. According to this figure, DP has
adopted a specific policy for each of 1D — New FC and 1D — Aged FC case studies, which implies that the
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Fig. 6. The utilized driving cycles and the obtained requested power for DP formulation, a) WLTC _class 2, and b)
CYC_WVUINTER.

optimal policies of power sharing cannot be the same for an aged and a new PEMFC. Fig. 7b, Fig. 7c, and
Fig. 7d present the battery SOC level, the real-scale drawn current from PEMFC, and stack temperature
evolution respectively. Comparison of 1D — New FC and 1D — Aged FC case studies show that from 0 to
almost 600 s, the SOC descends to around 50% for both strategies. However, from 600 s to almost 1000 s,
the strategies show completely different behavior. On the one hand, the unidimensional strategy for the new
PEMFC increases the drawn current to a high of 22 A and then it drops to almost 17 A for almost 300 s and
then gradually decreases to 0. This variation causes fluctuation in the stack temperature (from 27 °C to almost
40 °C) and battery SOC (from a high of 50% to a low of 80%). The one for the aged PEMFC case, on the
other hand, sustains the battery SOC level around 55% by gradually increasing the current and temperature
within this interval. From 1000 s to the end, the 1D — Aged FC increases the current to almost 20 A which
causes a surge in the stack temperature while the 1D — New FC tries to use less current by discharging the
battery and cooling down the stack. Regarding the 1D — FI case study, it demands the same power signal
from the PEMFC as 1D — New FC since it uses the same DP policy. However, the PEMFCs’ health states
are different. Fig. 7b also shows that 1D — Fl and 1D — New FC have the same battery SOC variations since
they extract the same power from the aged and new PEMFCs respectively. Nonetheless, Fig. 7¢ illustrates
that in 1D — FI case study, the aged PEMFC needs to operate in higher current levels, especially between
700 s to 1000 s, to supply the same power as new PEMFC. The stack temperature is also higher in this period
for 1D — FI case.
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Fig. 7. Unidimensional DP results for WLTC_class 2 driving cycle, a) the drawn power from PEMFC stack (scaled-up signal). b)
battery SOC, c¢) the real scale drawn current from the stacks. and d) the real scale stack temperature evolution.

Fig. 8 represents the results of unidimensional DP for the CYC_WVUINTER driving cycle. Fig. 8a
presents the scaled-up power provided by the PEMFC in each scenario and the corresponded battery SOC,
stack current, and temperature are shown in Fig. 8b to Fig. 8d respectively. Comparing the 1D — New FC
and 1D — Aged FC cases, it is seen that the unidimensional DP for the new FC discharges the battery up to
300 s and after that it turns on the PEMFC to recharge the battery and meet the requested power. However,
the unidimensional DP for the aged FC decides to charge the battery to a high of 75% in this interval. From
300 s to almost 1100 s, both strategies increase the drawn current from the PEMFC with slightly different
fluctuations to meet the requested power and in both cases the stack temperature rises. From 1100 s to the
end, the stack temperature in both cases decreases, and finally, they finish in the same SOC level. With regard
to 1D — FI case study, it can be observed that the aged PEMFC requires to work in higher current and
temperature levels from almost 400 s to 1400s to supply the requested power and sustain the same battery
SOC level as 1D — New FC.

Fig. 9 represents the results of formulating bidimensional DP for the new PEMFC case study under the
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Fig. 8. Unidimensional DP results for CYC WVUINTER driving cycle, a) the drawn power trom PEMFC stack (scaled-up signal),
b) battery SOC, ¢) the real scale drawn current from the stacks, and d) the real scale stack temperature evolution.
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Fig. 9. Bidimensional DP results, WLTC _class 2 driving cycle (a to d) and CYC_WVUINTER driving cycle (e to h). a) and ¢) The
drawn power from PEMFC stacks (scaled-up signal), b) and [) battery SOC, ¢) and g) the real scale drawn current from the stacks, and
d) and h) the real scale stack temperature evolution.

two driving cycles. The comparison of unidimensional and bidimensional DPs indicates that bidimensional

DPs have ended up with more variations compared to unidimensional ones. It stems from the fact that in
bidimensional cases, each specific level of power can be supplied by different combinations of current and
fan duty cycle (which lead to different temperature levels). Therefore, bidimensional DP attempts to choose
the combination that leads to the lowest hydrogen consumption. However, there are not many combinations
of current and fan duty cycle for the case of unidimensional DP. Regarding the WLTC class 2 driving cycle,
from 0 to almost 600 s, the requested current from the stack is higher than the 1D — New FC (presented in
Fig. 6¢). This results in warming up the stack to a desired level during this interval for the bidimensional
strategy (35 °C to 40 °C) and sustaining the battery SOC level around 60%. From 600 s to almost 1000 s, the
bidimensional strategy virtually keeps the stack temperature between 35 °C to 40 °C and SOC level between
60% to 65%. From 1000 s to the end, the bidimensional strategy shows a smooth fluctuation to finish in the
same SOC level as initial. Concerning the CYC_WVUINTER driving cycle, it is observed that the
bidimensional DP sustains the SOC level around 60% up to 300 s. From 300 s to almost | 100 s, it increases
the drawn current from the PEMFC with some oscillations to meet the requested power which in turn
increases the stack temperature. From 1100 s to the end, the strategy tries to keep the desired temperature
level. Fig. 10 compares the PEMFC current distribution of bidimensional and unidimensional DPs for the
new PEMFC. From Fig. 10a, it is seen that both strategies work in various levels as the WLTC class 2 driving
cycle contains several stops and low- speed traffic conditions. However, in case of CYC _WVUINTER
driving cycle, the strategies, specifically the bidimensional one, can work more in the efficient current zone
which is between |7 A to 21 A according to the presented characteristics in Fig. 4.
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Fig. 10. PEMFC current distribution of bidimensional and unidimensional DPs for: a) WLTC class 2, and b) CYC_WVUINTER.

Fig. 11 compares the consumed hydrogen, which is the most important factor in this work, for all the
previously-discussed cases of scenario | and scenario 2. According to this figure, the hydrogen economy
decreases as the PEMFC gets aged. By comparing the unidimensional DP of new and aged FC cases, it can
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be seen that hydrogen consumption increases by 14.7% in WLTC class 2 and 11.7% in CYC_ WVUINTER.
Moreover, it is observed if the PEMFC gets aged and the DP policy remains the same (1D — FI case study),
the hydrogen consumption increases by 24.8% compared to 1D — New FC case and 8.7% compared to 1D —
Aged FCin WLTC _class 2. In CYC_WVUINTER, 1D — F[ case study escalates the hydrogen consumption
by 20.2% and 7.6% compared to 1D — New FC and 1D — Aged FC respectively. The obtained results from
1D — FI case study shows that the energy management policy should be adapted to the real state of health of
the PEMFC stack, otherwise it leads to poor performance of the strategy. Regarding the influence of thermal
management incorporation into the EMS formulation, it is seen that the hydrogen consumption declines by
2.91% and 4.1% in WLTC class 2 and CYC WVUINTER respectively.
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Fig. 11. Hydrogen consumption a) WLTC _class 2 driving profile, and by CYC_WVUINTER driving profile

5. Conclusion

This paper focuses attention on the influence assessment of a PEMFC stack degradation and thermal
management over the fuel economy of a FCHEV. In this respect, a deterministic DP is formulated in
unidimensional and bidimensional ways for a new and an aged PEMFC stack. Similar to the existing EMSs
in the literature, the unidimensional DP only determines the required current from the PEMFC stack, while
respecting the limitation of the power sources, and the remainder is supplied by the battery pack. However,
the bidimensional DP determines the required current and stack temperature of the PEMFC stack to supply
the power. Considering this temperature dimension in addition to the current is a new step regarding the EMS
design which has escaped the attentions in previous studies. The performance of the formulated EMSs is
evaluated under two driving profiles of WLTC class 2 and CYC WVUINTER. The analysis of various
scenarios indicate that the integration of the temperature dimension can enhance the fuel economy up to 4.1%
in new PEMFC case study. Moreover, the ageing of the PEMFC stack can deteriorate the fuel economy up
to 14.7% in unidimensional. The final results also indicate that if the policy of energy management for power
distribution between PEMFC and battery 1s not updated as the PEMFC gets aged, it can increase the hydrogen
consumption up to 24.8%. Looking forward, future investigations are necessary to validate the kinds of
conclusions that can be drawn from the proposed bidimensional EMS of this work by using more complex
cost functions including the degradation of PEMFC stack and battery pack. Moreover, as this study shows
the potential of a bidimensional EMS in improving the fuel economy ofa FCHEV, it is necessary to formulate
real-time bidimensional strategies to have more realistic perception in real-world cases.
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2.3 Conclusion

This chapter focuses attention on the influence assessment of a PEMFC stack degradation
and thermal management over the fuel economy of a FCHEV. This evaluation is necessary
to ensure that the set objectives of the thesis stand to reason before advancing further to

develop an online model and a systemic management for the PEMFC stack.

In this respect, a deterministic DP is formulated in unidimensional and bidimensional
ways for a new and an aged PEMFC stack. The unidimensional DP only determines the
required current from the PEMFC stack, while respecting the limitation of the power sources.
However, the bidimensional DP determines the required current and stack temperature of the
PEMEFC stack to supply the power. The analysis of various scenarios indicates that the ageing
of the PEMFC stack can deteriorate the fuel economy up to 24.8% if the policy of energy
management is not updated. Moreover, the integration of the temperature dimension can

enhance the fuel economy up to 4.1%.

The obtained results confirm the relevance of the defined final goals of this work. To take
things to a further step, next chapter will explore the online modeling of a PEMFC stack to

be able to adapt the performance of an EMS to the real state of the stack.
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Chapter 3 - Online parameters estimation of proton
exchange membrane fuel cells

3.1 Introduction

The primary analysis performed in the previous chapter confirmed that the degradation
of 'a PEMFC stack can lead to a considerable mismanagement in the EMS and increase the
hydrogen consumption. In fact, the fluctuation of operating conditions (temperature,
pressure, current, etc.) and the ageing phenomenon affect the operational specifications of a
PEMFC, such as maximum power, maximum efficiency, and nominal power. For instance,
the maximum power of the stack decreases through time owing to the ageing. These
specifications have a significant role while designing an EMS for a FCHEV, since the
operating range and limitations of the system are determined with respect to them. Normally,
PEMFC models are used to extract the discussed characteristics while designing an EMS.
However, the mentioned performance drifts have made the design of a comprehensive

PEMFC model highly difficult.

In this respect, this chapter aims at suggesting a suitable semi-empirical model and an
identification technique to track the real performance of a FC system online by providing a
scientific rigor. Semi-empirical models offer an acceptable compromise between complexity
and simplicity. They are premised upon the physical relationships which are supported by
experimental data and demonstrate the fundamental electrochemical aspects of the PEMFCs
(polarization curve). However, they can estimate the characteristics of a PEMFC within a
specific operation range, and their parameters require to be returned to work well in a new

operation rage. Recursive filters, which are appropriate for applications in which the desired
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parameters change over time, appear to be very fit for online parameter estimation of the

semi-empirical models.

The process of selecting and developing a suitable model and parameter identification
technique regarding the defined objectives of this chapter is explained by presenting an article
entitled “’Overview and benchmark analysis of fuel cell parameters estimation for energy
management purposes‘’. The utilized methodology and the summary of the results are
discussed first. Afterwards, the paper is presented. This chapter finishes by giving a

conclusion of the achieved results.

It should be reminded that an article entitled ’Comparative Analysis of Two Online
Identification Algorithms in a Fuel Cell System*” is added in Appendix B. This article mainly
introduces two algorithms for identifying linear parameters of a PEMFC model online and

has not been placed in this section to keep this chapter coherent and concise.
3.2 Article 2: Overview and benchmark analysis of fuel cell parameters
estimation for energy management purposes
Authors: M. Kandidayeni, A. Macias, A. Amamou, L. Boulon, and S. Kelouwani, H. Chaoui
Journal: Journal of Power Sources (Volume and Page number: 380: 92-104)
Publication date: 15/March/2018

DOI: https://doi.org/10.1016/i.ipowsour.2018.01.075
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3.2.1 Methodology

This chapter comprehensively reviews PEMFC model parameters estimation methods
with a specific view to online identification algorithms, which are considered as the basis of
global energy management strategy design, to estimate the linear and nonlinear parameters
of a PEMFC model in real time. In this respect, different PEMFC models with different
categories and purposes are discussed first. Subsequently, a thorough investigation of
PEMFC parameter estimation methods in the literature is conducted in terms of applicability.
Three potential algorithms for online applications, Recursive Least Square (RLS), Kalman
filter (KF), and extended Kalman filter (EKF), which has escaped the attention in previous
works, have been then utilized to identify the parameters of two well-known semi-empirical
models in the literature, Squadrito et. al and Amphlett et. al. To the best of our knowledge,
this 1s the first attempt to identify the linear and nonlinear parameters of a PEMFC semi-
empirical model online. Regarding the selected models, apart from the fact that they are well-
known in the literature, they provide a good opportunity to make a comparison between a

multi-input model (Amphlett et. al.) and a single input model (Squadrito et. al.).

[t should be noted that the proposed online PEMFC model identification technique of this
chapter can be easily integrated into the EMS loop to avoid the mismanagement owing to the
performance drifts of the PEMFC stack. The general concept of estimating the parameters of
a PEMFC stack online and the procedure to include it into the EMS design is shown in Figure
3.1. From this figure, it can be seen that the parameters of the model are extracted first by
using an estimator. Then the updated model is utilized to estimate the present-state
polarization and power curves. The required points used in the EMS are extracted from these

curves and transferred to the power split strategy. This chapter mainly takes care of the choice
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of identification method and PEMFC model, which are the core of the presented scheme. To
take an example, the provided basis for online parameter estimation of a PEMFC model in
this chapter has been used to design an EMS fora FCHEV in Appendix C. The details of this
strategy are presented in an article entitled <’An Online Energy Management Strategy for a
Fuel Cell/Battery Vehicle Considering the Driving Pattern and Performance Drift Impacts®’
in this appendix. However, this article has not been placed within the context of the thesis to

have a better coherence of the work.

Online tha.rured
measured data +
Fuel cell | V.iimatea ™ Parameter | Model, Information |/ Power split
model =P estimator | B - extraction strategy
i { . -
Updating
model parameters

Identification process

.1

Figure 3.1 PEMFC online parameters estimation and the utilization for EMS
design

3.2.2  Synopsis of the results analysis

In the first stage, the accuracy of the selected models and identification algorithms is
checked regarding the estimation of the polarization curve. Figure 3.2 provides a comparison
of the achieved polarization curves by RLS and Kalman filter for the two PEMFC models.
As it is observed, regardless of the identification techniques, the model proposed by Amphlett
et. al gives more accurate polarization curves and results than Squadrito et. al model. The
difference in the accuracy level of the two models for polarization curve prediction can be
attributable to the difference in the consideration of operating conditions in the two models

and it sheds light on the positive influence of including temperature and pressure, in addition
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to the current, to the PEMFC model. Another worth discussing observation apropos of Figure
3.2 1s the performance comparison of the two employed identification algorithms. Looking
more closely at the polarization curves implies that in case of Squadrito et. al model, which
has four parameters to be estimated, RLS and Kalman filter show to a great extent similar
performance. However, in case of Amphlett et. al model, which has eight parameters to be
estimated for linear estimation, the Kalman filter seems to outperform RLS to some extent.
The increase in the number of parameters, the original difference in the structure of Kalman
filter and RLS, and the model uncertainties can all contribute to make the distinction between

the performance of the RLS and Kalman filter in this particular application.
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Figure 3.2 Polarization curves comparison for linear cases (R2 values: Squadrito-
RLS: 0.7993, Squadrito-Kalman: 0.8440, Amphlett-RLS: 0.9001,
Amphlett-Kalman: 0.9215)

In the second stage of the investigation, the linear and nonlinear parameters of Amphlett
et. al model are estimated and the results are compared with the linear estimation of the same
model. The aim of this analysis is to investigate the influence of maximum current density,
which is a nonlinear parameter, in the process of model identification. This parameter is

usually considered constant in the other similar works although it changes over time owing
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to the effect of degradation and operating conditions. In this case, since the structure in one
of the targeted parameters for estimation is nonlinear, RLS and KF cannot be used for
identification process and instead of them EKF is tested. According to the presented results
in Figure 3.3, EKF is capable of predicting a better polarization and power curves than the
Kalman filter. This is very interesting for the ultimate purpose of this work, which is to
integrate this online modeling into EMS design. In fact, the maximum power, which is used
in the EMS design, is extracted from this curve. This result justifies the importance of

considering the maximum current density estimation in the parameter identification process.
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electric vehicles, hybrid electric vehicles etc., fuel cell vehicle (FCV) is
one of the most promising due to no local emissions, high driving range,
and very short refuelling duration [3]. FCVs mainly utilize proton ex-
change membrane fuel cells (PEMFCs) as the prime power source be-
cause of their low temperature and pressure operating range as well as
their high power density in comparison to other fuel cell types such as
carbon dioxide and solid membrane [4]. PEMFCs show satisfactory
durability in slow dynamic applications. The intrinsic slow dynamic
characteristic of a PEMFC and its incapability in storing extra energy
make the utilization of a secondary power source, such as battery, ne-
cessary to satisfy the fast dynamic load in some applications like ve-
hicles. Hybridization of the sources creates a multi-source system in
which an energy management strategy (EMS) is in demand for splitting
the power [5]. The majority of the existed EMSs in the literature,
namely rule-based, and optimization-based, are premised on PEMFC
models, especially static models [6-8]. In this respect, PEMFC modeling
is of vital importance, and a wise selection of the model should be made
with regard to the particular goals of the project. However, some factors
such as dependency of PEMFC energetic performance on its operating
conditions (temperature, pressure, and current), impact of aging and
degradation phenomena on its performance, and so forth have made the
design of a comprehensive PEMFC model immensely complicated. In
this regard, utilization of identification algorithms has been suggested
to deal with the problems caused by operating conditions change, de-
gradation and aging by adjusting online the models parameters [9]. It
should be noted that the careful selection of identification method is as
important as the choice of model since it can complement the model
and even compensate for its lack of details and considerations.

This paper provides an extensive review of identification methods
for estimating PEMFC models parameters and introduces the suitable
ones for EMS purposes. Moreover, an experimental benchmark study
that compares three promising online identification techniques by using
two renowned PEMFC models is conducted. It should be noted that in
this work, online identification refers to the processing of the data in
real time, i.e. the data is evaluated immediately after each sample. The
remainder of this article is structured as follows:

A general description of the proposed article methodology is pre-
sented in section 2. An overview of the existed PEMFC models in the
literature along with a broad review of identification algorithms, uti-
lized for PEMFC parameter estimation, is provided in section 3. Section
4 deals with a benchmark study on online identification techniques.
Finally, the conclusion is given in section 5.

2. Overall process

In a multi-source system, the operating points of the components
can be determined by the EMS in a way to maximize the output power,
system efficiency, lifetime, and autonomy. However, determining the
operating point in a PEMFC, which is a multiphysics system and its
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energetic performances are operating conditions dependent, is very
difficult, and the desired operating point constantly moves through the
operating space. Regarding the FCVs, it is very interesting to keep
PEMFC running at its best power. Nevertheless, the power versus cur-
rent curve of the PEMFC is moving with temperature and aging.
Moreover, comprehensive modeling of a PEMFC, including the effect of
degradation and operation points drift, is very difficult, time-con-
suming, and still a study limitation.

Maximum power or efficiency point tracking (MPPT) could be a
good solution for this problem if they were not limited to a single
specific objective. Perturbation and observation (P&O) and incremental
conductance are MPPT algorithms that vary the current to get the
maximum power point from the power curve; this process is known as
hill climbing. Those variations increase the hydrogen consumption.
These algorithms are sensitive to rapid changes, and they might be
trapped in a local maximum [10,11]. Moreover, the implementation of
such techniques in PEMFC systems is highly challenging due to different
electrochemical, fluidic, and thermal time constants that vary from
milliseconds to minutes.

In order to address these issues, the employment of a global energy
management, as shown in Fig. 1, is vital to reach a good compromise
between energetic efficiency and durability under various operating
conditions. The whole process is performed online during the operation
of the PEMFC. The global energy management strategy is composed of
three steps, namely parameter identification, information extraction,
and power split strategy. The main idea is to perform a real time model
identification to find the best operating points through an information
extraction. Subsequently, the power split strategy can use the provided
data from the updated PEMFC model to optimally distribute the power
flow. As shown in Fig. 1, the information extraction step, which is
maximum power (P, in this work, is one example out of several
possibilities, such as maximum efficiency point (nNmay), minimum vol-
tage (Vimin), maximum current {I,,,), and so forth. This step provides
the power split strategy with essential information based on which it
can decide how to share the power among the components. It should be
noted that this paper mainly takes care of the choice of identification
method and PEMFC model, which are the core of the presented global
energy management. The parameter estimation of PEMFC models is
really challenging due to their complex behavior. Next section provides
a broad review of PEMFC modeling and identification techniques. The
future works can extend the information extraction step and use such
basis to design online power split strategies.

3. Review
3.1. Modeling

Modeling has a significant part to play in the technological evolu-
tion of PEMFCs. Several applications, such as automotive industry
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PEMFC models based on
Black box experimental input and output
data

Semi-empirical PEMFC models
based on empirical equations
backed up by experimental data c

Mechanistic PEMFC models
based on complicated algebraic
and differential equations

l Grey box

White box

Fig. 2. PEMFC models categories.

[12-14], portable applications [15], distributed generation [15], mili-
tary [16], etc., and objectives, such as multiphysics modeling, diag-
nosis, monitoring, energy management, control, etc., can be counted for
modeling of PEMFCs. The existed PEMFC models in the literature can
be fallen into three categories of white box, black box, and grey box
[17-23], as shown in Fig. 2. White box models, known as mechanistic
or theoretical models, consist of algebraic and differential equations
which are based on thermodynamics, electrochemistry, and fluid me-
chanics [24-28].

They are designed to investigate various phenomena, such as po-
larization influences, catalyst employment, water management, and so
forth, and have different spatial dimensions. As opposed to the white
box models, black box models are obtained by means of observations
and do not go through the details of physical relationships inside the
PEMFC [29-35]. Since the computational effort of black box models is
very low, they are very interesting for online applications like vehicles.
However, the uncertainties of such models increase when confronting
new operating conditions. Artificial neural networks, fuzzy logic, and
their combination are perceived as prevalent approaches in developing
PEMFC black box models [36]. Grey box models, known as semi-em-
pirical models, offer an acceptable compromise between complexity
and simplicity [37-43]. These models are premised upon the physical
relationships which are supported by experimental data and demon-
strate the fundamental electrochemical aspects of the PEMFCs (polar-
ization curve). One of the interesting practical applications of grey box
PEMFC models is in the area of energy management design. The phy-
sical insight provides significant information about polarization curve
effects such as cell reversible voltage, activation drop, ohmic loss, and
concertation overvoltage, which are highly valuable to investigate the
relevance of the outcomes. Table | gives a brief summary of the dis-
cussed PEMFC models.

In the light of the previously discussed models, grey and black box
models seem to be the fittest types for control and energy management
purposes. Next section provides a thorough review of the utilized
identification methods for parameters estimation of PEMFC models,
which are based on grey and black box models.

Table 1
Comparison of PEMFC models.

Features White box Grey box Black box
(Mechanistic) (Semi-empirical)
Experimental data Low Average Righ
dependency
Computational time  High Average Low
effort
Precision Righ Satisfactory Satisfactory
Granularity Righ Average Low
Physical insight Righ Satisfactory Very low
Application area Cell level Energy Energy
understanding, management, management,
Emulators design, Control, Control,
Diagnosis purposes  Diagnosis Diagnosis studies
studies
Online applicability Not applicable OK OK
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3.2. Identification

System identification utilizes a black box or a grey box model to
estimate a dynamic system features. Appropriate parameter identifica-
tion of PEMFC models can strikingly increase the accuracy and com-
pensate for the lack of details. However, the parameter estimation of
PEMFC models is really demanding owing to their complicated features.
A number of approaches have been reported in the literature to opti-
mize and identify the parameters of a PEMFC model, namely meta-
heuristic based methods (GA, PSO ...) [37-66], Electrochemical im-
pedance spectroscopy (EIS) based methods (Frequency, Nyquist ...)
[67-72], black box based methods (ANN, SVM ...) [73-39], Adaptive
filter based methods (RLS, SRUKF ...) [90-921], and some other methods
such as current change, parametric table etc. [94-100], which fit to
none of the categories. Table 2 summarizes the advantages and dis-
advantages of these methods. It should be noted that all of these
methods have different convergence time, i.e. the required time for the
algorithm to reach an acceptable value of the identified parameter. This
convergence time mainly depends on their implementation and com-
plexity. However, some of them, such as recursive and black box based
methods, have been reported to be much faster than the others.

3.2.1. Metaheuristic-based optimization techniques

Numerous manuscripts have proposed metaheuristic-based optimi-
zation techniques to identify the linear and nonlinear parameters of an
electrochemical PEMFC model without trapping in local optima.
Regarding the metaheuristic-based methods, the majority of them
[44-66] are amazingly based upon the proposed model by Amphlett
et al. [41,43], which is a semi-empirical model and is able to imitate the
behavior of the PEMFC to a satisfactory extent. All of these works re-
volve around the idea of introducing a new optimization algorithm to
estimate the physical parameters of the static semi-empirical PEMFC
model. Table 3 introduces the range of the identified parameters in the
mentioned articles.

It should be noted that the utilized model in these articles describes
the polarization curve and is based on the thermodynamic potential of
the cell and three voltage drops (activation, ohmic, and concentration).
In this respect, the parameters £ (n = 1...4) are related to the activation
drop, A and R¢ are related to the ohmic drop, and b, and J, are related
to the concentration drop. Table 4 provides data on the type of pro-
posed algorithms and obtained values for the parameters in the men-
tioned articles.

It should be noted that in Ref. [45] ten parameters of a new semi-
empirical model, which is based on [43] with an additional cathode
inlet pressure actor, are estimated by an AC-POA, but only its common
parameters with other manuscripts is reported in Table 4. The other
manuscripts, which are based on optimization algorithms, have worked
on the models with more dynamic properties [67-73]. A summary of
the methods employed in these papers is given in Table 5.

3.2.2. Electrochemical impedance spectroscopy

Another category of methods, applied in the parameter estimation
of PEMFC models, is the works based on EIS technique. EIS is a fre-
quency-based approach, which has been well established in PEMFC
filed in recent years. The application of this approach covers a wide
range of studies such as temperature and humidity effects, sub-zero
condition, catalyst layer, and so on [74]. Taleb et al. have employed EIS
method to validate a PEMFC fractional order impedance model, which
imparts a good level of physical parameters comprehension. They have
used the EIS data for estimating the parameters of the model by means
of a frequency identification method based on nonlinear optimization.
Subsequently, they have used Taylor series to obtain a third-order
transfer function and applied least square and recursive least square
methods for parameter estimation of the fractional order model. Their
method is applicable in online application although the relationship
between the physical parameters and the online identified parameters
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Table 2
Identification methods characteristics.
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Approach Advantage Disadvantage
Metaheuristic based ® Extracting an acceptable model regardless of the number of ® High computational burden
parameters ® No online implementation reported
® Revealing the defects of the device

EIS based - Suitable for different parts modeling and diagnosis objectives - Expensive and time-consuming
- Parameters are solely valid in the vicinity of the tested points
- Ambiguous relation between the estimated and real parameter in fractional

models
Black box based ® Accurate output No physical interpretation

® Online applicability

Recursive filter based - Matched with semi-empirical models
- Providing good internal insight
- Appropriate for online applications

Demanding training process

Unreliable in new conditions

Choice of filter is very sensitive
Challenging Initialization and customization

remains ambiguous [75]. In Ref. [76], a comparative study is conducted
for three cases of Dicks-Larminie dynamic model, EIS model, and
equivalent circuit model. The parameter estimation is performed with
the help of least square and recursive least square methods for the load
resistances of the electrical equivalent circuit model and the impedance
of Dicks-Larminie and EIS models. It is concluded that both EIS and
electrical equivalent circuit model offer better precision than the Dicks-
Larminie dynamic model. However, they cannot be applied in vehicular
applications due to their level of complexities and computational time.
In Ref. [77], the EIS technique is utilized to obtain the impedance
model and frequency identification methods are used to estimate the
fractional order transfer function impedance model's parameters. In this
regard, least square methods, as a time domain approach, estimate the
initial values for coefficients of the derivation operators and a nonlinear
optimization, as a frequency domain approach, finalizes the values. In
Ref. [78], the Nyquist and Bode diagrams, computed from EIS, are used
to estimate the PEMFC catalyst layer parameters. In Ref. [79], an
equivalent circuit model of PEMFC, which is based on non-integer de-
rivatives for diffusion modeling, is introduced, and its parameters are
extracted by means of EIS technique.

3.2.3. Black box based identification

The next group of works are premised upon the black box based
identification of PEMFC models. In this regard, some manuscripts are
based on artificial neural networks (ANNs) employment [20-54].
Linear regression technique, which uses gradient descent algorithms for
updating the parameters, is compared with an ANN approach, which
uses Levenberge-Marquardt algorithm for training, to model a 250-W
PEMFC for an electric bicycle application in Ref. [20], and is concluded
that ANN model benefits from more accuracy as well as convenience in
modeling. In Ref. [81], two neural structures of nonlinear auto re-
gressive with exogenous input (NARX) and nonlinear output error
(NOE) are utilized to develop a PEMFC stack voltage model and NARX
is recommended for real time applications while NOE is suggested for
off-line applications. In Ref. [82], radial basis function neural network
is utilized to develop a PEMFC metamodel for the data obtained from
design of experiment approach. In Ref. [§3], Gaussian radial basis
function variable ANN is employed to identify the PEMFC model
parameters online. In Ref. [84], the capabilities of PSO, for global
search, and Levenberg-Marquardt algorithm neural network, for fast

Table 3
Boundaries of the parameters.

convergence around the global optimum, are combined to obtain a
voltage and thermal model for the PEMFC. In Refs. [85,36], nonlinear
autoregressive moving average model with exogenous inputs
(NARMAX) is employed to obtain a temperature model and a voltage
model of PEMFC respectively. In Ref. [85], orthogonal least mean
square is used to obtain the parameters of NARMAX temperature model
first, then the selection is modified by GA. [n Ref. [35], time domain
and frequency domain NARMAX model of PEMFC are compared and
the time domain is preferred. In Refs. [37,88], support vector machine
(SVM) principle is utilized. Mathematical modeling of a laboratory
PEMEFC air supply system is dealt with by a novel Wiener model iden-
tification based on SVM in Ref. [87]. In Ref. [88], SVM is employed to
model a PEMFC for real time and monitoring applications. Fuzzy logic
control (FLC) principle is utilized in Refs. [89,90], in which an adaptive
neuro-fuzzy inference system (ANFIS) is proposed for voltage modeling
of PEMFC in high temperature condition, and an adaptive FLC is used
for adding the control of gas flow to a PEMFC model respectively. In
Ref. [91], a black box approach is compared with a white box one, and
it is concluded that the black box model has higher accuracy. In Ref.
[92], the Volterra and Wiener model methods are utilized to obtain a
linear PEMFC model for vehicular applications. In Ref. [93], the non-
linear black box time series model of [94] and the proposed PEMFC
control approach of [95] are combined to follow the optimum operating
points of the fuel cell.

3.2.4. Recursive filter based methods

Next category of the articles belongs to the application of recursive
filters for estimating the parameters of a PEMFC semi-empirical model.
This category, which had escaped the attentions for many years, seems
to be very interesting for energy management purposes. As previously
mentioned, PEMFC is a very complicated, nonlinear, and multiphysic
device, which is not easy to be comprehensively modeled. Furthermore,
the performance of the PEMFC is influenced on the one hand by its
operating conditions alteration and on the other hand by aging and
degradation. All of the mentioned complexity, dependency, and phe-
nomena widen the gap between the performance of a PEMFC model and
the real device. Proper tuning of a PEMFC model parameters, by means
of parameter identification techniques, can narrow the existed gap in
the modeling to a great extent and integrate the influence of different
factors into the model. Ettihir et al. have proposed the employment of

Parameters g &, x 1077 % 1070 £y x 1078 A Re x 107 b Jmax
[(9)] (V) (Aem™?%)

Maximum -0.80 S 9.8 —0.954 24 8 0.5 1.5

Minimum -1.2 1 3.6 —-2.6 10 1 0.0135 0.5
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Table 4
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Metaheuristic-based algorithms utilized for parameters estimation of the PEMFC model in Refs. [41,13].

Reference Method FC power Parameters
(W)
& £, x 107! £,x 1073 £, x 1074 A Rc x 107 b Jmosx
[44] ABSO 250 -0.9519 3.0850 7.8 -1.880 23 1 0.02789 0.84478
[451 AC-POA 250 -0.8997 2.5468 5.4432 -1.3650 14.206 0.8261 0.01 -
[46] AlS 250 -0.9469 3.0271 7.4944 —1.8845 18.996 6.429 0.02896 0.85279
[47] ARNA-GA 250 -0.8806 2.9451 8.4438 -1.2883 13.4860 1.0068 0.03167 -
[48] BIPOA 250 -0.8016 2.6673 8.1288 -1.2713 13.5158 0.8 0.0324
[449] DE 250 -0.9878 2.6167 3.6 - 1.5694 24 1 0.0355
[50] HABC 250 -0.8540 2.8498 8.3371 - 1.2940 14.2873 1 0.0340
(51} HADE 250 -0.8532 2.8100 8.0920 -1.2870 14.0448 1 0.03353 -
[52] MPSO 250 -0.944 3.0037 7.4 -1.945 23 1 0.0272 0.85228
[53] Simple GA 250 -0.8020 2.9521 6 - 1.5812 13 2.47 0.0261 -
[54] STLBO 250 -0.9520 2.9400 7.8000 —1.8800 23 1 0.0328 -
[55] TLBO-DE 250 -0.8532 2.6432 7.9960 —1.4050 10.0068 1.0498 0.0299 1.15843
[59] TRADE SR-12500 -0.9373 3.465 9.308 —0.954 23.9999 1 0.2375 0.50045
(611 ADE BCS 500 -1.0291 3.6 8.2495 - 2.600 18.6921 7.9 0.0287 1495.40
SR-12 500 -0.8955 2.46 3.9074 -0.954 24 1.1 0.2113 753.05
(h2] GWO BCS 500 -1.018 2.3151 5.24 -1.2815 18.8547 7.5036 0.0136 -
SR-12 500 - 0.9664 2.2833 3.40 -0.954 15.7969 6.6853 0.1804 -
[63) IGHS BCS 500 -1.0098 3.3 6.93 -2.59 21.25 7.6 0.0489 1.41915
SR-12 500 -1.0368 2.9 4.07 -0.954 22.53 2.4 0.2029 0.74453
(65} Rank BCS 500 ~1.0269 3.2749 6.40 -2.60 22.0226 8 0.0138 1.49985
SR-12 500 -0.9987 3.2155 7.09 —-0.954 23.9999 1 0.1861 0.71224
Table 5 experimental test, is utilized to optimize the operating conditions of a
Features of the estimation approaches. one-dimensional analytical model. Although the proposed method of
) this work has shown interesting results, the process of obtaining such
Reference  Method Parameters and Real time . . .
considered areas applicability data to form a map seems to be highly time-consuming. In Refs.
[101,102], two online methods for PEMFC model identification are
(671 Hybrid stochastic 12 parameters. No proposed based on data-driven schemes to be used in model predictive
strategy (PSO + DE)  Activation, Ohmic, control and adaptive control respectively. However, both of the sug-
Concentration . . .
o PSO 5 parameters. No gested methods require data §torage and high memory capacity for
Activation, Ohmic identifying the parameters online. In Ref. [103], least square methods
[64] Evolution strategy 22 parameters. No are employed to fit the parameters of three models, Amphlett [43],
Activation, Ohmic, Larminie-Dicks [4] and Chamberlin-Kim [4], and the obtained models
C°r(‘jcel""a“°“’ Thermal have been compared regarding their levels of accuracy. In Ref. [104],
[70) Quantum-based ?g;amexers_ Ves current change technique is proposed to estimate the parameters of an
optimization Activation, Ohmic, equivalent circuit PEMFC model, in which waveform measurement
Concentration analysis of current change tests is employed for parameter extraction. In
71 Hybrid optimization 7 parameters. No Ref. [103], static and dynamic modeling of PEMFC based on data
(PSO + Big Bang-Big Activation, Ohmic, P . . . .
Crunch) Concentration measurement.ls 1n.troduct.2d, 11.1 'wh.lch a 51mP1e Matlab curve fitting
72] PSO and DE 5 parameters. No method is utilized for the identification of static model parameters, and
Activation, Ohmic, Pspice Optimizer is used for the dynamic one. In Ref. [20], a dynamic
Concentration model of PEMFC is developed in the gPROMS modeling environment,
Al PSO i‘;?m:‘r‘e‘eg‘h ) No and the parameters are extracted based on experimental data. In Ref.
C;;Z:nll(::;ion me [106], nonlinear least squares based on Lagrangian approach is devel-
oped to estimate the parameters of a one-dimensional PEMFC model.
adaptive recursive least square (RLS) in Refs. [96-93], and square root

unscented Kalman filter (SRUKF) in Ref. [99], to estimate the para-
meters of a semi-empirical model, proposed by Squadrito et al. [42].
They have concluded that the classical power split approaches may
result in mismanagement due to the fact that they are not capable of
tracing the performances alteration arising from aging and operating
condition variations. Their proposed adaptive EMS can meet the power
demand while sustaining the battery state of charge. Moreover, it is
able to track real behavior of the PEMFC and to request a relevant
power. It should be noted that the selected model in these works is
solely a function of PEMFC operating current, and they have proposed
the extension of their work by adding more operating parameters such
as temperature and pressure.

3.2.5. Other methods
There are some other methods that have been utilized in the PEMFC
model identification. In Ref. [100], a parametric table, obtained from
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3.3. Synopsis of the modeling and identification review

In the light of the discussed sections, it can be inferred that the
recursive filter based methods appear to be very fit for online appli-
cations and energy management purposes. This is partly due to the fact
that the semi-empirical PEMFC models, which increase the internal
comprehension about the device, are used with these approaches and
partly due to the fact that they are suitable for applications in which the
desired parameters change over time. However, special attention
should be paid to the choice of filter and its design, in terms of in-
itialization and customization, to achieve satisfactory outcomes. It
should be noted that the thing which makes the recursive based
methods more preferable than black box based methods in this work is
that the former easily enables one to investigate the relevance of the
results (physical meaning), and it also makes the power and efficiency
curve plots really convenient (polarization curve).
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Fig. 3. Test bench and intended methodology representation.

4. Benchmark study

Unlike the aforementioned techniques, this paper presents a com-
parative study of online recursive methods with the purpose of facil-
itating the energy management design. To do so, extended Kalman filter
(EKF) is suggested for the process of parameter identification. To the
best of our knowledge, this is the first attempt to identify the linear and
nonlinear parameters of a PEMFC semi-empirical model online. As
discussed in the preceding section, the recursive filter based methods
are highly appropriate for online applications and global energy man-
agement designs. In this respect, three potential recursive filters (RLS,
Kalman filter, and EKF) are utilized to identify the parameters of two
famous semi-empirical models, in the literature, in this section. Apart
from the fact that the selected PEMFC models are well-known in the
literature, they provide a good opportunity to make a comparison be-
tween a multi-input model (Amphlett et al.) and a single input model
(Squadrito et al.). Fig. 3 represents the experimental test bench utilized
for testing the PEMFC models as well as identification algorithms in this
work. Regarding the test bench, it should be noted that a 500-W air
breathing Horizon PEMFC, described in Table 6, is connected to a Na-
tional Instrument CompactRIO through its controller. A programmable
DC electronic load is used to ask some load profiles from the PEMFC.
According to the manufacturer, the difference between the atmospheric
pressure in the cathode side and the pressure of the PEMFC in the anode
side should be adjusted to about 50.6 kPa. The pressure in the anode

Table 6
PEMFC characteristics.

PEMFC Technical specification

Type of FC PEM

Number of cells 36

Active area 52cm?

Rated Power 500 W

Rated performance 22V @ 235A

Max Current 42 A

Hydrogen pressure 50-60 kPa (0.5-0.6 Bar)
Rated H, consumption 7 1/min

Ambient temperature 51030°C

Max stack temperature 65°C

Cooling Air (integrated cooling fan)
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side is set to 55.7 kPa. The measured data (temperature, voltage, cur-
rent) from the real PEMFC is transferred to the PC, by means of the
CompactRIO, to be used in the selected model for identification process.
Concerning the energy management, it is worth reminding that this
paper only deals with the implementation of the models and algorithms
to pave the way towards designing an EMS. As an example of in-
formation extraction, the real maximum power of the PEMFC is ob-
tained at each moment, in this work. Therefore, a power split strategy
can be easily added to this work in future to benefit from a global en-
ergy management.

4.1. PEMFC models introduction

The general formulation of the electrochemical PEMFC model pro-
posed by Amphlett et al. [41,43], which is for a number of cells con-
nected in series, is as follows. This model takes several operating con-
ditions into account, as it is seen in (1-5) and opens up a good
opportunity to compare the effect of linear and nonlinear parameter
identification due to its structure in the concentration loss calculation.

Vic = N (Bnerst + Vaa + Vormic + Vion) (1)
Enernst = 1.229 — 0.85 x 1073(T — 298.15) + 4.3085
X 10’5T|ln(PH2) + Osln(Poz)J (2)
Vo =& + & T + £, TIn(COy) + &, Tin (i)
— _Fo2 i
CO: = 3% 10% exp(—494 / T) (3)
Vormie = —iRinteraat = _i(gl + ng + g;i) 4)
Vien = Bln[l - L]
max (5)

Where V¢ is the output voltage (V), N is the number of cells, Eyerns is
the reversible cell potential (V), V., is the activation loss (V), Vo is
the ohmic loss (V), V,,, is the concentration loss (V), T is the stack
temperature (K), Py, is the hydrogen partial pressure in anode side
(Nm™2), By, is the oxygen partial pressure in cathode side (Nm™2),
£, (n=1..4) are the semi-empirical coefficients based on fluid me-
chanics, thermodynamics, and electrochemistry, CO; is the oxygen
concentration (mol cm~3), i is the PEMFC operating current (A), Rinernal
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Table 7
Targeted parameters for estimation.

Algorithm PEMFC model Parameters vector
RLS and Kalman filter Amphlett et al. & & & & & G & B)
RLS and Kalman filter Squadrito et al. [Vo. b, Rinernat. @l

EKF Amphlett et at.

6 6 & & G & G B Jmadd

is the internal resistor (), ¢, (n = 1...3) are the parametric coefficients,
B is a parametric coefficient (V), J is the actual current density
(Acm~2), and J,, is the maximum current density (A cm~2),

It should be noted that the utilized ohmic loss calculation is based
on the formula introduced in Ref. [43] rather than [41], because it is a
more general formula, which can be used for different commercial fuel
cells like Horizon, and more importantly it does not need any specific
data like thickness and active area of membrane, which are only
available for a limited number of fuel cells. The electrochemical PEMFC
model suggested by Squadrito et al. {42] is presented below.

Viec = N[V — blog(J) — Rimernar J + aJ° In(1 — BJ)] )

Where N is the number of cells, Ve is output voltage (V), V, is the
reversible cell potential (V), b is the Tafel slope, J is actual current
density (Acm™2), Ripemar is cell resistance (Q), a is a semi-empirical
parameter related to the diffusion mechanism, o (between 1 and 4) is a
dimensionless number which is related to the water flooding phe-
nomena, and B is the inverse of the limiting current density (cm* A™Y).
I'able 7 presents the parameters to be identified by the recursive al-
gorithms. Indeed, the increased number of parameters bring more ac-
curacy about at the cost of increasing the computational time. However,
the utilized methods in this paper have no problem in this regard due to
the fact that the identifiable parameters are linear in structure, except
in one case which is dealt with EKF. It should be noted that the para-
meter Jya, which is not linear in the structure and assumed to be
constant in most of the previous articles, is estimated online by EKF to
draw an analogy between the linear and nonlinear parameters estima-
tion methods. This parameter changes over time due to the influence of
degradation and is highly sensitive regarding voltage and polarization
curve estimation, as reported in Ref. [107].

4.1.1. Resistor measurement

So as to check the appropriateness of the parameter identification
process and relevance of the obtained values with the physical
meaning, some clues about the real values of the device are required.
Regarding the Ampbhlett et al. model, the range of all the parameters is
available according to the reported values in Table 3. However, as ex-
plained in the previous section, the employed resistor formulation in
this paper is different with the demonstrated resistor parameters of
lable 3 due to the fact that specific information about membrane type
of the 500-W commercial air-breathing Horizon fuel cell is not acces-
sible. Thus, in this paper, the current interrupt method, which is a well-
known electrochemical technique [108-111], is used to measure the
evolution of resistor with respect to the temperature and current. This
measurement clarifies the range of the resistor for the whole stack and
is a helpful tool to check the accuracy of the achieved results by both
PEMFC models. The effectiveness of utilizing current interrupt method
for measuring the ohmic resistor has been already proved in Ref. [111].
The principle behind the current interrupt method is that ohmic losses
fade almost immediately after current interruption, and activation
losses decrease to the open circuit voltage at a strikingly slower pace.
Thus, rapid acquisition of the measured voltage is essential for splitting
the ohmic from activation loss. The advantages of current interrupt
method to other electrochemical techniques is that data analysis is
highly straightforward. However, one of the difficulty of this method is
the determination of the exact point in which the voltage jumps and a
fast oscilloscope is in demand to solve this issue. [n this paper, the
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Table 8
Current levels and PEMFC stack temperature during ohmic
measurement.
Current (A) Temperature (K)
3 297.55
6 297.95
9 299.55
12 300.45
15 301.95
18 304.15
21 306.35
24 309.95
26 312,15

procedure for performing the current interrupt test is strictly according
to [111]. Table 8 presents the various stack temperature and currents
while conducting the test. It should be noted that the stack has been
given enough time to achieve a stable temperature at each current level
before conducting the current interrupt measurement, and all the
measurements have been performed for the forced convection condi-
tion.

Fig. 4 indicates the result of resistor measurement. Fig. 4a shows the
evolution of the PEMFC resistor with respect to the increase of current,
and Fig. 4b presents the temperature related evolution. These results
are obtained from the conducted current interrupt test. The main pur-
pose of conducting current interrupt test is to realize the variation range
in the value of resistor for the employed 500-W PEMFC and utilize this
range as a tool to check the evolution of the resistor in the PEMFC
model.

4.2. Recursive filters

As previously mentioned, the parameters of a PEMFC model are
time-varying since the device is affected by degradation and operating
conditions. The focus of this section is to introduce three recursive al-
gorithms. These algorithms are utilized for online identification of the
parameters, and they are independent of saving data because they
benefit from recursive structures, in which new measurement data can
be analyzed as they arrive. RLS and Kalman filter are utilized to esti-
mate the parameters, which are linear in the structure, while EKF is
utilized to estimate linear and nonlinear parameters.

4.2.1. Recursive least square

RLS algorithm is premised upon the concept of minimizing the error
related to input signal. RLS gives excellent performance when operating
in time varying conditions. The enhanced performance is achieved at
the cost of increased computational cost and some stability problems.
The structure of the employed RLS in this work is as follows:

() =060t — 1)+ k(te() )
k() = T 'p(t — DP(1)
(1 + ™97 ()p(t — D)) (8
p(O) =TWpt - 1) = TO k" (Op(t — 1) + bl (9
r=w- q>"'m;u_\-P'u¢I}>" if TPt — 1ty > 0
ro=u if gT(Op(t — D) =0 (10)
e()=u(t) — " WOU-1) 11

Where ¢ denotes discrete time, 8(¢) is the parameter vector, k(1) is the
gain vector, e () is the error, (1) is the directional forgetting factor, ¢ (1)
is the regression vector, p(t) is the covariance matrix, b is a nonnegative
scalar, which increases covariance matrix and prevents estimation
faults due to big changes, I is the identity matrix, ¥ is the forgetting
factor (0 < W< 1), and u(z) is the measured output, which is obtained
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Fig. 4. Resistor alteration with respect to current
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from the test bench. The parameters vector of each model (8(1)) has Ht) = Sh(t, x)
been already shown in Table 7 and the corresponded regression vector T Bx ) (22)
of each model is defined as below.
Z(t) = f(, x(t — 1)) (State estimate propagation) (23)
¢() = [1, T, Tin(COy), Tin(i), —i, —iT, —i?,
P()=FQlt — P — DFT{lt - 1)
ln[l _ JJ ]] (Amphlett et al. model) + Q(t — 1) (Error covariance propagation) (24)
max (]2) r
G(t) = POHT(OIHW@WPHT(1) + R(D]™' (Kalman gain matrix)
@) =11, log(J), —J, J7In(1 — BJ)] (Squadrito et al. model) (13) (25)
() = x() + G()y(t) = h(t, x(1)) (State estimate update) 26)
4.2.2. Kalman filter @) =%£®+ COyW) P (
Kalman filter is considered as an optimal estimator and it can con- P(t) = (I = G()H (1))P(t) (Error covariance update) 27)

clude the parameters of interest from imprecise and uncertain ob-
servations. This filter estimates the current state variables firstly and
then updates them when the next measurement is received. The
structure of Kalman filter is as follows:

{x(l + D= F@+ 1UDx) + w(t) (State—space model)

y(t)y = HOx (@) + v(t) (14)
X(1) = F(tlt = 1)x (1 — 1) (Stale estimate propagation) (15)
P(t)=F(lt — Pt - DF (-1

+ Q1 — 1) (Error covariance propagation) (16)
G()=PWHTM[HWPWHT(t) + R()|! (Kalman gain matrix)

(17)

() =x()+ GO () — H(1)x(1)) (State estimate update) (18)

P(t)y = — GU)YH ())P(t) (Error covariance update) (19

Where ¢ is the discrete time, x(t) is the state vector, which is unknown
and here it can be called parameters vector as well, X(¢) is the estimate
of the state vector, x(t) denotes priori estimate of the state vector,
F(t + 1it) is the transition matrix, which takes the state vector from
time ¢ to time ¢ + 1, w(t) is the process noise, y(t) is the output, H (¢) is
the measurement matrix, v(t) is the measurement noise, P(t) is the
error covariance matrix, Q(r) is the process noise covariance matrix,
G(t) is the Kalman gain, R(¢) is the measurement noise covariance
matrix, and / is the identity matrix. It should be noted that the state
vector is exactly like the parameter vectors shown in Table 7, the
measurement matrix is the same as (12) and (13), and the transition
matrix is assumed to be an identity matrix.

4.2.3. Extended Kalman filter

The EKF is the nonlinear version of the Kalman filter which line-
arizes the state space model at each time instant with respect to the
latest state estimate. The structure of the EKF is defined as follows:

{x(t + 1) =f(x@)+w()

(State—space model)

(0 = h(t x(©) + (D) 20)

F(t+ 1) = y
X

(VAY)

x=x(1)
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Where, f(¢, x(t)) is a nonlinear transition matrix function, and
h(1, x(1)) is a nonlinear measurement matrix function. The state vector
is already presented in Table 7 for EKF. It should be noted that in this
work, the f(t, x(¢)) is not nonlinear and it is assumed to be an identity
matrix. However, h(1, x(1)) is a nonlinear function and its derivation is
as below.

Vee(D) = N [gl +ET + ETINCO) + £,Tin) - i(¢, + &,T + &)

+ Bln(l - :’n-:,vu)]
X(() = [51: 52: 53: §4v g)r gz' g}v B, erul
@) = 280 = 1,7, TIn(C0), Tin(0), —i, ~iT, =1,

J BJ
n(l - —J), ————
Imax Imax Umax — 1)

(28)

4.3. Results and discussion

The obtained results from the performed comparative study is pre-
sented in this section. All the mentioned algorithms and PEMFC models,
introduced in the previous section, are tested on the presented test
bench in Fig. 4 to assess the performance of the proposed methodology,
in terms of estimating the behavior of the real PEMFC to be used in EMS
designs. In the first stage of the analysis, RLS and Kalman filter algo-
rithms are utilized to estimate the demonstrated parameters in Table 7
for both of the models. This analysis enables one to form a primary
opinion about the accuracy of the models. The entire estimated para-
meters are linear at this stage. Further analyses are performed in the
first stage to compare the results of RLS and Kalman filter. 1n the second
stage of the investigation, the linear and nonlinear parameters of
Amphlett et al. model are estimated, and the results are compared with
the linear estimation of the same model. The aim of this analysis is to
investigate the influence of Jn.y, which is a nonlinear parameter, in the
process of model identification. This parameter is usually considered
constant in the other similar works although it changes over time owing
to the effect of degradation and operating conditions.

Fig. 5a represents the employed current profile to conduct the test.
This current profile varies between the minimum and maximum
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operating current of the utilized 500-W Horizon PEMFC. Figz. 5d shows
the corresponded temperature evolution to the current profile. The
current profile is applied to the PEMFC system and the output voltage of
the real PEMFC is recorded. The current and temperature data as well
as the regulated pressure are concurrently sent to the PEMFC model and
the output voltage of the model is calculated after estimation of the
parameters by the identification methods. It should be noted that the
whole explained process happens online. The estimated output voltage
of the two introduced PEMFC models is compared with the real PEMFC
voltage in Fig. 5b in which the parameters are identified by means of
RLS algorithm, and this estimation seems to be satisfactory for both
models. The relative error estimation of the output voltage by RLS,
shown in Fig. 5¢, also confirms that the both PEMFC models demon-
strate acceptable voltage approximation. The same test, regarding
voltage estimation and relative error, has been done for Kalman filter,
as shown in Fig. 5e and f, respectively. It is observed that both of the
models and algorithms are able to estimate the output voltage with
almost the same accuracy, and that is why further analyses regarding
the performance comparison of models and algorithms are required as
hereinafter provided.

Fig. 6 provides a comparison of the achieved polarization curves by
RLS and Kalman filter for the both discussed PEMFC models. As it is
observed in Fig. 6, regardless of the identification techniques, the ob-
tained polarization curves by Squadrito et al. model are noticeably
different with the reference polarization curve, which belongs to the
real PEMFC. This difference infers that the model proposed by Amphlett
et al. gives more accurate polarization curves and results than Squadrito
et al. model. It also shows that only accurate voltage estimation does
not guaranty that the model benefits from enough precision because the
physical relevance of the results should be investigated through the
polarization curves. Moreover, when an identification technique is
utilized, it tries to minimize the voltage estimation error for one single
point irrespective of how the parameters fluctuate or the system be-
haves. Thus, the employment of another tool like a polarization curve
seems to be vital for the process of PEMFC model parameters
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Fig. 6. Polarization curves comparison for linear cases (R values: Squadrito-RLS: 0.7993,
Squadrito-Kalman: 0.8440, Amphlett-RLS: 0.9001, Amphlett-Kalman: 0.9215).

identification. The difference in the accuracy level of the two models for
polarization curve prediction can be attributable to the difference in the
consideration of operating conditions in the two models, and it sheds
light on the positive influence of including temperature and pressure, in
addition to the current, to the PEMFC model. Another worth discussing
observation apropos of I'ig. 6 is the performance comparison of the two
employed identification algorithms. Looking more closely at the po-
larization curves implies that in the case of using Squadrito et al. model,
which has four parameters to be estimated, RLS and Kalman filter show
to a great extent similar performances. However, in the case of
Amphlett et al. model, which has eight parameters to be estimated for
linear estimation, the Kalman filter seems to outperform RLS to some
extent. The increase in the number of parameters, the original differ-
ence in the structure of Kalman filter and RLS, and the model
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Fig. 7. Comparison of linear and nonlinear identification cases, a) Polarization curves, b)
Power curves (R? values: Kalman: 0.9215, Extended Kalman: 0.9984).

uncertainties can all contribute to make the distinction between the
performance of the RLS and Kalman filter in this particular application.
It should be noted that the R-squared value, which indicates how well
the observed outcomes are replicated by the model, are reported in the
caption of I'iz. 6 for all the combinations to clarify the amount of error.
Fig. 7 presents the results concerning the effectiveness investigation
of estimating the nonlinear parameter, J,.., in addition to the other
parameters for the Ampbhlett et al. model. In this case, since the struc-
ture in one of the targeted parameters for estimation is nonlinear, RLS
and Kalman filter cannot be used for identification process and instead
of them EKF is tested. Fig. 7a compares the obtained polarization curve
by EKF with Kalman filter. As it can be seen in this figure, EKF is
capable of predicting a better polarization curve than the Kalman filter
and its polarization curve is closer to the reference. Fig. 7b shows the
corresponded power curve to each polarization curve. As is clear in this
figure, there is a clear relationship between the starting point of con-
centration region and maximum power of the PEMFC. Obtaining this
maximum power can be considered as an example of the information
extraction step as shown in Fig. 4, and it can be easily integrated into a
power split strategy for a global energy management design of FCVs.
Fig. 8 represents the resistor evolution of the Amphlett et al. model
with different identification methods. As is seen in this figure, the es-
timated resistors by all the identification methods are almost in the
same range as the conducted current interrupt test, shown in Fig. 4,
although the results of EKF and Kalman filter are more accurate than
RLS. It should be reminded that so far it has been observed that
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Fig. 8. Resistor evolution obtained by Amphlett et al. model.
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Table 9
Average values of the activation and concentration parameters.

Method & E,x 1070 Eyx 1070 Egx 0™t B Jmax

RLS —-0.9950  2.1285 2.1881 -1.2379  0.4970  1.2381
Kalman ~ —0.9950  2.1228 2.1264 -1.1337  0.4970  1.2381
EKF -0.9950  2.1300 2.1423 -0.9785 00130  1.6250

employment of the suggested identification techniques results in not
only precise voltage estimation but also accurate polarization curve and
resistor. To put the finishing touches to the validation of the relevance
of the achieved results to the physical meaning of the PEMFC, the
average values of the activation and concentration related parameters
of the Amphlett et al. model are reported in Table 9 for all of the three
identification algorithms. It should be noted that these parameters are
not constant and constantly evolve over time. However, their evolution
range is almost in the same range as Table 3.

4.4. Synopsis of the benchmark study

The benchmark study is composed of a two-stage analysis. In the
first stage, the linear case comes under scrutiny, in which the perfor-
mance of RLS and Kalman filter is examined for each of the models. It is
inferred from the first stage of analysis that Amphlett et al. model re-
latively outperforms Squadrito et al. model. Concerning RLS and
Kalman filter, it is observed that both of them give similar performances
for Squadrito et al. model. However, Kalman filter performs to some
extent better than RLS for the case of Amphlett et al. model. In the
second stage, the performance of EKF for identifying linear and non-
linear parameters of the superior model in the first stage is investigated
and compared with the results of the superior identification technique
in the first stage. It is observed that EKF is capable of improving the
estimation process to a certain extent. It should be noted that in the
estimation process the accuracy of voltage estimation, polarization
curve prediction, and resistor evolution is considered as the means ol
validation.

5. Conclusion

A thorough review of necessary steps from modeling to employing
identification techniques for online energy management design of FCVs
is carried out in this paper. In this respect, firstly, PEMFC modeling
approaches are investigated in which semi-empirical models are singled
out as one the most suitable models for online purposes. Secondly,
PEMFC parameter identification methods, related to the last five years,
are discussed and one of the categories which is highly appropriate for
real time energy management design is selected for further analysis.
Finally, an in-depth comparative study of three potential parameter
identification techniques, RLS, Kalman filter, and EKF, is conducted by
utilizing two renowned semi-empirical PEMFC models. The obtained
results of the benchmark study indicate that in case of linear analysis,
the integration of Kalman filter with the suggested model by Amphlett
et al., which is a multi-input model, has a superior performance com-
pared to other combinations. More importantly, it is observed that the
proposed nonlinear identification method of this work, by means of EKF
and Amphlett et al. model, results in the most precise polarization curve
estimation for the utilized PEMFC.

The results of this paper suggest the following directions for future
researches:

e [ntegrating the introduced model and identification technique into
the energy management design of a FCV, since this work has paved
the way in this direction.

e Integrating a thermal model in addition to the introduced voltage
model of PEMFC to increase the accuracy of polarization curve
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Nomenclature

ABSO Artificial Bee Swarm Algorithm
AC-POA Aging and Challenging P Systems Based Optimization

Algorithm
ADE Adaptive Differential Evolution
AlS Artificial [mmune System-Based

ANFIS  Adaptive neuro-fuzzy inference system

ANN Artificial neural network

ARNA-GA Adaptive RNA Genetic Algorithm

BIPOA  Bio-Inspired P Systems Based Optimization Algorithm
BMO Bird Mating Optimizer

DE Differential Evolution

EIS Electrochemical impedance spectroscopy
EKF Extended Kalman filter

EMS Energy Management Strategy

FCV Fuel Cell Vehicle

FLC Fuzzy logic control

GA Genetic Algorithm

GGHS Grouping-Based Global Harmony Search

GWO Grey Wolf Optimizer

HABC Hybrid Artificial Bee Colony

HADE  Hybrid Adaptive Differential Evolution

IGHS Innovative Global Harmony Search

MPPT Maximum power point tracking

MPSO Modified Particle Swarm Optimization

NARMAX Nonlinear autoregressive moving average model with exo-
genous inputs

NARX Nonlinear auto regressive with exogenous input

NOE Nonlinear output error

PEMFC  Proton exchange membrane fuel cell
P&O Perturbation and observation

PSO Particle Swarm Optimization

Rank-MADE Improved Multi-Strategy Adaptive Differential Evolution
RLS Recursive least square

SOA Seeker Optimization Algorithm

SRUKF  Square root unscented Kalman filter

STLBO  Simplified Teaching-Learning Based Optimization

SVM Support vector machine

TLBO-DE Teaching Learning Based Optimization-Differential Evolution
TRADE Transferred adaptive differential evolution

Symbols

Vee Output voltage (V)

N Number of cells

Envernst Reversible cell potential (V)
Vier Activation loss (V)

Vohmic Ohmic loss (V)

Veon Concentration loss (V)

Baix Maximum power (W)

M Maximum efficiency point (%)

Vinin Minimum voltage (V)

Imax Maximum current (A)

T Stack temperature (K)

Pz Hydrogen partial pressure in anode side (kPa)
Poo Oxygen partial pressure in cathode side (kPa)
CO, Oxygen concentration (mol cm™>)
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PEMFC operating current (A)

Rimernas INternal resistor (£2)

B

J
jma.x
Vo
b

t
k(1)
e(t)
p(t)
¢

T
u(t)
x(t)
x(t)
x (1)

Concentration loss related parametric coefficient (V)
Actual current density (A cm”3?)
Maximum current density (A cm %)
Reversible cell potential (V)

Tafel slope

Discrete time

Kalman gain

Error

Covariance matrix

Nonnegative scalar

Identity matrix

Measured output

State vector

Estimate of the state vector

A priori estimate of the state vector

F (1 + 11t) Transition matrix

wi(t)
Re
y()
H()
v(t)
P(1)
Q)
G()
R(1)

Process noise

Contact resistance to electron conduction
Output

Measurement matrix

Measurement noise

Error covariance matrix

Process noise covariance matrix

Kalman gain

Measurement noise covariance matrix

S (¢, x(¢)) Nonlinear transition matrix function
h(t, x(t)) Nonlinear measurement matrix function
Greek symbols

¢, (n=1..4) Activation loss related semi-empirical coefficients
§,(n =1..3) Ohmic loss related parametric coefficients

a Semi-empirical parameter related to the diffusion mechanism
o) Dimensionless number related to the water flooding phe-
nomena
B Inverse of the limiting current density (cm®> A™1)
6(t) Parameter vector
NG Directional forgetting factor
¢ Regression vector
¥ Forgetting factor
A Water content of the membrane
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3.3 Conclusion

As one of the objectives of this thesis is to deal with the uncertainties arising from the
performance drifts of a PEMFC stack while designing an EMS, this chapter mainly
investigates a suitable model and an online identification technique for estimating the

present-state characteristics of the stack.

In this respect, a thorough review of necessary steps from modeling to employing
identification techniques for online energy management design of FCHEVs is carried out in
this chapter. An in-depth comparative study of three potential parameter identification
techniques, RLS, Kalman filter, and EKF, is conducted by utilizing two renowned semi-
empirical PEMFC models. The obtained results of the benchmark study indicate that in case
of linear analysis, the integration of Kalman filter with the suggested model by Amphlett et.
al, which is a multi-input model, has a superior performance compared to other combinations.
More importantly, it is observed that the proposed nonlinear identification method of this
work, by means of EKF and Ampbhlett et. al model, results in the most precise polarization

curve estimation for the utilized PEMFC.

The obtained results from this chapter confirm the effectiveness of the studied online
modeling procedure. However, as mentioned in the presented paper, the customization and
initialization of the recursive filters have an important role in their accuracy. In this regard,

next chapter will focus on the preparation of these filters for achieving precise estimations.
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Chapter 4 - Customization of recursive filters for
PEMFC online parameters estimation

4.1 Introduction

The conducted benchmark problem in Chapter 3 revealed that the recursive filters are
very suitable for online parameters estimation of a PEMFC stack and KF was selected as one
of the most appropriate filters in this regard. However, one issue that has not been discussed
is the initialization of the PEMFC model parameters and customization of the KF variables.
Inappropriate initialization of the model parameters might lead to misinterpretation of the
physical phenomena. Moreover, it can increase the necessary time to obtain high quality
prediction of the characteristics of the interest. On the other hand, the improper customization
of process and measurement noise covariance matrices can decrease the accuracy of the FC
output voltage estimation. Furthermore, once these matrices are disorganized, they keep
being disorganized and will never be updated in KF process. This disorganization might

prevent the KF from having its best performance

In this respect, this chapter aims at proposing a method for initializing the previously-
discussed model parameters and recursive filters. One of the most common methods to
perform this initialization and customization is to tune the necessary parameters offline by
metaheuristic optimization algorithms before employing KF or other recursive filters in the
online parameter’s estimation process. Metaheuristic optimization algorithms have been the
focus of many studies due to their robustness, flexibility, and parallel computing for
extracting the linear and nonlinear parameters of a PEMFC model. These methods are

utilized as an alternative to conventional derivative-based techniques.
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So far, no optimization algorithm has been proved to be the most proper and accordingly
there is always this necessity to evaluate the performance of any newly developed
optimization methods for exploring the optimal solution of a specific problem under
attention. In this regard, this chapter first goes through the details of tuning the parameters of
a PEMFC model offline using metaheuristic algorithms by presenting an article entitled
“’Benchmark of Proton Exchange Membrane Fuel Cell Parameters Extraction with
Metaheuristic Optimization Algorithms*’. This article proposes a trustworthy optimization
algorithm for the offline initialization and customization. Subsequently, the effect of
initializing the parameters of the PEMFC model and KF variables in the online estimation
process is thoroughly investigated by using the selected algorithm in the article. Finally, a

conclusion is given.
4.2 Article 3: Benchmark of proton exchange membrane fuel cell parameters
extraction with metaheuristic optimization algorithms
Authors: M. Kandidayeni, A. Macias, A. Khalatbarisoltani, L. Boulon, and S. Kelouwani
Journal: Elsevier Energy (Volume and Page number: 183: 912-925)
Publication date: [5/September/2019

DOI: https://doi.org/10.1016/j.energy.2019.06.152
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4.2.1 Methodology

This chapter utilizes three algorithms, namely shuffled frog-leaping algorithm (SFLA),
firefly optimization algorithm (FOA), and imperialist competitive algorithm (ICA) for the
PEMFC model calibration. In this regard, firstly, the algorithms are employed to find the
parameters of a benchmark PEMFC model by minimizing the sum of squared errors (SSE)
between the measured and estimated voltage for two available case studies in the literature.
After conducting 100 independent runs, the algorithms are compared in terms of the best and
the worst SSEs, the variance, and standard deviation. The most performant algorithm in terms
of precision and repeatability is selected based on these analyses and, finally, it will be used
to calibrate the model for a new case study (Horizon 500-W PEMFC) with variable
temperature. Figure 4.1 represents the general process of utilizing an optimization algorithm

for the parameter extraction of a PEMFC.

PEMFC Parameters Estimation Process | _/)
ﬂgm

Metaheuristic optimization Algorithm ﬂ
Initialization MATT AR
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Figure 4.1 The process of PEMFC model parameters estimation and validation by
using metaheuristic optimization algorithms.
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4.2.2  Synopsis of the results analysis

The results obtained from the first two case studies indicate that SFLA marginally
outperforms ICA and FOA regarding the best SSE while it performs 20% and twofold better
than other algorithms concerning the worst SSE. Furthermore, the obtained variance and
standard deviation by SFLA are much less than the other algorithms showing the precision
and repeatability of this algorithm. [t should be noted that the performance of the three
optimization algorithms of this paper has been compared to other available optimizers in the
literature and realized that the slap swarm optimizer (SSO) performs batter than ICA and
FOA while SFLA has the best performance among all of them. In this respect, SFLA
algorithm 1s selected to be used for the optimization of the 500-W Horizon PEMFC, which
is a new case study introduced in this work. It should be noted that this selection has been
made based on the defined comparison criteria and utilized controlling parameters and it does
not mean that the other two introduced algorithms are not suitable for parameters estimation
of a PEMFC model. In fact, all the three algorithms are able to predict the PEMFC
polarization curve with good accuracy. However, SFLA shows more robustness than the

others do in the investigated cases.

Regarding the third case study, the data have been collected from an experimental test
bench developed in Hydrogen Research Institute of University of Quebec in Trois-Rivieres.
Figure 4.2a shows the obtained results by the SFLA to extract the parameters of the PEMFC
model for predicting the polarization curve. The minimization trend of the fitness function is
represented in Figure 4.2b. It can be seen that the stable value is achieved after almost 10
iterations. The comparison of the estimated and reference curve v shows the satisfying

performance of SFLA.
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ABSTRACT

Proton exchange membrane fuel cetl (PEMFC) models are multivariate with different nonlinear elements
which should be identified accurately to assure dependable modeling. Metaheuristic algorithms are
perfect candidates for this purpose since they do an informed search for finding the parameters. This
paper utilizes three algorithms, namely shuffled frog-leaping algorithm (SFLA), firefly optimization al-
gorithm (FOA), and imperialist competitive algorithm (ICA) for the PEMFC model calibration. In this
regard, firstly, the algorithms are employed to find the parameters of a benchmark PEMFC model by
minimizing the sum of squared errors (SSE) between the measured and estimated voltage for two
available case studies in the literature. After conducting 100 independent runs, the algorithms are
compared in terms of the best and the worst SSEs, the variance, and standard deviation. This comparison
indicates that SFLA marginally outperforms ICA and FOA regarding the best SSE in both cases while it
performs 20% and twofold better than other algorithms concerning the worst SSE. Furthermore, the
obtained variance and standard deviation by SFLA are much less than the other algorithms showing the
precision and repeatability of this method. Finally, SFLA is used to calibrate the model for a new case
study (Horizon 500-W PEMFC) with variable temperature.

1. Introduction

Exhaustion of fossil fuels, owing to the growth of energy con-
sumption, and the gained public insights into environmental pro-
tection have turned the attentions of both individual and
governmental sectors to alternative sources of energy [!]. As a
result, many researchers have been engrossed by greener energy
sources such as wind, solar, waves, and so forth [2]. The major
problems with the stated sources are their unforeseeable nature
and reliance on climate conditions. These pitfalls, on the other
hand, have marked the paramount need of energy storage.
Hydrogen, which is the trending topic nowadays, can operate as an
energy storage medium to efficiently store renewable energy until
an energy conversion device turns it into electricity [3]. Fuel cell
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Rivieres, Québec, G9A 5H7. Canada.
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(FC)is one of the most significant conversion devices, which usually
produces electricity through a chemical reaction between
hydrogen and oxygen. Among different kinds of FCs, proton ex-
change membrane FC (PEMFC) has been used in a number of areas
such as automotive, on-site generation, and portable electronic
devices because of its low operating temperature, high power
density, and solid electrolyte [4,5].

One of the key issues in the technical maturity of PEMFCs is their
mathematical modeling. Modeling can disclose more details about
the operation of this device resulting in a better appreciation of the
performance enhancement [6,7]. One of the most important chal-
lenges through the process of modeling a PEMFC is the precise
estimation of its characteristics |8]. This difficulty is mainly owing
to the fact that PEMFC is a multiphysics system and its parameters
are strictly related to the operating conditions [ 11]. Although
there are many approaches for the PEMFC modeling, such as
mechanistic and black-box | 12], mathematical modeling based on
semi-empirical equations have been given a lot of attentions due to
their capabilities to mimic the behavior of this device in variant
operating conditions [13]. Unlike the mechanistic models, which
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offer deep apprehension of the underlying phenomena, and black
box models, which provide shallow insight into heat and mass
phenomena, semi-empirical models attempt to illuminate the
electrochemical behavior of a FC by imitating the polarization curve
[ 14]. So far, several semi-empirical models have been proposed to
predict the polarization curve [15,16]. Among them, the model
introduced by Amphlett et al. [ 17|, which is a semi-empirical model
supported by a mechanistic background, has been used in many
studies and its parameters estimation has become a benchmark
problem in this field [ [8]. A number of similar suggested models in
the literature can result in a satisfactory prediction for a particular
FC system. However, few of them have had these wide applications.
The topical issue related to this model and modeling approach is
the inaccessibility of the exact parameters. Hence, the proper
calibration of model parameters has a vital role in achieving ac-
curate output. Several methods, such as artificial neural networks,
adaptive filters, and experimental electrochemical approaches,
have been used for modeling and parameter extraction of PEMFCs
as described completely in Ref. [19]. Among them, metaheuristic
optimization algorithms have been the focus of many studies for
offline identification due to their robustness, flexibility, and parallel
computing for extracting the linear and nonlinear parameters of a
PEMFC model [20—22]. These methods are utilized as an alternative
to conventional derivative-based techniques. They are quite
appropriate for global searches due to their potential at exploration
and discovering promising domains in the defined search space at a
particular time. The majority of the metaheuristic optimization
techniques are nature-inspired. Although they offer near optimal
rather than optimal solutions, they do not need the cost function
derivatives and/or constraints and employ deterministic rules to
solve nonlinear and nonconvex problems [23]. Another worth
noting applicability of parameter extraction by metaheuristic al-
gorithms is that the obtained set of parameters by these algorithms
can be used as initial values for online adaptive filter based
parameter identification to enhance the performance of the filter
[19,24]. This stems from the fact that the performance of adaptive
filters is very sensitive to the initialization stage, and they do not
have the same exploration capability as metaheuristic algorithms
to find the suitable parameters | 25]. A comprehensive review of the
utilized optimization algorithms in the parameter estimation of
semi-empirical PEMFC models can be found in Ref. [25]. Table 1 lists
some of the recently utilized algorithms along with the PEMFC case
studies.

The literature study evidently demonstrates the application and
significance of metaheuristic algorithms in the PEMFC parameter
estimation problem. So far, no optimization algorithm has been
proved to be the most proper and accordingly there is always this
necessity to evaluate the performance of any newly developed
optimization methods for exploring the optimal solution of a spe-
cific problem under attention.

This paper aims at investigating the performance of three
metaheuristic algorithms, namely shuffled frog-leaping algorithm
(SFLA), firefly optimization algorithm (FOA), and imperialist
competitive algorithm (ICA), in the parameters estimation bench-
mark of the PEMFC model proposed by Amphlett et al. These al-
gorithms have been used in several engineering problems.
However, to the best of the authors’ knowledge, this is the first
attempt to identify the parameters of a FC system by means of the
mentioned algorithms. Herein, the stated algorithms are exploited
to estimate the Amphlett’'s model parameters for the experimental
data of NedStack PS6 (6 kW), and BCS 500-W PEM generator, which
are available in the literature, and Horizon 500-W open cathode
PEMEFEC, which is accessible on a developed test bench for this work.
The performance of the algorithms has been compared with one
another for a defined fitness function over 100 independent runs to

investigate the accuracy and probability of repeating the satisfying
solution. It should be noted that the introduced algorithms per-
formance has been also compared with very recent used optimizers
in PEMFC modeling, such as SSO, GHO, and GWO, for the common
case studies.

The remainder of this paper is structured as follows. A general
description of the benchmark PEFMC modeling problem is pro-
vided in section 2. The explanation of algorithms is presented in
section 3. Section 4 deals with the investigation of the obtained
results regarding the comparison of the algorithms and the PEMFC
case studies. Finally, the conclusion is given in section 5.

2. Mathematical PEMFC stack modeling

The steady-state behavior of the PEMFC has been modeled by
means of an electrochemical model proposed by Amphlett et al. in
Refs. [17,44]. In this model, the output voltage of the PEMFC (Vi) is
considered as the sum of cell reversible voltage (Enems ) and three
voltage losses, namely activation (V. ), ohmic (Vgum ). and con-
centration (Vc,,). This model is for a number of cells (Ny) con-
nected in series and considers the same behavior for all the cells.
The general formulation of the utilized electrochemical model is as
follows:

VFC = Ncell(ENernsr - VAct - Vohmic — Veon) (1)

where the Nernst equation, which calculates the thermodynamic
potential, is formulated based on [28,44]:

Enernst = 1.229 — 0.85 x 1073 (Tyrqex — 298.15) + 4.3085
x 107 Ty [IN(Pr2) + 0.51n(Poy)| (2)

where T is the stack temperature (K), Py is the hydrogen partial
pressure in anode side (atm), and Py, is the oxygen partial pressure
in cathode side (atm).

The reactant partial pressures in the inlet flow channels will
vary with the humidification level of the inlet streams, and the
consumption rates of oxygen and hydrogen [17,44]. Under such
basis, if the utilized reactants are air and Hydrogen, which is the
case in this work and the majority of the utilized PEMFC systems,

Pg; can be calculated as [27-29,33,34,38]:
0.79 0.291(Igc /A) .
Poy =Pc — (RHC ,.?;O) : O?POZ exp (Tﬁ) (air and H,)
’ stack

(3)

If the reactants are Oxygen and Hydrogen, then Py, is obtained
as [27-29,33,34,38]:

=1
4.192(Ic/A)\  RHc Pitly
&R 71334 A

stack

Por =RH¢ Pf_?zto

- 1] (0, and Hy) (4)

In both cases, the Py, is given by Refs. [27—-29,33,34,43]:
-1
1.635(Igc/A))  RHCPHY
(exp( e/ )) ] -
Tstack a
(5)

where RH¢ and RH, are relative humidity of vapor in electrodes, P
and P, are the cathode and anode inlet partial pressures (atm), Igc is

P2 = 0.5 RHaPi,
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Table 1
The studied metaheuristic algorithms for PEMFC parameters extraction.
Optimization Algorithm Case study Year Reference
Eagle strategy A PEMFC stack [2/] 2019 [258]
Cuckoo search algorithm with explosion operator (CS-EQ) A PEMFC stack [2/] 2019 [24]
SR-12 500 W
Ballard Mark V (1 cell)
BCS 500 W
Slap swarm optimizer (S50) NedStack PS6 2018 [30]
BCS 500 W
Grasshopper optimization (GHO) Ballard Mark V (1 cell) 2018 (B
SR-12 500 W
250-W PEMFC
Grey wolf optimizer (GWO) 250-W PEMFC 2017 (32]
Ballard V 5 kW
SR-12 500 W
BCS 500 W
Temasek 1 kW
Aging and challenging P systems based optimization algorithm (AC-POA) 250-W PEMFC 2016 [33]
Hybrid teaching learning based optimization — differential evolution (TLBO—DE) 250-W PEMFC 2016 |34]
Generalized reduced gradient (GRG) A single cell 2016 |35]
Hybrid adaptive differential evolution algorithm (HADE} 250-W PEMFC 2015 [35]
Evolutionary strategy 1.2-kW Nexa 2015 [37]
Genetic algorithm (GA) 250-W PEMFC 2015 [338,39]
Transferred adaptive differential evolution (TRADE) Ballard v 5 kW 2015 [45]
SR-12 500 W
BCS 500 W
Temasek 1 kW
WNS-FC
Simplified teaching-learning based optimization algorithm (STLBO) 250-W PEMFC 2014 {41]
Multi-strategy adaptive differential evolution {rank-Made) Ballard Vv 5 kW 2014 [42]
SR-12 500 W
BCS 500 W
Temasek 1 kW
WNS-FC
Adaptive differential evolution algorithm (ADE) Ballard V 5 kW 2014 [BE]
SR-12 500 W
BCS 500W

the PEMFC operating current (A), A is the active area of the mem-
brane (cm?), and Pﬁ‘z‘o is the saturation water pressure (atm). The
saturation vapor pressure at the FC operating temperature can be
defined as [27,45]:

logw(Pi,“;O) =2.95 x 1072(Tyqex — 273.15) — 9.18

b 10_5(Tstack - 273.15)? +1.44 x 107" (Tstaex — 273‘]5)3
- 2.18
(6)

The activation loss is the overpotential required to activate the
electrodes. This loss is dominant in low current density region and
is calculated by:

Vace = =161 + E2Tstack + E3Tstack IN(C02) + &4 Typqerdn(ec)|
Coy — [ Poy/5.08 ) x 108 -498
0, ( 0/ > X exp( /Tsmck>

(7)

where Co, is the oxygen concentration (molcm~3), and
Zr(k=1...4) are the semi-empirical coefficients based on theoret-
ical equations with kinetic, thermodynamic, and electrochemical
foundations | 17]. These parameters have been already defined in
the literature [17,44,46G] by solving the Butler-Volmer equation,
which is a thermodynamics relation based on transfer coefficient,
exchange current density, universal gas constant, Faraday constant,
and number of electrons transferred due to reaction, etc., for both of

anode and cathode reaction sides. The ohmic voltage drop, which is
the consequence of resistance to the electrons transfer through the
collecting plates and carbon electrodes and the resistance to the
protons transfer through the solid membrane, is calculated by a
general expression based on the equivalent resistance of the
membrane [44];

Vonmic = Irc(Rm + R¢)
Ro = p 1A

2
181.6 {1 +0.03()) + 0.062 (Tsmckﬁog,) U)z.s} (8)

- [ — 0643 — 3U)]exp<4.]8<M>>

stack

where R, is the membrane resistance (Q), Rc is the equivalent
contact resistance to electron conduction (), p,, is the resistivity of
the membrane (Q.cm), { is the membrane thickness, J is the actual
current density (A cm~2), and 4 is an adjustable parameter related
to the water content of the membrane. R is usually considered as
constant. However, A is an adaptable parameter related to the
membrane and its preparation process. It is a function of relative
humidity and stoichiometry relation of the anode gas. As reported
in Refs. [28,36,38,40,41,47], its value ranges from 10 to 23 where
lower values signify high relative humidity ratio and higher values
indicate oversaturated conditions.

The concentration voltage drop is indeed due to the mass
transport which influences the concentrations of hydrogen and
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oxygen and, as a result, reduces the partial pressure of these gases.
Oxygen and hydrogen pressures drop relies on the electrical cur-
rent and the physical characteristics of the system. To determine an
equation for this drop, a maximum current density is defined based
on which the current density cannot surpass this limit since the fuel
cannot be provided at a higher rate. V,, is determined by:

Veor = = B10(Jnox =1, ) (9)

where ( is a parametric coefficient (V) that depends on the cell and
its operation state [43], and Jimgx is the maximum current density.
The parameters which need to be extracted in the discussed steady-
state model are listed in Table 2. This table also clarifies the
maximum and minimum range of each parameter.

3. Metaheuristic optimization algorithms

Constrained optimization is a vital part of most of the engi-
neering and industrial problems [49|. In this type of problem, the
mathematical optimization is defined by different kinds of con-
straints which modify the form of the search space. The meta-
heuristic optimization techniques are usually used to find global or
near-global answers in such problems. In this work, SFLA, ICA, and
FOA algorithms are used in PEMFC parameter extraction. This is a
new application for these algorithms. They have shown satisfactory
performance in other engineering problems. Therefore, it is
worthwhile to use them in PEMFC modeling, which is a highly
nonlinear problem. The performance of these algorithms is
assessed based on a defined fitness function for 100 independent
runs to show their robustness.

3.1. Fitness function definition

The optimization problem is normally defined by introducing a
fitness function as the objective of minimization, the decision
variables as the targeted parameters of estimation, and the search
space formed by the upper and lower limits of each decision vari-
able. The optimization algorithms use the fitness function to direct
the population towards better solutions. The main goal of the
fitness function definition, based on which all the algorithms are
compared, is to extract the steady-state model parameters by
minimizing the sum of squared errors (SSE) between the output
voltage of each PEMFC stack and the estimated voltage by the
model. The main reason for defining such fitness function is that it
is commonly used in the literature [26] and makes the results of
this work comparable to the existing optimizers in other manu-
scripts. This fitness function can be formulated by:

min

N
. S\ 2
Sfeady — State (VFC.meas(’) - VFC.es((l))
params. i=1
Skomin < &k < &k max(k=1...4) (10)
Re. min < Re < Remax
/)\min = x (_‘/ x max

B min < 8 < B max

where Vi meqs 15 the measured output voltage, Vic e, is the esti-
mated output voltage by the model, and N is the number of sample
data. The suitability of the estimated parameters value is scruti-
nized by testing the described PEMFC models in MATLAB software.
It should be noted that selecting appropriate initial values for the
parameters has a significant role in the quality of the estimation
process. In this work, the fitness function is exposed to practical
inequality constraints defined by the upper and lower bounds.

3.2. Shuffled frog-leaping algorithm

SFLA is considered as a memetic metaheuristic method put
forward to find a global optimal answer by conducting an informed
search [50]. It integrates the virtue of particle swarm optimization
local search into the idea of combining the information from par-
allel local searches to a global solution. The population in SFLA is
composed of a number of frogs/solutions, which are divided into
some subsets known as memeplexes. Each memeplexe is the
representative of a group of frogs performing a local search. Each
individual frog inside of a memeplexe has an idea affected by the
ideas of other individuals. This idea is improved through a memetic
evolution. After a specific number of steps, ideas are shared among
the memeplexes by means of a shuffling process. The process of
shuffling as well as the local search are sustained until the expected
convergence criteria are satisfied. Fig. 1 shows the flowchart of the
SFLA. According to this flowchart, an initial population is first
generated randomly (P) within the search space. In multidimen-
sional problems, each frog i is defined by S variables as X; = (x;;,X;,.
....X;s). The frogs are then put in a descending order with respect to
their achieved fitness values. After that the whole population is
partitioned into m memeplexes, where each one includes n frogs
(P = m x n). Each frog is placed into its corresponded memeplex,
i.e. the first frog in the first memeplex, the second frog in the sec-
ond memeplex, and the mth frog in the mth memeplex. The frog
m+ 1 is sent back to the first memeplex again, and this continues
until each frog finds a place in each memeplex. Inside each mem-
eplex, the individual frogs with the best X, worst Xy, and global
best X, finesses are determined and only the one with the worst
fitness is improved as follows:

Table 2
Range of targeted parameters for estimation.
Model Parameters Minimum Maximum Reference
Semi-empirical £ -1.1997 —0.8532 [28-30,32,74,36,38,40,41
Z % 1073 1 5
Zyx 1077 3.6 9.8
Z4%x 1077 -26 -9.54
Rc ()% 1074 1 8
A 10 23
8 (V) 0.0136 0.5
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Fig. 1. SFLA flowchart.

D; = randn(Xy, — Xw) (11)

Xw,new = Xw.present + Dj( — Dmax < D; < Diax) (12)
where D; is the frog position change, rnd is a random number be-
tween 0 and 1, X new is the new position of the frog with the worst
fitness inside the feasible space, Xuw.presen: is the current position of
the frog with the worst fitness, and Dpqy is the maximum possible
variation in the position of a frog. It should be noted that if the
formulated evolution results in a better solution, it replaces the
worst solution. Otherwise, equations ( 11) and (12) are repeated for
the case that X, is replaced by X;. In case of observing no
improvement in the solution after trying the two mentioned sce-
narios, a new random solution is generated instead of the frog with
the worst solution. The calculation is then continued for a particular
number of iterations. The principal parameters of the SFLA are the
population or the number of frogs, number of memeplexes, and
maximum iteration for each memeplexe.

3.3. Imperialist competitive algorithm

ICA is an imperialistic inspired method which has been suc-
cessfully implemented in different engineering problems [51,52].

" Start

The flowchart of this algorithm is shown in Fig. 2. This algorithm
commences by generating some random solutions, known as
countries containing the optimization problem variables (p1,p2, ..
PN, »» in the search space. Nyqr is the dimension of the problem. The
initial countries are then divided into two classes of impertalist and
colony according to their power which is determined by the
defined cost function of the optimization problem.

Country = [py,pa.....PN,,] (13)

Cost = f(P1,p2. ... PN, ) (14)

The primary empires are established by distributing the colonies
among the imperialists. The colonies are divided among the im-
perialists proportionally by:

Cn = ¢n — max{c} (15)
Nimp

Pn = Cn/zci‘ (16)
i=1

No[
¥ Is there an empire -,' Yes
|  Empires with no colony 1 : T S—
| initialization | Ea x Remove the
. v , ‘ Calculate the TC, and run spie
| Colonies assimilation | imperialistic competition : L 2
and revolution N + No/ Is Convergence
¥ Exchange their positions \  criterion met °
/ Is there a colony better'\Yes 3 ¥ Yes
\than its imperialist ?

Nol

[ End

Fig. 2. ICA flowchart.
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NCp = round{psyN¢y} (17)

where ¢, and C, are the nth imperialist cost and normalized cost
respectively, p, is the normalized power of each imperialist, Niy, is
the number of imperialists, NC, is the nth empire initial number of
colonies chosen randomly, and N, is the number of colonies. The
empires then go thorough assimilation and revolution processes in
which colonies move towards the states of the imperialists with
random characteristics. If a colony reaches a better position than its
corresponding imperialist (considering the cost function), they
exchange positions. The movement of colonies and total power of
an empire can be formulated by:

(hrew = (Kot + V(0,0 x d) x {Vy) (18)

O=U(—y, +7) (19)

TC, = é';,’?!"”’w(%fiff;’f” /NG) (20)
i=1

where ¢ is a parameter greater than one, d is the distance between
colony and imperialist, {V,} is a vector with unity length, § is a
random number with uniform distribution added to the direction
of movement to enhance the searching around the imperialist, vy is
a parameter that modifies the deviation from the original direction,
TC, is the total cost of the nth empire, and y is a positive number
less than one. The values of 2, 0.1, and 0.1 have been found to be
good for o, v, and ¥ respectively. The imperialistic competition
slowly decreases the power of weaker empires and increases the
power of more powerful ones by choosing the weakest colony of
the weakest empire and giving it to the empire with the most
possession probability (P,). When an empire loses all its colonies, it
will be eliminated. The normalized total cost and the possession
probability of each empire are given by:

NTC, = TG, — max(TGC) (21)

Pa = NTCq /S NTC| (22)

3.4. Firefly optimization algorithm

FOA is a metaheuristic algorithm premised on the social
behavior of fireflies for attracting mates |53]. FOA is based on three
fundamental presumptions. First, all the fireflies are perceived as
unisex and try to approach the brighter ones until the whole
population is compared. Second, the attraction of the fireflies is
associated with the potency of their flash signals. This means thatin
case of having the choice for moving towards two fireflies, the
brighter one is preferred. It should be noted that the brightness
declines as the distance increases. Third, brightness intensity of a
firefly is calculated by the value of the optimization problem fitness
function. The FOA can be mathematically presented by the
following equations:

w(r) = wg exp(—xr™),m>1 (23)

r,-j = \\ S (X,‘\k _ijk)Z (24)

k=1

Xj =X + 0 exp(—xr,-zj)(xj—x,-) +a (randn—1/2) (25)

where w(r) is the attractiveness, r is the distance between two
fireflies, wq is the initial attractiveness when r is zero, « is a fixed
light absorption factor, d is the dimension of the problem, x; and x;
are the positions of two i and j fireflies, « is a value between zero
and one, and randn is a random number generator uniformly and
distributed between [0, 1]. Fig. 3 presents the flowchart of the FOA.

4. Results and discussion

This section presents the achieved results from different parts of
the manuscript. First, the results related to the available PEMFC case
studies in the literature are investigated, and the algorithms are
compared. Subsequently, the data related to the proposed case
study of this work, which is a 500-W Horizon PEMFC, is presented
along with the description of the utilized test bench for recording
the measured data. Finally, the estimation quality of the open
cathode PEMFC is studied. It should be noted that the controlling
parameters used for each algorithm are listed in Table 3. These
parameters have been obtained based on the introduced reference
papers and trials and errors over several runs. These algorithms
might show better or worse performance by changing the con-
trolling parameters and that is why they are clarified in Table 3.
Another worth noting aspect is that since the metaheuristic tech-
niques intrinsically have high level of randomness, 100 indepen-
dent runs are done for each algorithm and the best result is then
chosen out of these tries. The robustness of the algorithms is
investigated by means of some statistical factors, such as variance
and standard deviation of the defined fitness function. Moreover,
the point-by-point measured data, which are the input of the al-
gorithms, are reported for all the case studies.

4.1. Case study 1 (NedSstack PS6)

This case study belongs to a NedSstack PS6 PEMFC stack with
the rated power of 6 kW. The operating data of this PEMFC system
can be found in Ref. [30], and its characteristics are as follows: N,y
=65, Pyy =1atm, Pgy =1atm, Tyae = 343K A =240cm?, | =178
um, and fmax = 0.918 Acm™2 The maximum operating current of
this PEMFC is 225 A. Table 4 indicates the obtained values for each
targeted parameter after implementing the algorithms for param-
eter extraction process. This table also shows the best fitness value
attained by each algorithm, which corresponds to the reported
estimated parameters. The obtained best solutions by the

7 e "-._\ e _."I‘ _
\ Tt ) It =1t +1
— ¥ S B

Initialization and generating Moving fireflies |
random population based on attraction |

l Ranking fireflies and

Yes Wh||e\\ eI
<_ It < It >4¢——— | finding the best one
~ % mfz?g, ]————-r___
No‘{' | Brightness potency
N | determination based
( End ) : :
on fitness evaluation |
. — ol

Fig. 3. FOA flowchart.
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Table 3

Controlling parameters of the utilized algorithms.
SFLA ICA FOA
Parameter Value Parameter Value Parameter Value
Maximum iteration 100 Maximum iteration 100 Maximum iteration 100
Frog population 50 Number of countries 50 Number of fireflies 50
Number of Memeplexes 5 Number of imperialists 10 Light Absorption Coefficient 1
Memes in Memeplexes 10 Assimilation coefficient 2 Attraction coefficient base value 2
Memetic evolutions 10 Revolution probability 0.1 Mutation coefficient 0.2

Table 4

The estimated parameters along with the best fitness value.
Parameter SFLA 1CA FOA SSO [0} GHO [31] GA [31]
13 -1.023071 —1.034322 -1.035664 -0.9719 -1.1997 -1.1997
£, x 1073 3.4760 33202 2.9502 3.3487 3.5505 34172
£y x 1073 7.7883354 6.4420795 3.7669451 7.9111 4.6144 3.6000
Zy» 1072 —9.540000 -8.540000 —9.540000 -9.5435 —9.5400 -9.5400
Rc () x 104 1.62 1.65 1.622 1.000 1.005 1.376
A 15.03229 15.09701 15.029691 13.0000 13.0092 13.0000
g(v) 0.013600 0.013600 0.0136000 0.0534 0.0579 0.0359
Best fitness (SSE) 2.167055 2.168339 2.167091 2.18067 2.18586 2.4089

introduced algorithms in this work shows that they have consid-
erable accuracy in terms of extracting the parameters of this PEMFC
system. The estimated polarization curve of the NedSstack PS6
PEMFC stack by SFLA algorithm is shown in Fig. 4a. SFLA has
reached the best fitness value, which is the minimum SSE between
measured and predicted voltage. It is worth mentioning that the
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(€]
o

45
40
35 == L == —
0 50 100 150 200 250
Current(A)

Best fitness value
> >
— [N
| | | [
nmAsw!
o ||
= >

= —

20

—_
(]
(o]

40 60
Iteration

Fig. 4. NedSstack PS6 PEMFC case study: a) estimated polarization curve by SFLA, b)
fitness function (SSE) minimization trend comparison.

point-by-point current-voltage values obtained by all of the three
algorithms are also reported in Table Al in the appendix section.
The fitness function convergence trend for different algorithms is
presented in Fig. 4b. With regard to this figure, the fitness value
minimization trend has become almost stable after 20 iterations by
all the algorithms.

4.2. Case study 2 (BCS 500-W)

The second case study of this manuscript investigates the po-
larization behavior of the BCS 500-W PEMFC stack produced by the
American Company BCS Technologies. The characteristics of this FC,
which have been collected from Ref. [32], are as follows: N.; =32,
Py =1atm, Pgy =0.2075atm, Ty =333K A =64cm?, | =178
pm, and Jmax = 0.469 A cm~2 The maximum operating current of
this system is 30.016 A. Table 5 presents the estimated parameters
and the best fitness achieved for BCS 500-W PEMFC stack by
different algorithms. According to Table 5, the utilized algorithms
have successfully extracted the suitable parameters for this case
study. Moreover, compared to the available optimizers in the
literature, some improvement in the minimum value of the defined
fitness function can be observed. Table 5 also shows that SFLA has
obtained the minimum value in terms of the defined fitness func-
tion. Fig. 5a presents the estimated polarization curve by SFLA. The
point-by-point current-voltage values achieved by all of the opti-
mization methods are also reported in Table A2 in the appendix.
Fig. 5b compares the minimization tend of different algorithms. As
it is seen, ICA and SFLA converges faster than the FOA.

4.3. Algorithm selection

In fact, all the three utilized algorithms in this manuscript have
already shown a great potential for solving different engineering
problems. So far, it has been observed that these algorithms are able
to improve the defined best fitness value of this work (SSE between
the measured and estimated voltage) compared to other available
optimizers in the literature. Realized by the performed comparative
study of the standard form of these algorithms in this work, it can
be stated that [CA and FOA algorithms are more prone to premature
convergence than SFLA, as shown in Figs. 4b and 5b. This is mainly
due to the fact that SFLA combines the merits of genetic-based
memetic and social behavior-based algorithms. It executes
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Table 5
The identified parameters and the corresponded fitness value.
Parameter SFLA ICA FOA SSO [30] DEM [101] GWO [ 1]
O -0.965740 -0.908643 -0.992829 —0.8532 -0.948 -1.0180
Zy% 1073 3.080 24798 2,621 4.8115 48115 23115
£y x 1075 7.223600 44583194 3.746368 9.4334 7.6000 5.2400
Z4x 1075 -19.3 -19.3 -19.3 —19.205 -19.300 —12.815
Re () x 104 1.00 246 1.00 3.499 3.000 7.504
A 20.88622 22.66264 21.101126 23 23 18.8547
B8 (V) 0.016126 0.016238 0.016269 0.01589 0.0160 0.0136
Best fitness 0.011697 0.011856 0.011819 0.01219 0.01299 7.1889
30, - : , — —— of the optimization algorithm. As mentioned earlier, the listed
a) [ 6 ﬁeésured Voltage| | values in Tables 4 and 5 belong to the best solution found out of 100
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Fig. 5. BCS 500-W PEMFC case study: a) estimated polarization curve by SFLA, b)
fitness function (SSE) minimization trend comparison.

concurrently an independent local search inside each memeplex,
and the entire frogs are then shuffled and reorganized into new
memeplexes after a predefined number of local iterations to ensure
global exploration. Concerning the FOA, one of the reasons for its
premature convergence is the dependency of the updates on the
current performance and not having a knowledge of the preceding
best solutions. To alleviate this drawback, a new updating strategy
can be formulated for FOA in future and the random and attraction
movement parameters can be modified. Regarding the ICA, its
performance can be improved by paying more attentions to the
tuning parameters, which are more critical than the ones in other
optimizers, especially the deviation parameter of the assimilation
process. This parameter has a direct impact on achieving a balance
between local and global explorations.

Another noteworthy aspect is that the performance of these
algorithms is based on randomness and the sole best fitness value
(SSE) in one of the runs cannot assure the acceptable performance

independent runs, and there is no guarantee that the algorithms
can repeat the same results. In this regard, some statistical mea-
sures, namely best, worst, variance, and standard deviation, are
calculated by using the obtained best fitness values through each of
the independent runs to show the robustness and probability of
finding the optimal answer by the algorithms. These statistical
factors are listed in Table G. Variance value shows how far a set of
numbers are from their mean value and in this case the lesser the
variance the better. Standard deviation also specifies the scattering
of the data and a low value for this measure means the data tends to
be closer to the average of the set. Table 6 includes the results of the
mentioned statistical measures for SSO algorithm, in addition to
SFLA, FOA, and ICA. This is because SSO has already shown a very
good performance from itself over 100 independent runs. More-
over, the required data for calculating all the measures for this al-
gorithm are available in Ref. [30]. According to Table 6, SFLA has
achieved the lowest value in terms of variance and standard devi-
ation compared to other algorithms. However, neither ICA nor FOA
could achieve a better result than SSO. This superior performance of
SFLA justifies the previously discussed advantages of this algorithm
regarding the simultaneous local and global exploration. In this
respect, SFLA algorithm is selected to be used for the optimization
of the 500-W Horizon PEMFC, which is a new case study introduced
in this work. It should be noted that this selection has been made
based on the defined comparison criteria and utilized controlling
parameters and it does not mean that the other two introduced
algorithms are not suitable for parameters estimation of a PEMFC
model. In fact, all the three algorithms are able to predict the PEMFC
polarization curve with good accuracy. However, SFLA has shown
more robustness than the others in the investigated cases.

4.4. Case study 3 (500-W Horizon PEMFC)

The last case study of this work, which is the main focus of this
manuscript, is for an open cathode 500-W Horizon PEMFC. In order
to collect justifiable experimental data and provide the required
measurements for extracting the PEMFC model parameters, an
experimental set-up has been developed as explained in details in
section 4.4.1. Moreover, the obtained results regarding the perfor-
mance verification of the SFLA algorithm as well as the tuned semi-
empirical model are presented in section 4.4.2.

4.4.1. Materials and methods

The required data for the proposed new case study has been
recorded from a developed test bench, shown in Fig. G, in Hydrogen
Research Institute of Université du Québec a Trois-Rivieres with a
standard protocol. This test bench is used to test and validate the
SFLA algorithm and the extracted PEMFC model. The set-up is
mainly composed of a Horizon open-cathode PEMFC with a rated
power of 500 W. The PEMFC characteristics, gathered from Ref. [54]
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Table 6
Statistical measures comparison.
Case study Computed factor SFLA ICA FOA SSO [30])
1 Best 2.167055 2.168339 2.167091 2.18067
Worst 2.167598 2.518191 2.614219 2.25060
Variance 1.06829 x 10-8 0.005940 0.016838 4131% 1074
Standard deviation 1.03358 x 10~4 0.077072 0.129763 0.0203
2 Best 0.011697 0.011856 0.011819 0.01219
Worst 0.011698 0.034665 0.030233 0.01520
Variance 253971 x 10713 3.43806 x 1072 1.74131 x 1073 7.588 x 1077
Standard deviation 5.03955 x 10-8 0.005863 0.004172 8.711 x 1074
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Fig. 6. The developed test bench in Hydrogen Research Institute.

and the manufacture manual, are presented in Table 7. This PEMFC
is self-humidified, air-cooled, and known as open-cathode or air
breathing. It has two axial fans to provide the cathode with air and
to cool down the stack. The flow rate of air supplied to the cathode
side is controlled by the duty cycle of the fan which is strongly
reliant on the requested power from the PEMFC and the stack
temperature. [n the anode side, the PEMFC is equipped with an inlet
and an outlet valve. The inlet valve is utilized to feed the PEMFC
with dry hydrogen. The hydrogen flow rate changes between 0 and
11.67 x 10~2 Ls~! depending on the drawn power from the stack.
The outlet valve is responsible for purging the accumulated water
and nitrogen every 10s for a duration of 10 ms to refill the anode
with fresh hydrogen during the PEMFC operation. The exhaust flow

Table 7
The characteristics of the Horizon 500-W open cathode PEMFC.

Technical specification

Type of FC PEM

Rated Power 500w

Rated performance 22V@235A
Max Current 42 A

Rated H2consumption 7 SLPM
Ambient temperature 5to 30°C
Max stack temperature 65 °C

Cooling Air (integrated cooling fan)
Reactants Hydrogen and Air

Ncell 36

Pz 0.55 atm

Po2 1atm

A 52 cm?

! 25 um

Jmax 0.446 Acm™2

of hydrogen after the purge rests on the difference of pressure
between the environment (1 atm) and the anode side (1.48 atm as
suggested by the manufacturer). Furthermore, the pressure differ-
ence between the anode and the cathode sides must not surpass
0.493 atm to prevent the membrane from being damaged. The
control of the purge valve, fan speed, and hydrogen valve are per-
formed through the PEMFC controller, and the acquisition of data
(temperature, current, and voltage) are done by an embedded
computer (National Instrument CompactRIO 9022). A program-
mable load manufactured by BK Precision with a maximum power
of 1200 W is connected to the PEMFC in order to request different
power profiles form the stack. The communication between the
CompactRIO and the PC is via Ethernet connection every 100 ms.
The measured data (temperature, current, and voltage) from the
real PEMFC is transferred to the PC by means of the CompactRIO
and is used in the PEMFC model verification process.

it should be noted that in this new case study the temperature is
variable as opposed to other available case studies in the literature.
The voltage-current curve of this PEMFC has been obtained by
drawing a fixed current from the FC and measuring its output
voltage. By slowly stepping up the load, the FC voltage response can
be seen and recorded. After each increase in the current level,
15—25 min have been allowed to the FC to reach equilibrium. As
opposed to the other two case studies in which the temperature is
constant, this FC system reaches one stable temperature for each
current level. It means that for each current level, there is one
corresponded voltage and temperature measurement. All the tests
have been conducted in a stable environment in the test center of
Hydrogen Research Institute to maintain the conditions. Another
point which needs to be mentioned is that the actual rated power of
the utilized PEMFC in this work is 430 W with a maximum current
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Table 8
The identified parameters and the obtained fitness value for 500-W Ho-
rizon PEMFC.
Parameter Estimared value by SFLA
£ -0.853200
£, x 1073 2.522
Z3%x 1079 7.843743
£4%x 1075 -16.3
Re (@)% 107 7.999
A 13
B8(Vv) 0.048869
Best fitness 0.015622

of 25 A. In fact, the rated power of this PEMFC has decreased over
time due to degradation.

4.4.2. Experimental results

Table & presents the identified values for each unknown
parameter after using the SFLA for parameter extraction. This table
also shows the best fitness value achieved by using the identified
parameters.

The polarization characteristics of the 500-W Horizon PEMFC
stack are reported point by point in Table 9 and shown in Fig. 7a.
The minimization trend of the fitness function is represented in
Fig. 7b. It can be seen that the stable value is achieved after almost
10 iterations.

In order to assess the probability of achiving a satisfactory
fitness values, the previous defined statistical measures are calcu-
lated for this new case study. Fig, 8 presents the histogram of the
obtained best fitness value over 100 independent runs. The statis-
tical measures are also reported in this figure to clarify the histo-
gram plot. As it can be seen in this histogram, the frequency of
obtaining the best fitness value is strikingly high by SFLA ensuring
the reliablity of this metaheuristic algorithm. Fig. 9 presents the
simulated performance analysis of the 500-W Horizon PEMFC over
various partial pressures of hydrogen in the anode side (Py,). Since
this FC is an open cathode PEMFC, the pressure in the cathode side
(Pgy) is always 1atm. As is obsereved in Fig. 9, regulating the
pressure under 0.55 atm can result in less output power by the
PEMFC. While setting a value more than 0.55 atm can increse the
output power to some extent.

To further evaluate the performance of the tuned PEMFC model
by the SFLA algorithm, the presented current profile in Fig. 10a has
been applied to the Horizon PEMFC on the developed test bench
and its stack temperature and voltage signals have been recorded.
Subsequently, the same current profile has been imposed to the

Table 9

The steady-state characteristics of the 500-W Horizon PEMFC.
Current (A) Ve meas (V) Vrcest (SFLA) |Residual| Temperarture (K)
0.6 29.370000 29.514760 0.144759 296.200000
25 26.777390 26.813765 0.036374 297.810917
5 25.290250 25.287802 0.002448 299.520062
7.5 24,281859 24.235411 0.046448 301.227449
10 23.418000 23.356632 0.061367 302.950000
12 22.739103 22.709020 0.030083 304.404279
14 22.058523 22.078801 0.020277 306.006926
16 21386148 21.442688 0.056540 307.842680
18 20.721728 20.775549 0.053821 309.994399
20 20.026000 20.041864 0.015864 312.532000
21 19.636350 19.632033 0.004317 313.961094
22 19.191807 19.176821 0.014986 315.501399
23 18.663630 18.653590 0.010040 317.153087
24 18.015227 18.020263 0.005036 318913454
25 17.201250 17.182838 0.018412 320.776562

a) %@ [ o MeasuwedVoltage | |2
| = Estimated Voltage O/3590 —
O Measured Temperature O X
S 257 1315 @
° 2
©
% 310 5
% Q.
220 1305 £
»1300
| 0O
152 ————1I295
0 5 10 15 20 25
Current (A) R
? 004, —sFAl
$0.035
© E
ot 0.035
3 |
£0.025;
» |
2002

0 20 40 60 80 100
Iteration

Fig. 7. 500-W Horizon PEMFC case study: a) estimated polarization curve by SFLA, b)
fitness function (SSE) minimization trend comparison.

PEMFC model and its voltage estimation is compared with the
measured one in Fig. 10b. According to this figure, the tuned PEMFC
model is able to imitate the output voitage of the real PEMFC
satisfactorily. It should be noted that the PEMFC model is fed with

the measured temperature, shown in Fig. 10a, to predict the output
voltage.
100 (— - - . . ——=
Minimum best fitness value = 0.015622
80 Maximum best fitness value = 0.044064
Variance = 1.151418 exp (-5)
- Standard deviation = 0.003393
260"
()
3
o
® 40
L
20 f

0 , v
0.015 0.02 0.025 0.03 0.035 0.04 0.045
Best fitness values over 100 runs

Fig. 8. The histogram analysis of SFLA.
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Fig. 9. Polarization behavior analysis in different partial pressures of hydrogen.

5. Conclusion

This paper investigates the performance of three metaheuristic
optimization algorithms, namely SFLA, ICA, and FOA, in a PEMFC
parameter extraction problem. In this regard, the performance
comparison of the algorithms is performed by using the SSE be-
tween the measured and estimated PEMFC voltage as the fitness
function for two available case studies in the literature over 100
independent runs. Subsequently, the precision of the algorithms is
judged based on their achieved best fitness value, worst fitness
value, variance, and standard deviation. Finally, the selected algo-
rithm from the comparison step is used to identify the parameters
of the PEMFC model for a new case study, a 500-W Horizon PEMFC,
provided by this work. This new case study is an open cathode

a) 30 — ——— 50
QO
29 ¢ 40 @
% 10—’—er 30 EL
Q v E.‘_,:
—
0 : —— ———1 3
b) : )
25
2
)
o
820
S
Estimated ¢ Measured
15 = e =l N
0 1000 2000 3000
Time (s)

Fig. 10. Performance validation of the tuned PEMFC model for the Horizon 500-W
PEMFC case study: a) the current profile applied to the real PEMFC and the corre-
sponding measured temperature, and b) the comparison of the estimated and
measured voltage.

PEMFC and has variable temperature as opposed to the other
existing case studies in the literature. The final results of this work
indicate that with regard to the best SSE, SFLA slightly outperforms
ICA and FOA in both case studies. However, the obtained worst SSEs
show that SFLA performs 20% better than ICA and two times better
than FOA in the first and second case studies. Moreover, the
attained variance and standard deviation of SFLA are noticeably less
than the other algorithms which are the justification of accuracy
and repeatability of this method. The results of this paper open up
the following avenues for future researches:

o Utilizing the selected optimization algorithm of this work in
dynamic PEMFC model calibration.

o [nvestigating the performance of new optimization algorithms
by using the provided case study of this research.

o Using the proposed metaheuristic optimization algorithms for a
more complete PEMFC model including hydrogen consumption
prediction.
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Nomenclature
Variables
Ve Output voltage of the PEMFC, V
Enermnst Sum of cell reversible voltage, V
Vact Activation voltage, V
Vohmic Ohmic voltage, V
Veon Concentration voltage, V
Neent Number of cells
Tstack Stack temperature, K
P Hydrogen partial pressure in anode side, atm
Pos Oxygen partial pressure in cathode side, atm
RHc Relative humidity of vapor in the cathode, %
RHq Relative humidity of vapor in the anode, %
Pc Cathode inlet pressures, atm
Py Anode inlet pressures, atm
Iec FC operating current, A
A Active area of the membrane, cm?
Tho Saturation water pressure, atm
&k Semi-empirical coefficients
Coy Oxygen concentration, mol cm ™3
Rm Membrane resistance, Q
Rc Equivalent contact resistance to electron conduction, Q
Pm Resistivity of the membrane, Q cm
! Membrane thickness, cm
J Actual current density, A cm™2
A Adaptable parameter related to the water content of the
membrane
Jis Parametric coefficient
Jinax Maximum current density, A cm™2
Vecmeas ~ Measured output voltage, V
Ve est Estimated output voltage by the model, V
N Number of sample data
P Initial population
X; Individual frog solution
m Memplexe
n Number of frog per memplex

>
o

Best frog solution
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Xw Worst frog solution
Xg Global best frog solution 65 . S S
D; Frog position change !
Xw.new New position of the frog with the worst fitness ;?\
Xw.presen:  Current position of the frog 60 Al
Drmax Maximum possible variation in the position of a frog E
DN, Countries containing the optimization problem —~ 55|
variables >
Nuar Dimension of the problem ® |
Cn Nth imperialist normalized cost = 50 |
Cn Nth imperialist cost =
Dn Normalized power of each imperialist g
Nimp Number of imperialists 45 |
NC, Nth empire initial number of colonies ;
Neor Number of colonies 40
o Tuning parameter of ICA
d Distance between colony and imperialist
(V1) Vector with unity length 35 ' : : :
f Random number with uniform distribution 0 S0 100 150 200
¥ Ratio of deviation from the original direction Current (A)
1Cy Total cost of the nth empire Fig. A.l. Estimated polarization curves by different algorithms in case study 1
v Empirical forgetting factor of ICA (NedSstack PS6).
Py Possession probability 30 _ _ _ B -
w(r) Attractiveness e v 1
r Distance between two fireflies 28 A\ — YFCmeas |
wo Initial attractiveness \ =0 Vec et (SFLA)
K Fixed light absorption facto * v ' (ICA)
d Dimension of the problem 261 N\ V" "Feest '
X; Positions of i firefly > = . Vec.est (FOA) |
o Tuning parameter of FOA o 24 Na 1
g) = -
",
t(3 22 - Facde
= TN
Abbreviations ' . 20+ i oS
SFLA Shuffled Frog-Leaping Algorithm i
FOA Firefly Optimization Algorithm 18| g
ICA Imperialist Competitive Algorithm |
SSE Sum Square Error 16 . . L
PEMFC roton exchange membrane fuel cell = e o .
b Doy e 0 5 10 15 20 25 30
CS-EO  Cuckoo search algorithm with explosion operator Current (A)
SSO Slap swarm optimizer Fig. A.2. Estimated polarization curves by different algorithms in case study 2 (BCS
LT 500-W).
GHO Grasshopper optimization )
GWO Grey wolf optimizer
AC-POA  Aging and challenging P systems based optimization
algorithm Table A.1Estimated voltage for each current level (case study 1)
TLBO—DE Hybrid teaching learning based optimization —
differential evolution Current (A) Ve meas (V) VEcest (SFLA) Veces (ICA) Vecest (FOA)
GRG Generalized reduced gradient 225 61.64 62.274793 62.266538 62.274723
HADE Hybrid adaptive differential evolution 6.75 59.57 59.702854 59.694581 59.702843
CA Genetic algorithm 9 58.94 58.972628 58.964351 58.972646
. . . . 1575 57.54 57.424395 57.416125 57.424500
TRADE T.ransflerred adaptlve dlffe_rentlal evolut_lor_l ' 20.25 56.8 56.648715 56.640467 56.648877
STLBO Simplified teaching-learning based optimization 24.75 56.13 55.978682 55.970471 55.978901
ADE Adaptive differential evolution 315 55.23 55.096910 55.088779 55.097213
DEM dynamic electrochemical model 36 54.66 54.564243 54.556183 54.564601
45 53.61 53.585377 53.577508 53.585843
51.75 52.86 52.903552 52.895867 52.904098
67.5 51.91 51.418171 51.411066 51.418897
72 51.22 51.011656 51.004757 51.012432
Appendix 90 49,66 49.428950 49.423070 49.429917
99 49 48.651772 48.646526 48.652829
T e . 105.8 48.15 48.066470 48.061764 48.067594
E'l_‘..',lIlL' Al and Figure A2 present the measured and estlmated 1103 4752 47679019 47 674699 47.680184
polarization curves for NedSstack PS6 and BCS 500-W respectively. 117 47.1 47.100754 47.097055 47.101981
Moreover, Table Al and Table A2 provide the point-by-point data 126 46.48 46.318935 46316158 46.320241
regarding the current-voltage characteristics of the NedSstack PS6 135 45.66 45.528012 45.526266 45.529393

and BCS 500-W respectively in different scenarios. (continued on next page)
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(continued )

Current (A)

VFC,meas (V) VFC.("SI (SFLA) VFC est (ICA) VFE est (FOA)

141.8 44.85 44.922139 44.921248 44923573
150.8 44.24 44.106073 44.106419 44.107573
162 42.45 43.061514 43.063578 43.063089
171 41.66 42.191767 42.195365 42.193396
1823 40.68 41.047602 41.053336 41.049291
189 40.09 40.331979 40.339095 40.333698
195.8 39.51 39.565790 39.574404 39.567536
204.8 38.73 38.457496 38.468245 38.459271
2115 38.15 37.507940 37.520399 37.509734
220.5 37.38 36.442502 36.142308 35.725957

Table A.2Estimated volrage for each current level (case study 2)

Current (A)

Vrc meas v3 Vrcest (SFLA) Vrcest (ICA) VFC.L's.l (FOA)

0.60 29 28.997223 29.001417 28.993084
2.10 26.31 26.305937 26.307798 26.301435
3.58 25.09 25.093555 25.094224 25.089256
5.08 24.25 24.254620 24.254447 24.250678
7.17 23.37 23.375416 23.374433 23.372080
9.55 22.57 22.584615 22.583084 22.582041
11.35 22.06 22.071327 22.069605 22.069350
12.54 21.75 21.758463 21.756711 21.756882
13.73 21.45 21.461262 21.459553 21.460072
15.73 21.09 20.987741 20.986259 20987190
17.02 20.68 20.694509 20.693271 20.694346
19.11 20.22 20.230985 20.230291 20.231390
21.20 19.76 19.770943 19.770945 19.771789
23 19.36 19.366024 19.366701 19.367081
25.08 18.86 18.866466 18.867889 18.867407
27.17 18.27 18.274720 18.276501 18.274690
28.06 17.95 17.953310 17.954837 17.952238
29.26 17.30 17.292877 17.292559 17.288378
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Technical specification

Max Current (brand new)
Rated H2consumption
Ambient temperature
Max stack temperature
Cooling

Reactants

Nce“

Prz

Poa

A

i

Actual Jmax

42 A

7 SLPM
5t030°C

65 °C

Air (integrated cooling fan)
Hydrogen and Air
36

0.55 atm

1 atm

52 cm?

25 um

051923 Acm™*

Table 8: The identified parameters and the obtained fitness value for 500-W Horizon PEMFC.

Parameter Estimated value by SFLA
£ -0.8532

£y % 1073 2.698

£y % 1073 9.136174

Iy 1079 -16.1

R (Q) x 1074 7.999

A 13

B(V) 0.048504

Best fitness 0.01444

(a)

(b)

Best Cost
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Fig. 7: 500-W Horizon PEMFC case study: a) estimated polarization curve by SFLA, b) fitness function (SSE)

minimization trend comparison.
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Table 9: The steady-state characteristics of the 500-W Horizon

PEMFC.
Current (A) Ve meas (V) Vecest (SFLA) |Residual| Temperature (K)
0.6 29.370000 294951 0.125191 296.200000
2.5 26.777390 26.8104 0.033025 297.810917
5 25.290250 25.2894 0.000774 299.520062
7.5 24281859 24.2381 0.043659 301.227449
10 23.418000 23.3590 0.058951 302.950000
12 22.739103 22.7106 0.028503 304.404279
14 22.058523 22.0792 0.020775 306.006926
16 21.386148 21.4420 0.055883 307.842680
18 20.721728 20.7738 0.052142 309.994399
20 20.026000 20.0395 0.013585 312.532000
21 19.636350 19.6297 0.006596 313.961094
22 19.191807 19.1748 0.016932 315.501399
23 18.663630 18.6524 0.011152 317.153087
24 18.015227 18.0208 0.005577 318.913454
25 17.201250 17.1865 0.014695 320.776562
100 —
Minimum best fitness value = 0.0144
Maximum best fitness value = 0.0185
80 Variance = 8.6989 exp (-7)
- Standard deviation = 9.3268 exp (-4)
o0 L ' _
c 60
)
>
o
2 40t ]
T8
20+ 8
0 I s = s
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Fig. 8: The histogram analysis of SFLA.

30 - v
O Measured (0.55 atm)

28 — Simulated (0.55 atm)

= = =8Simulated (0.95 atm)
26| = = =Simulated (0.1 atm)
n! = = =Simulated (0.3 atm)
22 ¢
20t
18 -
16 : : :

0 5 10 15 20 25

Current(A)

Fig. 9: Polarization behaviour analysis in different partial pres-
es of hydrogen.
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Fig. 10: Performance validation of the tuned PEMFC model for
the Horizon 500-W PEMFC case study: a) the current profile
applied to the real PEMFC and the corresponding measured tem-
perature, and b) the comparison of the estimated and measured
voltage.
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4.3 Enhancing the Performance of Kalman Filter for Online ldentification of a

Fuel Cell Semi-Empirical Model

Earlier in this thesis, it was shown that KF is a powerful tool for parameter estimation of
a semi-empirical PEMFC model. However, special attentions need to be paid to the
initialization of this filter before its implementation in such a problem. The principal purpose
of this section is to use the selected metaheuristic optimization algorithm in Article 3 (SFLA)
for tuning the initial parameters of the PEMFC model as well as KF variables for online

estimation of the PEMFC characteristics.

4.3.1 Methodology

This section proposes the employment of a new metaheuristic optimization technique,
SFLA, for the initialization and customization of KF in the online parameter identification
of a FC semi-empirical model. To do so, firstly, the SFLA is used offline to find the right
initial values for the parameters of the semi-empirical model proposed by Amphlett et al.
using the available data regarding the polarization curve of the FC system. Subsequently, the
metaheuristic technique tunes the covariance matrices of KF (R and (), while utilizing the
obtained initial values in the first step. Finally, the tuned KF is used online to deal with the
uncertainties and update the parameters of the FC model. Since the tuning process of KF is
performed once before its implementation in the real FC system, the online identification will
not be affected by the computational time of the optimization process. The tuning process is
composed of finding a set of parameters for the PEMFC semi-empirical model and
initializing the covariance matrices of the KF. After initializing the KF offline, it is used

online to keep track of performance drifts in the PEMFC system. Figure 4.3 represents the
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overall picture of the explained tuning procedure as well as the online model identification

of the FC system.

Initialization and
customization of KF
metaheuristic optimizatio

Initialization

Identification /
' o
I, T,P / R
! FC ]Xiﬂeasufed /| 1) Initialization
4 3 Sorting and
system | Y. » Model parameters Slisces Local search
—— t-l Identification » Covariance matrices | partitioning

shuffling

TT’B Model ] Vv b ( 2) Prediction) "\ i onvergenc

4 Estimated
measured 3) Update

/ Yes
\___Updated Parameters \ Termination j

Y
Online parameter estimation

Figure 4.3 The tuning process of KF for online PEMFC parameters estimation.

4.3.2  Synopsis of the results analysis

To show the effectiveness of the proposed tuning process for online parameter estimation
of a FC system, some simulations based on experimental data are performed and explained
in this section. The polarization curve experimental data used in this section are the same as
the ones in Article 3. Therefore, to avoid the repetition of the figures, the polarization curve
and the optimization trend for finding the initial values of the PEMFC model are not shown

here and they are available in Article 3.

After finding the initial values for the PEMFC model parameters, another optimization
is performed to determine the suitable values for covariance matrices. Figure 4.4 represents
the improvement trend of the MSE objective function for finding the right values for O and
R matrices of KF. As it can be observed, the MSE value has decreased from almost 5.7904e-
05 to 4.3246e-05. Although this value is small, it approximately represents 25%

improvement compared to the case that R and Q are assumed as 1.
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Figure 4.4 MSE objective function minimization trend for funding Q and R matrices.

The obtained initial values for the PEMFC model parameters and KF variables are listed
in Table 1 along with the imposed inequality constraints. The presented current profile in
Figure 4.5a has been imposed to the 500-W Horizon PEMFC and its corresponded
temperature and voltage have been measured and recorded to verify the performance of KF
in online parameter extraction of the described semi-empirical PEMFC model. The
temperature variation of the PEMFC stack is also shown in Figure 4.5a. Figure 4.5b compares
the estimated voltage online by the KF with the measured voltage of the PEMFC. From
Figure 4.5b, it is clear that the estimation has a good quality. Figure 4.5¢ and Figure 4.5d
represent the estimated polarization curves and power curves of the PEMFC for two cases of
initial parameters based on the datasheet information and the obtained optimal initial
conditions by SFLA. As is seen, the optimal initial condition leads to more accurate results
specially in activation and concentration zones. Moreover, accurate characteristics estimation
is achieved quicker and more conveniently when starting with the appropriate initialization.
This can be very interesting in applications that the fast prediction of the maximum power is

needed such as PEMFC cold-start up.
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Table 4-1  The obtained parameters after the tuning process
Optimization Obtained value Minimum value Maximum
process value
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4.4 Conclusion

This chapter puts forward the employment of an optimization algorithm for initialization

of the KF to estimate the parameters of a PEMFC stack online.

In this respect, firstly, a benchmark study of different metaheuristic algorithms is
performed for three different case studies. As a result, SFLA is selected as a trustworthy
algorithm for the parameters extraction of a PEMFC model. Secondly, SFLA is used for the
the initialization of KF is in two steps of finding the right primary values for the targeted
PEMFC model, and tuining the values of R and Q covariance matrices. The final results of
this work confirm that a good initilaization can improve the estimation quality in terms of
speed and precision. In fact, finding the appropriate initial values for the PEMFC model
parameters of interest leads to estimating better characteristics curves in a shorter time and
tuning of the covariance matrices enhances the estimation accuracy to a certain level. The
focus of this chapter has been mainly in the parameter extraction in the ambient temperature.
However, the outcomes seem to be very interesting in applications where a fast performant
identification is required. In this regards, future works should focus on the utilization of such

strategy for performanig the adaptive cold start-up of the PEMFC stack.

The results of this chapter confirm the practicality of the developed online model and the
suggested initialization approach. Next chapter will discuss the design of a systemic
management strategy for the PEMFC stack and, as an example, put forward two EMSs which
use the systemic management and the online modeling for upgrading the efficiency of the

system.



Chapter 5 - Systemic management of a fuel cell system
and its inclusion into a real-time energy
management strategy design

5.1 Introduction

To reach the ultimate goal of the thesis, which is having an EMS considering the online
modeling and systemic management of the PEMFC stack, this chapter proposes a PEMFC
systemic management of current and temperature in the first place. Subsequently, this
systemic management is integrated into the design of a real-time EMS to assess the fuel

economy improvement.

The proposed systemic management aims at delivering the requested power with high
efficiency. In fact, the output power of the PEMFC is dependent on different operating points
such as temperature, current, and pressure. By regarding the PEMFC as a system, the
mentioned operating points can come under control. [n each power level, a reference value
for the temperature and current can be assigned to acquire the optimal efficiency, by the
assumption of having a constant pressure. This reference value is like an equilibrium point
in which all the influential operating conditions are stable. A specific level of demanded
power can be supplied by different combinations of these operating conditions and how to
go towards selecting the right combination for having an efficient performance is the main
goal of the proposed systemic management. Unlike the other similar works, the proposed
approach capitalizes on the usage of both thermal management strategy and current control

to meet the requested power from the system by the minimum fuel consumption.
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Regarding the EMS integration, the main objective is to put forward a new EMS for
boosting the energetic efficiency of a FCHEV based on performing an online systemic
management of the PEMFC system. One important aspect that has escaped the attention of
many researchers in the domain of EMS design for FCHEVs is adopting a systemic approach
towards the management of the PEMFC stack while developing a strategy. The existing
EMSs normally define the required current/power from the PEMFC stack. Nonetheless, the
integration of the systemic management of PEMFC stack (current and temperature) into the
design of an EMS leads to the determination of two or more reference signals by the EMS.
This strategy capitalizes on the concurrent regulation of power and temperature which have

very different dynamic behavior.

Hereinafter in this chapter, the development of a concurrent temperature and current
management scheme is done first thorough the presentation of an article entitled “’Efficiency
Enhancement of an Open Cathode Fuel Cell through a Systemic Management‘’.
Subsequently, the integration of the proposed systemic management into the formulation of
an online EMS is dealt with in an article entitled *’Efficiency Upgrade of Hybrid Fuel Cell
Vehicles” Energy Management Strategies by Online Systemic Management of Fuel Cell*’.

Finally, a conclusion is drawn.
5.1 Article 4: Efficiency Enhancement of an Open Cathode Fuel Cell through a
Systemic Management
Authors: M. Kandidayeni, A. Macias, L. Boulon, and S. Kelouwani
Journal: [EEE Transactions on Vehicular Technology (published)

Publication date: 28/September/2019 (Doi: 10.1109/TVT.2019.2944996)
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5.1.1 Methodology

This paper presents a methodology to formulate a systemic management for an open
cathode PEMFC. To do so, two important stages of management, to determine the reference
signals, and control, to reach them, are required. In the proposed systemic management,
depending on the requested power level, a reference temperature is extracted through a
generated 3D power map which enables the supply of the power with the lowest current. The
lower the current level, the lower the hydrogen consumption. This map is obtained through
experimental data and its functionality is to relate the requested power form the PEMFC to
its operating temperature and current. Subsequently, a temperature controller is used to reach
the assigned reference temperature, while the current of the PEMFC is controlled by a PI
controller. The temperature control is formulated by an optimized fuzzy logic scheme to
reach the determined reference temperature by acting on the cooling fan of the PEMFC
system, whilst the current is being regulated by its controller. The inputs of the fuzzy
controller are the PEMFC current and temperature error and the sole output is the duty factor
of the fan. The proposed methodology is tested on an experimental test bench to be better
evaluated in a real condition. The general structure of the temperature and current control is
presented in Figure 5.1. As it is seen, in a hybrid system, the PEMFC deals with supplying
the average power and the dynamic part is left to the battery pack or other energy storage
systems. For each requested power level from the PEMFC system, a specific reference
temperature (Ty¢f) 1s set through the power map. This T, is imposed to a FLC which acts
on the cooling fan to reach it. However, the temperature regulation is a slow dynamic process,
contrary to the current control which is very fast. In this regard, while the FLC is trying to

regulate the temperature, a Pl power controller is used to give the PEMFC system enough
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relaxation time for efficient supply of the power by gaining the T,,; which corresponds to
the minimum current. As the FLC increases or decreases the temperature to reach the set
point, depending on the initial stack temperature, the Pl controller regulates the PEMFC

current in a way to track the requested power.

Load power
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Figure 5.1 Configuration of the systemic temperature and current management and

control.

5.1.2  Synopsis of the results analyses

Two assessment tests are designed to show the efficiency of the proposed systemic
management. The first test deals with supplying a constant power profile, and the second test
copes with variable power profile. In each stage, the performance of the proposed approach

is compared with the commercial controller from manufacturer.

The obtained results of supplying a constant power of 380 W shows that by using the
proposed thermal scheme, a lower current level is required to meet the demanded power,

compared to the manufacturer controller. It is worth noting that achieving the same level of
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power by using different current levels in this test highlights the importance of the thermal
management. The commercial controller tends to keep the stack temperature at a higher level
than the proposed approach. This higher temperature can result in a dryer membrane and less
available oxygen for reaction. Moreover, the proposed systemic control consumes less
hydrogen (4.47 SLPM) for providing the requested constant power profile as opposed to the

manufacturer controller (5.35 SLPM).

The second test, which belongs to a variable power profile, contains various high and low
levels and indicates more clearly the performance of the proposed thermal strategy in
different conditions. The outcomes of this test indicate that both of controllers are able to
provide the demanded power. However, the temperature evolution of the PEMFC stack by
each of the controllers is different. The required current levels for supplying the power are
also different. Both of the controllers tend to use the same current in low power levels.
However, in high power levels, the proposed strategy uses less current to meet the power.
The effect of using a lower current level to satisfy the requested power can be embraced by

checking the hydrogen consumption.

The comparison of the total hydrogen consumption of the discussed constant and
variable power profiles for the case of commercial controller and the proposed systemic
strategy are shown in Figure 5.2. From this figure, the proposed strategy of this work is able
to decrease the hydrogen consumption of the PEMFC system by 16% and 13% for the case

of constant and variable power profiles respectively.
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Figure 5.2 Hydrogen consumption comparison of the PEMFC system for different

scenarios.
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Efficiency Enhancement of an Open Cathode Fuel
Cell Through a Systemic Management

Mohsen Kandidayeni

Abstract—This paper addresses the design of a systemic manage-
ment to improve the energetic efficiency of an open cathode proton
exchange membrane fuel cell (PEMFC) in a hybrid system. Unlike
the other similar works, the proposed approach capitalizes on the
usage of both thermal management strategy and current control
to meet the requested power from the system by the minimum fuel
consumption. To do so, firstly, an experimentally based 3D mapping
is performed to relate the requested power form the PEMFKC to
its operating temperature and current. Secondly, the reference
temperature which leads to gaining the demanded power by the
minimum current level is determined to minimize the hydrogen
consumption. Finally, the temperature control is formulated by an
optimized fuzzy logic scheme to reach the determined reference
temperature by acting on the cooling fan of the PEMFC system,
whilst the current is being regulated by its controller. The inputs
of the fuzzy controller are the PEMFEC current and temperature
error and the sole output is the duty factor of the fan. The pro-
posed methodology is tested on an experimental test bench to be
better evaluated in a real condition. The obtained results from the
proposed systemic management indicate promising enhancement
of the system efficiency compared to a commercial controller. The
proposed method of this work is extendable and applicable in fuel
cell hybrid electric vehicles.

Index Terms—Fuel cell efficiency improvement, fuzzy logic
control, optimization, power mapping, systemic management,
thermal management strategy.

[. INTRODUCTION

ROTON exchange membrane fuel cell (PEMFC) is per-
Pceived as a promising technology for green and efficient
generation of power in stationary and transportation applications
[1]. In the literature, the performance of a PEMFC has been
improved by concentrating on two principles of membrane
electrode assembly design and system design. The first one
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includes modifying the material and structural properties of the
gas diffusion layer, cathode catalyst layer, and membrane to
operate in the existence of liquid water [2]-[4]. The second
one involves proper flow field design of channels, which can
upgrade the performance in a passive manner by, for instance,
balancing the cooling fan effects and air flow for reaching
complete reactions at the cathode leading also to a better wa-
ter balance. Moreover, it includes operating condition control,
anode water removal, and electro-osmotic pumping [5], [6]. The
output power of the PEMFC is dependent on different operat-
ing points such as temperature, current, and pressure [7]-[9].
Regarding the PEMFC as a system provides several degrees
of freedom in terms of supplying the power due to the fact
that the mentioned operating points, which are influential in the
performance of the PEMFC, can come under control in this
way. A specific level of demanded power can be supplied by
different combinations of these operating conditions and how
to go towards selecting the right combination for having an
efficient performance is the goal of this work. The temperature
of a PEMFC stack has an impact on the electrochemical, ther-
modynamics, electro-kinetics, transport, and water distribution
processes, which jointly dictate system efficiency and long-term
durability [10]. This is significant in all sorts of PEMFCs and
operating modes, but is chiefly relevant to air-breathing/cooled
PEMFCs where the input air is responsible for both reactant and
cooling the system [ 1]. The increase of the fan speed enhances
the reactant supply, decreases the temperature (depending on
the ambient temperature), and may also lead to a dry membrane
(depending on the air humidity). The combination of these three
effects can result in various impacts on power and hydrogen
consumption which are difficult to highlight with an analytical
model. The proton exchange membrane and the ionomer in
the porous catalyst layers of this type of PEMFC need the
presence of a particular amount of water to ensure satisfactory
protonic conductivity. The water content in the ionomer of the
membrane and catalyst layers is deeply affected by the operating
temperature of the stack. The dynamics of water absorption of
the ionomer and the diffusion of water across the membrane
are both dependent on the stack temperature as discussed in
[12], [13]. In fact, the temperature influence over the water
transport in the catalyst layers is primarily premised on the
absorption and desorption of water in the ionomer as well as
the condensation and evaporation in the pores. As discussed in
[14], the active area of membrane is directly affected by the water
content in the catalyst layer. If the catalyst layer becomes dry

0018-9545 © 2019 IEEE. Personal use is permitted. but republication/redistribution requires IEEE permission.
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owing to the water drain from its pores, less protons arrive at the
active sites for the electrochemical reaction with the reactant
gases and the electrons. This phenomenon in turn diminishes
the PEMFC performance [15]. In this respect, the optimal man-
agement of temperature is critical in open cathode PEMFCs to
avoid the occurrence of the discussed phenomena and enhance
the efficiency of the system. In each power level, a reference
value for the temperature and current can be assigned to acquire
the optimal efficiency, by the assumption of having a constant
pressure. This reference value is like an equilibrium point in
which all the influential operating conditions are stable. Another
important factor which particularly influences the performance
of an open cathode PEMFC is the cooling fan operation which
has a vital role in the occurrence of drying and flooding and also
electrochemical reactions [16].

Several researches have been conducted on the temperature
regulation of a PEMFC system. Many of these studies have
used PID controllers for thermal management. The temperature
behavior of a closed-cathode PEMFC equipped with liquid
cooling is controlled through a feedback PID control in [ [ 7], and
aPlcontrollerin [18],[19]. A standard PID controller along with
an ON/OFF switch are used for thermal management in a 3-kW
water-cooled PEMFC in [20]. A state feedback control [21] is
compared in simulation with a model reference adaptive con-
trol in terms of regulating the temperature of a closed-cathode
PEMFC and concluded that the second method shows more ro-
bustnessin [22].In[23], [24], two controliers based on active dis-
turbance rejection are proposed to regulate the temperature of a
closed-cathode and an open-cathode PEMFC respectively. Both
of these controllers have shown successful performance in simu-
lation. In [25], a 500-W open-cathode PEMFC model is studied
in which the temperature is controlled by an on-off strategy.

Literature consideration indicates that most of the discussed
papers are fundamentally premised on simulation and further-
more, very few works have focused on open cathode PEMFCs. In
[26],[27], the performance of two fuzzy logic controllers (FLCs)
have been compared with PID controllers on an experimental
test bench regarding the temperature regulation of a 2000-W
and a 100-W open cathode PEMFC respectively. The authors
have shown that the PID controllers cause large temperature
overshoot in different operating conditions compared to the
FLC. Two reasons can be given toexplain the overshoot problem.
First, PID controllers work well for a limited operating range.
Second, their adjustment is dependent on the accuracy of the
model, which is an ongoing research domain in the PEMFC
area. Therefore, FLC seems to be a good choice since it shows
better flexibility in a wide range of operation while working with
not very accurate models.

Another worth reminding aspect is that very few works have
tried to propose a methodology to create a link between the tem-
perature control and the operating point tracking of a PEMFC,
such as maximum power and efficiency points. These operat-
ing conditions are abundantly used in vehicular applications
[281-[30], and they are only conceivable in particular stable op-
erating temperature. In [31], a simple single-input single-output
FLC is used to control the temperature for finding the maximum
efficiency point of an open cathode PEMFC. In the majority
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of the existent maximum operating point tracking methods,
from perturb and observe and step size methods [32], [33] to
identification techniques coupled with an optimization method
[34]-[38], the PEMFC has been considered as just a component
in which the only reference signal (control variable) is the oper-
ating current by assuming constant temperature and/or pressure.
However, PEMFC is a system, and several local controls should
be defined over this system to reach the desired condition.

This paper presents a methodology to formulate a systemic
management for an open cathode PEMFC. The main contri-
bution of this work is to simultaneously control temperature
and current with the goal of supplying the requested power
from the PEMFC system with a high level of efficiency. To
do so, two important stages of management, to determine the
reference signals, and control, to reach them, are required. In
the proposed systemic management, depending on the requested
power level, a reference temperature is extracted through a
generated 3D power map which enables the supply of the power
with the lowest current. The lower the current level, the lower the
hydrogen consumption. Subsequently, an optimized FL.C is used
to reach the assigned reference temperature, while the current
of the PEMFC is controlled by a PI controller. In contrast to
[26], [27] in which the FLCs have been adjusted by many trials
and errors, the utilized FLC is tuned by a hybrid optimization
algorithm in this paper. The FLC is first tested on a PEMFC
model before implementation on the test bench. The remainder
of this manuscript is organized as follows:

Section Il deals with the process of obtaining the power
map. Determining the reference operating point is dealt with in
Section IlI. Section IV describes the formulation of the opti-
mized fuzzy controller. The results are discussed in Section V,
and finally the conclusion is given in Section V1.

[I. 3D POWER MAPPING

This section puts forward an experimental framework to
determine the output power of a PEMFC by considering the
influence of operating current, temperature, and cooling fan
duty factor while the air pressure is constant in this set-up. To
do so, two steps of data collection, and power map generation
are required as shown in Fig. |. Initially, some tests need to be
conducted on the open cathode PEMFC to analyze the influence
of operating current and duty factor over the stack temperature.
The presented test bench in Fig. 2 is used to perform all the
experiments in this work.
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The utilized fuel cell system in this set-up is the commercially
available 500-W PEMFC with 36 cells from Horizon Fuel Cell
Technologies. This open-cathode PEMFC is self-humidified and
air- cooled. It has two axial cooling fans straightly connected to
the housing, which decrease the temperature of the stack by
forced convection and in the same time provides oxygen to the
cathode. As it is seen, the open-cathode PEMFC is connected
to a National Instrument CompactRIO through a controller. A
DC electronic load is utilized to request current profiles from the
PEMFC. According to the manual of the system, the difference
between the atmospheric pressure in the cathode side and the
pressure of the PEMFC in the anode side should be 50.6 kPa.
The pressure in the anode side is set to 55.7 kPa. The temperature
and voltage of the real PEMFC are measured and transferred
to the PC with the help of CompactRIO to be used in the
control process. The PC and CompactRIO communicate by
means of an Ethernet connection every 100 milliseconds. It is
worth mentioning that the proposed methodology of this work
is expandable to other PEMFC types with higher or lower power
rates due to its data-driven foundation.

To acquire the necessary data for power mapping, a ramp-up
current profile, as shown in Fig. 3(a), is applied to the PEMFC
system in five different fan duty factors, namely 0.25, 0.34, 0.5,
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0.7, and 1. At each level of fan duty factor, the test is continued
until the maximum power of the PEMFC is achieved, and the
voltage drop due to the concentration loss is observed. After
completing the test, the recorded stable points of the PEMFC
stack (current, voltage, and temperature), as shown in Fig. 3,
are used to plot the map. Since the chosen current and fan duty
factors contain the minimum and maximum levels, the acquired
map covers almost all the operating conditions.

Fig. 4 characterizes the influence of cooling fan and current
on the stack temperature of the PEMFC. This figure has been
generated by using the collected data from the conducted exper-
iments. Fig. 5 presents the obtained power map from the expert-
mental measurements. This power map is used to determine the
reference temperature for the systemic management process.

[II. REFERENCE OPERATING POINT DETERMINATION

As shown in Fig. 5, a given power can be reached by using
several operating points like temperature and current. So, a
degree of freedom remains. In this work, current and temperature
are considered as the main variables and the objective is to meet
a requested power while minimizing the hydrogen consump-
tion of the system. Fig. 6, which has been obtained by doing
some experiments on the real PEMFC, indicates two important
interdependences. First, the relation of hydrogen consumption
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with respect to the operating current and fan duty factor, and
second, the influence of the fan duty factor over the operating
range of the PEMFC stack in terms of current. As is seen in
this figure, hydrogen consumption is significantly dependent on
the operating current of the stack rather than the fan duty factor.
However, fan duty factor plays an important role in determining
the range of the stack operating current where lower duty factors
lead to limited operating ranges and higher duty factors extend
the range of stack operation.

The behavior of the hydrogen molar flow ( f2) can be esti-
mated by (1) [39]:

f.HZZCLifc+bDFj'a1L+C (l)

where 4. is the PEMFC operating current (A) and DFY,, is
the cooling fan duty factor.

Fig. 7 represents the 2D power map attained through the
explained methodology by doing interpolation. For each power,
the best operating point (temperature and current) in terms of
H2 consumption is highlighted by a circle. These points lead to
an optimal path to reach the requested power by minimizing the
H?2 consumption. The presented power map belongs to the fuel
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cell system, which means that the auxiliary power consumptions
such as valves and the fan have been subtracted from the stack
power. This map also shows that a specific function can be
generated to relate the power and optimal temperature. This
relation is represented in Fig. 8 and is used to determine the
reference temperature of the controller to match the requested
power and the minimal hydrogen consumption. Providing such
experimental basis guaranties that the controller leads to a high
efficiency region at each specific power level.

Fig. 9 confirms that each selected optimal point, presented in
the power map of Fig. 7, corresponds to the minimum hydrogen
consumption and mathematically the interpolated lines in each
power level can be considered as a convex problem which has
only one minimum. It should be noted that one of the advantages
of the proposed method for determining the reference tempera-
ture is that it is easily updatable with respect to the performance
drifts of the PEMFC stack arising from the ambient conditions
variation and even ageing phenomenon. In this respect, the map
can be easily updated by recording some stable points (current,
voltage, and temperature) from different operation zones of the
PEMFC stack and using them for generating a new map with
the commonly used least square approaches.
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IV. TEMPERATURE AND CURRENT CONTROL

The general structure of the temperature and current control is
presented in Fig. 10. Asitis seen, in a hybrid system, the PEMFC
deals with supplying the average power and the dynamic part is
left to the battery pack or other energy storage systems. For each
requested power level from the PEMEC system, a specific T..;
is set through the obtained 2D power map. This 7., is imposed
to a FLC which acts on the cooling fan to reach it. However, the
temperature regulation is a slow dynamic process, contrary to the
current control which is very fast. In this regard, while the FLC is
trying to regulate the temperature, a PI power controller is used
to give the PEMFC system enough relaxation time for efficient
supply of the power by gaining the 7;..; which corresponds to
the minimum current. As the FLC increases or decreases the
temperature to reach the set point, depending on the initial stack
temperature, the PI controller regulates the PEMFC current in a
way to track the requested power.

The explained FLC for temperature regulation of the PEMFC
uses the temperature error and the reference current of the
PEMEC as inputs and determines the fan duty factor as the
output. The obtained fan duty factor from the FLC is sent to the
real PEMFC to warm up or cool down the system. The temper-
ature error is the difference between the stack temperature and
the reference temperature obtained from the explained power
map. The reference current signal, which strikingly influences
the PEMFC stack performance, is determined by a PI controller.
The input of the PI controller is the error between the requested
power from PEMFC and the supplied power by PEMFC, and
the output is the current, which will be the input of the fuzzy
controller. Using this PI regulator ensures that the requested
power is met. The characteristics of the FLC are as follows:
inference engine is AND (minimum operator), diffuzication is
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centroid, and fuzzy system type is Mamdani. Table I specifies
the fuzzy reasoning rules.

A. Fuzzv Optimization

Since the distribution of input membership functions (MFs)
has been considered as consistent over the universe of discourse,
the FLC might not perform optimally over various operating
conditions of the PEMFC. In this regard, instead of conducting
several trials to define the boundaries of the input MFs, they are
tuned by means of a hybrid optimization algorithm composed of
particle swarm optimization and genetic algorithm (PSO-GA).
However, before going through the optimization process, a
PEMFC model, capable of imitating the real-behavior of the
stack, is needed to be used in the tuning process of the FLC
parameters. This is due to the fact that utilizing the real PEMFC
stack for performing the optimization process damages its state
of health. Hereinafter, firstly, the employed PEMFC model for
the optimization process is described. Subsequently, the utilized
PSO-GA algorithm and its controlling parameters are explained
in details.

1) PEMFC Stack Model: In this work, a model made up of an
electrochemical and a thermal sub-model is employed to imitate
the behavior of an open cathode PEMFC. The utilized model,
which is shown in Fig. 11, is able to mimic the PEMFC behavior
in steady-state and low-dynamic conditions.

a) Electrochemical Model: The electrochemical model is
based on the Amphlett et a/. model which has been justified in
several studies [34], [35]. This model, which is shown in Fig. 11
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in the form of an electrical circuit, includes the polarization
effects. The charge double layer phenomenon has been added
to this model based on |40], [41]. The output voltage of the
PEMFC, which is for a number of cells connected in series, is
obtained by:

Ve = N (Enernst + Vaenr + Vo + Vohmic) (2)

where Vg is the output voltage (V), NV is the number of cells,
Encrnst 18 the reversible cell potential (V), Vo is the double-
layer charging effect, V,jn4. is the ohmic loss (V), and V., is
the activation loss (V). Activation loss is composed of a drop
related to the PEMFC internal temperature (V,.;) and a drop
related to the both current and temperature of the stack (V,.¢2).
The reversible cell potential is calculated by:

Enernst = 1.229 — 0.85 x 1073 (T}, — 298.15) + 4.3085
x 10T, [In (Pg3) + 0.5In (Poy)] 3)

where T, is the stack temperature (K), P is the hydrogen
partial pressure in anode side (N m™2), and Py, is the oxygen
partial pressure in cathode side (N'm~2). The activation loss is
given by:

Viet = —[Vaert + Vaera
Vietir = — [§1 + &L + ST In (COy)) @
Vaerr = — [fATstln (/)]
COy = Ppy/5.08 x 10%xp (—498/T;,)
where & (k = | ... 4) are the semi-empirical coefficients based

on fluild mechanics, thermodynamics, and electrochemistry,
CO, is the oxygen concentration (mol cm™), and 4 is the
PEMFC operating current (A). The double-layer charging effect
is formulated by:

VC = (7 - Cd‘//dt) (R-a(:ZZ + Rcon)
Ract'l = Vac[.l/z- (5)
Reon = Veon/i = (BIn (1 — J/Juax) /1)

where ¢ is the equivalent capacitor due to the double-layer
charging effect (F), which is in order of several Farads because
of porous electrodes of the PEMFC, B is a parametric coefficient
(V), J is the actual current density (A cm™2), Jyax is the max-
imum current density (A cm‘z), and V,,,, is the concentration
loss (V). The ohmic overvoltage can be described by:

Valmm- = _iRz.n.Le/'lt.al = —i (CI + _C2Tst + <3Z) (6)

where R;,icrnq is the internal resistor (2), and (p(k = 1...3)
are the parametric coefficients.

b) Thermal Model: The thermal behavior of the open
cathode PEMFC is modeled by means of energy conservation
equations for a lumped system, as introduced in [26], [27].
According to the energy conservation law, the energy balance
for describing the temperature dynamic of the PEMFC can be
given by:

Wlsz('sr(/«ﬁ//dt = Qreac - Ps[ - QNaI - QFor(:(zd (7)
where m, is stack mass (4.2 kg), Cy, is specific heat c_apacity

of stack (J/kg K) [27], T, is stack temperature (K), Q,cqc 1S
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TABLE 11
PEMEC MODEL PARAMETERS

Reference for min.

Model Parameter Value .
and max. limits
& -1.29
& 3.2042x10°
& 2.60x107
£, -1.50x10°
Electrochemical c(F) 6.107 [34,41]
B (V) 0.3513
é 0.00375
% 1x10°
4 -0.00027
. C (J/kg K) 1241
Thermal a 0.8653 [26,27]

the released energy from electrochemical reaction (J), P, is the
generated electrical power (W), (Q v, is the natural convection
(J), and Q Foreeq is the forced convection (J). The obtained en-
ergy form electrochemical reaction and the produced electrical
power of the stack can be presented by:

QI'G‘CLC = Vmaxi N (8)
‘/max = AH/’HF (9)
Py = Ve (10)

where Vi, 1 the maximum voltage obtained by hydrogen low
heating value (1.23 V) or hydrogen high heating value (1.48 V),
AH is the formation enthalpy, n is the number of electrons per
molecule, and F is the Faraday’s constant. The convective heat
transfer, which is composed of natural and forced convection,
can be formulated by:

QN(I_L = h'Nn.lANa[ (TSL - Tca.)
QFOl'c;ed = aDj'aupairAFor'r'ﬂrIC;) (Te[

where h g, is the natural heat transfer coefficient (14 W/m?K)
[26], Angs is the total surface area of the 500-W Horizon
PEMFC (0.1426 m?) which has been calculated by the available
dimensions in the manual of the device, T,, i1s the ambient
temperature (K), o is an empirical coefficient obtained by ex-
periment, D y,,, is the fan duty factor, p,; is the ambient air
density 1.267kg/m?, Ar,,ccq is the area exposed to the forced
convection (0.22m x 0.13m x 2),and C,, is the air specific heat
capacity 1005 J/kg K. The parameters which need to be tuned in
the discussed electrochemical and thermal sub-models are listed
in Table II. The values of these parameters have been obtained
by GA from the Global Optimization Toolbox of Matlab using
the measured experimental voltage, temperature, and current of
the PEMFC.

To assess the capability of the developed PEMFC model in
imitating the behavior of a 500-W Horizon PEMFC, the pre-
sented current profile in Fig. 12(a) has been applied to the mode]
and the emulation results are compared with the measurements.
Fig. 12(b) and Fig. 12(c) represent the voltage and temperature
estimations respectively. As is seen in Fig. 12, the model is able
to predict the PEMFC behavior with a satisfactory precision.

2) PSO-GA Optimization Process: GA and PSO are two
well-known metaheuristic algorithms which have been used to

(1)

- T(.:a) (12)
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resolve a number of different engineering problems. The main
reason for using hybrid PSO-GA optimization method is to
combine their merits. By employing the genetic operators in the
structure of PSO, the exploration and exploitation capabilities
can be enhanced to some extent. In GA, the information of an
individual will be forgotten in case it is not chosen, as opposed to
PSO which has memory. On the other hand, PSO might use the
resources for weak individuals since it does not have a selection
operator. Hence the primary intention to develop PSO-GA is to
integrate the social behavior of PSO into the search potential
of GA [42]. The flowchart of the utilized PSO-GA algorithm is
shown in Fig. 13. As is seen in this figure, first, the optimization
problem should be defined by introducing a fitness function as
the objective of minimization, the decision variables which are
the targeted parameters for estimation, and the search space
which is formed by describing the upper and lower limits of
each decision variable. [n this work, the constructing parameters
of the input MFs are considered as the decision variables. To
direct the population towards better solutions, a fitness function
is required. Regarding the temperature FLC, the main goal is to
reach the assigned reference temperature by the power map. In
this respect, the integral time-weighted absolute error (ITAE),
described in (13), is used as a fitness function for adjusting the
parameters of the FLC MFs. The ITAE based tuning leads to
much quicker settling time compared to other measures such as
integral squared error and integral absolute error.

min
(Decision variables

N
) / | Trey — Totldt (13)
I
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Fig. 13.  Flowchart of the PSO-GA algorithm.

TABLE Il
PSO-GA PARAMETERS DEFINITION

PSO-GA operators Definition Quantity

Iteryay Maximum iteration 100
Subiterpsy Maximum PSO subiteration 10
Subiterg, Maximum GA subiteration 10
Neop Number of population (particles) 500

C Constriction factor 0.729

COpet, Crossover percentage 0.8
Mu,., Mutation percentage 0.2

where f is time (s), T;.; is the reference temperature, and T,
is the PEMFC stack temperature. [t should be noted that the
optimization process of the FLC is performed on the explained
PEMFC model since it can damage the real PEMFC. The opti-
mized FLC is then implemented on the test bench to control the
real PEMFC.

After defining the optimization problem, the operating param-
eters of the PSO-GA optimization algorithm should be defined
according to Table III. Then the problem goes to the main loop
of the optimization and the PSO and GA operators try to find
the near optimal answer. In this work, separate iterations are
introduced for PSO and GA operators inside the main loop to
provide more control over them. The PSO algorithm updates the
velocity and position of each particle by:

)

+ a7 (Poest; — P+ cara (Ghest

S+l Pzl
{ v = C vl :
n+l _ n+1
pz +v’/

(14)
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where v]'! "is the velocity of particle i at iteration 7.+ |, C

is the constriction factor, which ensures the balance between
exploration and exploitation of the particles [43], «; and o are
the weighing factors, r; and r; are two random numbers between
0 and |, p is the position of particle / at iteration n, pbest; is
the best position of particle i, and gbest is the best position of
the swarm. The constriction factor can be formulated by:

{C=2/‘2—@—MI

Y=+ Q2

(15)

It 1s worth mentioning that the value of ¢ should be kept
between 4.1 and 4.2 by choosing 2.05 for a;; and a» to acquire
quality solutions [44].

Fig. 14 represents the input and output MFs of the designed
temperature FLC before and after optimization process. The total
number of decision variables are 27. Since the optimization
process is performed once, the computational time is not a
concern.

Fig. 15 represents the results of the tuned FLC performance af-
ter the optimization process. The optimization process has been
conducted for the indicated current profile in Fig. 15(a) by using
the explained PEMFC model. The reference temperature for
each operating current level of Fig. 15(a) has been obtained from
the extracted map of the PEMFC shown in Fig. 7. According to
Fig. 15(b), the best fitness value of the fitness function levels
off after almost 25 iterations and the mean value of the fitness
reaches the best value after about 85 iterations. Fig. 15(c) rep-
resents that the tuned FLC can reach the determined referenced
temperature in an acceptable time. Moreover, the behavior of the
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Fig. 15. Optimization results of the FLC tuning, (2) the employed current

profile for the tuning process, (b) the minimization trend of the objective
function, and (c) the test of the optimized FLC for reaching the reference
temperature.

cooling fan duty factor, which causes this temperature evolution,
is shown in Fig. 15(c).

V. EXPERIMENT AND RESULTS ANALYSIS

Two assessment tests are designed to show the efficiency of
the proposed systemic management. The first test deals with
supplying a constant power profile, and the second test copes
with variable power profile. In each stage, the performance
of the proposed approach is compared with the commercial
controller from manufacturer. Fig. 16 represents the stabilization
process of the PEMFC system for supplying a constant power of
380 W. From Fig. 16(a), it is observed that by using the proposed
thermal scheme, a lower current level is required to meet the
demanded power, compared to the manufacturer controller. It is
worth noting that achieving the same level of power by using dif-
ferent current levels in this test highlights the importance of the
thermal management. According to Fig. 16(b), the manufacturer
controller tends to keep the stack temperature at a higher level
than the proposed approach. This higher temperature can result
in a dryer membrane and less available oxygen for reaction.
Moreover, the proposed systemic control consumes less hydro-
gen (4.47 SLLPM) for providing the requested constant power
profile as opposed to the manufacturer controller (5.35 SLPM).
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The second test, which belongs to a variable power profile,
is shown in Fig. 17. This low dynamic profile contains various
high and low levels and indicates more clearly the performance
of the proposed thermal strategy in different conditions.

Fig. 17(a) indicates that both of controllers are able to provide
the demanded power. However, the temperature evolution of
the PEMFC stack by each of the controllers is different as
represented in Fig. 17(b). The required current levels for sup-
plying the power are also different, as shown in Fig. 17(c). Both
of the controllers tend to use the same current in low power
levels. However, in high power levels, the proposed strategy
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uses less current to meet the power. The effect of using a lower
current level to satisfy the requested power can be embraced
by checking the hydrogen consumption, which is represented
in Fig. 17(d). [t is observed that the hydrogen consumption
achieved by utilizing the proposed FLC controller is lower than
the manufacturer controller, specifically in high-power regions.
Looking more carefully at Fig. 17, it can be seen that although the
drawn current from the stack is almost the same in low-current
regions (Fig. 17(c)), the hydrogen consumption is different. This
is mainly due to the fact that the temperature levels are clearly
different (Fig. 17(b)) in low-current regions. It is worth noting
that this difference in temperature levels implies that the duty
factor of the fan, which is responsible both for cooling the system
and providing the necessary oxygen for the reactions, is also
variable. Moreover, this result justifies the presented behavior of
the open cathode PEMFC in Fig. 7 of the paper where the current
levels are remarkably near to the minimum current while the
temperature level changes more distinctly in low-power region.

Fig. 18 represents the comparison of the total hydrogen con-
sumption of the discussed constant and variable power profiles
for the case of manufacturer controller and the proposed sys-
temic strategy. According to this figure, the proposed strategy
of this work is able to decrease the hydrogen consumption of the
PEMFC system by 13% and 16% for the case of constant and
variable power profiles respectively.

V1. CONCLUSION

In this manuscript, a systemic management strategy is pro-
posed to enhance the efficiency of an open cathode PEMFC
system in different requested power levels. This strategy fo-
cuses on the usage of 3D mapping to determine the reference
temperature of the control scheme. In this respect, a number of
experiments are conducted to get a 3D power map for various
stack temperatures and currents. This power map provides an
efficient path based on the stack temperature and the current level
of the PEMFC system and determines the reference temperature
for each particular demanded power level from the system. Fi-
nally, an optimized FL.C is used to achieve the defined reference
temperature as the current of the PEMFC is being controlled
by a PI controller. The obtained results from the conducted ex-
periments highlight the satisfying performance of the proposed
methodology by improving the system efficiency up to 13%
and 16% for constant and variable power profiles respectively.
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While this manuscript has demonstrated the potential of the
suggested systemic management strategy, some opportunities
for extending the scope of this paper remain as follows:

{1

[4]

5]

(6]

(8]

9

[10]

[11]

[12]

[13]

(14]

L15]

116]

L17]

Integrating the proposed methodology into the design of an
energy management strategy for a fuel cell hybrid electric
vehicle.

Integrating an online system identification method to update
the 3D power map to adapt to the performance drifts of the
PEMEFC system.

Carrying out an ageing study of the PEMFC while using
the suggested current and temperature control.
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5.2.1 Methodology

This paper suggests an approach for enhancing the energetic efficiency of a FCHEV
based on an online systemic management of the PEMFC stack. In this regard, firstly, an
online systemic management scheme is developed to guarantee the supply of the requested
power from the stack with the highest efficiency. This scheme is based on an updatable 3D
map which relates the requested power form the stack to its optimal operating temperature
and current levels. The map is generated by a semi-empirical voltage model and a polynomial
thermal model being updated by KF and least square methods respectively. Secondly, two
EMSs, namely QP and bounded load following strategy (BLFS), are developed to distribute
the power between the FCS and battery in a low-speed FCHEV. The constraints of the EMSs,
such as FCS maximum efficiency and maximum power, are constantly updated by the
utilized online model to embrace the performance drifts of the stack due to degradation and
operating conditions variation. Finally, the effect of integrating the developed FCS systemic
management into the design of EMSs is experimentally scrutinized. The process of EMS

integration into the systemic management of the PEMFC stack is shown in Figure 6.2.
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Figure 5.3 The process of EMS integration into systemic management and control of

the PEMFC stack.

To show the effect of online systemic management incorporation into the EMS design,
five scenarios, namely the proposed EMSs based on systemic management and the updated
map (QPsys_yp and BLFSgyq_yyp), the proposed EMSs using commercial controller and the
updated map (QPcom-uyp and BLFS¢om_yp), and QP using commercial controller and an
outdated map (QPcom—_out) are taken into consideration under two driving cycles, worldwide

harmonized light-duty vehicles test cycles (WLTC class 3) and West Virginia Interstate

Driving Schedule (CYC_ WVUINTER).

In QPsys_yp and BLFSg,¢_y, case studies, the proposed systemic management uses the
estimated PEMFC characteristics shown in Figs. 12 and 13 to determine the right current and
temperature combinations for supplying the reference power imposed by the EMS to the
PEMEC system. In fact, the reference temperature is determined by the optimal power-

versus-temperature line and after that FLLC controls the cooling fan to reach the reference
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temperature. In QPcom—yp and BLFS¢om_yp case studies, the imposed power by the EMS is
supplied by the PEMFC using the commercial fan controller of the PEMFC stack and the
updated characteristics. The comparison of QPsys_yp and BLFSgys_y, with QPeom-yp and
BLFS¢om-up case studies illustrates the effect of including systemic management in the EMS
design which is one of the main objectives of this manuscript. QP¢om oyt case study supplies
the power by using the commercial fan controller and outdated characteristics of the PEMFC
stack. The outdated map belongs to the presented PEMFC in its BOL in Fig. la. By using
this map, the EMS is fed by false inputs because the characteristics map is ditferent with the
utilized PEMFC on the HIL set-up. The comparison of QP¢om-yp and QPcom—oy¢ illuminates

the importance of online updating in the performance of the vehicle.

5.2.2  Synopsis of the results analyses

Figure 5.4 indicates the hydrogen consumption of the PEMFC stack as well as the
influence of initial and final battery SOC over the performance of the studied cases. In this
regard, each test is repeated five times starting with different initial SOCs (60%, 65%, 70%,
75%, and 80%). Subsequently, the difference between initial and final SOC (ASOC) versus
the hydrogen consumption is plotted. Form this figure, it is clear that under both driving
cycles, regardless of the initial and final battery SOC, the QPsys_yp achievs the lowest and
the QPcom_our reaches the highest hydrogen consumption. Comparing QFsys_yp and
QPcom-up shows that hydrogen consumption has decreased up to 3.7% and 2.6% in Figure
5.4a and Figure 5.4b respectively due to the integration of the proposed systemic
management. Moreover, comparison of QPcom—yp and QPeom_our Shows that ignorance of

adaptation to the PEMFC health state has increased hydrogen consumption up to 3.2% and
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6.6% in Figure 5.4a and Figure 5.4b respectively. Regarding the BLES, inclusion of the

systemic management has declined the hydrogen consumption up to 3.4% in Figure 5.4c and

3% in Figure 5.4d.
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Figure 5.4

Hydrogen consumption for various initial Battery SOCs, a) and ¢)

WLTC class 3, b) and d) CYC_WVUINTER.
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Vehicles’ Energy Management Strategies by
Online Systemic Management of Fuel Cell
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Abstract—This paper puts forward an approach for
boosting the efficiency of energy management strategies
(EMSs) in fuel cell hybrid electric vehicles (FCHEVs) using
an online systemic management of the fuel cell system
(FCS). Unlike other similar works which solely determine
the requested current from the FCS, this work capitalizes
on simultaneous regulation of current and temperature,
which have different dynamic behavior. In this regard,
firstly, an online systemic management scheme is
developed to guarantee the supply of the requested power
from the stack with the highest efficiency. This scheme is
based on an updatable 3D map which relates the
requested power from the stack to its optimal temperature
and current. Secondly, two different EMSs are used to
distribute the power between the FCS and battery. The
EMSs’ constraints are constantly updated by the online
model to embrace the stack performance drifts owing to
degradation and operating conditions variation. Finally,
the effect of integrating the developed online systemic
management into the EMSs’ design is experimentally
scrutinized under two standard driving cycles and
indicated that up to 3.7% efficiency enhancement can be
reached by employing such a systemic approach.
Moreover, FCS health adaptation unawareness can
increase the hydrogen consumption up to 6.6%.

Index Terms—Online parameter estimation, optimal
energy management strategy, proton exchange membrane
fuel cell, systemic management, thermal control.

NOMENCLATURE
Pec fuel cell estimated power (W)
Trc fuel cell estimated stable temperature (°C)
no2 o consumed oxygen in the reaction (mol/s)
n? supplied oxygen to PEMFC (mol/s)
APray i negative PEMFC power change (W)
APrise positive PEMFC power change (W)
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oxygen concentration (mol/cm?)
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current of the Hydrogen valve (A)
battery current (A)
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fuel cell power mean absolute percentage error
air molar mass (kg/mol)

number of cells
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PEMFC system power (W)

consumed power by cooling fan (W)
hydrogen pressure in anode side (Pa)
oxygen partial pressure in cathode side (Pa)
consumed power by hydrogen valve (W)
battery pack power (W)

requested power (W)

air flow (m*/s)

stack temperature root-mean-square error
internal resistance during charging (£2)
internal resistance during discharging (Q2)
fuel cell internal resistor (Q2)

oxygen stoichiometry

falling dynamic limitation (W/s)

rising dynamic limitation (W/s)

stack temperature (°C)

stack temperature (°C)

ambient temperature (°C)

open circuit voltage (V)

bus voltage (V)

stack voltage (V)

voltage of the Hydrogen valve (V)
activation loss (V)
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fitting parameters (n = 1,2,3)

empirical coefficients (n = 1...3)
hydrogen flow (SLPM)

fitting parameters (n = 1...6)

initial step time (s)

final step time (s)

fitting parameters (n = 0,1,2)
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(n parametric coefficients (n = 1...3)
Noc-pe DC-DC converter efficiency
Nrc-Sys efficiency of the PEMFC system

¢a semi-empirical coefficients (n = 1...4)
Pair air density (kg/m?)

At time interval (s)

B parametric coefficient

CVE cross-validation error

F Faraday constant (sA/mol)

LHV hydrogen low heating value (J/mol)
N number of data points

Soc state of charge

t total time of driving cycle (s)

I. INTRODUCTION

A. Literature survey

UEL cell hybrid electric vehicles (FCHEVs) normally

employ a proton exchange membrane (PEM) fuel cell

(FC) stack, as the main power source, and a battery pack
or/and a supercapacitor (SC), as the secondary power source
[1]. The specific characteristics of each source, in terms of
power delivery and efficiency, make the design of an energy
management strategy (EMS) vital for having an efficient
power distribution [2]. The existing EMSs in the literature can
be divided into three categories of rule-based, optimization-
based, and intelligent-based [3]. Several strategies based on
these categories and their combinations are available in the
literature. In [4], a multi-mode fuzzy logic controller (FLC) is
used to perform the power distribution in a FCHEV. The
modes of the FL.C are determined by a multi-layer perceptron
neural network using the historical velocity window, and the
rule base is optimized by a genetic algorithm. This strategy
has improved the fuel economy by 8.89%, compared to a
single-mode FLC. In [5], a multi-state (i.e., coasting, braking,
and station parking) equivalent consumption minimization
strategy (ECMS) is formulated by quadratic programming
(QP) for a tram. This EMS has led to 2.5% energy
consumption decline compared to a rule-based power
following EMS. In [6], a convex optimization is proposed to
minimize the energy cost by optimizing the control decisions
and the cost of power sources. This study shows that
appropriate estimation of the PEMFC rated power can
decrease the hydrogen cost up to 61%. [n [7], a heuristic
method called bounded load following strategy (BLFS) is
suggested for a FC-battery vehicle. The PEMFC power is
bounded between two limits according to the efficiency curve
of the stack. The boundaries of this strategy are refined with
respect to the optimal trajectory obtained by dynamic
programming. In [8], the suggested strategy has two phases of
optimal policy generation for a long trip, using a distribution
optimization algorithm, and revising the EMS considering the
actual traffic conditions in short-term time steps. In [9], an
adaptive controller based on tuning the FLC parameters for
different loads 1s proposed. The authors state that the PEMFC
voltage declines after a while due to degradation. Under this
condition, the rule-based values should be reconsidered.

B. Necessity of online mapping

Performance of a FC system is influenced by several
factors, such as ambient operating conditions, stack
temperature, operating current, degradation phenomenon, and
so forth, The variation of these factors can lead to the change
of PEMFC stack power delivery capability which is very
important in the design of an EMS. For instance, Fig. |
indicates the output power of a 500-W PEMFC with respect to
its operating current and stack temperature in two different
conditions. The data have been obtained from experimental
tests in Hydrogen Research Institute of University of Quebec
in Trois-Rivieres. Fig. la presents the characteristics of a new
PEMFC stack, which is in its beginning of life (BOL) and an
old stack which is in its end of life (EQL) after reaching a 20%
decrease in the maximum rated power. Fig. Ib shows the
characteristics of a 500-W stack in two different seasons with
different ambient temperatures (27°C in Summer and 20°C in
Winter). The stars show the location of maximum power (MP)
which changes in each case. Therefore, the online updating of
the map seems to be necessary to embrace these impacts on
the operation of the stack and provide the requested power
from the FCS by the best possible combination of current and
temperature. Some considerable efforts have been made to
prevent the EMS malfunction owing to these performance
drifts by adding a degradation model to the system. In [10],
FC degradation is quantified by a simplified electrochemical
model and integrated into the cost function of an optimal
control-based EMS for a hybrid FC bus to extend the PEMFC
lifetime. In [11], an online adaptive ECMS is proposed for a
FC-battery-SC powertrain, where the degradation of the
PEMFC 1is considered by the variation of resistance and
maximum current density using a first-order polynomial
function. The authors show that the battery charge sustenance
constraint cannot be satisfied as the PEMFC and battery
degrade. In [12], a model predictive control framework is
proposed for a FCHEV. The PEMFC degradation is also taken
into account using some experimental degradation rates for
high, low, and transitional loads. However, degradation and
ageing mechanisms are very complex to be modeled.
Moreover, the operating conditions which are not included in
the PEMFC model, such as humidity and ambient
temperature, can also change the maximum efficiency (ME)
and MP ranges of the stack that are normally among the
utilized constraints while designing an EMS.
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Fig. 1. The variation of characteristics in a PEMFC stack, a) lifetime
variation, b) seasonal variation.
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To evade the mentioned issues about PEMFC modeling,
two approaches of extremum seeking and online identification
of PEMFC model parameters have come under attention. The
former is based on secking an optimal operating point by
means of a periodic perturbation signal in real-time [13, 14].
Such strategies are of interest mostly due to their
straightforward implementation. When concurrent
identification of several operating points is required in online
applications, the optimization function is changed, and an
optimization algorithm is used to search for MP and ME
points. Regarding online identification, recursive filters are
used for tuning the PEMFC parameters through time. The
necessary characteristics are then extracted from the updated
model. In [15], the authors employ RLS for updating a single-
input PEMF model while designing an EMS for a FCHEV.
They indicate that the classical strategies are not very efficient
when there are performance drifts in the FC system.

C. Contributions

One important aspect that has escaped the attention of many
researchers in the domain of EMS for FCHEVs is adopting a
systemic approach towards the management of the PEMFC
stack while developing a strategy. In the literature, current and
temperature are typically regarded as independent control
variables. Nonetheless, PEMFC is a multi-physical system
with strong dynamic interactions between current and
temperature. Regarding the PEMFC as a system provides
several degrees of freedom in terms of power supply [16]. A
specific requested power from the PEMFC can be supplied by
different combinations of current and temperature to improve
the efficiency [I17]. Several methods have been proposed
concerning the thermal/current management of a PEMFC
stack. For instance, in [I8], a ten-percent power increase is
achieved by controlling the PEMFC stack temperature and
input hydrogen humidity level using a FLC and a bubble
humidifier respectively. In [19], an approach based on
electrochemical impedance spectroscopy is proposed where
the current of lowest resistance is used to determine the
optimum air flow rate and current density considering the
influence of the temperature. In [20], a FLC is suggested to
regulate the stack temperature of an open cathode PEMFC by
acting on the cooling fan speed. However, to the best of the
authors’ knowledge, the integration of a simultaneous current
and temperature management into the design of an EMS has
not been considered before. In this respect, first, an online
systemic management scheme is put forward to guarantee the
supply of the requested power from the PEMFC stack with the
highest efficiency and embrace the effect of performance
drifts in this system. Subsequently, two EMSs, namely QP and
BLFS, are developed to distribute the power between sources
while respecting the limitations of the system. Finally, the
effect  of including the proposed PEMFC systemic
management in the EMSs’ design is scrutinized by performing
experimental validations in a hardware-in-the-loop (HIL) set-
up. As mentioned earlier, the main contribution of this work
lies in the efficiency upgrade of the two mentioned EMSs by
utilizing the put forward concurrent current and temperature

systemic management scheme.

D. Paper organization

Section II describes the utilized vehicle characteristics
along with the designed HIL platform. The development of the
proposed online current and temperature management as well
as the EMS is discussed in Section L. Section IV presents the
obtained results from the considered scenarios, and the
conclusion along with some remarks is given in section V.

[I. FUEL CELL HYBRID ELECTRIC VEHICLE SYSTEM

The system utilized in this manuscript is based on a low-
speed FCHEV, called Nemo. The powertrain of this vehicle is
composed of a 3-phase induction machine, a PEMFC stack,
and a battery pack. The power sources are connected in series
and the PEMFC acts as a range extender [21]. More details
about the specifications of this vehicle are available in [22].
For the purpose of this work, a HIL platform is developed to
assess the performance of the EMS. As shown in Fig. 2, a
Horizon H-500 PEMFC is used as the real component of this
platform and the rest are mathematical models. The
specifications of this PEMFC are presented in Table |. This
open-cathode PEMFC system is self-humidified and air-
cooled. It includes two fans attached to the FC stack housing
to supply the cooling and process air. The hydrogen supply
subsystem consists of a hydrogen tank, a manual forward
pressure regulator, a hydrogen supply valve, a hydrogen
purging valve, and a mass flowmeter. The pressure regulator
keeps the pressure of hydrogen between 0.5 and 0.6 Bar. In
the anode side, the PEMFC is equipped with 2 valves.
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Fig. 2. The developed HIL platform for evaluating an EMS.

TABLE |
SPECIFICATIONS OF THE HORIZON H-500 FC
PEMFC Technical specifications
Number of cells 36

Max Current (shutdown) 42 A

Hydrogen pressure 0.5-0.6 Bar

Cathode pressure | Bar

Ambient temperature 5t030°C

Max stack temperature 65 °C

Hydrogen purity 99.999% dry H,

Size 130 x 220 x 122 mm

Cooling Air (inlegrated cooling fan)
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The hydrogen inlet valve allows feeding the PEMFC with dry
hydrogen. The hydrogen flow rate changes from 0 to 7 [/min
with respect to the drawn power from the stack. Hydrogen
flow is measured by an OMEGA flowmeter (FMA-A2309)
calibrated for hydrogen gas. It utilizes a capillary type thermal
technology to directly measure mass flow and does not require
any temperature, pressure, or square root corrections. The
purge valve acts as the anode outlet and dispels the excess
water and hydrogen from the PEMFC flow channels. In this
work, cycling purging is performed to recurrently remove
accumulated water, hydrogen and nitrogen. As advised by the
manufacturer, the PEMFC is purged every 10 s for a duration
of 100 ms in order to refill the anode volume with fresh
hydrogen. The hydrogen exhaust flow during the purge
depends on the pressure difference between the environment
and the anode side. After each purge, if the performance is
increased around 10%, the pressure of hydrogen is increased a
little bit as it is an indication of tlooding (as suggested by the
manufacturer). This pressure increase helps pushing the extra
water out. In addition, the pressure difference between the
anode and the cathode must not exceed 0.5 bar to avoid
membrane damages. The PEMFC is linked to a National
Instrument CompactRIO (NI cRIO-9022) via its controller
which regulates the axial fan as well as the input/output
valves. This embedded real-time controller has been combined
with a compatible CompactRIO Chassis to include integrated
C series 1/O module slots. The communication between
CompactRIO and the PC, where the LabVIEW software is
available, is done by an Ethernet connection. The data
between the CompactRIO and the PC are transferred every
100 ms. Current, temperature, and voltage of the PEMFC
stack are recorded for updating the model. An 8514 BK
Precision DC Electronic Load demands a load profile,
imposed by the DC-DC converter, from the PEMFC stack.
Since Nemo vehicle has a 4-kW PEMFC stack, the output
voltage of the 500-W PEMFC is scaled up after the converter
in the HIL platform. The performed tests in this work have
been conducted in the ambient temperature and humidity
levels of 20 °C and 60 % respectively.

A battery internal resistance model is employed to imitate
the behavior of a 6 Ah lithium-ion battery module from Saft
Company [23], available in the database of ADVISOR
software. In this work, the battery pack is only composed of
20 cells in series. Fig. 3 shows the relationship of battery cell
SOC with each of open circuit voltage (Upq,—oc¢), Internal
resistance during charging (Rpqr—cr), and internal resistance
during discharging (Rpqt—acn)-

The battery current (/,,,), bus voltage (U,,), and SOC are
calculated by:

If Pyoe > 0 (discharge):
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Fig. 3. SOC relationship with open circuit vollage and internal resistance
per cell.
If Ppye < 0 (charge):
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where P,,, is the battery pack power, C,,, 1s the capacity, and
¢ 1s the coulombic efficiency only during charge (0.98) [24].
The PEMFC stack is linked to the DC bus through a DC-DC
converter. This converter is modeled by using a smoothing
inductor and a boost chopper as explained in [25].

Il ONLINE SYSTEMIC MANAGEMENT STRATEGY

Temperature of a PEMFC stack has an impact on the
electrochemical, thermodynamics, electro-kinetics, transport,
and water distribution processes, which jointly dictate system
efficiency and long-term durability [26]. It is favorable to
sustain control over the stack temperature to reach
homogeneous distribution. Hence, temperature and indeed its
spatial variation should be considered alongside the commonly
considered operating conditions, such as current and voltage,
while characterizing the PEMFC stack performance and
searching for optimum operating points. This is significant in
all the PEMFCs and operating modes but ts chiefly relevant to
the air-cooled PEMFCs in which the input air is responsible
for both of reaction and cooling the system [27].

In an open cathode PEMFC, the airflow related to the
minimum cooling fan duty cycle can ensure a high oxygen
stoichiometry ratio at the rated power of the PEMFC stack
[19, 28]. Therefore, the principal impact on the performance is
made by the changes in the stack temperature rather than the
oxygen supply. Regarding the utilized open cathode PEMFC
in this manuscript, the cathode stoichiometry is calculated by
[28]:
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where 5, is the oxygen stoichiometry, n;? is the amount of

oxygen supplied to the PEMFC, nfgns is the consumed oxygen
in the electrochemical reaction, pg;, is the air density, Qg;, 1s
the air flow, M, is the air molar mass, N, is the number of
cells, and F is the Faraday constant. In (3), the only unknown
parameter is the airflow (Q;,-), which is calculated according
to the presented experimental measurements in Fig. 4.
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Fig. 4. Cooling fan characteristics, a) fan voltage with respect to
duty cycle, and b) air flow with respect to fan voltage.

According to (3) and Fig. 4, even at the minimum duty
cycle of the fan (34%), a stoichiometry of around 29 is
obtained at the rated power of the PEMFC (448W @ 27A).
Such a high oxygen stoichiometry is not unusual for air-cooled
open-cathode systems according to the literature [ 19, 28].
General configuration of the proposed online systemic
strategy 1s shown in Fig. 5. This strategy is based on the
proposed work in [16] and has two operating levels of
management and control. The management level is
responsible for dictating the reference signals to the
controllers, and the control level deals with reaching them. In
[16], the management level comprised a static 3D power map
generated by experimental data. It would determine the
reference signal of the temperature controller (FLC) while the
reference power of the power controller was assumed to be
known. However, such a map is efficient only in a limited
operating range as the PEMFC characteristics change through
time.

In this work, an online PEMFC model is employed to
update the key characteristics of the stack, such as power and
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Fig. 5. The systemic current and temperature management and
control structure.

efficiency curves, from time to time. The extracted
characteristics have two vital roles in this strategy. First,
determining a dependable reference signal for the temperature
controller through an optimal temperature-versus-power path.
Second, providing the EMS with the updated ME and MP
points which are utilized to ascertain the requested power from
the PEMFC stack. The requested power from the PEMFC
stack is indeed the reference signal of the power controller
shown in Fig. 5. The two appointed reference signals are then
sent to the controllers to be reached. The details about the
design and performance of the control level are available in
[16]. This work mainly focuses on the online updating of the
map and its integration into an EMS.

A. Online mapping

1) Process explanation:

The general process of online mapping in this study is
shown in Fig. 6. The core of this process is a semi-empirical
PEMFC voltage model which takes the current (/g),
hydrogen partial pressure (Py,), and stack temperature (Ty()
as the inputs and estimates the stack voltage (Viy¢). The
hydrogen partial pressure is assumed constant in this work. As
discussed in [16], stack temperature mainly depends on the
current and cooling fan duty cycle, and it can be represented
by a smooth surface. In this respect, a polynomial function is
used to create a relationship between the inputs, which are
operating current and fan duty cycle, and the output, which is
the stack temperature. Indeed, this function provides the stable
temperature for each current level with respect to the utilized
fan duty cycle. The operating current and its corresponding
stable temperature are then used as the inputs of the semi-
empirical voltage model, and as a result, the voltage and
power curves of the PEMFC are obtained. This map is static
and will be used by the EMS for updating the set ME and MP
points. The parameters of the voltage model] are updated by
Kalman filter (KF) using the measured signals from the real
PEMFC. As opposed to the semi-empirical model, the
polynomial function is updated online by a batch of stable
temperature points using a typical least squares method [29]. It
should be noted that in the beginning of the process, first, the
parameters of the voltage model are updated as it can be done
very fast by using the measured data from the real PEMFC.
Subsequently, the thermal model is updated when enough
measured stable temperature points are captured. Afterwards,
the models are updated from time to time.
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2) Voltage model:
The utilized semi-empirical model estimates the stack
voltage for a number of cells connected in series.

Vee = Ncell(ENernst + Vaer + Vonmic T Vcon) 4)
Enernee = 1.229 — 0.85 x 10~3(Tre — 298.15) +

43085 x 1075Tsc[In(Py,) + 0.5In (Pyy)] (5)
Vace = &1+ & Trc + §3Trcn(C03) + 80 Tecin(lre) )
€O, = Poz )

2 7 5.08x1076 exp(—498/Tr¢)

Vonmic = —lrc Rinternat = —lrc(§1 + $2Tec + {315¢) (7N
Veon = Bln(1 — -££) (8)

Where Vi is the stack output voltage (V), Ny is the
number of cells, Eyqrnse 1S the reversible cell potential (V),
Vaer 18 the activation loss (V), Vopmic is the ohmic loss (V),
V.on 1s the concentration loss (V), Tg¢ is the stack temperature
(K), Py, is the hydrogen partial pressure in anode side
(Nm~2%), Py, is the oxygen partial pressure in cathode side
(Nm~2), §,(n=1..4) are the semi-empirical coefficients
based on fluid mechanics, thermodynamics, and
electrochemistry, €0, is the oxygen concentration
(molcm™3), Ig, is the PEMFC operating current (A),
Rinterna; 15 the internal resistor (Q), {,(n =1...3) are the
parametric coefficients, B is a parametric coefficient (V), and
Imax 18 the maximum current (A). The explanation of KF
integration into this semi-empirical model for parameters
estimation is considered redundant in this work as it has been
already discussed in [22]. The targeted parameters for
estimation in the voltage model vary through time. However,
their initial values before the online estimation by KF are:
£,=-0.995, §,=2.1228% 103, £5=2.1264x 107, £,=-1.1337x 10"
4 (=-0.024, (,=7.60x103, {3=-1.06x107, B=0.4970. The
power of the PEMFC system (Ppc_gys) is obtained by
subtracting the power of the PEMFC stack (Pg¢) from the
consumed power by the cooling fan (Pr,,) and hydrogen
valve (Pyge). Fig. 7 shows the consumed power by the
cooling fan at each duty cycle obtained by measuring the
voltage and current of the fan in different duty cycles (34% to
100%). The power consumed by the purge valve is not
noticeable as it has a fixed cyclic purging (every 10 s for
duration of 100 ms) and has not been considered in this work.

Prc—sys = Pec = Pran = Prawe 9
Prc = Ve X ¢ (10)
Pean = €1 DCran” + €5 DCran + C3 (11)
PValve = VValve X lValve (12)

Where ¢y, ¢,, and ¢; are empirical coefficients obtained by
fitting a single-variable quadratic polynomial function to the
measured data shown in Fig. 7 (¢; = 0.001365, ¢, = 0.1139,
and ¢; = -0.9946), V, 4ive is the voltage of the Hydrogen valve
(12 V), and 1,4 1s the current of the Hydrogen valve (0.72
A). The power consumption of the hydrogen valve is constant
since it is normally open when the PEMFC starts operating.

Hydrogen flow is a function of current and duty cycle and is

20 40 60 80 100
DC__ (%)

Fan

Fig. 7. The 500-W Horizon PEMFC Cooling fan power consumption
respecting the duty cycle.

estimated by an empirical equation proposed in [16].
DCran o}
fia = a1 lgc + az ﬁ+a3 (13)

Where fy, is the hydrogen flow (SLPM), and a, (n =
1,2,3) are the fitting parameters obtained by the experimental
data (a, = 0.1539, a, = -0.05308, a; = 1.657). Finally, the
efficiency of the PEMFC system is calculated by:

_ Prc-sys
Nec-Sys = Tra .. .
22.4%X60

(14)

XLHV

where LHV is the low heating value of hydrogen (241800
J/mol), and 1/22.4 x 60 is the conversion factor from SLPM
tomol/s.

3) Thermal modei:

As mentioned earlier, the temperature behavior with respect
to current and fan duty cycle can be modeled by a polynomial
function. Fig. 8 shows the influence of cooling fan and
operating current over the stack temperature of the PEMFC.

20 10
Current (A)

Duty Factor

Fig. 8. Influence of operating current and fan duty factor over the
stack temperature.

This figure has been generated by applying a ramp-up
current profile to the PEMFC system in five different fan duty
factors, namely 0.25, 0.34, 0.5, 0.7, and 1. At each duty factor,
the test is continued until the maximum power of the PEMFC
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is achieved, and the voltage drop due to the concentration loss
is observed. [t should be noted that while testing the EMS, the
minimum fan duty cycle is set to 34% (not 25%) as it is the
minimum level defined by the manufacturer to have a good
chemical reaction in all the power ranges. To select a suitable
degree for the polynomial-based temperature model, K-fold
cross validation is used [30]. Fig. 9 shows the cross-validation
error (CVE) for the five-fold data set of this manuscript based
on which a proper function should be selected for estimating
the stable temperature. The CVE is calculated by:

1
CVE = — ¥, RMSEp,; (15)
Nyp 4 N2
RMSEq,. = /421(“”% Trc) (16)

where m is the number of subsets, which is 5 herein,
RMSEz,. is the stack temperature root-mean-square error of
each subset, N is the number of data points inside each subset,
Tec is the measured stable temperature, and Tp is the
estimated stable temperature by the polynomial function. The
CVE has been calculated for several polynomial degrees, as
shown in Fig. 9. Apart from overfitting and underfitting
problems, it is also significant to avoid increasing the number
of parameters since this function will be updated online by
least squares method. From Fig. 9, it seems that a third-degree
function with respect to the operating current has an
acceptable performance as it has achieved a low CVE.
According to Fig. 9, the temperature model is given by:

Trc (DCrani Iec) = Tamp + P1 DCpan + 02 Ipc +
P3 DCran Irc + P4 Iec® + P5 DCran Irc® + pb Irc® (17)
where Tgc is the stack temperature, T, 1s the ambient
temperature (20 °C), DCrqy 1s the duty cycle of the fan, Iz is
the operating current of the PEMFC stack, and p,(n =1 ...6)
are the unknown parameters estimated by least squares
method when enough measured data are obtained. The values
of these empirical parameters after the first estimation are:
p1=0.0322, p2=1.7112, p3=-0.0259, p4=0.0117, p5=0.0006,
and p6=-0.001. Fig. 10 indicates the investigation for finding
the minimum required time to get stable points for updating
the parameters of the temperature model (Fig. 10a) and the
number of points needed to do the first estimation (Fig. 10b).
Since the final objective of the PEMFC model is to extract the
power map, the utilized error in Fig. 10 is the mean absolute
percentage error of the estimated PEMFC power (MAPE,, ),
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Fig. 9. Evaluation of different polynomial degrees based on CVE.
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Fig. 10. The required time (a) and data points (b) for updating the
parameters of the temperature model.

calculated by (18). That means, first, the stable temperature is
estimated by the polynomial function, and after that it is sent
to the voltage model to predict the output power of the stack.

(18)

_ 100% vy Prc—Prc
MAPEp,, = 223} |—PFC

Where Pp: is the estimated power by using the measured
temperature, and Pp. is the estimated power by using the
estimated temperature. From Fig. 10a, it can be stated that the
extracted parameters at 2 minutes have an acceptable precision
(MAPEp,. = 3.77%) as the decline trend of the error becomes

less than 1% after this step. In other words, the error does not
decrease considerably after 2 minutes. Moreover, Fig. 10b
shows that by having nine measurements, an acceptable
estimation can be conducted. As the application of this work
will be in FCHEVs which have an energy storage system, it is
possible to reach the stable temperature points from PEMFC.
Moreover, the primary estimations can be done by recording
points in even less than one minute and then the accuracy can
be increased by getting more stable points through time.

4) Validation phase:

An experimental test has been conducted to evaluate the
extraction quality of the power map and other characteristics
by using the above-discussed online modeling approach. Fig.
I1a presents the applied current profile to the PEMFC stack
and Fig. 11b shows the utilized cooling fan duty cycle profile
as well as the corresponding stack temperature. The current
profile and the measured temperature are sent to the
electrochemical model, and the estimated voltage by the
PEMFC model is then presented in Fig. 11c. According to this
figure, the voltage estimation by the model has a satisfactory
quality. It should be noted that the parameters of the semi-
empirical model are tuned by KF. The measured stable
temperature data as a result of applying the current and the
cooling fan duty cycle profiles, shown in Fig. 11, are
employed to extract the optimal power line of the stack with
respect to current and temperature.

Fig. 12 represents the estimated and measured power line of
the utilized PEMFC stack. As is seen in this figure, several
combinations of current and temperature can lead to the same
power level. In each power line, the intersection of minimum
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Fig. 11. Current profile (a), cooling fan duty cycle profile and its
corresponding stack temperature (b), and the voltage estimation (c).

current and its corresponding temperature is shown with a
circle where connecting all the circles leads to an optimal
power line. The reference power line has been obtained by
conducting several tests since it needs a wide range of data.
However, the estimated power line has been attained by the
model using the minimum time and data points, as discussed
earlier. Fig. 13 shows the corresponding hydrogen
consumption of each power line. From this figure, it is seen
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Fig. 12. Optimal power line with respect to current and temperature.
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Fig. 13. Optimal power line with respect to current and H2 flow.

that each circled optimal point in the estimated power line is
equivalent to the minimum hydrogen consumption, implying
that the lower the current, the lower the hydrogen flow.
Moreover, the interpolated lines in each power level can be
mathematically considered as a convex problem which has
only one minimum.

B. Energy management strategies

The provided basis in this work regarding online systemic
management can be conveniently integrated into most of the
existing EMSs in the literature. An EMS or power split
strategy, regardless of its type, is expected to determine the
reference power from the PEMFC stack. Then, the proposed
systemic management is mainly responsible for supplying this
reference power by selecting the best combination of PEMFC
current and temperature. As the selection of current and
temperature comes from an updated experimental map, the
supply of the PEMFC reference power, determined by the
EMS, is guaranteed with the highest efficiency level. In this
section, two EMSs will be discussed to be upgraded by the
proposed online systemic management.

1) Quadratic programming-based strategy:

The requested power (P,.,) from the electric motor side is
supplied by both of PEMFC system and battery pack.
Therefore, the fuel economy of an FCHEV relies on how the
requested power is distributed between these two sources.
Herein, the objective of the EMS is to find an online optimal
power split trajectory which maximizes PEMFC efficiency
while respecting the constraints of the system.
Preq = NMoc-pcPrc-sys + Psac (19)

Where Py, 1s the battery power and 7pc_p is the DC-DC
converter efficiency (90%). According to Fig. 14, which has
been extracted from the explained online mapping section, the
process of maximizing the PEMFC system efficiency can be
formulated by a quadratic function as:

max (L2_, oo (k) Pec_sys® + @ (k) Prc_sys (k) + a(k) ) (20)

L neN @n

At

n =

where the total time of driving cycle (t) is discretized to n
time points with respect to the time interval (At). The defined
cost function in (20) can be solved by the classical QP method
as it is convex in the bounded power ranges shown in Fig. 14.
Each cross marker in Fig. [4 represents the location of one
measured point in terms of power and efficiency. Each
measured point has also a specific current and duty cycle. The
estimated curve shows that the highest level for the efficiency
curve has been selected.

However, to keep the power sources operation within an
admissible range, the following constraints are considered:

SOCyin < SOCy, < SOCax (22)
Prcmin < Prek < Prcmax (23)
APRL'se,k - Slewrate,rise <0 (24)
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Fig. 14. Relationship between PEMFC system efficiency and power.
APray i — Slewrgre pan < 0 (25)
where the battery SOC should be kept between 50% (SOCin)
and 90% (SOC4x), Prcmin 1S Z€T0, Prgmay 15 determined by
the online model, APgis., is the positive PEMFC power
change, Slew, ;¢ rise is the rising dynamic limitation, AP 4
is the negative PEMFC power change, and Slew, 4. fqu 15 the
falling dynamic limitation. According to [|5], a dynamic
limitation of 50 Ws™!, which means a maximum of 10% of
the maximum power per second for rising, and also 30% of
the maximum power per second for falling, as suggested in
[7], have been considered for the operation of the PEMFC
stack. The proposed strategy avoids operation in the open-
circuit voltage (OCV) of the PEMFC. When the requested
power from the PEMFC decreases to zero, the PEMFC is
switched off and it does not operate in OCV. Moreover, to
avoid unnecessary on/off cycles in the PEMFC system, the
cost function of the QP has been defined based on maximizing
the efficiency. PEMFC system efficiency is zero when the
current/power of the PEMFC is zero. Therefore, QP avoids
using PEMFC in low efficiency region as its objective is to
maximize it. QP only decides to turn off the PEMFC to avoid
over charging when the battery SOC approaches its upper
limit.

The only point that should be reminded here is that since
the optimization variable in (20) is Pec_gys, the battery SOC
calculation should be related to this optimization variable so
that the defined constraint in (22) can be explained. The
presented SOC calculation in (1) and (2) can be presented as:
SOC(k) = f(SOC(K), Pogr (k) (26)

Here, the battery power can be substituted by the difference
between requested power and the PEMFC system power as:
SOC(k) = f(SOC(K), Preq(k) = Npc-pcPre-sys (k) (27)

Since P..q(k) is obtained by imposing acceleration to the
system, (27) can be rewritten in terms of the optimization
variable (Ppc_gys), by using a new function (F).

SOC(k) = F(SOC(K), Pr-sys(k)) (28)

2) Bounded load following strategy (BLFS):

The second EMS of this study is a commonly used rule-
based real-time approach in the literature [7, 31]. BLFS is a
hysteresis-based EMS to distribute the power between the
sources of a FCHEV. It normally limits the operation of the
PEMEC stack within ME and MP points and mostly provides
three modes of operation including ON/OFF, Pg¢ i, and
Prc max With respect to the battery SOC level and requested
power. To ensure a low hydrogen consumption, the PEMFC
ME point is used as the Pe; i, mode. In fact, the hydrogen
consumption and the degradation of the stack are higher
between the open circuit voltage and the best efficiency point
region of the PEMFC. Therefore, when the PEMFC is turned
on, the ME mode is activated. Pgc pq, mode, which sets the
stack on its MP, is triggered when the battery SOC reaches the
minimum SOC level. The only time that PEMFC works
between OFF and Pgc g is the transitions from OFF to
Prc min due to the slew rate limitations. The details of BLFS
are available in [7]. The constraints regarding the battery SOC
and PEMFC slew rates are the same as QP strategy in the
previous section.

IV. EXPERIMENT AND RESULTS ANALYSIS

To show the effect of online systemic management
incorporation into the EMS design, five scenarios, namely the
proposed EMSs based on systemic management and the
updated map (QPsys_yp and BLFSgys_yp), the proposed EMSs
using commercial controller and the updated map (QPcom-up
and BLFS¢om_yp), and QP using commercial controller and an

outdated map (QPcom_out) are taken into consideration under
two driving cycles, worldwide harmonized light-duty vehicles
test cycles (WLTC class 3) and West Virginia Interstate
Driving Schedule (CYC_WVUINTER).

In QPsys_yp and BLFSgys_yp, case studies, the proposed
systemic management uses the estimated PEMFC
characteristics shown in Figs. 12 and 13 to determine the right
current and temperature combinations for supplying the
reference power imposed by the EMS to the PEMFC system.
In fact, the reference temperature is determined by the optimal
power-versus-temperature line and after that FLC controls the
cooling fan to reach the reference temperature. [n QPcom-up
and BLFS¢om_yp case studies, the imposed power by the EMS
is supplied by the PEMFC using the commercial fan controller
of the PEMFC stack and the updated characteristics. The
comparison ol QPsys_yp and BLFSgys_yp with QPeom-yp and
BLFScom-yp case studies illustrates the effect of including
systemic management in the EMS design which is one of the
main objectives of this manuscript. QPcom our case study
supplies the power by using the commercial fan controller and
outdated characteristics of the PEMFC stack. The outdated
map belongs to the presented PEMFC in its BOL in Fig. 1a.
By using this map, the EMS is fed by false inputs because the
characteristics map is different with the utilized PEMFC on
the HIL set-up. The comparison of QP¢om-up and QPcom-out
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illuminates the importance of onlne updating in the
performance of the vehicle.

Fig. 15 and Fig. 16 compare the performance of the five
above-discussed  scenarios for  WLTC class 3  and
CYC_WVUINTER driving cycles, respectively. As is seen in
Figs. 16a and 16a, WLTC class 3 contains low-, medium-,
and high-speed regimes while CYC WVUINTER solely
includes high-speed condition. Figs. 15b and 16b present the
supplied power by the PEMFC stack for the five cases.
According to these figures, the reference power imposed to
PEMFC stack by the EMS is the same in QPsys_yp and
QPcom-up and also in BLFSgys_yp and BLFS¢op -y, for both
driving cycles. However, the reference power of QPeom_our 18
different as QP receives data from an outdated map in this
case study. Figs. 15¢ and 16¢ show the temperature evolution
which are different in each case due to the cooling fan
operation. Figs. 15d and 16d represent the battery SOC
variation at each considered case. As is seen, the battery SOC
variation in both QPsys_y, and QPgom-up is similar, as
opposed t0 QPcgm—our case. SOC evolution is also the same in
the BLFS strategies. The designed EMSs try to meet the
requested power from the system by respecting the defined
limits for battery SOC and PEMFC stack. Moreover, they tend
to keep a high level of battery SOC while the vehicle is under
operation. The analyses carried out in Fig. 15 and Fig. 16
show the general performance of the developed EMSs in the
discussed driving conditions and scenarios. However, the
influence of PEMFC systemic management integration over
the performance of the utilized QP and BLFS EMSs should be
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Fig. 15. The EMS performance under WLTC_class 3, a) driving
speed and the corresponding traction power, b) power split by different
strategies, ¢) PEMFC temperature evolution, and d) battery SOC
variation.
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Fig. 16. The EMS performance under CYC_WVUINTER driving
cycle, a) driving speed and the corresponding traction power, b) power
split by different strategies, ¢) PEMFC temperature evolution, and d)
battery SOC variation.

further considered. In this regard, the distribution of the drawn
current from the PEMFC stack to meet the requested power in
each of the considered driving scenarios is illustrated in Fig.
1 7. Form this tigure, it is seen that the drawn current from the
PEMFC stack by the proposed systemic EMSs (QPsys_y,, and
BLFSgys_up) 1s clearly lower than the commercial controller
case studies (QPcom-uyp and BLFScem_yp) under the two
considered driving cycles. Fig. 17a and Fig. 17b compare the
performance of the QP based EMS with and without systemic
management along with the outdated map case study. Fig. [7a
shows that the PEMFC stack has worked in almost all the
operating current range since the driving cycle contains a lot
of changes. However, the QPgys_(, has managed to supply the
power with lower current levels which are in the efficient
operation zone of the stack. From Fig. 17b, it is seen that the
PEMFC stack has worked mostly in the efficient zone while
the QPcom-up has used higher current levels to fulfil the
expectations. QPcom oue has a very different current
distribution compared to other cases as its set signals are based
on the outdated characteristics. It goes to very high current
region according to Fig. 17b to be able to supply the requested
power. According to Fig. 17¢ and Fig.17d, the systemic BLFS
(BLFSgys_yp) uses lower current levels in the efficient zone
compared to the commercial controller (BLFS¢om_yp)-
Moreover, in Fig. 17¢c, PEMFC has some transitions between
off and almost 18 A owing to the changes in the WLTC class
3 driving cycle while in Fig. 17d, it mostly operates within
ME and MP points.

Fig. 18 indicates the hydrogen consumption of the PEMFC
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stack as well as the influence of initial and final battery SOC
over the performance of the studied cases. In this regard, each
test is repeated five times starting with different initial SOCs
(60%, 65%, 70%, 75%, and 80%). Subsequently, the
difference between initial and final SOC (ASOC) versus the
hydrogen consumption is plotted. Form this figure, it is clear
that under both driving cycles, regardless of the initial and
final battery SOC, the QPsys_y, achievs the lowest and the
QPcom our reaches the highest hydrogen consumption.
Comparing QPsys_yp and QPeom-yp shows that hydrogen
consumption has decreased up to 3.7% and 2.6% in Fig. 18a
and Fig. 18b respectively due to the integration of the
proposed systemic management. Moreover, comparison of
QPcom-up and QPeom our shows that ignorance of adaptation
to the PEMFC health state has increased hydrogen
consumption up to 3.2% and 6.6% in Fig. 18a and Fig. 18b
respectively. Regarding the BLFS, inclusion of the systemic
management has declined the hydrogen consumption up to
3.4% in Fig. 18c and 3% in Fig. 18d.
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Fig. 17. The distribution of the drawn current from the PEMFC stack, a)
and c) WLTC_class 3, b) and d) CYC_WVUINTER.
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Fig. 18. Hydrogen consumption for various initial Battery SOCs, a) and
¢) WLTC_class 3, b) and d) CYC_WVUINTER.

V. CONCLUSION

This paper proposes a new methodology to increase the
efficiency of an EMS in a low-speed FCHEV. The EMS
works based on an online systemic current and temperature

management of the PEMFC stack and determines the
reference requested power as well as the reference temperature
to efficiently distribute the power between the sources. Since
the constraints of the EMS are updated by an online model of
the PEMFC, the variation of operating conditions and
degradation cannot cause mismanagement in the operation of
the vehicle. Two EMSs, namely QP and BFLS, have been
developed to verify the effect of the proposed systemic
management on the hydrogen consumption. The two
strategies, which are premised on the online systemic
management (QPsys_yp and BLFSgys_yp), are tested under two
driving cycles (WLTC class 3 and CYC WVUINTER) and
compared with three other case studies: QP and BFLS using
an updated map (QPgom-yp and BLFS¢om_yp), and QP using
an outdated map (QPcom out), Where the reference temperature
to reach the assigned power by the EMSs is determined by the
fan commercial controller in all the three cases. The
comparative study illustrates that having an outdated PEMFC
map can deteriorate the fuel economy of the studied vehicle up
to 6.6% (comparison of QPeom_yp and QPom our Strategies).
Moreover, incorporating the systemic management into the
EMSs can enhance the hydrogen economy up to 3.7% in QP
and 3.4% in BFLS.

Looking forward, some prospects for extending the scope of
this paper remain as follows:

e Testing the effect of the proposed systemic
management in this study on the performance of
other common EMSs in this domain.

e Extending the idea of systemic management to water
management of the PEMFC stack to devise an
adaptive  purging  procedure  for  vehicular
applications. It will create a link between the EMS
policy and the purging cycle for a better water
distribution.

e Developing an online adaptation scheme and
systemic management for the battery pack as the
second power source of a FCHEV.
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5.3 Conclusion

This chapter puts the finishing touches to the development of an upgraded EMS which
considers the systemic management and online modeling of a PEMFC stack. In this respect,
a methodology for simultaneous management of PEMFC current and temperature is
proposed first. Subsequently, this systemic management is incorporated into two online

EMSs (QP and BLFS) in a FCHEV.

The developed systemic management strategy 1s based on a 3D power map, which
provides an efficient path based on the stack temperature and the current level of the PEMFC
system. It meets the requested power from the stack with high level of efficiency. The
obtained results from the conducted experiments highlight the satisfying performance of the
proposed methodology by improving the system efficiency up to 13 % and 16 % for constant

and variable power profiles respectively.

This EMSs work based on the systemic current and temperature management and
determine the reference requested power as well as the reference temperature from the stack
to efficiently distribute the power between the sources. Since the constraints of the EMSs are
updated by an online model of the PEMFC, the variation of operating conditions and
degradation cannot cause mismanagement in the operation of the vehicle. The comparative
study illustrates that having an outdated PEMFC map can deteriorate the fuel economy of the
studied vehicle up to 6.6% (comparison of QPcom-yp and QPeom our Strategies). Moreover,
incorporating the systemic management into the EMSs can enhance the hydrogen economy

up to 3.7% in QP and 3.4% in BFLS.

Next chapter provides a general conclusion along with future direction of this work.
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Chapter 6 - Conclusion

FCHEVs represent a gradually increasing segment of the automotive market due to many
favorable features. The overall performance of these vehicles, which includes drive quality,
fuel economy, and the total cost of ownership, is highly dependent on the design of
appropriate EMSs. This dissertation focuses on offering a clear understanding of the
relationship between fuel consumption and PEMFC stack systemic management and
degradation. This objective is pursued by developing EMSs that adopt a systemic viewpoint
towards the management of the PEMFC stack and can embrace the stack performance drifts
caused by degradation and operating conditions variation. Driven by this motivation, this
thesis mainly discusses the use of online identification techniques for adapting the behavior
of a PEMFC model to the performance drifts of the real device and integrating this online
model into the EMS formulation of a FCHEV. The development of online PEMFC models
by using these techniques prevents one from developing complicated mechanistic models to
embrace the influence of all the operating and ambient conditions as well as ageing, which

is a highly complicated phenomena to be modeled.

In order to provide a proof of concept for the set goals in this thesis, before going through
the development of online estimation algorithms, chapter 2 illustrates the level of inaccuracy
that can be caused by having a degraded PEMFC system as well as the amount of
improvement that can be reached by having a systemic management. In this regard, an
optimal EMS based on DP is designed in this chapter once with one control variable (PEMFC
current) and another time with two control variables (PEMFC current and stack temperature)

for two PEMFCs with different levels of degradation. The comparison of unidimensional



125

strategy, which is similar to the ones already available in the literature, and the bidimensional
strategy, which is based on the systemic management of the stack, shows that the fuel
economy can be increased by 4.1% just by adding the temperature dimension for the tested
driving cycles. Moreover, it is observed that if the energy management policy is not adapted
to the real state of health of the PEMFC stack, it leads to poor performance of the strategy
and increases the fuel consumption up to almost 24.8% in the studied cases in this chapter.
The results of this chapter provide a concrete proof for the fruitfulness of the set objectives

in this thesis regarding the ameliorating the fuel economy of a FCHEV.

After realizing the importance of adaptation to the real state of a PEMFC system, chapter
3 touches on the important subject of PEMFC online modeling. The online model is expected
to provide the real characteristics of the PEMFC system, such as maximum power and
efficiency points, to be used in the design of EMS. In this respect, a multi-input semi-
empirical model is selected for estimating the behavior of a PEMFC stack and the parameters
of this model are identified online using different recursive filters. According to the
benchmark study of this chapter, Kalman filter shows a very good performance for online
parameters identification of the selected model, which has been proposed by Amphlett et. al.
Moreover, a comparative study of linear and nonlinear parameters estimation of the PEMFC
model shows that by estimating the maximum current density of the PEMFC, which is a
nonlinear parameter in the selected model, the estimation quality of PEMFC characteristics

increases noticeably.

While the development of an online PEMFC model based on recursive filters is dealt
with in chapter 3, no solution is provided for the initialization of this approach. In fact,

initialization plays an important role in achieving accurate results. In this regard, chapter 4
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discusses the importance of initialization in improving the online estimation accuracy of the
PEMFC characteristics. In this chapter, a benchmark study of three well-known
metaheuristic optimization algorithms, which are one of the most reliable approaches for
extracting the PEMFC model parameters offline, is performed to find the most dependable
one. Subsequently, the selected algorithm, which is SFLA, is used to tune the initial
parameters of the PEMFC model and the two (R and Q matrices) variables of Kalman filter.
The results of this section show that good estimation of characteristics can be reached quicker

and more conveniently by having an appropriate initialization.

After developing a suitable online model for estimating the PEMFC characteristics, this
thesis aims at proposing a systemic management for the PEMFC stack and integrating it into
the EMS design. To do so, chapter 5 puts forward a concurrent PEMFC current and
temperature systemic management to supply the requested power from the stack with high
level of efficiency. Moreover, this systemic management is incorporated into the EMS design

of a FCHEV in this chapter.

To develop the systemic management approach, the characteristics map of PEMFC is
generated to relate the power of the PEMFC stack to its current and temperature. Afterwards,
according to the requested power from the PEMFC, a reference temperature is extracted from
the map and sent to an optimized fuzzy controller to be reached. In the meantime, the current
is being regulated by a PI controller which gives relaxation time to the PEMFC system for
reaching the reference temperature. A comparative study between the performance of a
commercial controller and the proposed systemic management is conducted in this chapter

to illustrate the effectiveness of the suggested strategy. According to this study, the proposed
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strategy is able to decrease the hydrogen consumption of the PEMFC system by 3% and

16% for the case of constant and variable power profiles respectively.

Subsequently, in chapter 3, it is shown how the provided bases in terms of online PEMFC
modeling and systemic management can be incorporated into the design of EMSs for
FCHEVs. These EMSs indicate indeed the eventual purpose of this thesis which is a strategy
that leads to the determination of PEMFC current and stack temperature as opposed to the
existing strategies which only determine the required PEMFC current. Moreover, the
proposed strategies are capable of embracing the drifts in the PEMFC performance due to
degradation and operating conditions variation as the model is being updated online. The
performed study in this section indicates that including the systemic management into the
EMS can enhance the fuel economy up to 3.7%. Moreover, if the PEMFC map becomes

outdated, it can degrade the FCHEV performance in terms of fuel economy up to 6.6%.

The overall aim of this thesis was to develop the required techniques for integrating the
online modeling and systemic management of a PEMFC stack into the design of an EMS for
a FCHEV. Considering the discussed aspects regarding different sections of this thesis, it can
be stated that the targeted goals of the thesis have been successfully reached. It has been
shown in this thesis that the fuel economy of a real-time EMS for a FCHEV can be improved
by 3.7%. Moreover, online updating of the PEMFC characteristics can save the hydrogen
consumption up to 6.6%. The effectiveness of the proposed PEMFC online model, systemic
management, and the upgraded EMS has been justified by implementing on a small-scale
test bench in hydrogen research institute of University of Quebec n Trois-Rivieres. The
methodology proposed in this work can serve not only as a general way to design real-time

bidimensional EMSs that consider PEMFC systemic management and health-state
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estimation, but also as a basis to include more dimensions while designing an EMS in all

types of electrified vehicles.

6.1 Recommendations for future directions

While this thesis provides the basis for the efficiency and robustness enhancement of
different existing EMSs in the literature for FCHEVs, looking forward, the following

attempts should be made to further verify and improve the proposed techniques in this thesis:

6.1.1 The use of online estimation strategies in the design of energy
management strategies for fuel cell hybrid electric vehicles
e Fuel cell hybrid electric vehicle subsystems

This thesis mainly discussed the employment of online estimation strategies for tracking

the performance of the PEMFC system. However, a FCHEV is an arrangement of different
subsystems, such as PEMFC, battery pack, and so forth. Each subsystem assumes significant
responsibilities and their performance can be improved by precisely estimating their
parameters. Regarding the battery, which is one of the most common energy storage systems

in FCHEVs, the online estimation strategies have been used for the following purposes [70]:

» Battery fault estimation [71-73]: The diagnosis and estimation of faults in a
battery pack are considered as the chief functions of a battery management system
to keep dependable operation of electrified vehicles.

» Battery SOC estimation [74-76]: The battery SOC is the percentage of the
remaining capacity in the cell compared to the total capacity. The SOC level is
estimated by using measured current and voltage because it cannot be measured

directly. The accurate SOC estimation is critical in vehicular applications, where



129

one of its usages is to determine when to stop charging and discharging. Over-
charging or over-discharging can result in permanent internal damages in the
battery pack.

> Battery SOH estimation [77-79]: The SOH of a battery can be defined as the
comparison of its performance, in terms of charge/discharge capabilities, at the
present time with the initial fresh conditions. The precise approximation of SOH
can determine whether the battery should be replaced or not.

» Battery life estimation [79, 80]: The performance of the battery relies on several
aspects, such as operating temperature, driving conditions, depth of discharge,
humidity, and SOC. Such aspects make the employment of online battery models

essential to estimate the lifetime precisely under various operation conditions.

In light of the discussed points regarding battery, it is clear that the PEMFC is not the
only subsystem in a FCHEV that is in need of online estimation. As the FCHEVs come
typically in FC-battery architecture, it stands to reason to link the online estimation strategies
of these sub-systems to the development a health-conscious and energy-aware EMS to obtain

results which are closer to the real state of the components during their lifetime.

To do so, the online state estimation of the power sources should be integrated into the
EMS loop while the vehicle is under operation. Therefore, the strategy can make a decision
based on the present health state of the components and assure the performance, safety,
availability and reliability of power sources. The provided basis in this thesis, regarding the
integration of online state estimation of a PEMFC system into the design of an EMS, paves
the way for the simultaneous health state estimation of other sources in the EMS design.

While designing such holistic EMS, it should be noted that, as explained throughout this
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thesis, the online modeling of the PEMFC is required. Because it is the main power source
and its maximum efficiency and power point of operation change by the time. Moreover, the
battery output voltage decreases through time (capacity fade and resistance increase), and
accordingly the battery SOH should be monitored online. The battery SOC also requires to
be estimated online as it is an integral part of any rule-based system and is afflicted by the

variation of the SOH.

To summarize, in future, the online state estimation of the all the on-board power sources
should be considered to be incorporated into the EMS design procedure with respect to the

provided foundations in this thesis.

6.1.2 The notion of adopting a systemic approach for developing multi-

dimensional energy management strategies

As discussed throughout this thesis, the performance of a PEMFC stack, in terms of
power delivery and efficiency, depends on several aspects, such as current, temperature,
pressure, and so forth. Regarding the PEMFC as a system provides this opportunity to
develop several local management strategies for controlling each of these aspects to enhance
the energetic performance of the system to the utmost. This thesis put forward the
simultaneous management of temperature and current and its incorporation into the design
of an EMS. Learning from the results of this attempt, it is possible to extend this approach to
the water management and purge procedure of a PEMFC stack with a view to include them

in the EMS development of a FCHEV.

Normally, PEMFCs have three modes of operation: recirculation mode, flow-through

mode, and dead-ended anode (DEA) mode [81]. Due to the advantages of simplicity, and
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parasitic power and cost decline, DEA mode of operation, where the hydrogen outlet is
closed, is the most common approach [82]. However, this method has also some
disadvantages, one of which is the water flooding due to anode closure. To avoid this and
other problems, one of the most common methods is to utilize a normally closed purge valve
at the anode outlet to eliminate excess water and impurities from the cells [83]. Generally,
cyclic purging is practiced where the duration and frequency of the purge need to let enough
venting and cleaning of the PEMFC under full load conditions. However, this approach can
lead to nonuniform water distribution in PEMFCs in dynamic load conditions, such as
vehicular applications. Nonuniformity results in poor performance and noticeable cell-to-cell
performance variation [84]. One solution for future work could be to devise an adaptive
purging procedure for vehicular applications. The thing is that water accumulation changes
according to the current tlow and the air stoichiometry. [n this respect, the purge cycle, which
has an important role in the additional water and impurity removal, can be adjusted with
respect to the stack voltage to reach a better water distribution. In a FCHEV, the stack voltage
changes with respect to the requested power where the allocated power to the PEMFC system
is determined by the EMS. In this regard, an adaptive purging should be devised to create a

link between the policy of the EMS regarding the PEMFC usage and the purge cycle.

Another idea to extend the prospects of this thesis in this direction is the consideration
of the battery pack thermal management or even both battery and PEMFC thermal
managements while developing an EMS. [t should be reminded that the battery cell
temperature has an influence over the performance, reliability and lifespan [85]. Both high
and low temperatures can deteriorate the overall performance of the battery and lead to a

reduced lifespan due to increased degradation of the battery cell. Moreover, in case of



vehicular applications, since the capacity and charge/discharge rate rise, the concerns related
to the battery security become more important [86]. Therefore, the use of a battery thermal
management system seems to be necessary in a FCHEV to satisfy the request in higher power
and improve the driving performance. Thermal management systems can be divided into
active systems and passive systems [87]. Passive systems usually have zero power
consumption and utilize tools such as heat pipes, phase change materials, and hydrogels.
However, the cooling process is difficult to manage. Active methods mostly employ forced
circulation of particular cooling substances such as water and air. The key matter is that under
certain conditions, the cooling effect can be very restricted. In this respect, future works
should consider the thermal management of battery pack and fuel cell stack both while
designing an EMS. The main point here is that the charge/discharge capacity of the battery
is highly affected by temperature. This will further influence the performance of the vehicle
as the discharge rate ascertain the acceleration performance of a FCHEV. Therefore, the
future EMSs should attempt to manage the use of PEMFC and battery in a way to reach a
compromise in the thermal performance of these components. Moreover, the addition of

supercapacitors to absorb the high dynamic peaks could be fruitful in this direction.

6.1.3 Machine learning-based algorithms for online state estimation of the

PEMFC system

This thesis focused on the development of recursive filter-based algorithms for estimating
the characteristics of a PEMFC semi-empirical model online. However, another potent tool
to estimate the characteristics online is machine learning methods like artificial neural
networks (ANN). One problem associated to the use of ANNs is that they are very accurate

interpolator but very weak extrapolator. In other words, they perform well within the ranges
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that they have been trained [88]. As the operating ranges change, they can become unreliable
and may need retraining. In this respect, future works can focus on the development of
adaptive ANN-based model to estimate the required characteristics of the PEMFC system for
the design of an EMS. The performance of the adaptive ANN-based model should be

compared with the proposed recursive filter-based online model in this thesis.

One solution for extending the operation range of the ANN-based PEMFC model is to
combine it with a sub-model. The main point here is that PEMFC is a Multiphysics system
and its performance depends on several factors. Therefore, the key purpose of this sub-model
is to provide the ANN-based PEMFC model with the right inputs to have a performant output.
For instance, let’s assume the purpose is to estimate the hydrogen consumption and the inputs
are the electrical power and the outlet coolant temperature in a high-power PEMFC system.
It is also known that the outlet temperature of the PEMFC, itself, is related to inlet coolant
temperature, the electrical power demand, and flow rate. Therefore, a sub-model, which can
be a lookup table that updates the input data into the ANN as a function of the mentioned
parameters, can be added to the main ANN-based model to provide the right input for
accurate estimation of the characteristics. The interesting aspect of making such hybrid model
is that its online adaption will be easier. The look-up table will be updated by new data while
the system is under operation and the weights of the ANN-model will be updated

conveniently as it does not have many inputs and outputs.

Another aspect of the thesis that can be further developed using the machine learning
approaches 1s the initialization of the recursive filters. In fact, the future works can
concentrate on determining the initial values of the unknown parameters for different

operating conditions employing ANNs or fuzzy systems. In this way, adaptive recursive
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filters can be developed which are completely immune to the sudden and big variations of

the ambient and operating conditions.

6.1.4 Improving the performance of passive coupling-based powertrains in

FCHEVs

Passive coupling refers to the connection of the power source directly to the DC bus in
the FCHEV. This configuration does not require an EMS and benefits from a self-
management due to different impedance of the components, for instance PEMFC and SC. As
the passive configuration does not have any DC-DC converters, it leads to less weight, cost,
and energy losses [89]. However, the downside of a passive hybrid FC vehicle is that the
PEMEC is mainly in charge of supplying the requested power. The power split between the
PEMFC system and the SC is based on the natural characteristics of each source (internal
resistor and open circuit voltage for instance). Therefore, this can result in the occurrence of
higher power ripples at the PEMFC side and accordingly rise the degradation rate of the

stack.

From the lessons learned throughout this thesis, in future, the performance of the passive
coupling-based FCHEVs can be enhanced, from the perspective of energetic efficiency, by
developing several local controls for the PEMFC system. Since these configurations are self-
coordinated and do not need an EMS, there will not be any concerns for integration into an
EMS. As explained in section 7.1.2, water management has an important role in the energetic
efficiency of a PEMFC stack. Therefore, the suggested approach in this section can be also
applied to hybrid PEMFC system with a passive configuration. Another significant factor in
improving the performance of the PEMFC stack is the humidity regulation [67]. In fact, low

membrane humidity level leads to the growth of the membrane resistance, which, in turn,
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degrades the PEMFC efficiency owing to large ohmic voltage drop. Hence, the water content
of the membrane cab be managed with different means, such as anode/cathode purge, or
relative humidity regulation to boost the efficiency. Future works can try the use of bubble
humidifiers, which are very simple and inexpensive for PEMFC humidification to assess the

efficiency improvement.
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Appendix A — Résumé

L'émission des gaz a effet de serre a été citée comme |'une des principales causes du
réchauffement climatique. A cet égard, le secteur des transports est largement blamé pour la
combustion de produits dérivés du pétrole, qui produisent une bonne quantité¢ de ce gaz a
effet de serre. Les voitures particulieéres sont pergues comme les principales sources de rejets
de gaz a effet de serre dans ce secteur. Afin de réduire ces €émissions, il est crucial de

remplacer les véhicules conventionnels par des véhicules propres (zéro émission). [1, 2].

Les véhicules €lectriques et hybrides pourraient étre des alternatives appropriées aux
véhicules conventionnels. Cependant, les véhicules hybrides reposent toujours sur les
combustibles fossiles et les véhicules €lectriques présentent quelques inconvénients tels
qu’une autonomie limitée ainsi qu’un long temps de recharge. Ces écueils ont ouverts la voie
a l'émergence de véhicules hybrides a pile a combustible (VHPAC), fonctionnant a
I'hydrogeéne. Les VHPAC utilisent les piles a combustible (PAC) a membrane échangeuse de
protons pour fournir de I’¢lectricité au moteur €lectrique. Ce type de PAC posséde un grand
potentiel tel que le fonctionnement & basse température, la haute densité de puissance et

I’électrolyte solide [3].

L'autonomie et la durée de vie d'un VHPAC dépendent de la conception des stratégies de
gestion €nergétique (SGE) appropriées. La majorité des SGE existantes dans la littérature,
telles que celles basées sur des regles, basées sur I'optimisation et basées sur l'intelligence,

dépendent des modéles de PAC a membrane d'échange de protons [47-49]. A cet égard, la
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modélisation des PAC est trés importante et une sélection appropriée du modéele doit étre
faite en fonction des objectifs particuliers du projet. Cependant, I’impact des phénomenes de
dégradation et des conditions de fonctionnement de la PAC (température, pression, courant,
etc.) sur ses performances énergétiques ont rendu la conception d'un modele de pile a
combustible extrémement compliquée. Il convient de noter que la littérature présente
différents modeles de PAC qui sont capables de faire face aux variations des conditions de
fonctionnement [50]. Ces modeles sont déja convaincants mais pas encore idéaux puisqu’ils
ne considerent pas les phénomenes de dégradation et que leur paramétrage requiert des

expériences chronophages.

A cet égard, des efforts considérables ont été déployés pour immuniser la conception de
la SGE contre les dérives des performances des PAC en ajoutant un modéle de dégradation
au systeme [51-54]. Cependant, les mécanismes de dégradation et de vieillissement sont tres
complexes & modéliser. De plus, les paramétres de fonctionnement qui ne sont pas inclus
dans le modele de PAC, tels que I'humidité ou la température ambiante, peuvent également
modifier les plages d'efficacité maximale (EM) et de puissance maximale (PM) de la pile.
Pour résoudre ces problemes, deux approches de recherche d'extremum et d'identification en
ligne des parametres du modele PAC ont été examinées. La premiere consiste a utiliser des
méthodes de recherche d'extrémum qui identifient un point de fonctionnement optimal en
utilisant un signal de perturbation périodique en temps réel [40, 55, 56]. De telles stratégies
sont intéressantes en raison de leur mise en ceuvre simple. Toutefois, elles ne sont pas tres
efficaces lorsqu'une identification simultanée de plusieurs points de fonctionnement est
requise dans les applications en ligne. Pour €viter ce probleme, certaines recherches ont été

menées en utilisant des filtres récursifs pour l'identification en ligne des parametres de PAC
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et en extrayant les caractéristiques nécessaires du modele mis a jour. [57-61] ont été réalisés
a l'institut de recherche sur I'hydrogéne (IRH). Dans [57], Ettihir et al. ont proposé ['utilisation
d'un modele semi-empirique, fonction du courant, avec une méthode récursive pour obtenir
les caractéristiques de la PAC en ligne. Ils ont également intégré ce travail dans la conception
de SGE d'un VHPAC et ont obtenu des résultats intéressants [58-60]. Kelouwani et al. ont
suggére une étude expérimentale basée sur le tragage de EM de la PAC. Dans cette étude, un
modele polynomial de I'efficacité de la PAC est introduit et la meilleure efficacité est
recherchée en ajustant les variables de contréle (courant, stcechiométrie et température) [61].
Methekar et al. a introduit un contréle adaptatif d'un systéme de PAC avec un modéle de
Wiener et a suggéré une validation numérique [62]. Dazi et al. ont développé un controle
prédictif pour déterminer le fonctionnement a PM d'un systeme de PAC [63]. Dans [64], une
stratégie adaptative basée sur le contrdle par supervision est propos€e en utilisant une
méthode de minimisation de la consommation équivalente. Dans cet article, un algorithme
des moindres carrés récursifs est utilisé pour I'identification des performances du PEMFC.
Le modele de PAC utilisé est un modele semi-empirique trés simple, et il n'y a pas de

validation expérimentale de ses performances.

A.1 Enoncé du probléme et cadre conceptuel de la thése

En ce qui concerne les travaux étudiés, il peut étre déduit que I'emploi de techniques en
temps réel doit faire I'objet d'une plus grande attention en vue d'adapter la conception des
SGE au comportement réel des PAC. Comme indiqué précédemment, certaines
caractéristiques opérationnelles de la PAC, telles que 'EM et la PM, sont généralement
considérées comme les variables de conception lors de I'élaboration d'une SGE. Néanmoins,

ces caractéristiques varient avec le temps pour plusieurs raisons, telles que la variation des
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conditions de fonctionnement (température, pression, humidité, etc.) et les phénomenes de
vieillissement et de dégradation. La figure A.1 montre les dérives de performance d'une pile
a combustible Horizon de 500 W en termes de puissance disponible. La puissance nominale
de la pile en varie en fonction du courant et de la température. La figure A.la indique une
dérive de 20% de la puissance maximale de la pile entre son début de vie (BOL) et sa fin de
vie (EOL). La figure A.1b représente les dérives résultant du changement de saison
(Température ambiante : 27 °C en été et 20 °C en hiver). Les étoiles représentent la puissance
maximale qui varie en fonction des conditions de fonctionnement de la pile et de sa
dégradation. Quelle que soit la raison des variations des caractéristiques de la PAC, 1l est
important de les considérer dans le SGE afin d’optimiser le control en temps réel. 1l existe
plusieurs SGE proposé€es en ligne et en temps réel pour I'application des VHPAC. Cependant,
la majorité des travaux de recherche ne prend pas en considération les caractéristiques réelles
du PAC lors de la conception du SGE. La littérature présente quelques travaux de recherche
qui propose des SGE considérant les caractéristiques variables de la PAC mais ils sont

principalement basés sur la simulation et manquent de validations expérimentales.
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Figure A.1 Variation des caractéristiques d'une PAC dans le temps, a) variation sur la

durée de vie, b) variation saisonniere.

Un autre aspect qui a échappé a l'attention de nombreux chercheurs dans le domaine de
la conception de SGE pour les VHPAC est I'adoption d'une approche systémique de la gestion
énergétique et thermique de la PAC. Les SGE existantes ne contrélent généralement que le
courant requis de la PAC (la gestion de température étant traitée comme un probleme de
controle local a la PAC). Néanmoins, considérer la PAC comme un systeme oftre plusieurs
degrés de liberté en termes de contrdle. Les parametres qui influent les performances de la
PAC tels que le courant et la température peuvent €tre contrélés simultanément en temps réel.
Une puissance demandée de la PAC peut étre fournie par différentes combinaisons de ces
parametres de courants et températures pour améliorer I'efficacité [65]. Il est important de

noter qu'il existe de nombreux travaux concernant la gestion thermique ou la gestion du
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courant de la PAC [66-69]. Cependant, a la connaissance des auteurs, I'intégration d'une
gestion simultanée du courant et de la température, qui ont des dynamiques physiques
différentes, n'a pas été envisagée jusqu'a présent dans la conception d'un SGE. La figure A.2
indique le concept général proposé par cette these pour améliorer I'efficacité et la robustesse
des SGE existants. L'ensemble du processus se déroule en ligne pendant le fonctionnement
de la PAC. La SGE globale comprend trois €tapes, a savoir l'identification des parameétres
ainsi que la stratégie de gestion locale, l'extraction d'informations et le partage de puissance.
L'objectif est de faire une identification des parametres en ligne pour adapter le modele aux
dérives de performance de la PAC, puis de définir les meilleurs points de fonctionnement
dans I'étape d'extraction des informations tout en ayant une gestion locale. Ensuite, les
données obtenues peuvent €tre utilisées dans 'étape de stratégie de répartition de puissance
pour contrbler le flux de puissance entre les différentes sources. Ce processus de trois étapes

est appelé EMS global.
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Figure A.2 Le concept général pour la conception d'un SGE global pour un VHPAC.
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A.2 Contribution du projet

L'étude de Ia littérature indique qu'il existe une variété d'approches, en ligne et hors ligne,
pour répartir la puissance entre les sources dans un VHPAC. De plus, il existe plusieurs
méthodes pour déterminer les meilleures performances de la PAC ou améliorer son efficacité
grace a une gestion locale. Cependant, il convient de noter qu'il n'y a que quelques stratégies
qui essalent de lier la répartition de puissance dans un VHPAC avec Il'identification des
performances en temps réel de la PAC. A cet égard, ce travail vise a utiliser des algorithmes
d'estimation des paramétres en ligne afin de s'adapter aux dérives de performance de la PAC.
Méme si quelques travaux ont €té¢ publiés [57-60], une attention méticuleuse devrait étre

portée au choix du mod¢le et de la méthode d'estimation.

Mis a part le point mentionné, un aspect central que les chercheurs n'ont pas remarqué
jusqu'a présent dans ce domaine est d'envisager une méthode systémique pour la gestion
d'une PAC tout en développant une SGE. Dans la littérature, le courant et la température de
fonctionnement sont normalement pergus comme des variables de contréle indépendantes.
Néanmoins, la PAC est un systeme multi-physique avec de fortes interactions dynamiques
entre le courant et la température. Une gestion systémique de la PAC permet la conception
de stratégies multi-sorties. Cela signitie que la puissance demandée de la PAC peut étre
fournie par une efficacité plus élevée car elle peut utiliser différentes combinaisons de

courant et de température de fonctionnement.
A cet égard, deux directions principales ont été suivies dans cette thése :

e Prévoir une rigueur scientifique pour la base proposée par les études précédentes
afin de choisir un modele de PAC et une méthode d'identification appropriés en

effectuant une étude comparative.
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e Faire avancer le concept en intégrant un modéle a entrées multiples et ses gestions

de courant et thermique dans la conception de la stratégie.

A.2.1 Objectifs

L'objectif principal est d'intégrer l'estimation des paramétres en ligne et la gestion
systémique d'une PAC dans la conception d'une stratégie de gestion énergétique et thermique

en ligne dans un VHPAC. A cette fin, les objectifs suivants sont fixés :
» Réaliser une étude comparative pour donner une structure solide au concept :

Les études précédentes sont basées sur un modele a entrée unique, qui ne dépend
que du courant. Les autres conditions de fonctionnement, telles que la
température, la pression, etc., sont considérées comme des perturbations. Dans ce
travail, une étude comparative est menée dans le but de sélectionner un modéle a
entrées multiples, qui englobe les principales conditions de fonctionnement, telles
que le courant, la température et la pression. De plus, une méthode d'identification
des parametres en ligne appropriée est sélectionnée pour compenser les
incertitudes du modele dues a la dégradation et les conditions de fonctionnement
qui ne sont pas prises en compte dans le modele. Comme ce travail vise a
concevoir une stratégie multidimensionnelle, il est nécessaire d'avoir un modele

fiable a entrées multiples.
» Qestion énergétique et thermique de la PAC :

L'é¢tude comparative conduit a la sélection d'une méthode d'estimation des
parametres de la PAC ainsi que d'un modele multi-entrées pour prédire le

comportement de la PAC. La température est 1'une des entrées du modele
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électrochimique a entrées multiples choisi, et sa valeur est mesuré en ligne sur
une vraie pile a combustible. Cependant, la régulation de la température de la
PAC, qui a un effet considérable sur ses performances, n'est pas possible avec un
modele électrochimique. A cet égard, un modele thermique de la pile a
combustible, qui permet de controler Ja température en agissant sur le ventilateur,
est nécessaire. L’objectif est d’utiliser un modele thermique en plus du modele
électrochimique pour assurer une gestion €nergétique et thermique locale de la
pile. Cette gestion systémique permet d'atteindre efficacement le niveau de

puissance souhaité en choisissant le bon niveau de température et de courant.
> Intégration de la gestion systémique de la PAC dans une SGE pour un VHPAC :

Le modéele proposé ainsi que la gestion locale de la PAC sont utilisés pour
concevoir une SGE globale. L'idée principale est d'effectuer une identification de
modele en temps réel pour trouver les meilleurs points de fonctionnement a
travers une étape d'extraction d'informations. Par la suite, la stratégie de partage
de puissance peut utiliser les données fournies par le modele de PAC mis a jour
pour distribuer de maniere optimale le flux de puissance. L'autre contribution de
cette SGE est qu'elle permet de contréler simultanément la température et le

courant de la pile en temps réel.

A.3 Méthodologie

Apres avoir discuté de la motivation et mené une étude approfondie de la littérature dans
la premicre étape (chapitre 1), la deuxiéme étape vise a fournir une base concrete pour

soutenir I'hypothese selon laquelle la modélisation en ligne d'une PAC et sa gestion
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systémique peut conduire a I'amélioration des performances d'une SGE dans un VHPAC. A
cet égard, une SGE optimale basée sur une programmation dynamique (DP) est formulée
pour comparer la consommation d'hydrogene d'un VHPAC, simulé pour différents scénarios.
Dans le premier scénario, la consommation dhydrogene du véhicule est étudiée en
développant une programmation dynamique unidimensionnelle pour déterminer la trajectoire
optimale du courant de PAC tout en utilisant deux PAC avec différents niveaux de
dégradation. Cette analyse montrera l'effet de la dégradation de la PAC sur I'économie de
carburant du véhicule. Dans le deuxiéme scénario, une programmation dynamique
bidimensionnelle est développée pour la nouvelle étude de cas de PAC afin de déterminer la
trajectoire optimale du courant et du rapport cyclique du ventilateur de refroidissement.
Ensuite, les résultats sont comparés a la SGE unidimensionnelle pour montrer qu’il est

important de considérer la PAC en tant que systeme lors de la conception d'une SGE.

La troisieme étape de ce travail se concentre sur I’identification en ligne des parametres
d’une PAC. Comme il existe quelques preuves de concept dans ce domaine, cette étape
apporte une rigueur scientifique par : 1) Une revue de la littérature pour déterminer I'état
actuel des informations sur le sujet propos€. Par la suite, les méthodes envisagées sont
class€es en termes de précision, d'applicabilité dans des situations en ligne et de gestion de
I'énergie; 2) une étude comparative par simulation sur la base des candidats de la premiére
¢tape pour sélectionner un modele de PAC a entrées multiples approprié et une méthode
d'identification pour les étapes ultérieures ; 3) une validation expérimentale du modéle et de

la technique d'identification sélectionnés.

La quatrieme étape de cette these porte sur I'initialisation des filtres récursifs pour le

probléme d'estimation des paramétres de PAC en ligne. A cet égard, une étude comparative
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de trois algorithmes d'optimisation métaheuristique bien connus est effectuée pour introduire
une technique fiable pour le réglage initial du filtre récursif. Il convient de noter que les
algorithmes métaheuristiques sont l'approche la plus courante dans la littérature pour extraire
les parametres d'un modele de PAC. La qualité de I'estimation en ligne des caractéristiques

des PAC est examinée pour différentes valeurs initiales.

La derniere étape de ce travail porte sur le développement d'une gestion simultanée du
courant et de la température a travers la cartographie des caractéristiques des PAC et
I'intégration de cette approche a la conception SGE d'un VHPAC. Le principal défi ici est la
différence entre la dynamique rapide du courant et la dynamique lente de la température. La
gestion systémique offre la possibilité d'avoir un contréle local sur la PAC pour améliorer
ses performances en temps réel. Une telle gestion systémique convient a des fins de gestion
de I'énergie. A cet égard, la gestion de la température et du courant obtenue a partir de cette
étape ouvre la voie a la conception de SGE qui peuvent conduire a des résultats tres
pertinents. La stratégie proposée a ce stade vise principalement a améliorer les performances
d'un VHPAC en termes d'économie de carburant en utilisant une gestion systémique en ligne
de la PAC. Cette stratégie est en fait le but ultime de cette thése car elle prend en compte a
la fois les dérives de performance d'une PAC et sa gestion thermique. Une caractéristique
distinctive de cette stratégie est de générer deux signaux de référence (courant et température
de PAC) pour atteindre 'optimalité dans le partage de puissance, contrairement aux stratégies
existantes qui n'ont qu'une seule variable de contréle (courant de PAC). Il convient de
mentionner que la SGE est validée expérimentalement sur un banc d’essai développé pour le
véhicule Némo de I'lRH. Nemo est un véhicule a hydrogene a I'échelle du laboratoire pour

la validation.
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A.4 Résultats et analyse

Le chapitre 2 présente I'importance de la gestion systémique et de I'identification en ligne
des PAC dans le développement d'une SGE pour les VHPAC. A cet égard, une stratégie
optimale basée sur la programmation dynamique est développée dans ce chapitre. La stratégie
proposée est congue avec une variable de controle (courant de PAC) et avec deux variables
de controle (courant et température de la PAC) pour deux PAC avec différents niveaux de
dégradation. La comparaison de la stratégie unidimensionnelle, similaire & celles déja
disponibles dans la littérature, et de la stratégie bidimensionnelle, bas€e sur la gestion
systemique de la PAC, montre que I'économie de carburant peut étre augmentée de 4,1% en
ajoutant simplement la température comme variable de controle. De plus, on constate que si
la politique de gestion de I'énergie n'est pas adaptée a I'état réel de santé de la PAC, elle
conduit a une mauvaise performance de la stratégie et augmente la consommation de
carburant jusqu'a prés de 24,8% dans les cas étudiés dans ce chapitre. Les résultats de ce
chapitre apportent une preuve concrete de la pertinence des objectifs fixés dans cette these

concernant l'amélioration de I'économie de carburant d'un VHPAC.

Dans le chapitre 3, un modéle semi-empirique a entrées multiples est sélectionné pour
estimer le comportement d'une PAC et les parametres de ce modele sont identifi€s en ligne a
I'aide de différents filtres récursifs. Selon I'étude comparative des filtres récursifs, le filtre de
Kalman montre une trés bonne performance pour I'identification en ligne des parametres du
modele sélectionné, qui a €t€ proposée par Amphlett et. al. De plus, une étude comparative
de l'estimation des parametres lin€aires et non lin€aires du modele de PAC montre que
I'estimation de la densité¢ de courant maximale de la PAC, qui présente un paramétre non

linéaire dans le modele sélectionné, augmente la qualité d'estimation.



Le chapitre 4 discute l'importance de l'initialisation pour améliorer la précision
d'estimation en ligne des caractéristiques des PAC. Dans ce chapitre, une étude comparative
de trois algorithmes d'optimisation métaheuristique bien connus est effectuée pour trouver
celui qui est le plus fiable. Par la suite, I'algorithme sélectionné, appelé “’shuffled frog leaping
algorithm®’ (SFLA), est utilis¢ pour régler les parametres initiaux du modele de PAC et les
deux variables du filtre de Kalman (matrices R and Q). Les résultats de cette section montrent
qu'une bonne estimation des caractéristiques peut étre atteinte plus rapidement et plus

facilement en ayant une initialisation appropriée.

Le chapitre 5 propose une gestion systémique simultanée du courant et de la température
des PAC pour fournir la puissance demandée avec un haut niveau d'efficacité. De plus, cette

gestion systémique est intégrée dans la conception stratégique d'un VHPAC dans ce chapitre.

A cet égard, dans le but de développer I'approche de gestion systémique, la carte des
caractéristiques de la PAC est générée pour relier sa puissance au courant et a la température.
Par la suite, selon la puissance demandée de la PAC, une température de référence est extraite
de la carte et envoyée a un contréleur de logique floue optimisée pour €tre atteinte. En
attendant, le courant est régulé par un régulateur Pl qui donne un temps de relaxation a la
PAC pour atteindre la température de référence. Une étude comparative entre la performance
d'un controleur commercial et la gestion systémique proposée est réalisée dans ce chapitre
pour illustrer I'efficacité de la stratégie offerte. Selon cette €tude, la stratégie proposée est
capable de diminuer la consommation d'hydrogene du systéme de PAC de 13% et 16% pour

le cas de profils de puissance constants et variables, respectivement.

Par la suite, la modélisation en ligne des piles a combustible et la gestion systémique sont

intégrées dans la conception de la SGE pour les VHPAC. La SGE optimale est basée sur une
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fonction de colt quadratique et elle permet de controler simultanément le courant et la
température de PAC au contraire des stratégies existantes qui ne controlent que le courant de
la pile. De plus, cette stratégie est capable de compenser les dérives de performances de la
PAC car le modele est mis a jour en ligne. L'étude réalisée dans cette section indique que
I'inclusion de la gestion systémique dans la stratégie peut améliorer I'économie de carburant
jusqu'a 3,7%. De plus, si la carte de la PAC est considérée statique, cela peut dégrader les

performances du véhicule en termes d'économie de carburant jusqu'a 6,6%.
A.5 Discussion des articles

A.5.1 Article 1: Investigating the Impact of Aging and Thermal Management of

a Fuel Cell System in Energy Management Strategies

Cet article se concentre sur I'évaluation de l'influence de la dégradation et de la gestion
thermique d'une PAC sur I'économie de carburant d'un VHPAC. A cet égard, une
programmation dynamique déterministe est formulée de maniere unidimensionnelle et
bidimensionnelle pour une PAC neuve et pour une PAC vieillie. Semblable aux SGE
existantes dans la littérature, la programmation dynamique unidimensionnelle ne détermine
que le courant requis de la PAC, tout en respectant la limitation des sources d'énergie.
Cependant, la programmation dynamique bidimensionnelle détermine le courant et la
température requis de la PAC pour fournir la puissance. La prise en compte de la température
en plus du courant est une nouvelle étape dans la conception de la SGE qui a échappé aux
attentions des études précédentes. Les performances des stratégies formulées sont évaluées
sous deux cycles de WLTC class 2 et CYC_WVUINTER. L'analyse de divers scénarios

indique que l'intégration de la température peut améliorer I'économie de carburant jusqu'a
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4,1%. De plus, le vieillissement de la PAC peut dégrader I'économie de carburant jusqu'a
14,7% en stratégie unidimensionnelle. Les résultats finaux indiquent également que si la
politique de gestion de I'énergie pour la distribution d'énergie entre la PAC et la batterie n'est

pas mise a jour, elle peut augmenter la consommation d'hydrogene jusqu'a 24,8%.

A.5.2 Article 2: Overview and benchmark analysis of fuel cell parameters

estimation for energy management purposes

Un examen approfondi des étapes nécessaires de la modélisation a l'utilisation des
techniques d'identification pour la conception des stratégies de gestion énergétique en ligne
des VHPAC est effectué dans cet article. A cet égard, tout d'abord, des approches de
mod¢lisation des PAC sont étudiées dans lesquelles les modeles semi-empiriques sont
distingués comme l'un des modéeles les plus adaptés a des applications en ligne.
Deuxiemement, les méthodes d'identification des parametres des PAC sont discutées et I'une
des catégories qui est trés appropriée pour la conception des stratégies de gestion énergétique
en temps reel est sélectionnée pour une analyse plus approfondie. Enfin, une étude
comparative de trois techniques potentielles d'identification des paramétres, algorithme des
moindres carrés récursifs, filtre de Kalman, et filtre de Kalman étendu, est réalisée en utilisant
deux modeles de PAC semi-empiriques. Les résultats de 1'¢tude comparative indiquent qu'en
cas d'analyse linéaire, l'intégration du filtre de Kalman avec le modele proposé par Amphlett
et. al a une performance supérieure par rapport aux autres combinaisons. En plus, il a été
conclu que la méthode d'identification non linéaire, au moyen de filtre de Kalman étendu et

le modele d'Amphlett et. al, donne I’estimation de courbe de polarisation la plus précise.
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A.5.3 Article 3: Benchmark of proton exchange membrane fuel cell parameters

extraction with metaheuristic optimization algorithms

Cet article étudie les performances de trois algorithmes d'optimisation métaheuristique,
a savoir SFLA, Imperialist Competitive Algorithm (ICA) et fire fly algorithm (FOA), dans
un probléme d'extraction de paramétres de la PAC. A cet égard, la comparaison des
performances des algorithmes est effectuée en utilisant la somme de l'erreur quadratique entre
la tension mesurée et estimée de la PAC pour deux études de cas disponibles dans la
littérature sur 100 essais indépendants. Par la suite, la précision des algorithmes est jugée sur
la base de leur meilleure valeur de fitness, pire valeur de fitness, variance et écart type. Enfin,
l'algorithme sélectionné a partir de 1'étape de comparaison est utilis€ pour identifier les
parametres du modele d’une PAC Horizon de 500 W a cathode ouverte. Cette nouvelle étude
propose une température de PAC variable contrairement aux autres €tudes de cas existantes
dans la littérature. Les résultats finaux de cette étude indiquent qu'en ce qui concerne la
meilleure somme d’erreur quadratique, SFLA surpasse légeérement ICA et FOA dans les deux
études de cas. Cependant, les résultats montrent que SFLA fonctionne 20% mieux que ICA
et deux fois mieux que FOA dans la premiére et deuxiéme €tude de cas. De plus, la variance
et I'écart type de SFLLA sont sensiblement inférieurs a ceux des autres algorithmes, ce qui

justifient la précision et la répétabilité de cette méthode.

A.5.4 Article 4: Efficiency Enhancement of an Open Cathode Fuel Cell through

a Systemic Management

Dans ce manuscrit, une stratégie de gestion systémique est proposée pour améliorer
I'efficacité d'un systtme de PAC a cathode ouverte pour différents niveaux de puissance

demandés. Cette stratégie se concentre sur l'utilisation de la cartographie 3D pour déterminer
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la température de référence du schéma de controle. A cet égard, un certain nombre
d'expériences sont menées pour obtenir une carte de puissance 3D pour différentes
températures et courants. Cette carte de puissance fournit un trajet efficace basé sur la
température et le niveau de courant du systéme de la PAC et détermine la température de
référence pour chaque niveau de puissance demandé du systéme. Enfin, un controleur logique
floue optimisé est utilisé pour atteindre la température de référence définie lorsque le courant
de la PAC est contr6lé par un contréleur PI. Les résultats obtenus a partir des expériences
mettent en €vidence les performances satisfaisantes de la méthodologie proposée en
améliorant l'efficacité du systeme jusqu'a 13% et 16% pour des profils de puissance constants

et variables respectivement.

A.5.5 Article 5. Efficiency Upgrade of Fuel Cell Hybrid Vehicles Energy

Management Strategies by Online Systemic Management of Fuel Cell

Cet article propose une nouvelle méthodologie pour augmenter l'efficacité d'une SGE
pour un VHPAC 4 basse vitesse. La SGE fonctionne sur la base d'une gestion systémique en
ligne du courant et de la température de la PAC. 1l détermine la puissance de référence
demandée ainsi que la température de référence de la PAC pour répartir efficacement la
puissance entre les sources. Du fait que les contraintes de la SGE sont mises a jour par un
modele en ligne de la PAC, la variation des conditions de fonctionnement et la dégradation
ne peuvent plus perturber la gestion €nergétique du véhicule. La stratégie utilisée est basée
sur une programmation quadratique. Cette stratégie, qui repose sur la gestion systémique en
ligne, a été testée pour deux cycles différents (WLTC class 3 and CYC_WVUINTER) et

comparée a deux autres cas :



166

e Programmation quadratique a l'aide d'une carte mise a jour et programmation
quadratique a l'aide d'une carte obsoléte.

e Latempérature de référence pour atteindre la puissance assignée par la
programmation quadratique est déterminée par le contrdleur commercial dans

les deux cas.

L'é¢tude comparative illustre que le fait d'avoir une carte obsolete de la PAC peut
détériorer I'économie de carburant du véhicule étudié jusqu'a 6,6%. De plus, I'intégration de
la gestion systémique dans la programmation quadratique peut améliorer I'économie de

I'hydrogene jusqu'a 3,7%.

A.5.6 Article 6: Comparative Analysis of Two Online Identification Algorithms

in a Fuel Cell System

Dans cet article, deux algorithmes récursifs bien connus (Algorithme des moindres carrés
récursifs et algorithme récursif du maximum de vraisemblance) sont comparés pour
I'estimation en ligne des parametres d'un modele de PAC semi-empirique a entrées multiples.
A cet égard, tout d'abord, un modéle de PAC semi-empirique est sélectionné pour atteindre
un compromis satisfaisant entre le temps de calcul et la signification physique. Par la suite,
les algorithmes sont utilisés pour identifier les parametres du modele. Enfin, les résultats
expérimentaux obtenus par les algorithmes sont discutés et leur robustesse est étudiée. Les
résultats indiquent que les deux algorithmes sont capables d'estimer la tension de sortie a un
niveau satisfaisant. Cependant, I’algorithme récursif du maximum de vraisemblance a montré
plus de robustesse dans le traitement des données de mesure bruitées Il convient de rappeler
que cette robustesse pourrait conduire a des capteurs et des instruments de mesure moins

couteux. De plus, il convient de noter que la plage d'altération des parametres semi-
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empiriques était acceptable. Ces travaux pourront étre intégrés dans la conception d'une

gestion globale de I'énergie pour les VHPAC.

A.5.7 Article 7: An Online Energy Management Strategy for a Fuel Cell/Battery

Vehicle Considering the Driving Pattern and Performance Drift Impacts

Cet article présente une nouvelle SGE multimode en ligne pour un VHPAC. Cette
stratégie est principalement composée d'un classificateur de conditions de conduite (basé sur
la carte auto adaptative) et d'un contréleur a logique floue multimode. La fonction
d'appartenance de sortie est constamment ajustée en fonction de l'estimation en ligne des
limites PM et EM de la PAC par un filtre de Kalman et un modele semi-empirique. La carte
auto adaptative développée reconnait les conditions de conduite et active le mode le plus
appropri€¢ du controleur a logique floue a chaque mise a jour pour fournir efficacement la
puissance demandée du véhicule. Les performances de la stratégie en ligne proposée sont
comparées a un contréleur de logique floue optimisé hors ligne sous un cycle combiné de
CYC_NewYorkBus, CYC _UDDS et WLTC class 3. Un résultat satisfaisant est obtenu avec
seulement une différence de 2% en termes de colt total de la consommation d’hydrogéne et
de cycles marche/arrét du systeme PAC. De plus, les performances de la stratégie proposée
sont testées lorsque le systeme PAC subit une dérive de seize pour cent concernant la PM.
Dans ce cas, la stratégie en ligne proposée s'adapte a I'état réel du systeme de PAC et améliore
les performances énergétiques du véhicule de 8% par rapport au contréleur multimode hors

ligne.
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B.1 Objectives

This paper aims at providing a basis for easy integration of a PEMFC real behavior into
the design of real-time EMSs. In this regard, two recursive algorithms are introduced, and
tested to identify the parameters of a PEMFC model online. The utilized PEMFC model is a
semi-empirical which has eight parameters for identification. This model requires the current,
stack temperature, and pressure as inputs and estimates the PEMFC voltage as the output.
This integration provides one with online characteristics of a PEMFC, such as polarization
curve, maximum power, and efficiency, which can be used in an EMS loop to update the
constraints and related control laws. The parameters of such model have been only estimated
offline with various optimization algorithms in previous studies [90-94]. However, In this
work, parameter identification is performed online to counteract uncertainties that occur
slowly over time, such as ageing, and quickly due to change of the operating conditions which

are not considered in the model.

Compared to other similar works in the literature, the main contribution of this work is

the online parameters estimation of a multi-input (current, temperature, and pressure) semi-
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empirical model with eight parameters, as opposed to a single-input (current) model with
four parameters used in [57-60, 64]. Since the intrinsic dynamic of current, temperature, and
pressure are completely different, a multi-input model identification is more challenging than
a single-input one. Moreover, a careful experimental study for comparing the effectiveness
of the utilized identification methods is given along with a step-by-step explanation for
adapting the algorithms to this particular problem. It should be noted that as a first step for
online identification of PEMFC parameters, this paper mainly provides the proof of concept
by utilizing two common algorithms and does not go through the details for selecting a

suitable model and identification technique. These concerns are dealt with in Article 3.

B.2 Methodology

This paper proposes online identification of a multi-input PEMFC model to track the
performance drifts due to the influence of degradation phenomenon and the operating
conditions, which are not considered in the model, over the output voltage of a FC system.
In this regard, firstly, a semi-empirical model is selected to reach a satisfactory compromise
between computational time and physical meaning. This model has four tuning parameters
for activation loss, three parameters for Ohmic loss, and one parameter for concentration loss.
Although the model is nonlinear, the targeted parameters for identification have a linear
structure. Therefore, two recursive identification algorithms, namely recursive least square
(RLS) and recursive maximum likelihood (RML), are utilized to update the parameters of
the chosen model online. RLS algorithm is based on the concept of minimizing the error
related to input signal and gives excellent performance when operating in time varying
conditions. Assuming that noise is serially uncorrelated and independent of the elements of

the regression vector, it can be applied to a linear-in-parameter system to estimate the
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parameters, and the model can be called a linear regression. RML algorithm holds a striking
resemblance to RLS. The main difference here is that the disturbance acting on the output of
the system is modeled as a moving average of a serially uncorrelated white noise sequence.
In this case, the unobserved components are approximated by the residuals, which are the
values of the estimation error. Various scenarios, four noise levels and two PEMFCs with
different levels of degradation, have been considered to test the performance of the

algorithms.

B.3 Synopsis of the results analyses

Different analyses have been performed in this paper to clarify the effectiveness of the
discussed algorithms and the PEMFC model. Each algorithm is used to tune the parameters
of the semi-empirical model for two real PEMFCs with different degradation levels. In order
to check the robustness of the algorithms, a random noise is added to the measured voltage,
and the noisy signal is sent to the process of identification. Regarding the comparison of the
algorithms to one another, the mean square error (MSE) and the peak signal to noise ratio
(PSNR) have been utilized. MSE and PSNR are two error metrics used to compare the
estimation quality. PSNR calculates the peak signal-to-noise ratio, in decibels, between the
two original signal and estimated signal. The higher the PSNR, the better the quality of the
estimation. The MSE represents the cumulative squared error between the estimated voltage
and the measured voltage. The lower the value of MSE, the lower the error. The voltage
estimation quality of the algorithms in terms of PSNR and MSE is compared for four cases,
namely zero noise, a random noise with variance of 0.25, a random noise with variance of
0.5, and a random noise with variance of 0.75. Zero noise refers to the normal measurement,

and the other cases show the addition of random noise with different variances to test the
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robustness of the algorithms. The obtained results confirm that, in case of normal measured
data (zero noise), RLS performs better than RML to some extent. However, as the level of
noise increases, RML algorithm indicates superior performance compared to RLS. This
result implies that RML algorithm is more robust than RLS while confronting some noises

in the system.

Figure B.1 compares the polarization curves obtained by the estimated parameters with
RML and RLS algorithms for the noise level of 0.25. As is clear in this figure, the estimated
polarization curve by RML algorithm is closer to the reference, which comes from the
experimental data, than RLS. This figure also shows the influence of noise in the polarization
curve estimation. Looking more closely, it can be concluded that a small change in the
voltage estimation can cause a noticeable change in the polarization curve estimation. The
difference between the PSNR values of RML and RLS algorithms for the noise level of 0.25
is not a lot. However, this slight difference causes an obvious change in the polarization curve

prediction.

Measured data with noise level of 0.25
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Figure B.1 The comparison of polarization curves obtained by the utilized algorithms.
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B.4 Conclusion

In this paper, two well-known recursive algorithms are compared for online estimation
of a multi-input semi-empirical PEMFC model parameters. In this respect, firstly, a semi-
empirical FC model is selected to reach a satisfactory compromise between computational
time and physical meaning. Subsequently, the algorithms are explained and implemented to
identify the parameters of the model. Finally, experimental results achieved by the algorithms
are discussed and their robustness is investigated. The main results achieved from the
experimental implementation and test of the algorithms indicate that both of the algorithms
are capable of estimating the output voltage to a satisfactory level. However, RML has shown
more robustness in dealing with noisy measurement data. It is worth reminding that this
robustness might lead to less expensive sensors and measurement instruments. Moreover, it
should be noted that the range of alteration in the semi-empirical parameters was acceptable.
In future, this work can be integrated into the design of global energy management for

FCHEVs.
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Abstract

Output power of a fuel cell (FC) stack can be controlled
through operating parameters (current, temperature, etc.)
and is impacted by ageing and degradation. However,
designing a complete FC model which includes the whole
physical phenomena is very difficult owing to its multivari-
ate nature. Hence, online identification of a FC model, which
serves as a basis for global energy management of a fuel cell
vehicle (FCV), is considerably important. In this paper, two
well-known recursive algorithms are compared for online
estimation of a multi-input semi-empirical FC model para-
meters. In this respect, firstly, a semi-empirical FC model is
selected to reach a satisfactory compromise between compu-

1 Introduction

Proton exchange membrane fuel cell (PFEMFC) is a promis-
ing alternative energy conversion device in automotive appli-
cations, due to high efficiency and low adverse environmental
impacts [1]. Fuel cell vehicles (FCVs) have shown a steady
increase in the automotive market. However, their successful
market penetration requires more improvement in terms of
performance, reliability, and cost [2]. Hybridization of PEMFC
with other sources, such as batteries and supercapacitors
(SCs), has been suggested as an effective measure to improve
the mentioned factors in a FCV. Common structures for hybri-
dization ot FCVs are FC-battery, FC-SC, and FC-battery-SC.
All of these structures have their own advantages and disad-
vantages [3]. With all the favorable aspects of hybridization,

A Paper presented at the 7" International Conference on

Fundamentals & Developement of Fuel Cells (FDFC2017),
January 30th — February 1st 2017, held in Stuttgart.

tational time and physical meaning. Subsequently, the algo-
rithms are explained and implemented to identify the para-
meters of the model. Finally, experimental results achieved
by the algorithms are discussed and their robustness is inves-
tigated. The ultimate results of this experimental study indi-
cate that the employed algorithms are highly applicable in
coping with the problem of FC output power alteration, due
to the uncertainties caused by degradation and operation
condition variations, and these results can be utilized for
designing a global energy management strategy in a FCV.

Keywords: Fuel Cells, Global Energy Management, Online
Identification, Recursive Algorithms, Semi-empirical Calcula-
tions

the overall performance of FCVs, regarding fuel and energy
consumption, still relies on the powertrain components effi-
ciency and accurate coordination of sources. In this regard,
several energy management strategies (EMSs), namely rule-
based, optimization-based and intelligent-based, have been
proposed for the mentioned hybrid structures in literature
[4-6]. Some examples of very recent proposed online EMSs
can be found in [7-11]. In [7], an online EMS based on data
fusion approach is suggested. Three FLCs are then optimized
and adapted, by Dempster-Shafer evidence theory, to three
driving conditions predicted by support vector machine.
However, the design constraints of the controllers come from
a static efficiency-power map of a PEMFC. In [8], an adaptive
control method, based on tuning the FLC parameters for dif-
ferent conditions, is proposed. This work remarks on the
decline of PEMFC output voltage due to degradation and sug-
gests the rule base values modification under this condition.
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In [9], an online EMS based on extremum seeking method is
suggested to maintain the PEMFC operating points in high
efticiency region by means of a band-pass filter. A two-layer
EMS composed of rule-based approach and particle swarm
optimization has been proposed for real-time control of FCVs
in [10]. The rule-based of this work is based on a static PEMFC
map. In [11], an EMS based on short-term energy estimation is
developed to maintain the SC state of energy within a defined
limit. The PEMFC limits are based on a quasistatic model, and
determining the power rate limits to avoid premature ageing
is pointed out as a remaining issue.

Literature consideration shows that many of the existent
EMSs in literature are based on parametric PEMFC models,
especially static models [12-14]. However, the performance of
PEMFCs is influenced by the operating conditions variation
(temperature, pressure, current, etc.), degradation, and ageing
phenomena. Such performance drifts have made the design of
a complete PEMFC model immensely complicated. There
exists various PEMFC models capable of dealing with the var-
iations of the operating conditions [15-19]. These models are
by some means convincing, though not perfect, with regard to
coping with the operating conditions variations. However,
ageing phenomena modeling, which is a very complicated
process, has not been resolved yet. In this respect, some
researches have been conducted to track the real performance
of a fuel cell system online. These works can be divided into
two categories. The first category is based on extremum
seeking strategies, such as maximum power point tracking
[20-23]. The second category is based on a parametric identifi-
cation coupled with an optimization algorithm. This approach
is based on models and offers two solutions: (i) a straight solu-
tion is to use a model which considers the multi-physics
behavior of the PEMFC. As previously mentioned, such a
model is itself a study limitation; (ii) the second solution is to
utilize an online parameter estimation for a gray-box or black
box model. Several studies have made a contribution concern-
ing the online identification coupled with an optimization of
PEMFC to obtain the best performance. Ettihir et al. have pro-
posed the utilization of a semi-empirical model, which is only
a function of current, with a recursive least square method to
get the characteristics of the PEMFC online [24]. They have
integrated their work into the EMS design of a FCV as well,
and achieved interesting results [25-27]. Kelouwani et al. have
suggested an experimental study based on tracing the maxi-
mum efficiency of the PEMFC. In this study, a polynomial
model of the PEMFC efficiency is introduced and the best effi-
ciency is looked after by adjusting the control variables [28].
Methekar et al. have introduced an adaptive control of a fuel
cell system with a Wiener model [29]. Dazi et al. have devel-
oped a predictive control to ascertain the maximum power
operation of a fuel cell system [30]. In [31], an adaptive super-
visory control strategy for a FC-battery bus based on equiva-
lent consumption minimisation is proposed. In this paper, an
algorithm has been used for charge-sustaining and a recursive
least square has been employed for performance identification
of the PEMFC. The utilized PEMFC model of this work is a

single input semi-empirical model, which is only a function of
current. The studied papers indicate that many online and
real-time EMSs have been proposed for FCVs. However, only
a few of them, like [24-27, 31], have tried to take into account
the real characteristics of the PEMFCs.

This paper aims at providing a basis for easy integration of
a PEMFC real behavior into the design of real-time EMSs. In
this regard, two recursive algorithms are introduced, and
tested to identify the parameters of a semi-empirical model
online. This integration provides one with online characteris-
tics of a PEMFC, such as polarization curve, maximum power,
and efficiency, which can be used in an EMS loop to update
the constraints and related control laws. Compared to other
works, the main contribution of this work is online parameters
estimation of a multi-input (current, temperature, and pres-
sure) semi-empirical model, which has eight parameters,
simultaneously, as opposed to a single-input (current) model
with four parameters used in [24-27, 31]. Since the intrinsic
dynamic of current, temperature, and pressure are completely
different, a multi-input model identification is more challen-
ging than a single-input one. Moreover, a careful experimental
study for comparing the effectiveness of the utilized identifica-
tion methods is given along with a step-by-step explanation
for adapting the algorithms to this particular problem. It
should be noted that the employed PEMFC model in this work
is a combination of the models introduced in [32-34]. The
parameters of such model have been only estimated offline
with various optimization algorithms in previous studies
[35-39]. However, in this work, parameter identification is
performed online to counteract uncertainties that occur slowly
over time, such as ageing, and quickly due to change of the
operating conditions which are not considered in the model.
The remainder of this paper is organized as follows. The
explanation on how the proposed method of this work can be
integrated into EMS design is given in Section 2. The PEMFC
model is presented in Section 3. Section 4 deals with the expla-
nation of identification algorithms. The obtained results of the
work are discussed in Section 5. Finally, the conclusion is giv-
en in Section 6.

2 Integration into Energy Management Design

The EMS of a multi-source system, like a FCV, can be
designed in a way to increase system efficiency, lifetime, and
autonomy by defining the operating points of the components.
However, defining the operating points in a PEMFC is challen-
ging since they steadily move across the operating space. With
regard to FCVs, it is interesting to run the PEMFC at its effi-
cient power range. As discussed earlier, many of the designed
EMSs in literature have used some constraints such as the
maximum and minimum power range of the PEMFC. How-
ever, the power-current profile of a PEMFC changes due to the
effect of operating conditions, such as temperature, and other
disturbances like ageing phenomena. The variation of PEMFC
characteristics acts like uncertainties in EMSs. When these var-
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iations are not tracked, they cause mismanagement in the
EMS since they change the assumed limits in the controller. In
this regard, this section describes how the results of this work
can be included in the design of a global energy management
in a FCV. The whole process is conducted online while the
PEMFC is under operation. The global EMS comprises three
stages, namely parameter identification, information extrac-
tion, and power split strategy. The objective is to do an online
parameter identification to adapt the model to the perfor-
mance drifts of the PEMFC, and then define the best operating
points in the information extraction stage. Afterwards, the
obtained data can be used in the power split strategy stage to
control the power flow between the sources. This three-stage
process is called global EMS, and is shown in Figure 1. It
should be noted that this paper mainly deals with the design
of the first two stages, which are the core of the explained glo-
bal EMS. In fact, this paper focuses on the implementation of
the recursive algorithms for estimating the parameters of a
semi-empirical PEMFC model online, which is the first stage.
Subsequently, the output of the identitication process is
employed for finding the maximum power of the PEMFC at
each moment, which is the second stage. Finding the maxi-
mum power in the information extraction step is one given
example out of several possibilities, such as maximum effi-
ciency point (7max), minimum voltage (V.,;,), maximum cur-
rent (Iax), and so forth. The future works can use the pro-
vided basis in this article to design an online power split
strategy.

In order to show the importance of taking the real behavior
of the PEMFC into consideration, two PEMFCs with different
levels of degradation are used in this paper. The exact age of
each PEMFC has not been properly tracked. However, the
polarization curves and the maximum deliverable powers of
each PEMFC are shown in Figure 2, as a method of distin-

guishing the current state of each one. As it is observed, the
rated power of one of the PEMFCs is almost 400 W while the
other one is 300 W. Throughout this manuscript, the less aged
PEMFC, which has a higher rated power, is called Normal
PEMFC, and the more aged one with less rated power is called
Degraded PEMFC. The characteristics of a brand-new PEMFC,
which has been obtained from the data sheet, are represented
in Figure 2 as well to clarify the difference between the
employed PEMFCs in this work and a new one.

It should be noted that the experimental polarization
curves have been obtained by drawing a fixed current from
the fuel cells and measuring their output voltage. By slowly
stepping up the load, the fuel cell voltage response can be seen
and recorded. After each increase in the level of current, 15 to
25 minutes have been allowed to the fuel cells to reach equilib-
rium. All tests have been conducted in a stable environment in

35 600
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Z 25 2
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3’ 300 5

$ 20 £
200
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Degraded FC

0
0 5 10 15 20 25 30
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Fig.2 Polarization and power curves of new {from dota sheet}, Normal,
and Degraded PEMFCs.
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the test center of Hydrogen Research Institute (IRH) of Univer-
sité du Québec a Trois-Riviéres to maintain the conditions.
Another point which needs to be mentioned is that the
employed PEMFCs in this work are Horizon H-500 PEMFCs.
The characteristics of a Horizon H-500 PEMFC is listed in
Table 1. The difference between the rated power, shown in
Table 1, and the utilized PEMFCs is due to the degradation.
According to manufacturer, the H, pressure should be regu-
lated between 0.5 to 0.6 bar. Hence, it can be stated that in the
utilized air-breathing PEMFCs, the pressure is constant.

3 Fuel Cell Modeling

An electrochemical based PEMFC model has been utilized
in this paper. In this type of model, the output voltage of FC
(Vi) is considered as the sum of cell reversible voltage
(Enemst) @and voltage drops, namely activation (V,.), ohmic
(Vohmic), and concentration or mass transport (Vo). This type
of model considers the same behavior for all cells. The general
formulation of an electrochemical FC model is as follows:

VFC =nx (ENernsl = vac( = vohmic + vcon) (1)

where the unit of Vi and the voltage drops is volt and n is
the number of cells. In this work, Exemst, which is the potential
of FC without load in an open circuit, is calculated based on
the following theoretical formula, proposed in [33].

Enemnst = 1.229 — 0.85x 1073(T — 298.15)

+4.3085 x 107°T[In(Py,) + 0.5In(Po, )] ()

where T is the stack temperature (K), Py,, and Pg, are the par-
tial pressure (Pa) of hydrogen in anode side and oxygen in
cathode side. V,, is obtained by means of Eq. (3), introduced
in [33].

Vot = Y + YT + Y3TIn(CO,) + Y4TIn(i) 3)

Table 1 Horizon H-500 PEMFC choracteristics.

PEMFC Technical specification

Type of FC PEM
Number of cells 36

Active area 52 cm?

Rated power 500 W

Rated performance 2V@235A
Max-current (shutdown) 2 A

Hydrogen pressure 50-60 kPa (0.5-0.6 bar)

1

Rated H; consumption 7 L min
Ambient temperature 510300
Max-stack temperature 65 °C

Cooling Air (integrated cooling fan)

CO; = Pp, /5.08 x 108 ~(4%/D (4)

where i is the FC operating current (A), CO; is the oxygen con-
centration {mol cm™), and the Y, (n =1 -+ 4) is the empirical
coefficients, based on fluid mechanics, thermodynamics, and
electrochemistry and may differ depending on the cell mate-
rial and manufacture.

The formulation of Vyumic, shown in Eq. (5), is based on the
proposed structure in [34]. This structure introduces an appre-
ciable method to avoid struggling with the computation of
water content and distribution. Eq. (5) is a function of temper-
ature, due to the fact that diffusivities and water partial pres-
sures change with temperature, and current, since proton and
water fluxes alter with the current.
vohmic = _iRimemaI = _i(gl +EZT +§3i) (5)
where &, (n =1 --- 3) are the parametric coefficients. The range
of the parameters of ohmic region is validated by the value of
Rinternal, which is the internal resistor (Q). The range of internal
resistor has been obtained by current interrupt test, which is
explained later in this section. V4, is computed with the help
of Eq. (6), proposed in [32,40].

Veon = al®In(1 — Blg) (6)

where ¢ is a semi-empirical parameter related to the diffusion
mechanism and it is between 0.3 to 1.8 [23], 14 is the current
density (A cm™), G (between 1 and 4) is a dimensionless num-
ber which is related to the water flooding phenomena, and f is
the inverse of the limiting current density (A" cm?). The value
of #is 1.2381.

The introduced PEMFC model comprises 8 time-varying
parameters, which need to be identified. In order to embrace
the influence of degradation phenomenon, which happens
slowly over time, and the operating conditions, which are not
included in the model like humidity, the parameters should be
identified online to adapt the model to real state of the
PEMFC. Table 2 shows the targeted parameters for identifica-
tion and their expected range of variation. The reported ranges

Table 2 Targeted Parameters for estimatian.

Parameters Range
Minimum Maximum
Y, ~1.997 -0.8532
2 0.001 0.005
Y3 3.6x107 9.8% 107
Y4 -26x10* -0.954x 107
a 0.0135 0.5
El
€2 Current interrupt test
&3
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have been adopted from previous studies [35-39], and the
obtained values for the parameters of the employed PEMFC in
this work may be slightly different. This deviation in the range
is mainly due to the various used material in the fuel cells, fab-
rication methods, state of health of the reported fuel cells, and
so forth.

3.1 Resistor Measurement

In order to relate the targeted parameters for estimating the
internal resistor of the PEMFC to the realistic physical mean-
ing, some measurements from the real value of resistor are
needed. Therefore, in this paper, the current interrupt method
is used as an electrochemical technique to obtain a range for
the resistor variation with regard to current and temperature
[41-44]. The efficacy of this method for measuring the ohmic
resistance has been already investigated in [44]. Current inter-
rupt test revolves around the idea of rapid acquisition of the
measured voltage to separate ohmic from activation loss.
Because, ohmic loss fades faster than electrochemical losses
after the interruption of the current. Hence, the ohmic loss can
be measured from the difference between the voltage immedi-
ately before and after the interruption. In comparison to other
electrochemical methods such as electrochemical impedance
spectroscopy, which is an effective frequency based method,
current interrupt benefits from convenient data analysis. How-
ever, one of the challenges in current interrupt method is to
obtain the point in which the voltage jumps and a fast oscillo-
scope is needed to deal with this problem. In this paper, the
procedure for performing the current interrupt test is strictly
according to [44].

Table 3 shows different current levels in which the current
has been interrupted as well as the corresponded temperature
of each point. The PEMFC has been given enough time to
reach a stable temperature for each current level before con-
ducting the test. Moreover, the test has been done in a forced
convection condition in which the fans of the PEMFCs have
worked with a constant duty cycle of 34%.

Table 3 Current levels and PEMFC stack temperature during resistor
measurement.

Current / A Temperature / °C Temperature / °C
(Normal PEMFC) (Degraded PEMFC)

3 282 2249

6 25 24.87

9 26.25 26.15

12 28.2 28.1

15 309 30.8

18 327 34.7

21 38.15 -

24 44.7 -

25 49.4 -

Figure 3 presents the variation of the resistor with respect
to current and temperature for both of the Normal and
Degraded PEMFCs. As it is seen, the value of resistor in the
Degraded PEMFC is more than the Normal PEMFC. These
measurements are used as a tool to check the range of esti-
mated resistor by the identification algorithms.

4 Parameter Identification Algorithms

With respect to the aims and objectives of the problem, the
process of identification can be conducted offline or online. In
offline identification, the process data is first gathered in a
data storage, and then it is transferred to a computer and eval-
uated. However, in online identification, which is the focus of
this work, information is processed online after each sample
[45]. In online identification, there is no need to save the infor-
mation because the recursive algorithms are used, and the
model is updated as the data comes in. The aim of this work is
to apply and compare two commonly algorithms in self-tun-
ing control for the problem of PEMFC parameters estimation.
RLS is used to deal with linear regression model estimation,
and RML can be used to estimate the parameters and the noise
dynamics, as described below.

4.1 RLS Algorithm

RLS algorithm is based on the concept of minimizing the
error related to input signal. RLS gives excellent performance
when operating in time varying conditions. Assuming that
noise is serially uncorrelated and independent of the elements
of the regression vector, RLS algorithm can be applied to a lin-
ear—in—parameter system to estimate the parameters, and the
model can be called a linear regression. The utilized RLS in
this work is formulated as below.

(a)

¥ Degraded
—4— Normal

e

Resistor / Q2
—
=
i3

0.06
0.04
0 5 10 15 20 25
Current/ A
0.12
®) ¥ Degraded
0.1 —&— Normal

Resistor / Q
=
[—3
Qo

20 25 30 35 40 45 50
Temperature / °C

Fig. 3 Resistor change with respect to current (a), and lemperature (b).
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y(t) = 0() () + v(1) (7)
O(t) = B(t — 1) + k(D E(t) (8)
k(t) = A7P(E = 1)()/ (1 +27"pT (P~ Dip()) ©)
P(t) =A7'P(t = 1) = A7'k(t)p (t)P(t — 1) + BI (10)

Aty = — (1-o/p (P~ Dp(t))w" (1Pt~ Dp(t) > 0

)
At) = T (Pt~ 1)p(t) = 0 (12)
E(t) = u(t) — " (06(t - 1) (13)

where y(t) is the estimated output, 6(t) is the parameter vector,
@(t) is the regression vector, v(t) is the uncertainty on the out-
put, k(t) is the Kalman gain, E(t) is the error, 4 is a directional
forgetting factor, P(t) is the covariance matrix, B is a constant
that increases the covariance matrix instantly, 1 is the identity
matrix, w is the forgetting factor (0< @ <1), and u(t) is the mea-
sured output. It should be noted that the estimates are
assumed to be unbiased in RLS. This assumption implies that
regression vector and the noise are independent and v(t) is a
white noise. Forgetting factor and covariance matrix play an
important role in the estimation quality of a time-varying sys-
tem. The estimation algorithms are susceptible to estimator
windup, which stems from the forgetting factor, and faults in
the approximation, which might be due to large parameters
change. Therefore, in this paper, a directional forgetting factor
has been utilized to prevent the identification process from
becoming undependable when the system is not constantly
excited [46]. Table 4 clarifies how the introduced PEMFC
model can be fitted in the RLS structure for parameter estima-
tion process.

One point that needs to be mentioned is that the initializa-
tion of the parameters vector is very important to achieve rea-
listic outcomes from the identification process in both RLS and
RML algorithms. In this regard, a preprocessing of data is per-
formed in this paper to avoid increasing the computational
time or divergence and also get close to realistic results. The
preprocessing of data is conducted by the Curve Fitting
Toolbox™ of MATLAB software. This toolbox utilizes the least
square methods to fit the data. Fitting requires a parametric
model which can relate the real data to the predictor data. In

Table 4 Description of the parameters of RLS.

RLS parameters Implementation description

(t) [Yy, Yo, Y3, ¥4, 81, 82/ 83, €]

() {1, T, TIn(CO), Tin(i), -i, ~T, —i%, [CIn(1 - Bla)]
y(t) Estimated Vg by RLS

u(t) Measured V¢ from the real PEMFC

this work, the employed fuel cell model is linear in coeffi-
cients. Therefore, linear least square, which minimizes the
summed square of the difference between the observed
response value and the fitted response value, is used to fit the
model to experimental data. The utilized experimental data in
the preprocessing stage comes from the conducted test for
obtaining the polarization curves of the fuel cells, presented in
Figure 2, which is a proper representative of its behavior.

4.2 RML Algorithm

On the condition that the noise is related to the regression
vector, the mode] cannot be considered as a linear regression
due to unobserved data. In this condition, RLS algorithm can-
not be employed since the model is not a linear regression,
and RML algorithm can be introduced. RML algorithm holds
a striking resemblance to RLS. The main difference here is that
the disturbance acting on the output of the system (v(t)) is
modeled as a moving average of a serially uncorrelated white
noise sequence. In this case, the unobserved components (e(t),
e(t - 1), .-+ e(t — r)) are approximated by the residuals, which
are the values of the estimation error (E(t)). RML algorithm is
formulated as below.

y(8) = 6(0) (1) + v(t) (14)
vit) =e(t) +cy(t)e(t —1) + ... + ¢ (te(t — 1) (15)
0(t) = 6(t — 1) + k(t)E(t) (16)
k(t) =4 "P(t — l)ll’(t)/(l AT (Pt — 1)tv(t)) (17)
W(t) =p(t)/C(q7") (18)
P(t) =A7'P(t = 1) = A Tk(OWT(t)P(t — 1) + BI (19)

At) =0 — (1 - /e (Pt = Lp(t) T (HP(t - 1)p(t) > 0

(20)
A1) = 1T (HP(t— () = 0 (1)
E(t) = u(t) —p' (1)0(t — 1) (22)

where e is the residuals calculated by the values of error, c is
the added parameter for error prediction, ‘¥(t) is a filter, q'1 is
the delayed operator, and C is the estimated polynomial of the
parameter ¢ (1 + ¢;q™" + -+ + ¢,q™). The number of parameter
¢, which is shown by r in the formulas, has been chosen three
in this particular case with respect to the conducted trials, and
it can be increased or decreased in other problems.

[t should be noted that with respect to the introduced struc-
ture for the RML algorithm, which contains a model for pre-
dicting error, the introduced semi-empirical model should be
extended as below to consider the error model as well.
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A% =nx (ENEmSl + vact + vohmic + vcon + Cl(t)e(t - 1)+
FC ca(te(t — 2) + cz(t)e(t — 3))

(23)

Table 5 shows how the introduced RML algorithm in this
section can be coupled to the PEMFC model.

5 Experimental Results and Discussion

The performance of the described algorithms has been
tested on a developed test bench in the Hydrogen Research
Institute. In this test bench, as shown in Figure 4, a Horizon
H-500 air breathing PEMFC is connected to a National Instru-
ment CompactRIO through its controller. A programmable
DC electronic load is used to request load profiles from the
PEMFC. According to the manufacturer, the difference
between the atmospheric pressure in the cathode side and the
pressure of the PEMFC in the anode side should be about
50.6 kPa. The pressure in the anode side is set to 55.7 kPa. The
explained semi-empirical model and parameter identification
algorithms have been developed in MATLAB and implemen-
ted in Lab VIEW software via Math Script Module. A current
profile is applied to the PEMFCs via the load, which is con-
nected to the LabVIEW software and PC vig USB connection.
The measured data (temperature and voltage) from the real
PEMEC is transferred to the PC, by means of the CompactRIO,

Table 5 Description of the parameters of RML.

RML parameters Implementation description

o(t) [Y1, Yo, Y3, Yy, &y, &2, Ba, @, €1, €2, €3]
() [1, T, TI(COy), TIn(i), =i, —iT, =i, [€In(1 - Bla), e(t - 1),
e(t-2), e(t-3)]
y(t) Estimated Vg by RML
u(t) Measured Vgc from the real PEMFC
Clgh (I+aq' +aq?+aq?)
Pressure S500W
regulator Horizon FC
B > §
L S = - <
ﬂ Lol Supply }‘I
4 " valve ¢
Hydrogen tan 3
ydroge ) o
Purging
.

valve |

DC electronic load

to be used in the implemented model for identification pro-
cess. The communication between the CompactRIO and the
PC is via Ethernet connection every 100 milliseconds. In this
regard, the identification algorithms receive the measured
data every 100 milliseconds and identify the parameters of the
model at each step. Then the updated model is used to plot
polarization curve as well as the power-versus-current curve.
The current correspondent to the maximum power is obtained
from the power-versus-current profile, and it is requested
from the PEMFCs via the load.

This work aims to increase the accuracy of the extracted
information, which is maximum power herein, from the
updated model. Later on, this information extraction basis can
be integrated into the EMS designs to achieve more realistic
results. Two main analyses have been performed in this sec-
tion to clarify the effectiveness of the discussed algorithms and
the PEMFC model. The first analysis is to compare the perfor-
mance of the identification algorithms, and the second analy-
sis is to show the relevance of the achieved results to real
physical values.

Figure 5 indicates the utilized current profile to test the perfor-
mance of the identification algorithms. This current profile has
been created by means of UDDS driving profile which rep-
resents the city driving condition. To do so, the UDDS driving
profile has been used as the input of JEEE VTS Motor Vehicles
Challenge [47], and the resulting requested current from the
PEMFC has been scaled within the operafing range of the
presented PEMFCs in the test bench. Since this current profile
comes from a driving cycle, it can imitate a real situation that
may happen to a used fuel cell system in a vehicle. However, the
application of this work is not just limited to vehicles. The
represented current profile, shown in Figure 3, has been applied
to two described PEMFCs with different levels of degradation.

Figures 6 and 7 represent the estimated voltage and temper-
ature variation for the Degraded and Normal PEMFCs, respec-
tively. As is clear in these figures, both of RLS and RML algo-
rithms are potentially capable of estimating voltage precisely. It
is difficult to form an opinion about the performance compari-
son of the algorithms solely by means of
these figures.

Regarding the comparison of the algo-
rithms to one another, the mean square
error (MSE) and the peak signal to noise
ratio (PSNR) have been employed. MSE
and PSNR are two error metrics used to
compare the estimation quality. PSNR

calculates the peak signal-to-noise ratio,

in decibels, between the two original sig-

NI CompactRIO :
9022 LabVIEW

Ethernet - Connection

Fig. 4 Developed lest bench at Hydrogen Research Institute.

s H, Flow

+ Pole connection
- Pole connection
Computer - Device
= = Analog signals

nal and estimated signal. In this paper,
the original signal is the measured output
voltage of the PEMFC and the estimated
signal is the PEMFC estimated output
voltage by the algorithms. The higher the
PSNR, the better the quality of the estima-
tion. The MSE represents the cumulative
squared error between the estimated volt-
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Degraded PEMFC.

age and the measured voltage. The lower the value of MSE,
the lower the error.

As mentioned earlier, the utilized algorithms in this work
have been implemented in LabVIEW software for experimen-
tal validation. The PEMFC is connected to a National Instru-
ment CompactRIO, which provides access to the PEMFC volt-
age and temperature sensors’ measurements. In order to check
the robustness of the algorithms, a random noise is added to
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Fig-7 Estimated outpul voltage (a), and temperature change (b}, of the
Normal PEMFC.

the voltage measurement in the LabVIEW, and the noisy sig-
nal is sent to the process of identification, which is done by the
algorithms. It should be reminded that the purpose of identifi-
cation is to estimate output voltage of the PEMFC and that is
why the noise is added to the voltage measurement. Figure 8
presents the obtained PSNR values for different cases. Four
cases, namely zero noise, a random noise with variance of
(.25, a random noise with variance of 0.5, and a random noise
with variance of 0.75, have been considered in this analysis.
Zero noise refers to the normal measurement, and the other
cases show the addition of random noise with different var-
jances to test the robustness of the algorithms. As it is seen in
Figure 8, in case of normal measured data (zero noise), RLS
performs better than RML to some extent. However, as the
level of noise increases RML algorithm indicates superior per-
formance compared to RLS. This result implies that RML algo-
rithm is more robust than RLS while confronting some noises
in the system.

Figure 9 presents the comparison of the algorithms based
on MSE metric for the same discussed four cases. The achieved
results of MSE analysis is in agreement with the results of
PSNR, regarding the robustness of the algorithms. It is clear
that the value of MSE for RLS is marginally lower that RML in
normal measured data, and in higher noise levels, the MSE
value of RML is lower than RLS, which shows its robustness
against noise.

Regarding the investigation of the result relevance to the
physical meaning, current interrupt method, as explained in
Section 3.1, has been used to obtain a reference range for asses-
sing the resistor estimation by algorithms. In fact, current
interrupt test, which is an electrochemical technique, is used
to measure the evolution of resistor with respect to the temper-
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few existing manuscripts, there is not any explana-
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Fig.8 Comparison of the algorithms based on PSNR.

tion about the age and degradation level of the
. PEMFCs. However, the achieved parameters in this
manuscript seem to be almost in the same range as
1 inTable2.

] Figure 11 represents the evolution of the activa-
tion region parameters of the Normal PEMFC with
RLS algorithm. Since the performance of the algo-
rithms has been already discussed over the previous
figures and the average values of the estimated
parameters for both PEMFCs have been reported in
Table 6, the parameters identified by RLS approach
are only shown in Figure 11 to give an idea of

[ IRLS Degrade [ RML Degrade S RLS Normal Il RML Normal

parameters variation. As is seen in this figure, the

08F l_‘

0 0.25 0.5 0.75

Variance / o

Fig.9 Comparison of the algorithms based on MSE.

ature and current. This measurement clarifies the range of the
resistor for the whole stack and is a helpful tool to check the
achieved resuits by the both algorithms. Figure 10 shows the
estimated values of the Riemal in the Normal and Degraded
PEMFCs, which are within the obtained ranges of the current
interrupt test presented in Figure 3. The observed evolution in
the trend of resistor, particularly between 0 to 100 seconds, is
due to the sharp rise of current in the used current profile,
shown in Figure 5, in this time period. This sudden increase in
the current also leads to a temperature rise, which affects the
resistor. The resistor is influenced by not only the current but
also the temperature. According to Figure 10, the ohmic resis-
tance value in the Degraded PEMFC is more than the Normal
PEMFC.

Table 6 provides information on the average value of the
semi-empirical parameters, obtained by both of the identifica-
tion methods. There is not a lot of information about the range
of the semi-empirical parameters in literature and even in the

0.08
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Time /s

Fig. 10 Evolulion of the eslimaled ohmic resistance in the PEMFCs.

parameters are time-varying and the small variation
of the parameters overtime shows that the selected
PEMFC model has an acceptable accuracy, otherwise
the parameters would fluctuate a lot to compensate
the lack of accuracy in the model.

The variation of the concentration region param-
eter, achieved by RLS, is shown in Figure 12. It
should be noted that the severity of degradation
influence is ambiguous over each specific parameter.
However, it can be ensured that in case of distur-
bance occurrence due to degradation, the parame-
ters change to embrace its effect.

Figure 13 represents the comparison of the polarization and
power curves of Normal and Degraded PEMFCs with the esti-
mated ones, obtained by RLS algorithm for zero noise condi-
tion. It should be noted that the polarization curve changes

continuously mainly due to the temperature change. As it is
seen, maximum power is achieved in the high current region,
where the concentration part begins. In this regard, by
employing the recursive algorithms in the parameter estima-
tion of a PEMFC model, the polarization curve and maximum
power can be obtained at each moment, and be used in power
splitting or global EMSs.

Table 6 The average obtained values of the semi-empirical parameters.

Parameters Degraded PEMFC Normal PEMFC

RLS RML RLS RML
i -1.19 -1.19 091 -0.91
12 4.01x 10 4.01x107 2.9% 107 29x107
3 9.68x 107 9.53%x10°° 7.71x107° 7.78x 107°
Y4 956x10"°  -1.05x 107 -197x 107 -1.93x10”
« 7.95% 107" 7.95x 107! 9.94% 107 9.94x 107"
& 9.94x 1072 9.94x 107 1.07x 102 1.07x 1072
&2 -292x107* -2.92x 107 -9.90% 107" -1.00% 107
&3 -122x10°  -1.22x10°  854x 107 8.54x 107
o — 2.50% 107" — 2.50x 107"
c = 3.00% 107! — 3.00x 107!
G = 5.00x 107 = 5.00% 107
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Figure 14 compares the polarization curves obtained by the

estimated parameters with RML and RLS algorithms for the
noise level of 0.25. As is clear in Figure 14, the estimated polar-
ization curve by RML algorithm is closer to the reference,

Measured data with noise level of (.25

Reference
==-=-RLS
wasee RVIL

Voltage / V
[ [
< N

16

~
14 ">

0 5 10 15 20 25
Current/ A

Fig. 14 The comparison of polarization curves obtained by algorithms.

which comes from the experimental data, than RLS. This
figure also shows the influence of noise in the polarization
curve estimation. Looking more closely at Figure 14, it can be
concluded that a small change in the voltage estimation can
cause a noticeable change in the polarization curve estimation.
The difference between the PSNR values of RML and RLS
algorithms, presented in Figure 8, for the noise level of 0.25 is
not a lot. However, this slight difference causes an obvious
change in the polarization curve prediction.

6 Conclusions

This paper proposes online identification of a multi-input
PEMFC model to track the performance drifts due to the influ-
ence of degradation phenomenon and the operating conditions,
which are not considered in the model, over the output voltage
of a fuel cell system. In this regard, a semi-empirical PEMFC
model is selected and two identification algorithms, RLS and
RML, are utilized to update the chosen model. Various scenar-
ios, four noise level cases, and two PEMFCs with different levels
of degradation, have been considered to test the performance of
the algorithms. The main results achieved from the experimen-
tal implementation and test of the algorithms indicate that both
of the algorithms are capable of estimating the output voltage
to a satisfactory level. However, RML has shown more robust-
ness in dealing with noisy measurement data. It is worth
reminding that this robustness might lead to less expensive sen-
sors and measurement instruments. Moreover, it should be
noted that the range of alteration in the semi-empirical parame-
ters was acceptable. In future, this work can be integrated into
the design of global energy management for FCVs.
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List of Symbols

Latin Letters

a, Output coefficient

b Input coefficient

C, Error coefficient

C Estimated polynomial
CO,  Oxygen concentration / mol cm™
E Estimation error

E Error

Enemst  Cell reversible voltage / V
G Dimensionless number

i FC operating current / A
] [dentity matrix

Iq Current density / A cm™
q’ Delayed operator

k Kalman gain

n Number of cells

P Covariance matrix

P Hydrogen partial pressure / Pa
Po; Oxygen partial pressure / Pa
Rintermal Total internal resistance of the fuel cell / Q

T Stack temperature / K
U Input
\Y Noise

Vet Activation voltage drop / V
Veon Concentration voltage drop / V
Ve Output voltage of fuel cell / V
Vonmic  Ohmic voltage drop / V

X Regression vector

Y Output

Greek Letters

A Semi-empirical parameter related to diffusion
mechanism

B Inverse of the limiting current density / A" em™

B Constant

E Residuals

Eq Parametric coefficients related to ohmic resistance

0 Parameter vector

Yo Experiential coefficients related to activation loss

@ Linear regression vector

oo Residual regression vector

A Directional forgetting factor

v Filter

Q Forgetting factor
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C.1 Objectives

The performance of an FCHEYV is impacted by several interrelated factors which put the
design of an EMS in critical position [6]. Regardless of the type of the hybrid vehicle, the
existing EMSs fall under two categories of rule-based and optimization-based [12, 18]. The
rule-based strategies are usually heuristic and lead to limited and sub-optimal solutions. In
this regard, the researchers have turned attentions on the optimization methods, which assure
optimal or near-optimal solutions in theory and can also provide new guidelines for refining
the rule-based methods [95, 96]. However, the performance of the optimization-based
strategies depends to a great extent on the driving pattern and they achieve different
efficiency with respect to the driving conditions. In this light, the use of traffic condition and
driving information in the design of an EMS has come under the attention of many
researchers [30, 31, 97]. This line of work is known as intelligent-based EMS category and
can be integrated into both of ruled-based and optimization-based strategies [16]. Apart from

the importance of considering the driving condition, it is also essential to take into account
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the performance drifts of the FC system in EMS formulation of an FCHEV. The performance
of a FC system is impacted by several factors such as the variation of operation conditions
and degradation phenomenon and it can lead to the mismanagement of the preset controller

in the vehicle.

In the light of the discussed issues, the main objective of this article is to propose a novel
adaptive soft-computing based EMS for a FCHEV, composed of a FC system and a battery
pack. This strategy embraces the influence of driving condition and operating point variation
of the stack. This is one of the first attempts, if any, to merge both of driving pattern

recognition and adaptation to the performance drifts of the FC system in a single EMS.

C.2 Methodology

This paper puts forward an online multi-mode EMS to efficiently split the power among
the components while embracing the effects of the driving conditions and performance
degradation of the fuel cell system. The core of the suggested strategy is an online self-
organizing map (SOM) driving profile classifier and a multi-mode FLC with online updating

of the output defuzzification, as shown in Figure C.1.
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Figure C.1 The general architecture of the proposed online multi-mode EMS.
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A SOM is first trained to cluster the driving patterns. The SOM competitive layer in this work
is composed of ten driving features as inputs and it classifies the driving patterns into three
classes in the output. To the best of the authors” knowledge, SOM has not already been used
as a driving condition recognition tool. Subsequently, a three-mode fuzzy logic controller
(FLC) is designed and optimized offline by the genetic algorithm for each driving pattern. Each
FLC has three inputs including requested power, derivation of requested power, and battery
state of charge (SOC), and one output, which determines the portion of required power form
the PEMFC system. Unlike the other similar works, the defuzzification of the FLC output is
done based on the estimation of maximum power and maximum efficiency of the real FC
system through an online model composed of a PEMFC semi-empirical model coupled with
KF. Finally, the SOM is utilized to recognize the driving mode at each sequence and
accordingly activate the most suitable mode of the FLC to meet the requested power by
efficient use of the energy sources. Contrary to most of the existing papers in the literature
which are based on simulation, the obtained results of this work have been validated on a
developed test bench by using hardware-in-the-loop (HIL) technique. To highlight the
influence of tracing the real state of a FC system while designing an EMS, two PEMFCs with

different degrees of degradation are used in the experimental section of this paper.

C.3 Synopsis of the results analyses

To study the performance of the proposed online multi-mode EMS, two principal scenarios
are taken into consideration. In the first scenario, a combined driving cycle is imposed to the
vehicle as the input and the performance of the online proposed EMS is compared with an
offline-optimized EMS in terms of hydrogen consumption and efficient use of the energy

sources. The new FC system is used throughout the first scenario. It should be noted that this
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offline strategy knows the driving cycle in advance as opposed to the online multi-mode EMS.
From the obtained results, it is clear that the FC system is being used to supply the main portion
of the requested power in a stable manner, compared to the battery, which is mostly responsible
for absorbing the fast transitions. The optimal offline strategy keeps the SOC in a higher level

compared to the online strategy due to its priory knowledge about the requested power.

In the second scenario, the capability of the proposed EMS to deal with the FC system
performance drifts is scrutinized. In this respect, the EMS test with the combined driving cycle
is repeated, but by using the old PEMFC. Moreover, to signify the importance of the online
PEMFC characteristics tracking, once the test is performed by deactivating the online
identification, and the second time it is done by activating it. According to the obtained results,
the offline multi-mode strategy experiences a lot of start-ups and shutdowns in the beginning
(400 s) in the FC system as it tries to recharge the battery by using the PEMFC in high power.
However, it is not aware of the fact that the FC system has been degraded and its MP and ME
points have changed. Therefore, it demands for a power level that is out of the ability of the FC

to supply and causes these on/off cycles.

On the other hand, in case of the proposed online EMS, in the first 100 s, the identification
is performed to realize the real characteristics of the FC system and update the defuzzification
tuning of the controller. After that, the FC system works in the high-power area to recharge the
battery pack to a certain level in addition to supplying the requested power without having any
on/off cycles. As a result, the online multi-mode EMS utilizes the FC system more efficiently
which can prolong its lifetime besides improving the fuel economy of the vehicle. Table C-1
compares the obtained cost by each of the EMSs in both scenarios. According to this table, the

proposed online multi-mode strategy shows a very close performance to the optimal FLC in
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scenario |. This close performance demonstrates that the proposed online EMS is able to
handle unknown driving conditions with an acceptable fuel economy. The presented results of
scenario 2 also confirms the satisfactory adaptation of the proposed EMS to the performance
drifts of the FC system, which is a distinguishing feature of this suggested EMS. This
adaptation to the real state of the FC system has made 8% of performance improvement in the

online multi-mode strategy in scenario 2.

Table C-1  The cost comparison of the EMSs in the two performed scenarios
Scenario | Scenario 2
Cost (USD) Optimized Online Offline Online
FLC Multi-mode multi-mode multi-mode
H> 28.82 26.96 28.92 25.56
ON/OFE 0 0 0.80 0
cycles
Recharge 13 6.00 7.98 8.99
penalty
Total 32.16 32.96 37.70 34.55

C.4 Conclusion

This paper presents a new online multi-mode EMS for a FCHEV. This EMS is mainly
composed of a SOM based driving condition classifier and a multi-model FLC. The FLC
output MF is constantly adjusted based on the online estimation of the FC system MP and
ME boundaries by KF and a semi-empirical PEMFC model. The developed SOM recognizes
the driving condition and activates the most proper mode of the FLC at each update to
efficiently supply the request power from the vehicle. The performance of the proposed
online strategy 1s compared with an offline optimized FLC under a combined driving cycle
of CYC NewYorkBus, CYC UDDS, and WLTC_class 3 and a satisfactory result is obtained

with only a two-percent difference in terms of the total cost of hydrogen consumption and
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on/off cycles of the FC system. Moreover, the performance of the proposed EMS is tested
when the FC system undergoes a sixteen-percent drift regarding the maximum power. In this
case, the proposed online EMS adapts to the real state of the FC system and improves the

performance of the vehicle by eight percent compared to the offline multi-mode controller.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68. NO. 12, DECEMBER 2019

11427

An Online Energy Management Strategy for a Fuel
Cell/Battery Vehicle Considering the Driving Pattern
and Performance Drift Impacts

Mohsen Kandidayeni
Arash Khalatbarisoltani
Sousso Kelouwani

Abstract—Energy management strategy (EMS) has a profound
influence over the performance of a fuel cell hybrid electric vehicle
since it can maintain the energy sources in their high efficacy zones
leading to efficiency and lifetime enhancement of the system. This
paper puts forward an online multi-mode EMS to efficiently split
the power among the components while embracing the effects of
the driving conditions and performance degradation of the fuel
cell system. In this regard, firstly, a self-organizing map (SOM)
is trained to cluster the driving patterns. The SOM competitive
layer in this work is composed of ten driving features as inputs
and it classifies the driving patterns into three classes in the output.
Subsequently, a three-mode fuzzy logic controller (FLC) s designed
and optimized offline by the genetic algorithm for each driving
pattern. Unlike the other similar works, the output membership
function of the FLC is designed based on the online identification
of the maximum power and efficiency of the fuel cell system which
change over time. Finally, the SOM is utilized to recognize the
driving mode at each sequence and accordingly activate the most
suitable mode of the FLC to meet the requested power by efficient
use of the energy sources. The performance of the proposed EMS
has been validated by using the hardware-in-the-loop platform for
several scenarios. The experimental results analyses indicate the
promising performance of the suggested methodology in terms of
ameliorating bydrogen economy and the fuel cell system lifetime.

Index Terms—Driving condition prediction, fuel cell hybrid elec-
tric vehicle, fuzzy logic control, PEMFC online parameter estima-
tion, self-organizing map.
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[. INTRODUCTION

RANSPORTATION is broadly held responsible for pro-

ducing carbon dioxide emissions resulting from the burn-
ing of fossil fuels, such as gasoline, in internal combustion
engines [1]. Pure electric and hybrid electric vehicles have
been thought-provoking transitional alternates for conventional
vehicles although the latter is still dependent on fossil fuels
and the former has limited driving range in addition to long
recharging time [2]. These shortfalls have also provided the basis
for the advent of new power sources such as proton exchange
membrane (PEM) fuel cells (FCs) in vehicular applications,
which are presenting a steadily growing division of the auto-
motive market [3]. Fuel cell hybrid electric vehicles (FCHEVs)
usually utilize a PEMFC as the primary power source and a
battery pack or/and a supercapacitor as the secondary power
source. Therefore, the performance of an FCHEV is impacted
by several interrelated factors which put the design of an energy
management strategy (EMS) in critical position [4]. Regardless
of the type of the hybrid vehicle, the existing EMSs fall under
two categories of rule-based and optimization-based [5], [6].
The rule-based strategies are usually heuristic and lead to limited
and sub-optimal solutions. In this regard, the researchers have
turned attentions on the optimization methods, which assure
optimal or near-optimal solutions in theory and can also provide
new guidelines for refining the rule-based methods [7], [8].
Optimization-based strategies can be divided into two groups
of global and real-time strategies depending on the defined
cost function. The former utilizes the cost function over a
fixed driving cycle and is beneficial for realizing the optimal
policy. However, it is not applicable in real-time control of the
vehicle owing to its dependency on the driving profile. The
latter, nonetheless, uses an instantaneous cost function based
on the variables of the system. Equivalent consumption mini-
mization strategy (ECMS) and Pontryagin’s minimum principle
(PMP) are two widely used real-time optimization strategies in
hybrid electric vehicles [9]-[12]. One of the key issues here
is the high instantaneous computational time. Furthermore, the
estimation of the equivalent factor in ECMS and the initializa-
tion of the co-state in PMP, which are sensitive to transient
dynamic and the driving pattern, are quite challenging tasks
[13], [14].

0018-9545 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.htm! for more information.
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In light of the discussed matters, the use of traffic condition
and driving information in the design of an EMS has come under
the attention of many researchers [15]-[17]. This line of work is
known as intelligent-based EMS category and can be integrated
into both of ruled-based and optimization-based strategies [18].
Intelligent-based EMSs mainly consist in the use of car nav-
igation data (global positioning system, vehicle geographical
information system or vehicle telematics) and the history of
motion for recognizing and predicting the driving condition [ 19].
Several approaches based on fuzzy logic control (FL.C) [20],
neural networks (NNs) [21], and other machine learning-based
techniques [22] have been introduced in this respect. In [23], the
driving data is clustered by using a hierarchical algorithm and
support vector machine (SVM) is used for the recognition of the
traffic condition. In [24], multi-layer perceptron (MLP) NN is
trained to recognize the driving pattern and activates the con-
troller. In [25], back propagation NN along with metaheuristic
algorithms is used to formulate a dynamic programming-based
predictive EMS to reduce the fuel consumption. In [26], the
suggested strategy comprises two steps: generation of optimal
EMS for the long trip by using an estimation of distribution opti-
mization algorithm and refining the optimal EMS with regard to
actual traffic conditions in the short-term. In [27], combination
of PMP with NN, in [28], learning vector quantization NN
with GA, and in [29], probabilistic SVM with a data fusion
based method are proposed for developing the EMS. In [30],
an adaptive control based on tuning the FL.C parameters for
different loads is proposed. The authors state that the PEMFC
voltage declines due to degradation after a while and under this
condition the rule-based values should be reconsidered.

Apart from the importance of considering the driving condi-
tion, it is also essential to take into account the performance
drifts of the FC system in EMS formulation of an FCHEV.
The performance of a FC system is impacted by several factors
such as the variation of operation conditions and degradation
phenomenon. The previous works of the authors have touched
upon the procedure for updating the parameters of a FC system
online [31], [32]. However, they have not been integrated into
the EMS design yet. There are some works in the literature
regarding the online identification of the PEMFC model in an
EMS. Some of them are based on the extremum seeking methods
in which a periodic perturbation signal is utilized to find an
optimal operating point in real-time [33]—[35]. Such strategies
are employed in the formulation of an EMS mainly due to their
easy implementation. However, they cannot be very effective
when simultaneous identification of several operating points are
required in online applications. Because they need a separate
search line for each intended characteristic such as maximum
efficiency (ME) and maximum power (MP). This problem can
be avoided by utilizing recursive filters for online identifica-
tion of the PEMFC parameters and extracting the necessary
characteristics from the updated model. There are a few EMSs
on this basis in the literature for FCHEVs. In [36], [37], the
authors employ the recursive least square (RLS) and the square
root unscented Kalman filter (KF) for updating a single-input
(current) PEMF model while designing hysteresis and PMP
based EMSs fora FCHEV. They indicate that the classical EMSs
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TABLE [
NEMO PARAMETER DEFINITION

Specification Parameter Value
Rolling resistance 0.015

Aerodynamic drag 0.42

Frontal area (m?) 4

. Density of air (kg/m*) 1.2
Vehicle's parameters Mass factor 1 035
Mass (kg) 896

Maximum speed 40

(km/h)

3-phase induction Power (W) 5690
machine Frequency(Hz) 131.1
FC system Rated power 4 kW

voltage (V) 72

Battery Capacity (Ah) 120

are not very efficient when there are drifts in the FC system.
In [38], the authors propose a supervisory controller while the
PEMFC model is being updated by a simple current dependent
model.

This paper proposes a novel adaptive soft-computing based
EMS for a FCHEYV, composed of a FC system and a battery
pack. This is one of the first attempts, if any, to merge both of
driving pattern recognition and adaptation to the performance
driftsof the FCsystemin asingle EMS. The core of the suggested
strategy 1s an online self-organizing map (SOM) driving profile
classifier and a multi-mode FLLC with online updating of the
output defuzzification. To the best of the authors’ knowledge,
SOM has not already been used as a driving condition recogni-
tion tool. Moreover, the other contribution of this work lies in the
formulation of the FL.C to adapt to the real state of the FC system.
Each FL.C has three inputs including requested power, derivation
of requested power, and battery state of charge (SOC), and one
output, which determines the portion of required power form the
PEMFC system. The defuzzification of the FL.C output is done
based on the estimation of MP and ME of the real FC system
through an online model composed of a PEMFC semi-empirical
model coupled with KF. Contrary to most of the existing papers
in the literature which are based on simulation, the obtained
results of this work have been validated on adeveloped test bench
by using hardware-in-the-loop (HIL) technique. To highlight the
influence of tracing the real state of a FC system while designing
an EMS, two PEMFCs with different degrees of degradation are
used in the experimental section of this paper.

Section I deals with the modeling description of the vehicle.
The methodology for designing the proposed EMS is detailed
in Section IlI. Section IV clarifies the obtained results from
different considered scenarios. Finally, the conclusion along
with some remarks is presented in section V.

II. FUEL CELL HYBRID ELECTRIC VEHICLE SYSTEM

A. Hardware-in-the-Loop Platform and Power Train
System Modeling

The system used in this work is based on a low-speed FCHEV
called Nemo. The main characteristics of the vehicle are listed
in Table I.
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For the purpose of this paper, a HIL set-up, as shown in Fig. I,
is designed for evaluating the performance of the EMS. The
FC system is the real component of this HIL simulator and the
other ones are the mathematical models. In this set-up, a Horizon
500-W air breathing PEMFC, which is connected to a National
Instrument CompactRIO through its controller, is utilized. The
FC controller controls the mounted axial fan whichisresponsible
for cooling the stack and supplying the necessary oxygen. The
information between the CompactR[O and the PC is transferred
by an Ethermet connection every 100 milliseconds. Temperature,
current, and voltage of the FC system are recorded and used
for the online modeling. An 8514 BK Precision DC Electronic
Load is used to request the load profile, imposed by the DC-DC
converter, from the FC system. According to Table I, the Nemo
FCHEV has a 4-kW FC system. In this regard, the FC output
voltage in the HIL set-up is scaled up after the converter to meet
the requested power. To emphasize the significance of tracking
the real behavior of the FC system while designing an EMS, two
H-500 Horizon PEMFCs with different degrees of degradation
are used in this work. The MP and ME curves of each of the FC
systems are presented in Fig. 2 and their other characteristics
are histed in Table II. Hereafter in this manuscript, the degraded
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TABLE 11
THE TECHNICAL FEATURES OF THE H-500 Hor1ZON PEMFC

PEMFC Technical specification

Type of FC PEM

Number of cells 36

Active area 56 cm?

Max Current (shutdown) 42 A

Hydrogen pressure 50-60 kPa (0.5-0.6 Bar)
Rated H, consumption 7 SLPM

Ambient temperature 51030°C

Max stack temperature 65 °C

Cooling Air (integrated cooling fan)

TABLE 111
THE UTILIZED BATTERY PACK DATA

Specification Parameter Value
Maximgm current ClA
continuous
Capacity 6 Ah
SAFT Rechargeable Nominal voltage 365V
lithium-ion battery cell No. of cells in series 20
No. of cells in paralle] 13
Cell mass 0.34 kg
Coulombic efficiency 0.99

PEMFC is called old PEMFC and the other one is referred to as
new PEMFC. Fig. 2 also shows the safe zone operating range,
between the ME and MP boundaries, of these FC systems. The
EMSs should try to operate the PEMFC in this safe zone to
increase the lifetime and fuel economy of the system. [t should be
noted that according to [37], a dynamic limitation of 50 Wyl
which means a maximum of 10% of the maximum power per
second for rising, and also 30% of the maximum power per
second for falling, as suggested in [39], have been considered
for the operation of the PEMFC stack.

According to Fig. 1, the FC system, as the primary power
source, is connected to the DC bus via a DC-DC converter, and
the battery pack, as the secondary source, is directly linked to
the bus to sustain the voltage of the DC-link. The force of the
hybrid vehicle, considering the speed (Vv ) and mass (m),
can be calculated by taking into account the traction (£, ) and
resistive (F,..s) forces as follows:

A =
ffl,m ,HV = Fl.r' - Fr(:.s'

Fr(-’..s' - ‘n‘Lgfr + O.Sp,,C(/_Af V2 + mago ( |)
F[J' = (VHV—r('f - VH\") C's (T) + Frc.s'

Where a family of PI controller is used to force the vehicle to
follow the driving cycle and assure achieving the reference speed
of the vehicle. The vehicle requested power from the electric
motor side can be then expressed as:

Py'ml - (VHV X F[I')/,]EJ\-I M Nde—ac (2)

Where 7), is the transmission efficiency (92%), g s 1s the motor
average efficiency (90%), and 4. is the inverter efficiency
(95%). A lithium-ion battery pack is used to help the FC stack
lo meet the energy demand from the electric motor side. The
important parameters of the battery are listed in Table III.
An internal resistance based model is used for modeling the
behavior of this energy storage system [40]. Fig. 3 shows the
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relationship of battery SOC with each of open circuit voltage
(Upar-oc), internal resistance {Ry,;) changes in charge, and
internal resistance changes in discharge. The battery current
(Iyat), bus voltage (Up,,), and SOC are calculated based on
(3)—(5) respectively.

(Uhal,fOC - \/(Jba.l—OC2 -4 x Rbal X Pbal

Tyar =
bat 2 x Rba,L
(3)
Ubus = Upar-0c — Tbar X Rea 4
b Tardt
SOC (t7) = SOC (tg) — ne o2 )
bat

where Py, is the battery pack power, Cp,, is the capacity, and
7] 18 the coulombic efficiency.

The FC system modeling is premised on a semi-empirical
equation proposed by Mann et al. [41]. This model calculates
the stack voltage for a number of cells connected in series. In
fact, this model is being used for two purposes.

First, for tuning the EMS parameters before its implementa-
tion on the real system to make sure that it does not damage
the real FC system. Second, it is used in the online character-
istics estimation process of the real FC stack while it is under
operation.

VFC =N (ENm'nsl + Vacl + Vohm/z_' + V(:(m) (6)
EnNernst = 1.229 —0.85 x 1073 (T — 298.15)
+4.3085 x 107°T [In (P2) +0.5In (Poy)]  (7)

Voer =& + &T 4+ &TIn (COp) + &4TIn (ipc)
CO, = Po»

5.08x107% exp(—498/T)

(3)

Vohmi{' - _’;FCR/nr(‘r/ml - _iFC (cl + CZT + <37.'FC')
%
Voo, = an(l - ) (10)
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Where Vire is the output voltage (V), N is the number of
cells, Enernse 15 the reversible cell potential (V), V., is the
activation 10ss (V). Vijmee 18 the ohmic loss (V), V.., is the
concentration loss (V), T is the stack temperature (K), Py is
the hydrogen partial pressure in anode side (Nm™2), Pp is the
oxygen partial pressure in cathode side (Nm=2),&,(n = 1...4)
are the semi-empirical coefficients based on fluid mechanics,
thermodynamics, and electrochemistry, C'O; is the oxygen con-
centration (mol cm™), ipc is the PEMFC operating current
(A), Ripternar is the internal resistor (), (,,(n = 1...3) are the
parametric coefficients, B is a parametric coefficient (V), .J is
the actual current density (A cm™2), and J,,,,. is the maximum
current density (A cm™2). The hydrogen flow is computed by
a first order function approximation based on the experimental
data, where a and b are fitting parameters [37].

Hy jlow =a+bxipc (10

The FC system is connected to the DC bus through a DC-
DC converter. This converter is modeled by using a smoothing
inductor and a boost chopper as formulated in (12) and (13).
The detailed explanation of the converter model can be found
in [42].

L% irc = Vee —Vhre —Trirc (12)
Vivre: = minfe Upar . Lif Peone >0
. o ; with j = '
thrCc = lrn’h-ff- ZFCnhFC -1 lf PLI('H?.U < 0
(13)

Where L is the converter inductance (H), V}, r¢ is the input volt-
age in the chopper (V), r, is the converter resistance (£2), 1y, f.
is the modulation ratio, and nti is the converter efficiency.
In fact, the converter uses a voltage controller to determine the
required coil current by minimizing the error between the actual
and reference voltage of the FC system. Then a current controller
is used to determine my, ;. which boosts the output voltage to
the desired value.

II[. ENERGY MANAGEMENT STRATEGY DESIGN

The proposed EMS in this work aims at dealing with two
important uncertainties, namely driving pattern changes and
performance drifts of the FC system. The general structure of
the suggested EMS is shown in Fig. 4. As is seen in this fig-
ure, the proposed online EMS comprises three important parts,
namely traffic condition recognizer, online PEMFC modeling,
and multi-mode FLC. The SOM is employed to determine the
driving mode at each sequence and consequently trigger the most
appropriate mode of the multi-mode FLC to satisfy the requested
power. The updated characteristics of the online PEMFC stack
model are also utilized to tune the output of the FLC with
respect to the performance drifts of the PEMFC system. The
development of each part is carefully described hereinafter.

A. Traffic Condition Recognizer

In this work, SOM, as an unsupervised learning method, is
used for recognizing the driving condition. Kohonen presented
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this form of unsupervised competitive ANN in 1982 and it has
been well studied and implemented in different problems [43].
In SOM, each of the neurons is associated to all the network
inputs and to the neighborhood of the nearby neurons. Contrary
to the utilized supervised methods, such as MLP and SVM,
in driving condition recognition, SOM can update its weights
without the need for a priori known labeled output. Compared
to other unsupervised methods, like k-means and linear vector
quantization, SOM preserves the structure of the original data, is
very conducive to the interpretation of the clusters, and teaches
the adjacent neurons to distinguish the neighboring sections of
the input space. SOM has four phases of training as initialization,
competition, cooperation, and adaptation.

In the training process, initially, each neuron is entirely linked
to all the source nodes in the input vector and the weights of all
the connections are assigned with small random values.

Then, the competition phase is performed by calculating the
inner product between neuron j’s weight vector (W) and the
input vector (X'). The winning neuron (7(.X')) is determined by:

i(X)= alo'minX - W;

[Xl Xa....,

with
Vi= Wi Wi .., ”"_;m]T» J =

1,2,...,1

(14)
where m is the dimension of the input vector, and [ is the total
number of neurons in the network. In the cooperation phase, the
neurons in the neighborhood of the excited neuron are also tuned
based on the principle of lateral interaction among the activated
neurons of the human brain. This topological neighborhood is
defined by:

hjix) = exp (=dj ;/207)
ds; =1, 2

g (n) =0y exp(—n/7),

()

with
0,1,2,...,

(15)
where h; ;x) is the topological function, d;; is the lateral
distance, o is the standard deviation, r; is the position of the
activated neuron, r; is the position of the wining neuron, oy is
the initial value of the ¢, and T is the time constant. Finally, in

n =

1431

TABLE IV
THE USED DRIVING FEATURES AND SCHEDULES

Individuality Description

= Average speed (km/h)
* Idle time (%)
» Speed standard deviation (knvh)
= Average acceleration (km/h?)

Driving * Maximum acceleration (km/h?)

features = Average deceleration (km/h?)
= Maximum acceleration (km/h?)
= Percentage of low-speed (%)
= Percentage of middle-speed (%)
= Percentage of high-speed (%)
. Urban and extra urban DS (CYC_ECE_EUDC)
. Federal test procedure DS (CYC_FTP)
. Highway Fuel Economy Test (CYC_HWFET)
. Indian highway DS (cyc_india_hwy)

Driving . Indian Urban DS (cyc_india_urban)

schedule . Supplemental Federal Test Procedure (CYC_SC03)

(DS) . City of Tehran's DS (CYC_TEH_CAR)

. Urban Dynamometer DS (CYC_UDDS)
. West Virginia Interstate (CYC_WVUINTER)
. West Virginia Suburban (CYC_WVUSUB)
e California Air Resources DS (CYC_UNIFO1)
e The Unified DS (CYC LA92)

the adaptation phase, it is required that the weights of the wining
neuron and its neighbors get updated. The weight adaptation is
defined as:

{Wj (n+ 1) =W, (n )+7]( ) h;

where : n(n) = nyexp( r)/ﬁ ,

) (1) (X (n) = W (n))
=0,1,2,...,

(16)
where n(n) is the learning-rate parameter of the algorithm. The
initial value of learning rate () is usually defined as 0.1 and
gradually decreases to around 0.01. Once the SOM is trained, it
can be used to classify the new input data based on the defined
clusters.

In this manuscript, the input layer consists of ten neurons
which are among ten important driving features introduced in
[23], [28]. Each of these neurons corresponds to one driving
feature. Table IV lists the used features and driving schedules
for SOM training. All the driving cycles have been scaled
down according to the maximum speed of the Nemo vehicle,
which is 40 kmv/h. In this way, the real driving patterns are best
represented. The number of driving features in the input layer
can vary from 2 to 62 in the literature. However, the chosen
features of this work are among the most used ones. In order
to train the SOM to classify the input features, twelve driving
cycles are employed. Since SOM learns to classify the data based
on how they are grouped in the input space, the driving cycles
are chosen in a way to reach a homogeneous distribution of
data. In other words, the chosen driving cycles cover all the
driving conditions. To extract the statistical features, the driving
cycles are decomposed into micro-trips and all the features are
calculated for each micro-trip [20]. Concerning the number of
output layer neurons, based on which the clusters are defined,
Silhouette criterion is used. In this regard, SOM is trained for
different number of output neurons (2, 3, ..., 6) by using the
same input data. [n each case, the Silhouette value is calculated
for all the data of each cluster and its mean values are shown
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(a) Initial weight positions. (b) The trained SOM weight positions.

in Fig. 5. This value demonstrates how analogous an entity
is to its own cluster (consistency) compared to other clusters
(segregation). Silhouette value changes from —! to +1, where
higher values denote that the entity fits well to its own cluster.
According to Fig. 5, by grouping the driving data into three
clusters, more cohesion clusters are attained. Therefore, three
neurons are selected for the output layer of SOM to classify the
driving data into three classes of slow-speed, medium-speed,
and high-speed driving profiles.

After training the SOM classifier, it can be used online for
determining the driving conditions. In this respect, as suggested
in[24], asampling window size of 150 s and an updating window
size of 50 s are employed to extract the statistical driving features
while avoiding frequently mode switches. This means that each
recognition is based on the driving features of the previous
150-s window and is updated every 50 s. Fig. 6 demonstrates
the 2D SOM weight positions based on average velocity and
standard deviation (SD) in the initial phase and at the end of
self-organization. As is seen in Fig. 6a, primary weights are
scattered over the input space after the initialization. The red
spots show the training vectors. However, after 1000 epochs,
the neurons have moved towards the various training groups by
updating the weights of the winner neurons and their neighbors
according to Fig. 6b.

A combined driving cycle, made up of CYC_NewYorkBus,
CYC_UDDS, and worldwide harmonized light-duty vehicles
test cycles (WLTC_class 3), is used to assess the performance
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Fig. 7. Recognition results for the combined driving cycle.
TABLE V
KF CUSTOMIZATION FOR THE IDENTIFICATION PROBLEM
Operators SYMBOLS Implementation description
State vector x(t) [§1. &2, &30 &40 Cu Cas ;ar B]
Measurement e [1, T, TIn(CO,), Tin(i), —i, —iT, —
vector ® i?, In(1 — IL)]
Transition matrix ~ F(t + 1|t) Identity matrix
Measured output y(t) Measured V. from the real FC

of the SOM driving condition recognizer, as shown in Fig. 7.
As it can be seen, the classifier is capable of recognizing new
driving data without switching or confusing the conditions. It
is worth noting that the CYC_New YorkBus and WLTC_class 3
driving cycles are completely new for the classifier and have not
been used in its training phase.

B. Fuel Cell Online Modeling

As previously mentioned, the parameters of a PEMFC model
vary slowly over time since the device is affected by degradation
and operating conditions. KF, as an optimal estimator, has been
suggested for online parameter estimation of a FC system in the
previous work of the authors [31]. KF can conclude the parame-
ters of interest from imprecise and uncertain observations. This
filter estimates the current state variables firstly and then updates
them when the next measurement is received. The standard form
of KF, introduced in [44], has been used in this paper. Table V
defines some of the important parameters of KF in this work. The
details about initialization and customization of KF for updating
the parameters of the introduced PEMFC semi-empirical model,
in Section II, are comprehensively discussed in [31]. The ME
and MP of the PEMFC are extracted from the updated model
and used in the multi-mode FLC. Fig. 8 shows the capability
of the online model in estimating the output voltage of the old
FC system for the presented current and temperature profiles.
Moreover, the hydrogen flow obtained by the model is compared
with the measured one. Fig. 9 shows the predicted maximum
power and efficiency curves of the old FC system.

C. Multi-Mode Fuzzy Logic Controller

Fuzzy logic systems are designed to provide a number of
strategic rules by means of linguistic labels. Several reasons,
such as imprecise modeling of a vehicle’s components, their
nonlinear behavior, and the unknown behavior of exogenous
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factors, like traffic, weather, etc., can be counted for suitability
of utilizing a FLC in EMS design of FCHEVs.

The proposed FLC has three inputs, which are demanded
power, the derivation of the demanded power, and battery SOC.
Choosing the requested power derivation as an input, besides
the other two inputs, helps at using the PEMFC system in a
more stable manner. The only output of the utilized FL.C is the
required power from the FC system. The initial input and output
membership functions (MFs) are shown in Fig. 10. As is clear
in this figure, the output MF is defined based on the ME and
MP points of the FC system. The output of the FLC, which
is between 0 and 1, goes under a defuzzification process to be
transformed into a real quantifiable value. The defuzzification
is done by utilizing a linear function in which the slope is
defined by means of the estimated values of ME and MP points
through the previously described online PEMFC modeling. In

11433

0 02 04p 06 08 1
: g _
o) L M A
on
[
oo_5><\
< A
30 - T
0 02 04,p 08 08 1
) e S —
9 L M H
o
Jii)
Qg5 % |
[T
s, . ,—\\_
0 02 04 goc 06 08 1
d) OFF ME SF1 SF2 MP
on
j
Q05
[T
= 0! — —
0 02 06 08 1
FC Pwr

Fig. 10.  The primary distribution of the input and output MFs. (a) Input 1:
Requested power. (b) Input 2: Requested power derivation. (¢) Input 3: Battery
SOC. (d) Output: Reference power of the FC system.

[ oFF
| . ME
| SF1
. SF2
gHigh . | MP
o Med
< Low .,
Low ?
Med . . Low
SOC T Med
High - High P
req

Fig. 1l. The designed FLC rule base. (Fuzzy system: Mamdani, Inference
mechanism: AND (minimum operator), and diffuzication: centroid). The output
MF labels are shown in the legend of this figure.

this way, as the FC system goes under degradation, the output
MF is updated with respect to the real state of the FC system.
Moreover, the distribution of the variables of the output MF stays
the same though the transformation gains of the defuzzification
process change. The fuzzy reasoning rules, shown in Fig. 11,
are laid down based on the heuristic expertise. The initial MFs
are also tuned heuristically and then improved by GA which is
a metaheuristic approach. Since the optimization of fuzzy MFs
1s a classic method and is available in other similar works (7],
its explanation has been considered redundant in this paper. The
utilized objective function for performing the MFs adjustment
1s presented in (17). The constructing parameters of the input
and output MFs, which come to 23, are considered as decision
variables for optimizing the FL.C. To perform the optimization
process, GA utilizes some natural procedures, such as crossover
and mutation, to leave out the unfavorable populations and keep
the most meritorious ones to create new generations. In this
context, the process of survival of the fittest refers to the min-
imization trend of the defined objective function. The number
of generations is set to 100, the population size is 200, the elite
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count is 10, and the crossover fraction is 0.8.

. K K
min
(params.) J = w Zmﬂz + un Z Nowsojr+ 8rp
= i=
Prrbsg min < Prirs, < Pursg . (K=1...23)
ME < Ppe <MP
05< 50C < | (17)

Where J is the objective function, w, is the cost conversion
factor for hydrogen, w, the durability cost conversion factor,
m 2 is the hydrogen consumption, N, /.y is the number of
on/off cycles in the PEMFC, $,p is the cost of the recharge
penalty (USD), Pa; 5 is the parameter for defining the MFs,
and Pp¢ is the FC system power. The values of w; and w» are
2.3 USD/kg H2 and 0.032 USD respectively. These values have
been defined based on the 2020 technical targets put forward by
the U.S. Department of Energy in the Multi- Year Research, De-
velopment, and Demonstration Plan. The optimization process
of the fuzzy controllers has been done by considering a recharge
penalty step ($zp) at the end of each profile. In this way, the
battery is fully recharged by using the maximum power point
of the PEMFC stack at the end of each test and the USD cost
of the additional required hydrogen is added to the total cost
function. It should be noted that the recharge step is performed
by setting the stack on its maximum power to punish the strategy
if it finishes in low SOC level.

The multi-mode controller should be developed in a way to
embrace all the traffic conditions since it is supposed to work
online without a prior knowledge of the driving cycle. As the
driving data are clustered into three classes by the developed
SOM recognizer, one optimized FLC needs to be developed
for each class and then the three controllers should be put
together to form the multi-mode FLC. Each optimized FLC
can be considered as the near optimal controller for each class
of the driving data. However, due to the high volume of data
that each cluster contains, the optimization process would be
very time-consuming for all the driving data. In this regard, a
representative driving cycle is developed for each of the driving
profile to reduce the required time for optimization process.
Fig. 12 shows the extracted representative driving cycles, namely
low-speed, medium-speed, and high-speed, and their average
velocities. These driving cycles are used as the input driving
data for the process of FLC optimization. Each of them is
composed of the nearest micro-trips to the center of cluster they
belong to. The cluster centers have been already calculated by
the developed SOM. The distance between each cluster center
and each micro-trip is calculated by the Euclidean distance

(ed(z,y)) as:

I n
ed(w.y) = /3 _ (@ =)’ (18)
where @ = (x|, 23, ..., xjp) is the cluster center vector, y =
(41, ¥2, - Y1o) is the micro-trip vector, and n is the number
of driving features, which is 10 in this work. There are three
cluster center vectors and 130 micro-trip vectors where each
vector contains 10 elements. The distance between each cluster
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Fig. 12.  The extracted representalive driving cycles. (a) Low-speed profile.
(b) medium-speed profile, and (c) high-speed profile.

center and all the micro-trips is calculated and then the nearest
micro-trips to the center are combined to reach an almost 2000-s
representative cycle for every cluster. As explained before, the
defuzzification function of the output MF is updated when a
noticeable drift is observed in the maximum operating points
of the FC system, which are available from the online semi-
empirical model.

D. Primary Evaluation of the Proposed Strategy

To have a primary assessment of the developed multi-mode
controller and the SOM classifier, a comparative analysis, in
terms of the costs of H2, ON/OFF cycles, final SOC recharge
penalty, and the total cost, is performed for five cases, as ex-
plained further in this section. The main purpose of the first
three cases is to examine the performance of the SOM classifier
of the proposed online multi-mode EMS regarding unnecessary
switches. Case 4 is a real challenge between the proposed
multi-mode EMS and one optimized fuzzy controller. Finally,
Case 5 evaluates the performance of the proposed EMS under a
new driving condition and compares it with two other strategies.

Case 1. low-speed (LS) driving profile (Fig. 12a). In this case,
the performance of the online multi-mode EMS is compared
with only the first mode of the controller (FLC1), which is an
offline optimized single-fuzzy EMS specifically designed for
LS driving profile. According to Table VI, the performance of
the both controllers is completely the same indicating the SOM
classifier has used the correct mode.

Case 2. medium-speed (MS) driving profile (Fig. 12b). The
second case compares the performance of the online muiti-mode
EMS with the second mode of the controller (FLC2), which is
an offline optimized single-fuzzy EMS specifically designed for
MS driving profile. Table VI shows that the total cost of the
online multi-mode EMS is 2% more than the FLC2, which can
be owing to very few switches in the recognition process.

Case 3. high-speed (HS) driving profile (Fig. 12¢): This case
compares the performance of the online multi-mode EMS with
the third mode of the controller (FLC3), which is an offline op-
timized single-fuzzy EMS specifically designed for HS driving
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TABLE VI
COMPARISON OF THE MULTI-MODE CONTROLLER AND THE OPTIMIZED
CONTROLLER OF EACH REPRESENTATIVE DRIVING CYCLE

ost (USD)
Case study 3 ON/CI)FF Rechalrge Total
EMS cycles penalty
Opt. for LS 12.49 0 821 20.70
Case | Multi-mode 12,49 0 8.21 20.70
Opt. forMS 12,72 0 10.55 23.27
Case 2 Multi-mode  13.25 0 10.51 23.76
Opt. for HS  13.67 0 18.01 31.67
Case 3 Multi-mode  14.15 0 17.66 31.81
Opt. forrep.  35.64 2.97 238 41
Case 4 Multi-mode  34.16 2.78 2.52 39.48
Opt. forrep.  28.05 0 3.84 31.90
Case’5 Multi-mode  25.66 0 3.92 29.58
BLFS 28.76 0 3.00 31.76

profile. Table VI indicates that the proposed EMS can closely
approach the optimized results obtained by FLC3 with less than
one percent difference in the total cost. Obviously, the proposed
EMS does not have unnecessary switches for determining the
mode of operation.

Case 4. representative (Rep.) driving profile: This case com-
pares the performance of the online multi-mode EMS with an
offline optimized single-fuzzy EMS (Opt. for rep.) particularly
designed for the Rep. driving profile. The Rep. driving profile
is a concatenation of LS, MS, and HS profiles. The online
multi-mode EMS has three optimized FLCs corresponding to
each of LS, MS, and HS conditions inside the Rep. driving
profile while the Opt. for rep. EMS is only one optimized FLC
for the whole driving profile. According to Table VI, it can be
seen that the online multi-mode EMS outpertorms the Opt. for
rep. EMS by 3.7 percent in terms of the total cost. This superior
performance shows the applicability of the proposed multimode
EMS.

Case 5. combined driving profile (Fig. 7): So far, all the dis-
cussed cases have been done by using the known driving profiles.
However, in this case study, to better clarify the effectiveness
and flexibility of the online multi-mode controller in real-time
unknown driving conditions, its performance is compared with
the Opt. for rep. EMS under combined driving profile, which is
a new driving condition for both of the strategies. Moreover, the
performance of the proposed strategy is compared with one of
the commonly used real-time strategies in the literature called
bounded load following strategy (BLFS) [39], [45]. BLFS is a
hysteresis based energy management to split the power among
the components of a fuel cell hybrid electric vehicle. BLFS
normally provides three modes of operation for the PEMFC
stack including ON/OFF, Prc min, and Pre ne. With respect
to the battery SOC level. To assure a low hydrogen consumption,
the maximum efficiency of the PEMFC stack is selected as
the Pr¢ min mode. This choice stems from the fact that the
hydrogen consumption and the degradation of the stack is higher
within the open circuit voltage and the best efficiency point area
ofthe PEMFC. Therefore, when the PEMFC is turned on, the ME
mode is activated. Pre .., mode, which sets the stack on its
maximum power, is triggered when the battery SOC reaches the
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Fig. 13.  Scenario | for evaluation of the proposed multi-mode EMS. (a) Power
split by the optimal FLC, (b) power splil by the online multi-mode strategy, (c)
battery SOC comparison of the two strategies, and (d) PEMFC operating points
distribution.

minimum SOC level. Furthermore, the Pr¢ nq, mode assists
the battery pack in high traction power operations. The battery
SOC can fluctuate between 45% and 95% (0.45 < SOC < 95)
[39]. As reported by Table VI, the proposed multi-mode EMS
outperforms the Opt. forrep. and the BLFS strategies by almost 7
percent. This performance distinction indicates that the proposed
EMS performs well when confronting new driving conditions.

1V. EXPERIMENT AND RESULTS ANALYSIS

The performance of the proposed online multi-mode EMS
is comprehensively studied in this section. In this respect, two
principal scenarios are taken into consideration. Both of these
scenarios have been implemented on the developed test bench
to have realistic perception of the FCHEV performance.

In the first scenario, the combined driving cycle, introduced
in Section II, is imposed to the vehicle as the input and the
performance of the proposed EMS is compared with the offline-
optimized EMS in terms of hydrogen consumption and efficient
use of the energy sources. The new FC system is used throughout
the first scenario. Fig. 13 presents the obtained results from
the performed test in scenario 1. Fig. [3a shows the traction
power, obtained from imposing the combined driving cycle to the
system, the supplied power by FC system, and the battery pack
for the case of offline optimized EMS. 1t should be noted that this
offline strategy knows the driving cycle in advanced as opposed
to the online multi-mode EMS. Fig. 13b indicates the traction
power and its split between the FC and the battery pack for the
case of online multi-mode strategy. From these two figures, it
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distribution.

is clear that the FC system is being used to supply the main
portion of the requested power in a stable manner, compared to
the battery, which is mostly responsible for absorbing the fast
transitions. Fig. 13c compares the battery SOC of the optimal and
multi-mode controllers. It is obvious that the optimal strategy
keeps the SOC in a higher level due to its priory knowledge
about requested power. Fig. 13d presents the distribution of the
FC operating points while meeting the requested power. Form
Fig. 13d, it is clear that the proposed strategy is capable of
limiting the operation of the FC system within the safe zone,
which is between MP and ME, and tends to operate the FC
system in the high efficient zone, which is around 15A, most of
the time.

In the second scenario, the capability of the proposed EMS
to deal with the FC system performance drifts is scrutinized. In
this respect, the EMS test with the combined driving cycle is
repeated, but by using the old PEMFC. Moreover, to signify the
importance of the online PEMFC characteristics tracking, once
the test is performed by deactivating the online identification,
and the second time it is done by activating it. Fig. 14 shows the
obtained outcomes of these tests. Fig. 14a and Fig. 14b represent
the power split for offline and online multi-mode EMSs respec-
tively. According to Fig. 14a, the offline multi-mode strategy
experiences a lot of start-ups and shutdowns in the first 400 s
in the FC system as it tries to recharge the battery by using the
PEMEC in high power. However, it is not aware of the fact that
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TABLE VII
THE COST COMPARISON OF THE EMSS IN THE TWO PERFORMED SCENARIOS

Scenario 1 Scenario 2
Cost (USD) Optimized Online Offline Online
FLC Multi-mode  multi-mode  multi-mode
H, 28.82 26.96 28.92 25.56
ON/OFF 0 0 0.80 0
cycles
Recharge 13 6.00 7.98 8.99
penalty
Total 32.16 32.96 37.70 3455

the FC system has been degraded and its MP and ME points have
changed. Therefore, it demands for a power level that is out of
the ability of the FC to supply and causes these on/off cycles.

On the other hand, in case of the proposed online EMS
as shown in Fig. 14b, in the first 100 s, the identification is
performed to realize the real characteristics of the FC system and
update the defuzzification tuning of the controller. After that, the
FC system works in the high power area to recharge the battery
pack to a certain level in addition to supplying the requested
power without having any on/oft cycles. Fig. 14c compares the
SOC level of the battery for both cases and Fig. 14d demonstrates
the FC system operating points distribution. From Fig. 14d, it
is clear that the online multi-mode EMS utilizes the FC system
more efficiently which can prolong its lifetime besides improv-
ing the fuel economy of the vehicle. Table VII compares the
obtained cost by each of the EMSs in both scenarios. According
to this table, the proposed online multi-mode strategy shows
a very close performance to the optimal FLC in scenario 1.
This close performance demonstrates that the proposed online
EMS is able to handle unknown driving conditions with an
acceptable fuel economy. The presented results of scenario 2 also
confirms the satisfactory adaptation of the proposed EMS to the
performance drifts of the FC system, which is a distinguishing
feature of this suggested EMS. This adaptation to the real state
of the FC system has made 8% of performance improvement in
the online multi-mode strategy in scenario 2.

V. CONCLUSION

This paper presents a new online multi-mode EMS for a
FCHEV. This EMS is mainly composed of a SOM based driving
condition classifier and a multi-model FLC. The FLC output MF
is constantly adjusted based on the online estimation of the FC
system MP and ME boundaries by KF and a semi-empirical
PEMFC model. The developed SOM recognizes the driving
condition and activates the most proper mode of the FL.C at each
update to efficiently supply the request power from the vehicle.
The performance of the proposed online strategy is compared
with an offline optimized FL.C under a combined driving cy-
cle of CYC_NewYorkBus, CYC_UDDS, and WLTC class 3
and a satisfactory result is obtained with only a two-percent
difference in terms of the total cost of hydrogen consumption
and on/off cycles of the FC system. Moreover, the performance
of the proposed EMS is tested when the FC system undergoes
a sixteen-percent drift regarding the maximum power. In this
case, the proposed online EMS adapts to the real state of the FC
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system and improves the performance of the vehicle by eight
percent compared to the offline multi-mode controller.
Although this work has well established the potential of the
proposed online EMS, some prospects for extending the scope
of this paper remain as follows:
¢ Incorporating an online battery management system into

the presented strategy to reach a holistic EMS.

¢ Performing a lifetime and ageing study of the energy
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sources under the proposed EMS.
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