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Abstract

This thesis addresses the problem of extraction of maximum power from PV arrays

subjected to non-uniform solar irradiances e.g partial shading. In the past, a number

of maximum power point tracking algorithms (MPPTs) such as Perturb & Observe,

Hill climbing, Incremental Conductance,etc. have been proposed. These are exten-

sively used for obtaining maximum power from a PV module to maximize power yield

from PV systems under uniform solar irradiance. However, these techniques have

not considered partial shading conditions and the stochastic nature of solar insola-

tion. In the event of non-uniform solar insolation, a number multiple maximum power

points(MPPs) appear in the power-voltage characteristic of the PV module. In the

present thesis, the stochastic nature of the solar insolation is considered to obtain the

global MPP of a PV module with a focus on developing global optimization techniques

for MPPT that would handle the multiple MPPs. Thus, the thesis will address the

above problem by developing a number of global MPPT algorithms.

In this thesis, an extensive review on MPPT algorithms for both uniform and non-

uniform insolation levels is presented. Subsequently, an analysis with respect to their

merits,demerits and applications have been provided in order to design new MPPTs

to achieve higher MPPT efficiency under non-uniform solar irradiances.

Firstly, PV modules are modelled with and without bypass diodes for handling

Partial shading conditions(PSCs). Then, a new Ring pattern(RP) configuration has

been proposed which is compared with different existing configurations such as Series-

parallel(SP),Total cross tied(TCT) and Bridge linked(BL) configurations on the basis



ii

of maximum power and fill factor.

As described earlier, under non-uniform irradiances the MPPT problem boil down

to determining the global MPP. Thus, the MPPT problem can be cast as a global

optimization problem. It may be noted that evolutionary computing approaches are

extensively used for obtaining global optimum solutions. One of the most recent evo-

lutionary optimization techniques called grey wolf optimization technique has gained

enormous popularity as an efficient global optimization approach. In view of this,Grey

wolf optimization is employed to design a global MPPT such that maximum power

from PV modules can be extracted which will work under partial shading conditions.

Its performance has been compared with two existing MPPTs namely P&O and IPSO

based MPPT methods. From the obtained simulation and experimental results, it was

found that the GWO based MPPT exhibits superior MPPT performance as compared

to both P&O and IPSO MPPTs on the basis of dynamic response, faster convergence

to GP and higher tracking efficiency.

Further, in order to scale down the search space of GWO which helps to speed up

for achieving convergence towards the GP,a fusion of GWO-MPPT with P&O MPPT

for obtaining maximum power from a PV system with different possible patterns is

developed. An experimental setup of 600W solar simulator is used in the laboratory

having characteristics of generating partial shading situation. Firstly,the developed

algorithms were implemented for a PV system using MATLAB/SIMULINK. Subse-

quently,the aforesaid experimental setup is used to implement the proposed global

MPPT algorithms. From the obtained simulation and experimental results it is ob-

served that the Hybrid-MPPT converges to the GP with least time enabling highest

possible maximum power from the solar PV system.

In this thesis, analytical modeling of PV modules for handling non-uniform irra-

diances is pursued as well as a new RP configuration of PV modules is developed to

achieve maximum power and fill factor. In order to extract maximum power from

PV panels subjected to non-uniform solar irradiances, two new MPPT algorithms are
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developed namely Grey wolf optimization based MPPT(GWO-MPPT) and GWO as-

sisted PO(GWO-PO).

Keywords: PV, MPPT, GWO, DC-DC Boost Converter, Partial Shading Con-

ditions.
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Chapter 1

Introduction

1.1 Photovoltaic Power Generation

With increase in demand and growing prices of fossil fuels together with concern about

environmental issues have generated massive interest in the exploitation of renewable

energy sources such as solar, wind, hydro, geothermal, etc. for electrical power gener-

ation [9].Among the different renewable sources, Photovoltaic (PV) Energy generation

has become increasingly essential as a non-conventional source since it unveils advan-

tages such as

• Solar insolation is freely available

• No pollution and waste products

• Low maintenance cost

• Absence of rotating parts

• Generates energy, without the need of long transmission lines

The word photovoltaic is a combination of the two words photo, which means

light,and voltaic, which implies the production of electricity. PV technology is con-

cerned with generation of electricity from solar irradiance. A solar PV cell is a device



1.2 Photovoltaic Energy Conversion 2

that converts the energy in the sunlight directly into electricity using the photovoltaic

effect [10] [11]. Fig.1.1 shows the statistics of world scenario of growth of PV energy.

Global cumulative PV capacity in MW since 1992

M
e

g
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w
a

tt
s

Figure 1.1: PV growth world scenario [1]

1.2 Photovoltaic Energy Conversion

When a photon of light falls on a PV cell [12], it has enough energy to knock an

electron loose, allowing it to flow freely as shown in Fig.1.2. Each PV cell has two

layers of silicon; namely one is positive and other is negative. When a photon of light

is absorbed by one of these atoms in the N-Type silicon it will dislodge an electron,

creating a free electron and a hole. The free electron and hole have sufficient energy

to jump out of the depletion zone and flow through an external load. The PV cell

behaves as a current source [13]. The greater the intensity of the solar insolation, the

greater is the generation of current in this PV cell. Usually,a typical PV cell produces

0.5V which is very small,therefore several PV cells are connected in series and parallel

according to the requirement of output power. When this PV panel is connected to

a load, electrons starts moving in a particular direction, resulting in flow of current

through the load.
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Figure 1.2: Conversion mechanism of solar light into electricity [2]

(a) Monocrystalline (b) Polycrystalline (c) Thin-film

Figure 1.3: Types of Solar Cells [3]

The PV cell can be of three types such as Mono-crystalline, Poly-crystalline and

thin-film and is shown in Fig.1.3. These three different PV cells are compared in

Table 1.1. PV cells are connected in series and parallel according to the requirement

of voltage and current ratings of load. These PV arrays are made by connecting many
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PV modules in series and parallel as shown in Fig.1.4. The power output of a PV array

depends on the power output of individual PV modules [14]. By choosing appropriate

sized and series-parallel combinations of PV modules, PV array of given power rating

can be obtained.

Table 1.1: Types of PV Cell [8]

Sl.No
Types of

PV Cell
Properties

1 Monocrystalline

Made up of single silicon material.

Highly efficient in good weather conditions.

Energy conversion efficiency is 12-15%.

2 Polycrystalline

Made up of small silicon crystals.

Efficient in good light conditions.

Energy conversion efficiency is 11-14%.

3 Thin-film

Made up of materials like CdTe,CIGS,CIS.

Efficient in poor light conditions.

Energy conversion efficiency is 6-12%.

Cell

Module

Array

Figure 1.4: Relationship between cell, module and array [3]
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1.3 Types of PV System

Fig.1.5 shows the three different connections of PV system [15].

Grid Connected: It is the most popular type of PV system which is connected to

the local electricity network allowing the surplus amount of the generated solar electric-

ity to be sold to the utility. Such systems typically consist of one or more photovoltaic

panels, a DC/AC power converter/inverter, racks, and electrical interconnections. Ad-

ditionally, such systems could also include maximum power point trackers (MPPT),

battery systems and chargers, solar trackers, software for energy management, solar

concentrators etc.

Stand-alone: Stand-alone PV systems are designed to operate independent of

the utility grid, and are generally designed and sized to supply certain DC and/or

AC electrical loads. An inverter can be used to convert AC power from DC power

generated by the PV array of the PV system, enabling the use of normal appliances

without mains power.

Hybrid System: The hybrid system is a combination of one or more sources like

photovoltaic (PV) array, wind turbine, and battery storage via a common dc bus to

ensure a consistent supply of electricity. A hybrid system can be stand-alone or grid

connected PV system [16].

1.4 Maximum Power Extraction Algorithms

The conversion of PV energy into electrical energy is one of the rapidly growing tech-

nology across the globe, PV system has some limitations like high installation cost, low

energy conversion efficiency and irregularity in power generation due to dependency

on environmental changing conditions [17]. As the output characteristic of the PV

panel is non-linear,fluctuation in its output power is affected by solar insolation and

temperature. Therefore, some maximum power point algorithms are to be developed
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Figure 1.5: Types of PV system (a) Grid connected, (b) Stand-alone (c) Hybrid
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which can extract maximum possible power from PV panels and deliver it to load.

Hence, research on MPPT is of great importance for maximizing the power extraction

from PV panels [18] [19] [20].

A lot of research has been carried out in the past to improve the efficiency and

power quality of PV system [21]. PV systems have low energy conversion efficiency

due to their nonlinear and time-varying I-V and P-V characteristics with respect to

variation in solar insolation and temperature. Hence, the PV systems need to be

operated at their MPPs because at the MPP, a PV panel operates most efficiently as

it delivers the maximum power. To track the MPP, a maximum power point tracker

(MPPT) [22] [23] is usually used in the PV system.

There exists a single point called MPP (Vmp, Imp) at which output power of a PV

panel is the maximum. When a load is directly connected to the PV panel as shown

in Fig.1.6(a), then the operating point of load is defined by the intersection of its I-V

characteristics with the load line as in Fig.1.6(b). There are two operating points A

and B for two different values of RL. Powers at these points A and B are definitely less

than the MPP as they are not aligned with MPP. This means that the operating point

of PV panel with direct coupled load is defined by the load and maximum possible

power is delivered. When load varies, then the operating point of PV system also

changes which is undesirable.

Therefore, a method is to be developed which will move the operating point of the

load towards MPP which can be achieved by connecting an intermittent between source

and the load i.e. a DC-DC converter along with the MPPT algorithm as shown in

Fig.1.7. The MPPT algorithm calculates the reference operating point (Vref ) at which

power is maximum and then the DC/DC converter forces the PV system to operate

at that reference point. The PV system with MPPT is an efficient system because

it changes the operating point along MPP of the PV module and gives maximum

power at changing insolation conditions and is shown in Fig.1.7. The behavior of P-V

characteristics curve under uniform and non-uniform insolation conditions is shown in
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Figure 1.6: (a) PV panel with directly connected load and, (b) Operating point of a
PV system with direct coupled load
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Figure 1.7: Standalone PV with MPPT
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Vpv

MPP 2

(b)

Figure 1.8: MPPTs under (a) Uniform Insolation, (b) Non-uniform Insolation

PV systems with MPPT techniques are used in many applications like water pump-

ing, satellite power supply, grid-tied, household appliances etc. throughout the globe.
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The MPPT efficiency(η) [3] can be calculated as

η =
V pv ∗ Ipv

IA
(1.1)

where I, A are the irradiance levels and the area of the cell, Vpv, Ipv are the PV voltage

and current. The quality of the cell is measured by a calculation called Fill Factor(FF).

FF can be defined as the ratio of actual maximum power output to the ideal maximum

power output. FF can be written as

FF =
VmIm
VocIsc

(1.2)

1.5 Partial Shading Conditions

Under uniform irradiance, there exists a single MPP in the Power-Voltage character-

istics curve as shown in Fig.1.9.

MPP

Ppv

Vpv

Figure 1.9: P-V characteristics curve exhibiting single MPP under uniform insolation

level

But such system becomes complicated, when the PV power system receives non-

uniform irradiance resulting in partial shading which is an unavoidable complication

that significantly reduces the efficiency of the overall system. When one(or many) of
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the module in a solar array comes under the effect of shading(which can be due to

trees, neighboring buildings, clouds and many more circumstances can be as shown in

Fig.1.10), its voltage drops, so, it works as a load instead of working as a generator

resulting in multiple peaks with several local and one global peak (GP). Thus, this

peaks leads to a great challenge for designing an appropriate MPP tracker [24] [25] for a

PV system. A Bypass Diode(BD) is connected to ensure that particular shaded module

does not get damaged. Voltage mismatch can occur in parallel connected modules.

So, a blocking diode is connected for providing protection under such conditions.

Under Partial shading (when some part of module is under shading), BD starts

conducting as shown in Fig.1.11. So, in P-V curve we do not get a single maximum

power point (MPP) but receive several local peaks(LP) and one global peak(GP) as

shown in Fig.1.12. BD can be uninstalled from the system to simplify the complications

of multiple peaks, but as a result power is reduced which significantly increase the cost

of solar power generation.

(a) (b)

Figure 1.10: Possible Shading Scenarios [4]

Mismatch loss : Mismatch loss(ML) is a serious problem in PV modules and arrays

under some conditions because the output of the entire PV module under worst

case conditions is determined by the solar cell with the lowest output. For

example, when one solar cell is shaded while the remaining in the module are

not, the power being generated by the good solar cells can be dissipated by the
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lower performance cell rather than powering the load. This in turn can lead

to highly localised power dissipation and the resultant local heating may cause

irreversible damage to the module. Mismatch in PV modules are mainly of two

types:

Internal ML: It occurs due to the variation in PV source parameters of a mod-

ule due to changes of its physical conditions.

External ML: It occurs due to change of solar irradiation i.e., partial shading.

ML = P1 − P2 (1.3)

where P1 and P2 are the changes in insolation levels.

The impact and power loss due to mismatch depend on:

• the operating point of the PV module

• the circuit configuration

• the parameter which are different from the remainder of the solar cells

Hotspot situation :Hot-spot occurs in a module when its operating current exceeds

the reduced short-circuit current (Isc) of a shadowed or faulty cell or group of cells

as shown in Fig.1.13. When such situation occurs, the affected cell or group of

cells is forced into reverse bias and must dissipate power. If the power dissipation

is more, the reverse biased cell can overheat resulting in melting of solder and/or

silicon and deterioration of the encapsulant and backsheet.

To avoid such situation, a BD is connected in parallel, but with opposite polarity,

to a solar cell. Under normal operation, each solar cell will be forward biased and

therefore the BD will be reverse biased and will effectively be an open circuit.

However, if a solar cell or panel becomes faulty or open-circuited, the BD provides

a current path, thereby allowing the current from the good solar cells to flow in
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the external circuit rather than forward biasing each good cell. Similarly,if a

group of modules connected in parallel to another group or a battery, in order

to avoid reverse current flow from one to another, a blocking diode is connected.

The importance of bypass and blocking diode in a PV panel/array is clearly

shown in Fig.1.11 and its effect on P-V characteristics curve can be seen in

Fig.1.12.

+

-

++

++

-

--

-

Bypass Diode

Blocking Diode

Shaded

Module

Figure 1.11: Effect of Bypass and Blocking diode under PSCs

GP

LP

Ppv

Vpv

Figure 1.12: P-V characteristics curve exhibiting multiple peaks
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Hot spot occuring 

in a PV module

Figure 1.13: Hotspot occurrence [5]

1.6 Motivation of the Thesis

• P-V characteristics curve under PSCs exhibits multiple peaks i.e the problem is

transferred from single global problem into multimodal problem i.e. no. of local

minima and one GP.

• The determination of global MPPs depend on the stochastically varying shading

pattern, as well as the configuration of the PV modules within a PV array. Global

MPPT algorithms should be implemented considering the stochastic nature of

changing solar irradiance to track the global MPP.

• Therefore, there is an opportunity to employ an efficient evolutionary computing

technique to address the aforementioned optimization problem.

1.7 Organization of the Thesis

• Chapter 2 presents the literature review on maximum power extraction algo-

rithms that have been reported in both uniform and non-uniform solar irradia-

tion situations. Subsequently,the problem formulation is highlighted.
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• Chapter 3 discusses about the experimental setup used in the subsequent chap-

ters for validating the proposed MPPT controller.

• Chapter 4 presents modeling of a PV module with and without BD and also

provides detailed analysis of different configurations for finding global peak of

PV arrays under PSCs.

• Chapter 5 presents the development of a new maximum power point algorithm

in view of tracking the GP under partial shading conditions. The proposed

MPPT scheme overcomes the limitations of some of the existing MPPTs such as

lower tracking efficiency, steady-state oscillations, and transients as encountered

in conventional MPPT techniques.

• Chapter 6 proposes a Hybrid MPPT algorithm which is able to track GP under

rapidly changing insolation patterns. The proposed technique is able to scale

down the search space of GWO which helps to speed up for achieving faster

convergence towards the GP.

• Chapter 7 provides the general conclusion of the thesis together with the contri-

butions and scope of future work.



Chapter 2

Literature Review on Maximum

Power Extraction Algorithms and

Problem Formulation

2.1 MPPT for Uniform Insolation

Numerous MPPT techniques are presented in literature such as

1) Curve Fitting Technique [26]:The curve fitting defines an appropriate curve to

fit the measured values and uses a curve function to analyze the relationship

between the variables.

2) Fractional Short Circuit Current(FSCI) Technique [27]:This method uses the ap-

proximately linear relationship between the MPP current (Impp) and the short

circuit current (Isc), which varies with the irradiance and temperature.

Impp ≈ KscIsc (2.1)

The value of Ksc varies between 0.64 and 0.85.
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3) Fractional Open Circuit Voltage(FOCV) Technique [27]:This method uses the ap-

proximately linear relationship between the MPP voltage (Vmpp) and the open

circuit voltage (Voc), which varies with the irradiance and temperature.

Vmpp ≈ KocVoc (2.2)

It is found that the value of Koc varies between 0.78 and 0.92.

4) Perturb & Observe Technique/Hill Climbing Technique [28] [29]:

Sense

V(k) and I(k)

P(k)=V(k)*I(k)

P(k)>P(k-1)

P(k)=P(k+1)+a*slope

D(k)=D(k+1)+a*slope

Update value P(k-1)

or D(k-1)

Complement

Slope sign

No

Yes

Figure 2.1: Flowchart of Perturb & Observe/ Hill Climbing MPPT
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Hill-climbing involves a perturbation on the duty cycle of the power converter

and P&O a perturbs the operating voltage of the DC link between the PV array

and the power converter. The flowchart of P&O and duty cycle control is shown

in Fig.2.1.

5) Incremental Conductance(INC) [30] [31]:

dV=V(k)-V(k-1)

dI=I(k)-I(k-1)

dV=0

Decrease

Duty Cycle

No

Yes

Start

dI=0dI/dV=-I/V

dI/dV>-I/V
dI>0

Decrease

Duty Cycle

Increase

Duty Cycle

Increase

Duty Cycle

Update

V(k-1)=V(k)

I(k-1)=I(k)

Return

No

Change

No

Change

Yes

Yes

Yes
Yes

No No

No
No

Figure 2.2: Flowchart of Incremental Conductance MPPT
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The incremental conductance algorithm is based on the fact that the slope of the

curve power vs. voltage (current) of the PV module is zero at the MPP, positive

(negative) on the left of it and negative (positive) on the right. The flowchart of

the Incremental Conductance MPPT is shown in Fig.2.3.

6) Ripple Correlation Control (RCC)Technique [32]:RCC uses the ripple imposed by

the power converter on the PV array to track the MPP. It correlates dp/dt with

di/dt or dv/dt, to drive the power gradient to zero, which happens when the

MPP is reached.

7) Look-up Table Technique [33]:This method requires real time data or data obtained

from more accurate model which mimics the behavior of the actual PV module.

8) Steepest Decent MPPT Technique [34]:The MPPT tracking problem considers the

maximization of power(P ), which can be achieved by dP/dV=0.

9) Differentiation(DF) Technique [35]:This technique determines MPP of a PV system

on solving
dP

dT
=
d(IV )

dT
= I

dV

dT
+ V

dI

dT
= 0 (2.3)

But, this technique is very difficult because at least eight measurements and

calculations are required.

10) One Cycle Control(OCC) Technique [36]:OCC is a nonlinear control technique

based on the integration of a switched variable (voltage or current) to force its

average value to be equal to some control reference.

11) Forced Oscillation(FO) Technique [37]:This technique is based on injecting a

small-signal sinusoidal perturbation into the switching frequency and compar-

ing the ac component and the average value of the panel terminal voltage.

12) Linearization(Linr)Based MPPT Technique [38]: Both PV module and converter

demonstrate nonlinear and time-variant characteristics,which make the MPPT
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design difficult. Based on that relationship of voltage and current, a linear

approximation of the MPP locus is derived, whose parameters are simply related

to those of the electrical parameters of a PV cell.

13) Intelligent MPPT Techniques

(i) Fuzzy Logic(FLC) Based MPPT Technique [39]:

Start

Initialize Pold,

Iref and increment

Measure 

Vpv and Ipv 

Fuzzification

Inference

Defuzzification

Iref=Iref+step

Fuzzy

Set

Rule

base

Figure 2.3: Flowchart of Fuzzy logic controller MPPT
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In FLC, basic control action is determined by a set of linguistic rules which

are determined by the system. Since the numerical variables are converted

into linguistic variables, mathematical modeling of the system is not re-

quired in FLC. The FLC comprises three parts: fuzzification, rule base

table lookup, and defuzzification.

(ii) Artificial Neural Network(ANN)Based MPPT Technique [40]:Neural net-

works commonly have three layers: input, hidden,and output layers. The

number of nodes in each layer vary and are user-dependent. The input vari-

ables can be PV array parameters like Voc and Isc, atmospheric data like

irradiance and temperature, or any combination of these.

15) Sliding Mode Controller(SMC) based MPPT Technique [41]:The same concept of

INC is used here. The dc/dc converter is designed such that its switching control

signal(u) is generated as shown as

u =

1, if h < 0

0, if h ≥ 0
(2.4)

where u=0 implies the converter switch is open otherwise the switch is closed.

In this way, the converter is forced to operate at MPP.

14) DC Link Capacitor Droop Control (DLCDC) Technique [42]:DC-link capacitor

droop control is a MPPT technique that is specifically designed to work with a

PV system that is connected in parallel with an ac system line.

It is very difficult to analyze all of these MPPT techniques by studying their struc-

tures,because each MPPT technique has its own pros and cons. Control strategies

adapted are one of the ways to analyze the MPPTs which can be classified as indirect

control, direct control and evolutionary computational methods.
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Figure 2.4: Classification according to Control Strategies

Indirect control techniques are based on use of a database that includes parameters

and data such as characteristics curves of the PV panel for different irradiance and

temperature or on using some mathematical empirical formula to estimate MPP. Di-

rect control strategies can seek MPP directly by taking the variations of the PV panel

operating points without any prior knowledge of the PV panel parameters. MPPT

schemes can be further classified into two types based on, sampling methods and mod-

ulation methods. In sampling methods, at each sampling instant, past and previous

information Vpv and Ipv are captured which are used to track the MPP location. In

modulation methods, the MPP can be tracked by generating oscillations automatically

by the feedback control. Fuzzy logic inference and artificial neural network methods

do not necessiate exact mathematical model of a system to evaluate which still pro-

vide necessary decision outputs and can handle nonlinearities. A broad classification

of MPPT control techniques is presented in Fig.2.4. Further, a comparison of different

MPPT techniques according to the classification is also provided in Table 2.1.
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Table 2.1: Comparison of different MPPT Techniques

MPPT

Technique

Type of

Control

Control

Variable

Circuitry

(A/D)

Parameter

Tuning
Complexity

CF Indirect Vpv Digital Yes Simple

FSCI Direct Ipv Both No Simple

FOCV Direct Vpv Both No Simple

P&O Direct Vpv,Ipv Both No Complex

INC Direct Vpv,Ipv Digital No Complex

RCC Direct Vpv,Ipv Analog Yes Complex

SD Direct Vpv,Ipv Digital No Medium

DF Direct Vpv,Ipv Both Yes Complex

OCC Direct Vpv,Ipv Both Yes Simple

FO Direct Vpv,Ipv Analog Yes Complex

Linr Direct Irradiance Digital Yes Medium

DLCDC Direct Vpv Both Yes Simple

FLC EC Vpv,Ipv Digital Yes Medium

ANN EC Vpv,Ipv Digital Yes Medium

SMC EC Vpv,Ipv Digital No Complex

2.1.1 Advantages and Disadvantages of Different MPPT

Techniques

Curve-Fitting Technique:

Advantages:

• Cost effective and simple

• No sensors required for measurement of voltage and current during MPP track-

ing.
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Disadvantages:

• Requires accurate information of the PV system.

• Not universal.

FOCV and FSCI Techniques:

Advantages:

• Simple and inexpensive.

Disadvantages:

• Not suitable for environmental changing conditions.

Perturb & Observe:

Advantages:

• Easy to implement and produce accurate results.

• Tracks maximum power under uniform insolation

Disadvantages:

• Accuracy is dependent on the size of perturbation.

• Output voltage and current of PV panel oscillates at steady state.

Incremental Conductance:

Advantages:

• Efficiency is same as P&O.

• Good yield under rapidly changing atmospheric conditions.

Disadvantages:

• Requires complex and costly control circuits.
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• Sensors are needed to complete MPPT action.

Ripple Correlation Control(RCC)Technique:

Advantages:

• Artificial perturbation is not required as it is inherited by DC/DC converter.

• Accurate result for a wide range.

Disadvantages:

• Very complex.

• Time consuming technique.

Steepest Decent MPPT Technique:

Advantages:

• Fast MPPT performance.

• Less complex than that of Gauss-Newton because double derivative terms not

present in algorithm.

Disadvantages:

• Accuracy, speed and stability are dependent on initial conditions and perturba-

tion step-size.

Differentiation(DF) Technique:

Advantages:

• Fast MPP tracking.

Disadvantages:

• Very complex calculation.
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One Cycle Control(OCC) Technique:

Advantages:

• Constant switching frequency operating mode.

• Does not require any digital signal processors or multipliers.

Disadvantages:

• MPPT tracking performance is not good at changing weather conditions.

Forced Oscillation(FO)Technique:

Advantages:

• Adaptive in nature.

• Easy to implement.

Disadvantages:

• Difficult to control.

• Variable operating frequency and related complex filters.

Linearization(Linr)Based MPPT Technique:

Advantages:

• MPP estimated through a set of simple linear equations.

Disadvantages:

• Limited range of operating conditions.

DC Link Capacitor Droop Control (DLCDC) Technique:

Advantages:

• Panel voltage is to be measured for MPP calculation.
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Disadvantages:

• Needs a DC-link.

• Limited applications.

FLC Based MPPT Technique:

Advantages:

• Fast response, no overshoot and less steady state error.

Disadvantages:

• Rules based technique.

ANN Based MPPT Technique:

Advantages:

• On-line tracking is possible.

• Accurate and fast once it is tuned.

• Independent of environmental conditions.

Disadvantages:

• Tuning and MPP calculation takes large time.

Sliding-Mode Based MPPT Technique:

Advantages:

• Simple control laws and fast MPP tracking.

• Guaranteed stability.

Disadvantages:

• Applicable to limited range, tuning takes large time.

• Not suitable for changing insolation levels.
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2.2 MPPT for Non-Uniform Insolation levels

When one (or many) of the module in a solar array gets shaded due to some inter-

mittent between sun and the PV arrays like trees, neighboring buildings, clouds and

many other circumstances. Such situation results in voltage drops, resulting to act as

a load instead of a generator. Unfortunately, the power-voltage characteristic curve of

the PV array becomes complicated resulting in multiple peaks i.e. various local peaks

and one global peak. Owing to the occurrence of multiple local peaks i.e. MPPs,the

conventional MPPTs are not appropriate in providing maximum power tracking. Be-

cause Partial Shading Conditions(PSCs) frequently occur due to passing clouds,trees,

or buildings, it is necessary to develop different MPPT schemes that can track global

peak(GP) under PSCs. The mismatch occurrence of non-uniform irradiance which

leads to decrease of the output power, even generates hot-spot and causes damage

to those cells. Such situations can be avoided by using bypass and blocking diodes.

While some techniques have been proposed in [43] [44] such as MPPT that work well

under partially shaded conditions but many of these suffer from limitations such as

lower tracking efficiency and oscillations in the output power. Since the dynamics of

the PV system under partial shading is time-varying, MPPT design for PV power

system should possess following features: global MPP tracking ability for different

conditions (shade, degradation, fault, etc.), adaptability to P-V characteristics change

of PV array, smooth and steady MPPT algorithms [45] [46] [47].

As the partial shading is difficult to handle, their is a need for finding an appropriate

MPPT technique which could locate the global MPP(GMPP) under any mismatching

conditions [48] [49] [50]. Patel et al. [7] presented about I-V and P-V characteristics of a

PV array under non-uniform insolation due to partial shading which results in multiple

peaks.Some critical observations [50] such as the peaks on the PV curve occurring

nearly at multiples of 80% of open-circuit voltage of the module and the minimum

displacement between successive peaks being nearly 80% of Voc of the module are
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presented.In [51], the proposed algorithm incorporates an online current measurement

and periodic interruptions to address problems related to shading conditions. In [48]

and [49], global MPPT techniques based on the measurements of the PV array open-

circuit voltage and short-circuit current is discussed. In [52] [53], relationship between

the load line and the MPP locus is discussed for a fast converging MPPT algorithm.

A control loop is introduced in [52] to ensure the PV system operates in accordance

with the MPP resulting in reduction of MPP search time.

Many researchers have worked on Real MPPT(RMPPT) under PSCs [54] [55] [56]

[45] [46] [47] [43] [44]. The real MPPT method [57] first detects the variations in

the PV voltage and current to identify the occurrence of partial shading. Then, the

operating point is changed according to a predetermined linear function and then the

conventional MPPT is applied to track the real MPP. In [54], a two-stage MPPT com-

bined with the instant on-line measurement of Voc and Isc was proposed. In [55] [56],

authors have discussed about the relationship between changing weather conditions

i.e. array configuration, irradiance and module temperature and output power of the

PV array and further complications due to multiple peaks. The authors have shown

experimentally about the behaviour of MPPT under the uniform and non-uniform

irradiance conditions. A new method to track the GMPP of PV array under PSC is

reported by controlling converter voltage by using improved P&O [58] [59]. In [60],

an adaptive MPPT (AMPPT) scheme is developed which proved to track the global

MPP effectively, fast and smoothly. In [61], the MPPT algorithm is developed using

a Fibonacci sequence which does not provide accurate GMPP. Also, different possi-

ble ways of modeling under partial shading and different orientation of photovoltaic

modules are discussed in [62] [63]. Experimental study of shading hazards in the IV

characteristic of a photovoltaic module is discussed in [64]. In [65], modeling the

reverse characteristics of PV cells is discussed.

A few improved IC algorithms were also proposed to improve the MPP tracking

capability during fast changing irradiance level and load [66] [66]. In [66], a new
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duty cycle control is proposed to track GMPP which eliminates the use of sensor

circuits at the output of dc-dc converter. In [66], a method is proposed which responds

accurately during increase in insolation level resulting in zero oscillation and introduces

new tracking steps to detect the change in insolation level. To achieve a fast MPP

tracking response, a simple trigonometric rule has been presented in [67] to establish

relationship between the load line and I-V curve. The method eliminates need of

an extra control loop and intermittent disconnection which provides fast convergence

towards the MPP. An analytical modeling of PV system under PSC is discussed in [68]

where a multidimensional PV array configuration correlating to different degrees of

partial shading is presented. This model is able to emulate the behavior of different

patterns of a PV system during both uniform and non-uniform insolation levels through

the multidimensional PV structure. A dynamic MPPT controller for PV systems under

fast varying insolation and PSCs is proposed in [69] which uses a scanning technique

to determine the maximum power deliver capacity of the panel at a given operating

condition.

Currently, a number of evolutionary computing techniques such as particle swarm

optimization (PSO) [70] [71] [72], firefly [73],ant colony [74],cuckoo search [75] are of

great interest for developing MPPT techniques to track the GP under PSCs. In [70],an

improved maximum power point tracking (MPPT) method for the photovoltaic(PV)

system using a modified particle swarm optimization (PSO) algorithm is discussed

which reduces the steady state oscillation (to practically zero) once the maximum

power point (MPP) is located. In [70] [71] [72], a new technique is proposed which

replaces the PI control loop with direct duty cycle control method which makes the

system more simpler. A new technique is discussed in [73] having advantages like

simple computational steps,faster convergence and implementation on a inexpensive

microcontroller. In [74], a new control scheme is proposed which ensures the ability

to find the global MPP, but also gives a simpler control scheme and lower system

cost. A cuckoo search [75] based MPPT is found to be advantageous in terms of



2.3 Review Remarks 31

faster convergence, higher efficiency is proposed which outlines the concept of cuckoo

search by highlighting the significance of the levy flight by influencing the algorithm’s

convergence.

Also, different hybrid MPPT techniques are developed which is a fusion of two

techniques which guarantees to achieve faster convergence are discussed in [76] [77] [78]

[79]. A highly efficient MPPT having high speed tracking by means of a fast estimate

of the maximum power voltages of the PV modules and of the inverter is discussed

in [76]. The combination of two basic techniques i.e. P&O and Fractional Open

Circuit Voltage (FOCV) technique is discussed to overcome the inherited deficiencies

found in P&O technique in [77]. In [78],a hybrid approach is discussed having the

global search ability of ant-colony optimization (ACO) and local search capability

of P&O method to yield faster and efficient convergence. The integration of swarm

intelligence with P&O algorithm is discussed in [79] to yield faster convergence to

the global peak(GP). Here,the methodology has been first simulated in two different

PV configurations under varying shading patterns and experimentally verified using a

microcontroller based experimental system.

2.3 Review Remarks

• Most of the MPPT algorithms reported in the literature is discussed in Section2.1

considering uniform solar irradiances. Also, different MPPT algorithms which

can handle non-uniform solar irradiances are discussed in Section2.2.

• In order to handle conditions such as fast weather variations of PV module and

partial shading where multiple peaks occur in the P-V characteristics curve, there

a challenge lies to develop global MPPTs in order to extract maximum power

from PV arrays under the above non-uniform solar irradiances.

• Although a few global MPPT algorithms have been suggested in the literature
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but they do not consider the stochastic nature of solar irradiance and also a lot

of voltage and current ripples are observed in the PV output power.

2.4 Objectives of the Thesis

• To model PV modules analytically under partial shading conditions for a Pho-

tovoltaic(PV) power system.

• To develop MPPT control algorithms in order to extract maximum power output

from the PV system with changing insolation levels, temperature variations and

other environmental conditions.

• To develop MPPT algorithms for a PV system under different shading conditions

i.e. partial shading, complete shading, inter row shading situations.

• To develop MPPT algorithms for rapidly changing insolation levels for a PV

system.

• To propose new adaptive controllers for MPPT considering the uncertainties of

the PV system dynamics due to changing solar irradiance at different weather

conditions.

• To simulate the proposed MPPT algorithms in MATLAB/SIMULINK and val-

idate using an Experimental set-up.

• To evaluate the efficacy of the proposed MPPT algorithms.

2.5 Problem Formulation

Consider the power-voltage characteristics of a PV array which is subjected to different

shading conditions which are more complex in the multiple local MPPs and only

one global MPP. Thus,this situation is much different than the case of uniform solar
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irradiances, where there is only one MPP. In view of this, there is a need of determining

the global MPP. The GMPPT algorithm should be able to develop which will locate

the global MPP by using different optimization techniques for maximizing the power

extraction from a PV array under non-uniform solar irradiances.
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Figure 2.5: A PV system with MPPT

Fig.2.5 shows a proposed topology of MPPT scheme in which G represents irradi-

ance level in W/m2, T is absolute temperature in degree Kelvin,Vpv and Ipv are voltage

and current of PV arrays respectively. Thus, the MPPT control problem in case of

non-uniform solar irradiance turns out as a global optimization problem resulting in a

global MPPT algorithms.

The objective here is to maximize the power extraction from the PV arrays under

PSCs. The optimization problem can be stated as follows. Let a solution vector of

duty cycles with Np wolves is given by:

xik = dg = [d1, d2, ...., dj] (2.5)

where j=1, ..Np, d is duty cycle, i is current grey wolves and k is iteration number.
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The objective function is defined as

P (dki ) > P (dk−1
i ) (2.6)

where P= V ∗ I for any instant is the operating power of PV array for the tracking

problem.

2.6 Chapter Summary

This chapter provides a comprehensive review of MPPT algorithms for both uniform

and non-uniform solar irradiances. Although a vast literature is available on MPPTs

for uniform solar irradiances but very few algorithms are reported on MPPTs to work

under non-uniform solar irradiances. The conventional MPPT algorithms such as

P&O and Incremental Conductance etc. are not appropriate to provide maximum

power extraction from PV arrays under PSCs due to presence of multiple peaks ap-

pearing around the Power-Voltage characteristics curve. Hence, Global optimization

techniques are to be developed for MPPT that would handle the multiple MPPs for

stochastically varying solar irradiance.



Chapter 3

Development of an Experimental

Setup for a PV System subjected

to Non-Uniform Solar Irradiances

3.1 Introduction

This chapter presents the development of an experimental setup to experiment the per-

formance of newly developed MPPTs for handling partial shading conditions. Here,

two different methodologies are discussed in this chapter. One is by using solar pan-

els which depends on insolation which comes directly from the sun and the other is

by using solar simulator in order to provide a controllable indoor test facility un-

der laboratory conditions. This chapter addresses the development of experimental

setup for verifying the proposed techniques implemented in a PV system using MAT-

LAB/SIMULINK software. The selection of the hardware configuration such as sen-

sors, controller platform, DSO and loads used in the experimentation are discussed

here. This chapter helps to implement the developed control algorithms presented in

subsequent chapters.
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3.2 Experimental Setup using Solar Panels
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Figure 3.1: (a) Block Diagram (b) Photograph of experimental setup with solar array
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To validate the effectiveness of the proposed GWO based MPPT, experiments were

carried out on real PV array for both 4S and 2S2P configurations. To create partial

shading, transparent sheets of different shapes were placed on PV modules. Fig.3.1

shows the block diagram and experimental setup of the proposed system.

3.2.1 Solar Panel

The solar panel used in the experimentation is of Sukam make having rating of each

panel as power tolerance=5%, Vmp =17.15V, Imp=2.33A, Voc =21.2V, Isc=2.55A,

KI(V/
0C)=-2, KI(mA/

0C)=4.7, KV (mV/0C)=-2, KP (%/0C)=-0.4, maximum sys-

tem voltage=600V and ns=36 respectively. The photograph of solar panel is shown in

Fig.3.2.

Figure 3.2: Sukam make solar panel
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3.2.2 DC-DC Boost Converter

The DC-DC boost converter used in the experiment is IGBT(Model no:SKM75)driven

and the components for the designed converter used in experimental set up are chosen

as fs=25kHz, Output voltage ripple= ∆V0/V0, L=10mH, C=33µF, Vin =(0-130)V and

Vout =300V. The photograph of DC-DC Boost converter is shown in Fig.3.3(a).

3.2.3 Hall Effect Sensor

The photograph of hall effect sensor having three voltage and current sensors is shown

in Fig.3.3(b). Hall effect sensor is used to sense the voltage and current of the PV

array before sending it to the controller.

(a) (b)

Figure 3.3: (a) DC-DC Boost Converter (b) Hall Effect Sensor

3.2.4 DS1104

The DS1104 R&D Controller Board upgrades a PC for rapid control prototyping. The

board can be installed virtually in any PC with a PCI slot. It is fully programmable

from the SIMULINK block diagram environment and all I/O can be configured graph-

ically. Here, DS1104 is used as a controller having various 8-ADC and 8-DAC channels
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to generate PWM signals which are based on 603 power PC floating point processor

running at 250MHz and a slave DSP subsystem based on TMS320F240 DSP. In the

experimentation, the Slave I/O ports as well as the ADC channels are used. The ADC

signal senses the voltage and current from the sensors and supply the values after

multiplication of scaling factor to the SIMULINK environment and then the PWM

signals are generated. The photograph of the DS1104 board is shown in Fig.3.4.

Figure 3.4: DS1104 Board

3.3 Experimental Setup using Agilent Simulator

The block diagram and experimental set up is shown in Fig.3.5. A solar array simu-

lator (SAS), Agilent (E4360A) is used to emulate the PV source power with various

situations such as rapidly changing solar insolation. It is a current source with 600W

dc output source in which it is possible to generate I-V and P-V curves of PV arrays

under shading conditions. The chosen I-V curve is conveniently generated using the

Table mode which is fast and accurate for generating different I-V curves for partial

shading conditions. dSPACE 1104 is used for implementing MPPT algorithm having 8-

ADC and 8-DAC channels to produce PWM signals which is based on a 603 power PC

floating point processor and a slave DSP subsystem. A Hall sensor (PEC16DSMO1)

is used to sense the voltage and current of the solar simulator and a DC-DC boost

converter is used as an intermittent between the source and load to extract maximum

possible power.
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Figure 3.5: (a) Block Diagram (b) Photograph of experimental setup with simulator

3.3.1 Agilent Solar Array Simulator

The Agilent E4360 Modular Solar Array Simulator (SAS)is a dual output programmable

dc power source that simulates the output characteristics of a solar array as shown in
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Fig.3.6. The E4360 SAS is primarily a current source with very low output capacitance

and is capable of quickly simulating the I-V curve of different arrays under different

conditions (ex. temperature, age etc.). It provides up to 2 outputs and up to 1200W

in a small 2U-high mainframe. The dynamic properties of a solar array simulator are:

1. Consists of 2 outputs of 600W per output in 2U of rack space.

2. Perform remote programming via GPIB, LAN and USB interfaces with SCPI

command set (drivers available).

3. Program I-V curves from the front panel without a need for a controller.

3.3.1.1 Multiple Simulation Modes

The E4360 SAS provides three operating modes, Simulator,Table and Fixed modes.

To accurately simulate the I-V cure of a solar array, use simulation or table modes.

When a standard power supply is needed,use fixed mode.

3.3.2 Solar Array Simulator(SAS) Mode:

In SAS mode,the output has an I-V characteristics that follows an exponential model

of a solar array as shown in Fig.3.7(a). The E4360 SAS internally generates a 4,096

I-V point table. An internal algorithm is used to approximate an I-V curve. This can

be done via the I/O interfaces or from the front panel where a PC is not needed.

3.3.2.1 Table Mode:

The SAS mode provides a Table mode for a fast and accurate I-V simulation of solar

arrays. In this mode,a table of I-V oints specifies the curve. Tables are allocated

in a non-volatile memory and can be easily stored and recalled. A table can have a

minimum of 3 points, up to a maximum of 4000 I-V points.
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3.3.2.2 Fixed Mode:

This is the default mode when the unit is powered on. The unit has the rectangular

I-V characteristics of a standard power supply as shown in Fig.3.7(b). It has excellent

high speed constant current characteristics and low output capacitance. The main

usage of fixed mode is while calibrating or verifying any instrument.
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Figure 3.7: (a) SAS Mode (b) Fixed Mode

3.4 Chapter Summary

To verify the different MPPT control algorithms for maximum power extraction for

a PV system subjected to partial shading conditions is necessary. So in this chapter

details of development of experimental facility for the above is presented in details for

verifying the algorithms in subsequent chapters.



Chapter 4

Analytical Modeling and

Experimental Prediction of Global

Peak under Partial Shading of PV

modules for a Photovoltaic System

4.1 Abstract

Partial shading is a commonly encountered issue in a PV system. Analytical modeling

of a photovoltaic (PV) system for studying the effects of partial shading with and with-

out bypass diode as well as different orientation of PV modules is discussed here. In

this work a new RP configuration is proposed and compared with Series Parallel(SP),

Total cross tied(TCT), Bridge linked(BL) and examined under same shading pattern

on the basis of maximum power and fill factor. Those models are studied and their

performances were compared on the basis of global peak under partial shading condi-

tions(PSCs). Each network connection was analyzed taking care of the non-linearity

of the PV cell which is evaluated by using Kirchhoffs voltage and current laws. The
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simulation and experimental study conclude that the proposed RP configuration ex-

hibits superior performance over SP, TCT and BL configurations in terms of maximum

power and fill factor.

4.2 Introduction

Operation of photovoltaic (PV) power generators is greatly influenced by environmen-

tal conditions such as solar insolation and temperature [80]. Under uniform irradiance

conditions, the electrical characteristics such as I-V and P-V characteristics of the PV

generators have only one single MPP (maximum power point) at which the maximum

power can be extracted by employing a suitable MPPT algorithm.However,under non-

uniform irradiance conditions, such as partial shading, the P-V characteristics curve

generates multiple MPPs in the electrical characteristics of PV generators. Partial

shading conditions can have a significant effect on the PV panel operation and in turn

on the energy yield of the PV generators [81] [82].Partial shading may arise due to

snow, tree shadow, dirt or ageing.

Partial shading causes mismatch losses resulting in degradation of performances of

the PV cells [83]. Not only the power of the shaded cells reduces, but the unshaded

cells also get affected due to electrical connection exist with the shaded ones. Such

situation results in reverse flow of current which yields power flow across the cells

resulting in hotspots. Such adverse effect can be overcome by using bypass diodes in

parallel across each module [84]. The P-V curve with and without bypass diode is

shown in Fig.4.4 [42] [85] [86].

In view of extracting maximum PV power under non-uniform irradiance, the MPP

extraction problem leads to finding out the global MPP rather than a single MPP in

case of uniform irradiance condition.To implement a global MPP tracking strategy, the

mismatch losses can be minimized by introducing alternative configurations to avoid

the series connection of shaded and unshaded module within a PV array. Basically,
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most investigations have focused on three configurations, namely series-parallel (SP),

bridge linked (BL) and total cross tied (TCT) [62] [63]. The number of power peaks and

their values may change depending upon the array configuration. Different techniques

have been proposed in the literature [68] [87] to predict the I-V characteristics of

PV arrays and obtain the MPP there from. Such models solve the non-linear I-V

characteristics of the PV arrays for every operating point in order to determine the

corresponding power peaks.

In this work, the behavior of bypass diode is discussed under two different strategies

are developed under partial shading conditions. Firstly, (i) the combination of n-

oriented modules with bypass diode (ii) array composed of partial shading module

without bypass diode. Secondly, four different configurations such as series-parallel

(SP), total cross tied (TCT), bridge linked (BL) and proposed ring pattern (RP)

configuration are examined and their performances were predicted on the basis of the

global peak.

This chapter discusses about the modeling of the PV system for different possible

orientation of PV modules under PSCs. It presents suitable configuration needed for

predicting the GP that happens under PSCs and also discusses about the performance

evaluation of different configurations.

4.3 Chapter Objectives

• To investigate analytically the effects of partial shading on a PV system.

• To develop a suitable configuration of PV module installation inview of achieving

maximum power under changing insolation patterns.

• To compare the performances of different PV module placement configurations

under PSCs on the basis of maximum power and fill factor which is the ratio of

the maximum power from the solar cell to the product of Voc and Isc.
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4.4 Modeling of PV System

4.4.1 PV Cell Modeling

In order to analyse the effect of different PV module configurations for obtaining

maximum power firstly a PV cell modeling is presented here.
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Figure 4.1: Equivalent circuit of a PV cell [6]

Fig.4.1 shows the equivalent circuit of a single diode PV cell. Applying Kirchhoff’s

current law to node A in Fig. 4.1,

I = Iph − ID −
V + IRs

Rp

(4.1)

The output of the PV system is proportional to insolation (G) and temperature (T).

The light generated current (Iph) is proportional to insolation which can be written

as:

Iph =

(
G

G0

)
Ig0 + J0(Tc − Tref ) (4.2)

whereG0 denotes the reference insolation, Ig0 is the current atG0, J0 is the temperature

coefficient of Iph, Tc and Tref are the absolute and reference cell temperatures. The
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diode saturation current Id is given by [6]and can be written as follows:

Id = I0

[
exp

( qvd
akT

)
− 1
]

= I0

[
exp

(
q (V + IRs)

akT

)
− 1

]
(4.3)

where V+IRs is the voltage across diode, I0 reverse saturation current, q is the electron

charge, and V and I are the cell voltage and current respectively, Rs is series resistance,

a is ideality factor and k is Boltzmann’s constant.

The reverse saturation current is dependent upon temperature and can be written

as

I0 = Id0

(
Tc
Tref

)3

exp

[
qEg

nk

(
1

Tref
− 1

Tc

)]
(4.4)

4.4.2 PV Module Modeling

The output power of a single PV cell is typically 0.5V and hence is insufficient for any

application. In order to enhance the output power, the cells are connected in series or

parallel forming a PV module. The output can be calculated as

I = Iph − I0

[
exp

(
qV + qRsI

NskTa
− 1

)]
− V +RsI

Rp

(4.5)

It can be seen from eq(4.5) that the output current of the PV cell (I) appear on

both sides of equation which means that I cannot be expressed as a separate function

from V. Thus, the output characteristics of the PV cell can be deduced by solving the

following implicit form:

f (I, V,G) = I −
{
Iph(G)− I0(G)

[
exp

(
qV + qRsI

NskTa
− 1

)]
− V + IRs

Rp

}
= 0 (4.6)

In (4.6),Iph,I0,T are the functions of insolation G. Fig 4.2 shows the output of the PV

module under normal insolation levels.
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Figure 4.2: PV output characteristics of a PV module under normal conditions(a) I-V

characteristics, (b) P-V characteristics

4.4.3 Characteristics of PV System under Partial Shading

Under non-homogenous insolation levels, i.e due to passing of clouds, dust, trees, etc.,

the PV panels exhibit reverse polarity which leads to power loss and reduction in the

maximum output power as shown in Fig.4.3. This absorbed power is converted into

heat, resulting into a condition known as hotspot which can damage the cells. Such

situation can be avoided by using bypass diode(BD) which can restrict the hotspot

situation. Fig.4.3 depicts a situation in which partial shading occurs, for example
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Figure 4.3: Possible shading by cloud on a PV system

when there is cloud as obstacle in between insolation and the PV arrays. Fig.4.4 gives

a clear idea about the P-V characteristics curve with and without bypass diode. The

BD can be uninstalled from the system to simplify the complications of multiple peaks,

but as a result power is reduced. Therefore, BD is used in parallel to each module

allowing the current from the healthy solar cells to flow into the external circuit.
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4.5 Different Possible Orientations of PV Modules

under PSCs

Two different cases are studied and designed:

Case I :Combination of n-oriented modules with Bypass diode

Case II :An Array composed of partial shading module without Bypass diode

4.5.1 Array composed of n-multiple modules

Fig.4.5 shows n number of PV modules connected in parallel with bypass diodes form-

ing a PV array. When these modules receive irradiance (G1, G2 . . . Gn),(Vd1, Vd2 . . . Vdn)

are the bypass diode voltages,(Is1, Is2 . . . Isn) are the current through series resistance

and (R1, R2 . . . Rn) are the resistance across the diode respectively, the array voltage,

V must satisfy the following expressions:

fm(Is1, Vd1, G1) = 0 (4.7)

fm(Is2, Vd2, G2) = 0 (4.8)

fm(Isn, Vdn, Gn) = 0 (4.9)

Vd1 + Vd2 + Vdn = V (4.10)

(
Is1 −

Vd1

R1(−Vd1)

)
−
(
Is2 −

Vd2

R2(−Vd2)

)
−
(
Isn −

Vdn
Rn(−Vdn)

)
= 0 (4.11)
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A bypass diode is used to prevent the reverse flow of current and can be modeled in

terms of resistance:

Rby(Vd) =

106Ω if Vd ≤ 0

0.1Ω if Vd > 0
(4.12)

-

V

Rs1

+

Rs2

Rp2
D

Is2

Ipv(G2)

I0

BD2

R2Vm2

Vd2

Rp1D

Is1

Ipv(G1)

I0

BD1

R1

Vd1

Vm1

RpnD

Isn

Ipv(Gn)

I0

BDn

Rn

Vdn

Vmn

I

Rsn

n 

modules

Figure 4.5: Equivalent circuit of a PV array with n-modules in series
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4.5.2 Array composed of partially shaded module without by-

pass diode

Fig.4.6 shows the circuit model for a partially shaded PV module. Here, two groups

of PV cells are connected in series receiving different irradiance levels. The module

is composed of series cells where, (a-s) is the unshaded cells receiving irradiance. s is

shaded cells receiving irradiance.

-

V

Rs1

+

Rs2

Rp2
D

Is2

Ipv(G2)

I0
Vm2

V2

Rp1D

Is1

Ipv(G1)

I0

V1

Vm1

I

Cell 1

Cell 2

Figure 4.6: Equivalent circuit of a partially shaded module without bypass diode

I-V characteristics of the unshaded cell group (a-s) are given by

f1 (Is, V1, G1) = Is −
{
Ipv(G1)− I0(G1)×

[
exp

(
q (V1 + IsRs1)

η1kT (G1)

)
− 1

]
−V1 + IsRs1

Rp1

}
= 0 (4.13)

I-V characteristics of the shaded cell group (s) are given by

f2 (Is, V2, G2) = Is −
{
Ipv(G2)− I0(G2)×

[
exp

(
q (V2 + IsRs2)

η2kT (G2)

)
− 1

]
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−V2 + IsRs2

Rp2

}
= 0 (4.14)

When the module voltage V and solar irradiance G1 and G2 are known, three

unknowns Is, V1 and V2 can be found from the following three equations:

f1(Is, V1, G1) = 0 (4.15)

f2(Is, V2, G2) = 0 (4.16)

V1 + V2 − V = 0 (4.17)

Is −
V1 + V2

Rs(−V1 − V2)
= 0 (4.18)

4.6 Different possible configurations of PV cells

The evaluation of the four different configurations on the basis of maximum power

and fill factor has been carried out by applying a randomly assigned irradiance of

0.02kW/m2 and 0.04kW/m2 to the 20 PV modules.

4.6.1 Series-Parallel configuration (SP configuration)

The SP configuration consists of multiple strings of modules which are connected in

parallel. The total output current is the sum of the currents through all branches.

The I-V relation of the SP configuration can be written as:

f(In, Vj, λj) = 0, j = 1, 2....20 (4.19)
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n =



1 forM1...M5

2 forM6...M10

3 forM11...M15

4 forM16...M20

(4.20)
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M17

M18

M19

M20

I3

Figure 4.7: SP configuration

Using KCL, the total module current (I) is equal to the sum of four string currents

I = I1 + I2 + I3 + I4 (4.21)
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The voltage of each parallel string is equal to the equivalent voltage V.

5∑
j=1

Vj =
10∑
j=6

Vj =
15∑

j=11

Vj =
20∑

j=16

Vj =Vp (4.22)

From equations (4.21) and (4.22) it is observed that there are 24 unknowns, such as

20 module voltages (V1 . . . V20) and 4 string currents (I1 . . . I4).

4.6.2 Total Cross Tied Configuration (TCT configuration)

The TCT configuration consists of series connected segments composed of several

modules in parallel.
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Figure 4.8: TCT configuration
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The I-V relation of the 20 modules can be written as

f(Ik, Vn, λk) = 0, k = 1, 2....20 (4.23)

where k denotes the cell number and voltage subscript n related to k can be written

as

n =



k for 1 ≤ k ≤ 5

k − 5 for 6 ≤ k ≤ 10

k − 10 for 11 ≤ k ≤ 15

k − 15 for 16 ≤ k ≤ 20

(4.24)

The total voltage (V ) is the summation of the voltages across all segments i.e.

Vtot−CT = V1 + V2 + V3 + V4 + V5 =
5∑

n=1

Vn (4.25)

The total current flowing in the module can be written as

I =
20∑
k=1

Ik (4.26)

Here, there are 25 unknowns, containing 20 module currents (I1 . . . I20) and 5 module

voltages (V1 . . . V5).

4.6.3 Bridge Linked Configuration (BL-Configuration)

Fig.4.9 shows the circuit of BL configuration which is quite complicated as compared

to previous two configurations namely SP and TCT configurations. The I-V relation

of the 20 PV cells can be written as

f(In, Vj, λk) = 0, k = 1, 2....20 (4.27)
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Figure 4.9: BL configuration

The current subscript n and voltage subscript j can be related to module number

k as

n =



1, k = M1,M2

2, k = M3,M4

3, k = M5

4, k = M6

5, k = M7

6, k = M8

n =



7, k = M9

8, k = M10

9, k = M11

10, k = M12

11, k = M13

n =



12, k = M14

13, k = M15

14, k = M16,M17

15, k = M18,M19

16, k = M20

(4.28)
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j =



k for 1 ≤ k ≤ 9

k − 5 for k = 10, 11

k − 2 for 12 ≤ k ≤ 19

k − 7 for k = 20

(4.29)

Here, it is found that there are 16 module currents (I1 . . . I16) and 17 module voltages

(V1 . . . V17) having a total of 33 unknowns.

4.6.4 Proposed Ring Pattern Configuration (RP-Configuration)
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Figure 4.10: RP configuration
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The idea behind developing a new configuration is to harvest maximum power which

the former configurations are insufficient to deliver. Therefore, a new configuration is

developed namely RP configuration and the circuit diagram of the RP configuration

is shown in Fig.4.10.

For implementing the proposed structure, the I-V relationship of 20 PV modules

is given by

f(In, Vj, λk) = 0, k = 1, 2....20 (4.30)

where current subscript n and voltage subscript j can be related to cell number k as

follows

n =



1, k = M1...M5

2, k = M6,M7

3, k = M8

4, k = M9,M10

n =



5, k = M11,M12

6, k = M13

7, k = M14,M15

8, k = M16...M20

(4.31)

j =


k, 1 ≤ k ≤ 12

k − 5, k = 13

k − 1, 14 ≤ k ≤ 20

(4.32)

In this configuration there are 29 unknowns comprising of 8 module currents

(I1 . . . I8) and 19 module voltages (V1 . . . V19).

4.7 Performance Evaluation

The performances of SP, TCT, BL and the proposed RP configurations are evaluated

by comparing their global power peaks under a similar shading patterns. Here, 20 PV

modules are taken to analyze the configurations analytically in which KCL, KVL and
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non-linear implicit equations using I-V relations have been discussed. Fig.4.11 shows

the photograph of a solar array simulator(SAS) of Agilent make(E4360A). This has a

provision of emulating power at different solar irradiances.The SAS is a current source

with 600W dc output source which is equipped to generate I-V and P-V curves of PV

arrays under different shading conditions. The I-V curve generated is dumbed into the

Table mode which is fast and accurate for generating different I-V curves for partial

shading conditions in SAS. The most efficient configuration is found out by predicting

the maximum power using SAS. As illustrated in Fig.4.12, all four configurations

exhibit different power peaks at different voltages. Table 4.1 gives a clear comparison

among all the four configurations.

From experimental study, the maximum power of an array under a similar shading

pattern is investigated for four different configurations. It was observed from Fig.4.12

that TCT and proposed RP configuration exhibit maximum power as compared to

SP and BL type configurations. However, in terms of fill factor it was found that the

proposed RP configuration has higher value of 0.474 compared to the rest.

Window for 

Agilent Simulator

Agilent Simulator

E4360A

Figure 4.11: Solar Array Simulator
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GP=50.227W

(a)

GP=51.077W

(b)

GP=50.232W

(c)

GP=50.258W

(d)

Figure 4.12: Experimental P-V characteristics curve of a PV array(a) SP, (b) TCT,

(c) BL, (d) proposed RP configuration
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Table 4.1: Experimental comparison of peak power and fill factor

Configuration
Maximum Power

(Watts)
Fill factor

(FF)
SP 50.227 0.473

TCT 51.077 0.403
BL 50.232 0.39

Proposed RP 50.258 0.474

4.8 Chapter Summary

Analytical modeling of PV modules under PSCs has been presented for different ori-

entations with and without bypass diode is presented here. The experimental study

conclude that the TCT and the proposed RP configuration exhibits maximum power

of 51.077W and 50.258W as well as the RP configuration has higher value of fill factor

of 0.474 as compared to SP, TCT and BL configurations. Here,all the configurations

are examined under same shading pattern on the basis of maximum power and fill

factor. Hence, there is a need to implement randomly changing irradiance patterns

with different possible configurations simultaneously with the development of global

MPPT algorithms which could handle PSCs and can track the global peak.



Chapter 5

A New MPPT Design Using Grey

Wolf Optimization Technique for

Photovoltaic System Under Partial

Shading Conditions

5.1 Abstract

This work presents a maximum power point tracking (MPPT) design for a photovoltaic

(PV) system using a grey wolf optimization (GWO) technique. The GWO is a new

optimization method which overcomes the limitations such as lower tracking efficiency,

steady-state oscillations, and transients as encountered in perturb and observe (P&O)

and improved PSO (IPSO) techniques. The problem of tracking the global peak (GP)

of a PV array under partial shading conditions (PSCs) is attempted employing the

GWO-based MPPT technique. The proposed scheme is studied for a PV array under

PSCs which exhibits multiple peaks and its tracking performance is compared with

that of two MPPT algorithms, namely P&O-MPPT and IPSO-MPPT. The proposed



5.2 Introduction 65

GWO-MPPT algorithm is implemented on a PV system using MATLAB/SIMULINK.

Furthermore, an experimental setup is developed to verify the efficacy of the proposed

system. From the obtained simulation and experimental results, it is observed that

the proposed MPPT algorithm outperforms both P&O and IPSO MPPTs.

5.2 Introduction

In Chapter 4, analytical modeling of PV modules has been discussed under the in-

fluence of partial shading. Here, the reverse voltage effect occurring in a module is

taken into account and has also been modeled and discussed. The evaluation of the

four connection configurations on the basis of maximum power and fill factor has been

carried out by applying to the 20 modules with a randomly assigned irradiance of

0.02kW/m2 and 0.04kW/m2. Therefore,a need to implement randomly changing in-

solation patterns with different possible configurations simultaneously with the devel-

opment of global MPPT is necessary. Hence,two new different configurations namely

4S and 3S2P configuration with rapidly changing insolation patterns is considered in

this work which can deal with mismatch problems in a PV system. In view of this,

it is observed that there is an opportunity to explore new global optimization tech-

niques for determining the global MPP that arise during PSCs. In view of this in

Chapter5, a new MPPT design using an efficient global optimization called Grey wolf

optimization(GWO)is proposed.

Various MPPT algorithms were discussed in literature [88] [89] [90] [45] [46] [47]

[43] [44] [7] [50] [91] [92] about the occurrence of mismatched non-uniform insolation

resulting in decrease of PV output power and hot-spot generated damages those PV

cells. Such situations can be avoided by using bypass and blocking diodes. Since the

dynamics of the PV system under partial shading is time-varying, MPPT design for PV

power system should be equipped with the following features such as tracking global

maximum power point (GMPP) at different conditions e.g. shading, degradation of PV
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cell, etc., adaptability to P-V characteristics change of PV array, smooth and steady

tracking behavior. Current vs Voltage(I-V) and Power vs Voltage(P-V) characteristics

of a PV array under non- uniform insolation due to partial shading conditions(PSCs)

with multiple peaks have been discussed in [7] [50] [60] [93] [94] [95] .

A number of MPPT techniques such as fractional open-circuit voltage [96], frac-

tional short-circuit current [97], Hill climbing (HC) [42] [98], Perturb and Observe

(P&O) [27] [99] [28] [100], Incremental Conductance (IC) [30] [101] have been proposed

for improving the efficiency of a PV system. Among these, the fractional open-circuit

voltage or fractional short-circuit current algorithm requires a supplementary circuit,

i.e. a series switch or a shunt switch for on-line measurement of the open-circuit volt-

age and short-circuit current repeatedly [102], which results in power loss and also

makes the PV system more complex. The HC method uses a perturbation in the duty

ratio of the power converter and the P&O method uses a perturbation in the operating

voltage of the PV system [27] [99] [28]. Both these methods yield steady state oscil-

lations after reaching the MPP owing to the fact that the perturbation continuously

changes in both directions to maintain the maximum power point (MPP) resulting in

power loss. The two influencing parameters in P&O algorithm namely perturbation

rate and perturbation size are discussed in [28]. To reduce these oscillations and im-

prove the module efficiency, the IC method was proposed [30]. The IC method has

originated with the idea that the slope of P-V curve is zero at the MPP, positive on the

left side of MPP and negative on right side of MPP. Hence, the oscillations cannot be

reduced completely by the IC method. Both P&O and IC methods are effective under

uniform insolation but they fail during those time intervals characterized by changing

atmospheric conditions [103] [18].

The focus of the research pursued in this chapter is to determine the global peak

during PSCs, in order to alleviate some of the issues like lower tracking efficiency and

oscillations generated in the PV output power, an alternative approach is to employ

evolutionary algorithm (EA) techniques which has the capability to handle nonlinear
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objective functions. Metaheuristic optimization methodologies such as Particle Swarm

Optimization (PSO) [71] [70], Fuzzy logic controller [39], firefly [73] etc., have been

extensively used for various engineering applications. Recently Mirjalili et al. have

developed a metaheuristic algorithm known as grey wolf optimizer (GWO) [104]. This

algorithm is inspired by grey wolves to attack preys for hunting purpose.

Further, several works are reported in literature on grey wolf optimization which

has attracted considerable interests from the research community compared to other

optimization techniques because it is more robust and exhibits faster convergence.

Furthermore, it requires fewer parameters for adjustment and less operators compared

to other evolutionary approaches, which is an advantage when rapid design process is

considered [104]. After a thorough literature survey, it is observed that GWO has not

been exploited for designing a MPPT. Hence, this work attempts to exploit the GWO

for designing a MPPT to obtain efficient tracking performance of a PV system under

PSCs.

5.3 Chapter Objectives

• To develop an efficient tracking algorithm which could be employed in a prac-

tical PV system which can harvest maximum power under changing insolation

patterns.

• To develop a MPPT algorithm which will overcome the limitations like lower

tracking efficiency,steady state oscillations and transients as encountered in con-

ventional techniques.

• To implement the above MPPT control algorithm in a practical photovoltaic

system.
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5.4 Characteristics of a PV System under Partial

Shading Conditions

5.4.1 Basic Characteristics of a PV cell

A PV cell can be represented by an equivalent single diode model as shown in Fig.

5.1.

Rs

Rp
D

I

+

-

V
Ipv ID

Figure 5.1: Equivalent circuit of a PV cell [6]

The symbols used in this model are defined as follows:

Ipv : photovoltaic current source

D : a diode connected in parallel to the current source

Rs : the sum of resistances due to all the components that come in path of current

which is desirable to be as low as possible

Rp : which is due to the leakage across the P-N junction and is desirable to be as high

as possible

I : difference between the photocurrent Ipv and the diode current Id which is given by

I = Ipv − I0

[
exp

(
qV + qRsI

NskTa
− 1

)]
− V +RsI

Rp

(5.1)
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where I0 is the saturation current, a is diode ideality factor, k is Boltzmanns constant,

q is charge, T is temperature in kelvin, Ns is no. of cells in series, respectively.

5.4.2 System Description

A PV array consists of several PV modules connected in series to produce a higher

voltage and in parallel to increase the current. During PSCs, multiple peaks, i.e.,

local and global maxima points are observed in the P-V characteristics curve due

to the presence of BDs. The presence of bypass diode connected in parallel to each

PV module during PSCs reduces the probability of hot-spot during which the shaded

module behaves as a load instead of generating power. Two different PV arrays are

considered in this work and are shown in Fig.5.2 and Fig.5.3. A configuration consisting

of four modules in series (4S configuration) having two different shading patterns

with their P-V curves comprising of three LPs and one GP is shown in Fig.5.2. The

second PV configuration has two series modules connected in parallel with another

two series modules (2S2P configuration) having two different shading patterns with

their respective P-V curves comprising of one LP and one GP is shown in Fig.5.3.

5.5 GWO and its Application in MPPT Design

5.5.1 Grey Wolf Optimization

The GWO algorithm imitates the leadership hierarchy and hunting mechanism of grey

wolves in nature proposed by Mirjalili et al. [104]. Grey wolves are considered to be

at the top of food chain and they prefer to live in a pack. Four types of grey wolves

such as alpha (α), beta (β), delta (δ) and omega (ω) are employed for simulating

the leadership hierarchy. In order to mathematically model the social hierarchy of

wolves while designing GWO, the alpha (α) grey wolves are considered as the fittest
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Figure 5.2: 4S configuration under different shading patterns (a) Pattern 1, (b) Pattern
2, (c) P-V curves under PSCs
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Figure 5.4: Hunting behavior of grey wolves:(A-C) chasing and tracking prey (D)
encicling prey (E) attacking prey

solution. Consequently, the second and third best solutions are named as beta (β) and

delta (δ) respectively. The rest of the candidate solutions are assumed to be omega

(ω). Fig.5.4 shows three main steps of GWO algorithm namely hunting, chasing and

tracking for prey, encircling prey and attacking prey which are implemented to design

GWO for performing optimization. Grey wolves encircle a prey during the hunt and

the encircling behavior can be modeled by the following equations:

~D = |~C. ~Xp(t) − ~Xp(t)| (5.2)

~X(t+ 1) = ~Xp(t) − ~A. ~D (5.3)

where t denotes the current iteration, ~D, ~A and ~C represent coefficient vectors, ~Xp

is the position vector of the prey and ~X indicates the position vector of grey wolf. The

vectors ~A and ~C are calculated as follows:

~A = 2~a. ~r1 − ~a (5.4)
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~C = 2. ~r2 (5.5)

where components of ~a are linearly decreased from 2 to 0 over the course of iterations

and ~r1, ~r2 are random vectors in [0, 1]. Grey wolves have the ability to recognize the

location of prey and encircle them. The hunt is usually guided by alpha(α) called

leaders followed by beta(β) and delta(δ) which might also participate in hunting occa-

sionally. Lastly, comes delta(δ) and omega(ω) who take care of the wounded wolves in

the pack. Therefore, we refer alpha as the candidate solution having better knowledge

about the location of prey. The grey wolves finish the hunt by attacking the prey when

it stops moving.

5.5.2 Application of GWO for MPP Tracking

Fig.5.5 shows the block diagram of the proposed MPPT scheme for a PV system.

PV 

Array

L

Cin

D

R

+

-

MPPT 

Controller

Driver 

circuit

PWM Control 

signal

VpvIpv

C

Figure 5.5: Block diagram of the proposed MPPT method
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Figure 5.6: Flowchart of the proposed algorithm
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For number of grey wolves, i.e., duty ratios, the controller measures PV voltageVpv

and PV currentIpv through sensors and computes the output power of the PV system.

The flowchart of the proposed GWO based MPPT algorithm is shown in Fig.5.6.

During partial shading, the P-V curve is categorized by multiple peaks having various

local peaks (LP) and one global peak (GP). When the wolves find the MPP, their

correlated coefficient vectors become nearly equal to zero. In the proposed method an

attempt has been made to combine GWO with direct duty cycle control i.e., at the

MPP, duty cycle is sustained at a constant value which in turn reduces the steady

state oscillations that exist in conventional MPPT techniques and lastly the power

loss due to oscillation is reduced resulting in higher system efficiency. To implement

the GWO based MPPT, duty cycle d is defined as a grey wolf. Therefore, equation

(5.3) can be modified as follows:

dí(k + 1) = di(k) − A.D (5.6)

Thus, the objective function of the GWO algorithm is formulated as:

P (dki ) > P (dk−1
i ) (5.7)

Here, P= V ∗ I for any instant is the operating power of PV array for the tracking

problem,where P represents power, d is duty cycle, i is the number of current grey

wolves and k is number of iterations.

5.6 Results and Discussion

5.6.1 Simulation Results

To evaluate the performance of the proposed GWO based metaheuristic MPPT algo-

rithm, its performances were compared with that of two popular MPPT techniques
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namely P&O and Improved PSO (IPSO) [70] MPPT algorithms. All the above three

algorithms were implemented under PSCs and rapidly changing insolation level for

both 4S and 2S2P configuration. For simulation studies, the parameters taken for

modeling single diode model of a PV module at nominal conditions is given in Table

5.1. The parameters of IPSO and GWO algorithms are given in Table 5.2.

Table 5.1: Parameters of KC200GT PV module at 250C and 1000W/m2

Maximum Power (Pmax) 200W

Open circuit voltage (Voc) 32.8V

Short circuit current (Isc) 8.21A

Maximum voltage (Vmp) 26.3V

Maximum current (Imp) 7.61A

Table 5.2: Parameters of IPSO and GWO Algorithms

IPSO

Algorithm

GWO

Algorithm

wmax 1

a
Linearly decreases

from 2 to 0

wmin 0.1

c1,max 2

c1,min 1

c2,max 2

c2,min 1

The power, voltage and current for the 4S configuration with PSCs employing

GWO, IPSO and P&O are shown in Fig.5.7. In the simulation study, pattern 1 is

made to exist for first 0.1sec and the second pattern appears for next 0.1sec. In

pattern 1, GWO based MPPT converges to the GP of 319.4W, IPSO tracks the GP of

319.2W and the P&O algorithm converges to local peak of 100.2W as it is unable to
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differentiate between local and global peaks resulting in steady state oscillations i.e.

the operating point oscillates around the MPP giving rise to power loss and also results

in slowing down the speed of response of the algorithm and reduces the efficiency of

the PV system. When shading pattern is changed to pattern 2 at 0.1sec, the MPPT

techniques gets restarted and GWO based MPPT is able to locate the GP of 329.6W,

IPSO tracks GP of 329.5W and P&O fails to reach GP and gets settled at LP of 180W.
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Figure 5.7: Tracking curves for 4S Configuration (a) GWO based MPPT (b) IPSO

based MPPT (c) P&O based MPPT

The simulation is now repeated for 2S2P configuration having two different patterns

namely pattern 3 and 4. The GWO based MPPT reaches GP of 239.1W, IPSO tracks

GP of 239.05W and P&O algorithm reaches GP of 234W anonymously as it tracks the

peak which comes in contact first i.e. it may be a GP or LP resulting in oscillations

around MPP. All the above findings are implemented for existence of pattern 3 which

appears for 0.1sec and pattern 4 appears for next 0.1sec. For pattern 4, the GWO
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based MPPT locates the GP of 251.6W, IPSO locates GP at 251.5W and P&O gets

settled to the GP of 247W as before in pattern 3 resulting in oscillations around the

MPP. The tracking curves are shown in Fig.5.8.
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Figure 5.8: Tracking curves for 2S2P Configuration (a) GWO based MPPT (b) IPSO

based MPPT (c) P&O based MPPT

The simulation results presented in Fig.5.7 and 5.8 envisage that the GWO based

MPPT can handle partial shading efficiently and it outperforms both P&O and IPSO in

terms of faster convergence towards GP, zero oscillations and higher tracking efficiency.

The simulation results presented in Fig.5.7 and 5.8 are briefly summarized in Table

5.3 and 5.4. The MPPT tracking efficiency is calculated as the ratio between average

output power obtained at steady state and maximum available power of the PV array

under certain shading pattern [39].
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Table 5.3: Performance Comparison of the Proposed MPPT with P&O and IPSO

MPPTs for 4S Configuration

Shading

Pattern

Maximum

power

from

P-V curve

(watts)

Tracking

Methods

Power

(W)

Voltage

(V)

Current

(A)

%Tracking

Efficiency

1 320

P&O 100.2 24.2 4.14 31.30

IPSO 319.2 110.52 2.888 99.75

GWO 319.4 110.55 2.889 99.81

2 330

P&O 180 23.07 7.80 54.54

IPSO 329.5 112.3 2.934 99.84

GWO 329.6 112.3 2.934 99.87

Table 5.4: Performance Comparison of the Proposed MPPT with P&O and IPSO

MPPTs for 2S2P Configuration

Shading

Pattern

Maximum

power

from

P-V curve

(watts)

Tracking

Methods

Power

(W)

Voltage

(V)

Current

(A)

%Tracking

Efficiency

3 239.3

P&O 234 24 9.75 97.78

IPSO 239.05 25 9.562 99.89

GWO 239.1 25.01 9.56 99.91

4 251.8

P&O 247 23.9 10.3 98.09

IPSO 251.5 25.64 9.808 99.88

GWO 251.6 25.64 9.812 99.92
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Table 5.5: Qualitative Comparison of the Proposed with P&O and IPSO MPPT Tech-

niques

Type P&O IPSO
Proposed

GWO

Tracking

Speed

0.005 sec

(tracks LP)

(Pattern 1)

0.03 sec

Medium

(Pattern 1)

0.021 sec

Very Fast

(Pattern 1)

Tracking

Accuracy
Low Accurate

Highly

Accurate

Convergence

to GP

Tracks

which

comes in

contact first

Yes Yes

No.of Tuning

Parameters
1 6 1

Power

Efficiency

High(Uniform

Insolation)

Low(PSCs)

High High

Dynamic

Response
Poor Good Good

Implementation

Complexity
Low Medium Medium

Further, a qualitative comparison among various fast converging MPPT methods is

presented in Table 5.5. To ensure the effectiveness of the proposed MPPT algorithm,

different loads such as R-L load (R=50Ω,L=15mH) is connected in place of resistive

load and is studied for pattern 1. Fig.5.9 compares the response of two different type

of loads (R and R-L load) from which it is seen in both the cases, the proposed MPPT
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is efficient enough to converge to the GP successfully. Usually, for R load fast response

is observed compared to any other loads. However, it is seen from Fig.5.9 that GWO

is successful in providing similar tracking response but with a higher settling time in

case of R-L load.
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Figure 5.9: Tracking curves for pattern 1 showing response of proposed MPPT having

R and R-L load under PSCs

5.6.2 Experimental Results

To validate the effectiveness of the proposed GWO based MPPT, experiments were

carried out on real PV array for both 4S and 2S2P configurations. Fig.3.1 shows the

experimental setup of the proposed system.

The two distinct patterns are shown in Fig. 5.10(a) marked as pattern 5 having

GP of 113.8W with three local peaks(53.64W,96.21W,102.8W) and pattern 6 possess

GP of 143.5W with one local peak(65.32W). The experimentally determined tracking

curves are shown in Fig. 5.10(b)5.10(c)5.10(d). The tracking curves show that GWO

and IPSO based MPPT converge to the GP of 113.8W whereas P&O gets trapped to

local peak of 53.44W. The tracking speed of GWO is faster than IPSO since it takes

3.18sec to reach GP compared to IPSO which takes 7.9sec for global convergence.

When the shading pattern 5 changes to pattern 6, the current MPPT restarts the
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Figure 5.10: Experimental results for 4S configuration (a) P-V curves, Tracking curves
using (b) GWO (c) IPSO (d) P&O
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Figure 5.11: Experimental results for 2S2P configuration (a) P-V curves, Tracking
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search process for the new MPP from the new P-V curve. The tracking curves of

GWO and IPSO based MPPT reaches GP of 143.5W whereas P&O gets trapped to

local peak of 65.32W. From the above results it is concluded that the proposed GWO

based MPPT yields higher tracking speed and the oscillations disappear quickly as

compared to other two methods namely IPSO and P&O.

In order to validate the effectiveness of the proposed MPPT for a different random

pattern, experiments were carried out for 2S2P configuration having two types of

shading as shown in Fig.5.11(a) as pattern 7 having GP of 77.98W and LP of 47W

and pattern 8 have GP of 58.25W and LP of 46.64W respectively. The experimentally

determined MPPT curves employing the proposed and existing methods are shown

in Fig.5.11(b)5.11(c)5.11(d). The tracking curves of proposed and IPSO MPPT is

able to converge to GP of 77.98W and P&O by chance settles to the GP resulting in

oscillations. After sometime when the shading pattern changes to a new P-V curve

marked as pattern 8, once again the three algorithms search the P-V curve for a new

MPP. The curves of the proposed MPPT and IPSO based MPPT converges to the GP

of 58.25W and P&O gets trapped at a local optimum value of 46.64W.

Figure 5.12: Experimental results for pattern 5 showing response of proposed MPPT

under R-L load
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To verify the effectiveness of the proposed MPPT algorithm is working accurately

under R-L load, experiments were carried out for pattern 5. Fig.5.12 shows that the

settling time increases but the performance of the proposed MPPT remains the same

for convergence towards the GP. Fig.5.10 and 5.11 show that the proposed method can

successfully detect the shading pattern variations and reinitialize the MPPT process

exhibiting superior performance in terms of faster convergence to GP, reduced steady

state oscillations and faster tracking in PV system under PSCs.

5.7 Chapter Summary

In this chapter, a new evolutionary computing approach called Grey wolf optimiza-

tion to design a maximum power extraction algorithm for PV systems to work under

partial shading conditions. The developed MPPT algorithm was first simulated using

MATLAB/Simulink and subsequently it has been implemented in an experimental

set up. In view of assessing the effectiveness of this new MPPT (Grey wolf based

MPPT) its performance were compared with two existing MPPTs namely P&O and

IPSO based MPPT methods and from the obtained results it was found that the GWO

based MPPT exhibits superior MPPT performance compared to both P&O and IPSO

MPPTs. Further, a technique is to be developed which would work both in uniform

and non-uniform irradiance levels and would be able to harvest maximum possible

power with least time.



Chapter 6

A Grey Wolf Assisted Perturb &

Observe Maximum Power Point

Tracking Algorithm for a PV

System

6.1 Abstract

This chapter proposes a new Hybrid MPPT algorithm combining Grey Wolf Opti-

mization (GWO) and Perturb & Observe (P&O) technique for efficient extraction of

maximum power from a Photovoltaic (PV) system subjected to rapid variation of so-

lar irradiance and partial shading conditions (PSCs). GWO handles the initial stages

of maximum power point (MPP) tracking followed by application of the P&O algo-

rithm at the final stage in view of achieving faster convergence to the global peak

(GP). This MPPT thus overcomes the computational overhead as encountered in the

case of a GWO based MPPT algorithm reported earlier [105]. The idea behind us-

ing the hybrid technique is to scale down the search space of GWO which helps to
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speed up for achieving convergence towards the GP. The proposed MPPT algorithm

is first implemented using MATLAB/SIMULINK and subsequently an experimental

setup is prepared for its practical implementation. From the obtained results, it is

confirmed that the proposed MPPT provides superior tracking performance in any

weather conditions compared to both GWO and PSO+PO based MPPT algorithms.

6.2 Introduction

In Chapter 5, a new MPPT is developed using Grey wolf optimization technique which

provides determination of global peak under PSCs. GWO handles the initial stages of

maximum power point(MPP) tracking followed by application of the P&O algorithm

at the final stage in view of achieving faster convergence to the global peak(GP). The

idea behind using the hybrid technique is to scale down the search space of GWO

which helps to speed up for achieving convergence towards the GP. In contrast to this,

in Chapter 6, a new Hybrid-MPPT is developed which can track MPP with higher

tracking efficiency in both uniform and non-uniform insolation levels.

The power extracted from PV modules is influenced by variation in solar insolation.

It also becomes relatively difficult to maximize power extraction from a PV panel under

partial shading conditions (PSCs). Therefore, maximum power point tracking (MPPT)

algorithms are to be developed which can extract maximum possible power despite of

any deviation in insolation and load [88] [106] [107] [108]. Numerous MPPT techniques

have been proposed to improve the efficiency of the PV system as reported in literature,

such as fractional open circuit voltage (FOCV) [27] and fractional short circuit current

(FSCC) [27], Perturb and Observe (P&O) [103] [28] [29] and Incremental Conductance

(IC) [30] [31]. In a PV power system, partial shading is an unavoidable complication

that significantly reduces the efficiency of the overall system resulting in multiple peaks

with several local and one global peak (GP). Thus, determining this peak leads to a

great challenge for designing an appropriate MPP tracker [71] [45] [109] [7] for a PV
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system.

In [79], a swarm intelligent technique with P&O algorithm is proposed for achieving

faster convergence towards the GP under partial shading. A new sensorless Hybrid

MPPT is proposed in [110] which exhibits low power oscillation around the MPP.

Relationship between the load line and I-V curve with trigonometric rule [67], has

been proposed to obtain a fast MPPT tracking response. An ant colony based MPPT

has been proposed in [78], which is found to track the GP with minimum time and

low computational overhead.

After having pursued the detailed convergence analysis i.e. the time taken to reach

the GP by the GWO and P&O MPPTs, in this current chapter we have attempted

to combine these two MPPTs. The above combination is aimed at achieving faster

tracking of the GP through the proposed hybrid GWO-P&O MPPT technique to

handle rapidly varying insolation patterns. In the proposed combination of GWO-

MPPT and P&O-MPPT, the former method is used in off-line to bring the operating

point of the PV array near the true MPP and then the later method is used in on-line

to track the MPP with higher accuracy. Such fusion of off-line and on-line MPPT

techniques makes fast tracking and guarantees global convergence for handling rapidly

varying solar insolation patterns. To show the efficacy of the proposed Hybrid MPPT,

it has been compared with two popular techniques like Hybrid PSO-PO [79] and

GWO [105] based MPPT techniques.

6.3 Chapter Objectives

• To employ a dynamic global MPPT technique by combining a GWO optimizer

with P&O MPPT which can handle PSCs resulting in faster convergence towards

global peak with least time.

• To implement the above MPPT control algorithm in a practical Photovoltaic

system.
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6.4 PV System under Partial Shading Conditions

6.4.1 PV System Modeling

Rs

RpD

I

+

-

V
Iph

I
D

Figure 6.1: Equivalent circuit of a PV cell [7]

The single diode model of a PV cell is shown in Fig.6.1. By neglecting the shunt

resistance Rsh, the output current can be written as

I = Iph − I0

[
exp

(
q(V +RsI)

NskTa

)
− 1

]
(6.1)

The light generated current Ipv is proportional to irradiance G, and can be written as

Iph =

(
G

G0

)
Ig0 + J0 (Tc − Tref ) (6.2)

The diode saturation current is dependent upon temperature can be expressed as

I0 = Id0

(
T

Tref

)3

exp

[
qEg

nk

(
1

Tref
− 1

T

)]
(6.3)
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Figure 6.2: (a) 3S Configuration, (b) 3S2P Configuration
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Figure 6.3: P-V curves exhibiting multiple peaks for (a) 3S Configuration, (b) 3S2P

Configuration

6.4.2 System Description

A 3S configuration is shown in Fig.6.2(a) in which three modules are connected in

series. Fig.6.2(b) shows the 3S2P configuration consisting of six PV modules connected

in two parallel paths, each path consisting of three series connected modules. The P-V

curve of three different shading patterns with clearly distinct GP locations for the 3S

configuration is shown in Fig.6.3(a). The P-V curves of two different shading for 3S2P

configuration is shown in Fig.6.3(b).
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6.5 Problem Formulation

The proposed maximum power extraction can be formulated as an optimization prob-

lem as follows:

Maximize P (d) (6.4)

subjected to dmin ≤ d ≤ dmax (6.5)

Here, P (d) denotes PV output power, d is duty ratio of the dc-dc converter and dmin

and dmax are the lower and upper bounds of the duty ratio taken as 10% and 90%

respectively.

6.6 Overview of the Proposed MPPT Method

6.6.1 Grey Wolf Optimization (GWO) application to MPPT

Design

GWO is a metaheuristic algorithm inspired by grey wolves, which prefer to live in a

pack and can be used to optimize a function that is difficult to express analytically

[105]. Fig.6.4 shows a simple idea of the action of the wolf in the search space, where

i represents the wolf number, P t
i and Gt denote the personal and global best values

which are to be updated at every iteration during the optimization process. α is

the leader and decision maker, β and δ assist α in decision making and ω are the

followers employed for replicating the leadership pyramid. The attacking behavior can

be exhibited by the following equations [105]:

~e = |~c.~xp(t)− ~xp(t)| (6.6)
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Figure 6.4: Movement of a wolf during search process

~x(t+ 1) = ~xp(t)− ~a.~e (6.7)

where t is the current iteration, ~a , ~c and ~e represent coefficient vectors, ~xp is the

position vector of the prey and ~x specifies the position vector of grey wolf.

The vectors ~a and ~c are estimated as follows:

~a = 2~b.~r1 −~b (6.8)

~c = 2. ~r2 (6.9)

where components of ~b linearly decrease from 2 to 0 and ~r1, ~r2 are random vectors in

[0, 1].

6.6.2 Perturb and Observe (P&O) MPPT

P&O MPPT tracks the MPP by perturbing the operating point and then observing

the change in power before and after perturbations. This P&O is considered as the

reference for any new MPPT to compare, as it is one of the best MPPTs popularly



6.6 Overview of the Proposed MPPT Method 94

used. The P&O based MPPT algorithm first calculates the power (P ) of the PV array

by measuring its voltage and current. Then, it provides a perturbation in the duty

cycle based on the variation of power by following the rule [103]:

dnew = dold + φ

dnew = dold − φ (6.10)

In (6.10), φ denotes perturbed duty cycle. If φ is large, convergence is faster and

steady state oscillation is high and vice versa.

6.6.3 Proposed Hybrid-MPPT

The fusion of GWO and P&O based MPPT technique which we call as GWO-PO

hybrid MPPT is an intelligent computational algorithm which avoids the confusion

that may appear during transformation of homogenous to non-homogenous and vice-

versa i.e. during uniform insolation, P&O MPPT comes into act to track the MPP

but during non-uniform insolation, Hybrid MPPT tracks the GP with initialization

of the GWO first followed by the action of P&O,when the grey wolves reach closer

to each other, the P&O MPPT gets started at the location of the best wolf in GWO

process.

The proposed GWO-PO hybrid-MPPT is applied to the PV system operating under

PSCs. In the proposed MPPT algorithm, the position of a wolf refers to duty ratio of

the dc-dc converter used for implementation of MPPT which eliminates the PI control

loop. This makes the controller more simplified and reduces the computational burden

in tuning the controller gain. More number of wolves results in higher MPP accuracy

but also increases the computational burden. Therefore, number of grey wolves may

be considered as 3 to reduce the computational time. Fig.6.5 shows the flowchart of

the proposed Hybrid-MPPT technique.

The following steps are adopted to implement the proposed MPPT algorithm:
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Step 1 :Initialize the position of the wolves on fixed positions with equal space to lie

between 10% and 90% of the duty ratio.

Step 2 :To maximize the PV array output power P at each wolf position, activate

the converter and evaluate output power:

Ppv = Vpv ∗ Ipv (6.11)

Step 3 :Adjust the position of grey wolf as follows:

Dí(k + 1) = Di(k) − a.e (6.12)

where D is current grey wolf, k is number of iterations, i is number of current

grey wolves and a, e are coefficient vectors.

Step 4 :Repeat steps 3 and 4 until all the wolves converge towards the MPP.

Step 5 :After locating the MPP begin the P&O loop for tracking the maximum power

(GP). Choose a small step size to obtain reduced oscillations in PV output power

and higher tracking efficiency.

6.7 Simulation Case Studies

To verify the efficacy of the proposed MPPT, simulations were performed for both 3S

and 3S2P configurations under both partial shading conditions and rapidly changing

insolation levels. Fig.6.6 shows the structural outlay of a PV system consisting of PV

array, dc-dc boost converter, MPPT controller and a load. For simulation studies,

the parameters of the PV module taken for modelling are as follows:Pmax= 200W, Voc

=32.8V, Isc =8.21A, Vmp =26.3V and Imp=7.61A.
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Figure 6.5: Flowchart of the Hybrid-MPPT Algorithm
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Figure 6.6: Block diagram of the proposed Hybrid-MPPT Algorithm

6.7.1 Partial Shading Conditions

The proposed GWO-PO hybrid MPPT algorithm is applied to the 3S configuration

for pattern 1 under PSCs to track the global peak (GP) and it is compared with fast

converging techniques such as GWO and PSO-PO based MPPT techniques as shown

in Fig.6.7. Similarly, the simulation was repeated for 3S2P configuration for pattern

4 shown in Fig.6.8. Both Fig.6.7 and Fig.6.8 clearly show that the proposed MPPT

clearly tracks the GP with faster convergence as compared to GWO and PSO-PO

MPPT techniques. From, the results shown below it is concluded that the proposed

GWO-PO hybrid MPPT exhibits faster convergence amongst GWO and PSO-PO

MPPTs.
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Figure 6.7: Tracking curves for 3S configuration (a) PV power of proposed Hybrid

MPPT compared with other techniques like GWO,PSO+PO based MPPT, (b) zoomed

view of Area A
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Figure 6.8: Tracking curves for 3S2P configuration (a) PV power of proposed Hybrid

MPPT compared with other techniques like GWO,PSO+PO based MPPT, (b) zoomed

view of Area B

6.7.2 Rapidly Changing Insolation levels

For 3S configuration, the solar intensities of the PV modules are arbitrarily varied i.e.

pattern 1 shifts to pattern 2 as shown in Fig. 6.3(a). Each pattern prevails for 0.1sec.

The simulation is now repeated for the 3S2P configuration where insolation is varied

for two different patterns namely pattern 4 and pattern 5 (Fig.6.3(b)) which exists for
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0.1sec each.
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Figure 6.9: Tracking curves for 3S configuration for rapid changes in insolation
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Figure 6.10: Tracking curves for 3S2P configuration for rapid changes in insolation

The above cases show that the proposed and GWO-MPPT are able to track GP

with no oscillations. Fig.6.9 and Fig.6.10 clearly show that the proposed GWO-PO

hybrid-MPPT converges to the GP faster as compared to the GWO-MPPT and PSO-

PO-MPPTs. Both GWO-PO hybrid-MPPT and GWO-MPPT track the GP with no
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oscillations whereas PSO-PO-MPPT exhibit oscillations.

6.7.3 Extreme Rapidly Changing Insolation levels

To analyse the robustness of the proposed GWO-PO hybrid-MPPT, the PV array

(3S configuration) was exposed to extreme rapidly changing insolation levels such as:

pattern 1-pattern 2-pattern 3. Each pattern was changed at 0.1s interval each. Fig.6.11

clearly shows that both GWO-PO and GWO-MPPT track the GP with no oscillation

but the GWO-PO hybrid-MPPT reaches the GP at minimal time as compared to the

GWO-MPPT. The PSO-PO MPPT is able to track the GP but with oscillations.
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Figure 6.11: Tracking curves for 3S configuration for extreme rapid changes in insola-

tion

From the simulation results presented above, it is observed that the GWO-PO

hybrid-MPPT can handle fast changing insolation patterns and it outperforms both

PSO-PO and GWO-MPPTs in terms of faster convergence to the GP, tracking speed,

reduced oscillations, and higher efficiency. The simulation results shown in Figs.6.7,

6.8,6.9,6.10 and 6.11 are summarized in Table 6.1, where the performance of the pro-

posed GWO-PO hybrid MPPT is found to be superior over PSO-PO and GWO-MPPT
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techniques. Further, a characteristics comparison between different fast converging

MPPTs are presented in Table 6.2. The tracking efficiency (η) is calculated as the ra-

tio among average output power acquired under steady state condition and maximum

obtainable power of the PV array under certain pattern [30].

Table 6.1: Performance Evaluation of the proposed MPPT method for 3S and 3S2P

Configuration

Shading

Pattern and

Maximum power

from P-V curve

Tracking

Methods

Power

(Watts)

Convergence

time

(sec)

%

Tracking

Efficiency

Pattern 1

(3S)

(90W)

Hybrid 90 0.015 100

GWO 89.8 0.030 99.77

[ [79]] 89.6 0.045 99.55

Pattern 2

(3S)

(196W)

Hybrid 195.9 0.014 99.84

GWO 195.7 0.040 99.77

[ [79]] 195.7 0.050 99.77

Pattern 3

(3S)

(93.2W)

Hybrid 93.16 0.007 99.95

GWO 92.80 0.025 99.57

[ [79]] 92.41 0.025 99.15

Pattern 4

(3S2P)

(132.3W)

Hybrid 132.3 0.015 100

GWO 132.2 0.040 99.92

[ [79]] 132.2 0.040 99.92

Pattern 5

(3S2P)

(151.6W)

Hybrid 151.6 0.010 100

GWO 151.6 0.025 100

[ [79]] 151.5 0.025 99.93
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Table 6.2: Characteristics Comparison of the proposed Hybrid MPPT method with

other MPPT Methods

MPPT

Methods

Periodic

tuning

Dynamic

Response

Power

oscillations

Convergence

to GP
Complexity

Proposed No
Accurate

& fast
Very less

Always

guaranteed
Medium

GWO No Good Very less
Always

guaranteed
Medium

Hybrid

[110]
Yes

Accurate

& fast
Less

Always

guaranteed
Medium

Hybrid

PSO

[79]

No
Accurate

& fast
Less

Always

guaranteed
Medium

Hybrid

Ant

[78]

No
Accurate

& fast
Less

Always

guaranteed
Medium

6.8 Experimental Results

In order to verify the efficacy of the proposed Hybrid MPPT, experiments have been

carried out for both 3S and 3S2P configurations and the experimental set up is shown

in Fig.3.1. In order to verify the effectiveness of the proposed Hybrid-MPPT for the 3S

configuration under extreme rapidly changing insolation level, experiments were con-

ducted for 3S configuration (pattern 1, pattern 2 and pattern 3) as shown in Fig.6.12.

The proposed Hybrid-MPPT is able to converge to the GP within 2.7sec, GWO-MPPT

converges to the GP at 3.1sec, PSO-PO-MPPT converges at 3.2sec resulting in small

oscillations around the MPP. Thus, from the aforesaid results it is observed that the

proposed method exhibits superior MPPT tracking performance over the other MPPT
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techniques under dissimilar changing insolation patterns in terms of faster convergence

towards reaching the GP and yielding higher energy output.
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Figure 6.12: Experimental Results for 3S Configuration for extreme rapidly changing

insolation patterns (a) Hybrid-MPPT (b) GWO-MPPT (c) PSO-PO MPPT
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Figure 6.13: Experimental Results for 3S2P Configuration for rapidly changing inso-

lation patterns (a) Hybrid-MPPT (b) GWO-MPPT (c) PSO-PO MPPT

Next we present the experimentally obtained tracking curves for the 3S2P configu-

ration under rapidly changing insolation patterns (pattern 4 and pattern 5) as shown
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in Fig.6.13. From Fig.6.13 it is clearly observed that both Hybrid and GWO MPPT

converge to the GP but the convergence time of Hybrid-MPPT is 2.4sec whereas the

GWO-MPPT converges at 3.8sec. The proposed technique is also compared with PSO-

PO-MPPT which is able to track the GP at 4sec but yields small oscillations. Thus,

the proposed GWO-PO Hybrid-MPPT converges faster as compared to the other fast

converging MPPTs resulting in higher energy output.

The combination of GWO and P&O algorithm results in faster convergence to

the GP with least time enabling highest possible maximum power from the solar

PV system. Thus, it is concluded that the Hybrid-MPPT is capable to adapt itself

towards sudden variation in insolation and any partial shading while improving the

system efficiency.

6.9 Chapter Summary

In this chapter, a new GWO-PO Hybrid-MPPT for maximum power from a PV system

with different possible patterns has been developed. The effectiveness of the proposed

GWO-PO Hybrid MPPT algorithm was evaluated through both simulation studies fol-

lowed by experimental studies on a 600W prototype PV system. Comparative studies

of the Hybrid-MPPT with other fast converging techniques envisage that the proposed

GWO-PO Hybrid-MPPT exhibits superior performance such as higher tracking speed

and faster convergence towards the GP.



Chapter 7

Conclusion and Suggestions for

Future Work

7.1 Overall Summary of the Thesis

This thesis has presented a modeling of a PV array and extraction of maximum power

under partial shading conditions for a Photovoltaic System. Different topologies for

PV power generation, maximum power extraction algorithms and partial shading con-

ditions have been described in Chapter 1.

As discussed in the objectives, new MPPT schemes have been developed which

is able to extract maximum power output from the PV system with changing inso-

lation levels, temperature variations and other environmental conditions. An exten-

sive review on MPPT algorithms for both uniform and non-uniform insolation levels

have been pursued and presented in Chapter 2. Subsequently,an analysis with respect

to their merits,demerits and applications has been provided in order to design new

MPPTs to achieve higher MPPT efficiency.

Chapter 3discusses about the experimental setup used for validating the proposed

techniques under partial shading conditions in a PV system using MATLAB/SIMULINK

software. Here,two different types of PV sources are used i.e.Agilent simulator(E4360A)
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and Sukam make panels for experimentation purpose.

Chapter 4 analytically investigates the effects of partial shading on a PV system

with and without bypass diode and development of a new configuration which will

produce maximum power under changing insolation patterns on the basis of maximum

power and fill factor. Also,the proposed RP configuration has been compared with

different module configurations like SP, TCT and BL under PSCs with a randomly

assigned irradiance of 0.02kW/m2 and 0.04kW/m2. Also, the experimental study

conclude that the TCT and the proposed RP configuration exhibits maximum power

of 51.077W and 50.258W as well as the RP configuration has higher value of fill factor

of 0.474 as compared to the rest.

Metaheuristic optimization methodologies such as Particle Swarm Optimization

(PSO) [71] [70], firefly [73] etc., have been extensively used for different applications.

After a thorough literature survey, it was found that GWO [104] has never been

exploited for designing a MPPT. Therefore, a new evolutionary computing approach

called Grey wolf optimization is employed to design a maximum power extraction

algorithm for PV systems to work under partial shading conditions which is discussed

in Chapter 5. In view of assessing the effectiveness of this new MPPT (Grey wolf based

MPPT), its performance was compared with that of two existing MPPTs namely P&O

and Improved-PSO based MPPT algorithms. From the obtained results, it was found

that the GWO based MPPT exhibits superior MPPT performance compared to both

P&O and IPSO MPPT on the basis of dynamic response,faster convergence to GP

and higher tracking efficiency.

In Chapter 6, a new Hybrid-MPPT for maximum power from a PV system with

different possible patterns has been developed. The idea behind using the hybrid

technique is to scale down the search space of GWO which helps to speed up for

achieving convergence towards the GP. This MPPT thus overcomes the computational

overhead as encountered in the case of a GWO based MPPT algorithm reported earlier

in [105]. The effectiveness of the proposed GWO-PO Hybrid MPPT algorithm was
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evaluated through both simulation studies followed by experimental studies on a 600W

prototype PV system. Comparative studies of the Hybrid-MPPT with other fast

converging techniques envisage that the proposed GWO-PO Hybrid-MPPT exhibits

superior performance such as higher tracking speed and faster convergence towards

the GP.

7.1.1 Contributions of the Thesis

• A new analytical modeling of PV panels for producing maximum power and fill

factor is pursued. From the analysis, it is observed that the proposed new Ring

pattern configuration is suitable for achieving maximum power and fill factor.

• In view of achieving maximum power from PV panels subjected to non-uniform

solar irradiances, such as PSCs a new evolutionary computing technique i.e.

Grey wolf optimization is employed to design a global MPPT.

• This new Grey wolf based MPPT has been employed both in simulation and ex-

periment and it is found that this new GWO-MPPT is very efficient in providing

maximum power yield from PV panels under non-uniform solar irradiances.

- S. Mohanty, B. Subudhi and P. K Ray, A New MPPT Design using Grey

wolf optimization technique for Photovoltaic system under partial shading

conditions, IEEE Trans on Sustainable Energy, vol. 7, no. 1, pp. 181-188,

Jan 2016.

• In order to reduce the computational burden of GWO based MPPT algorithm

and achieve faster convergence towards the GP, a dynamic global MPPT tech-

nique is designed by combining a GWO optimizer with P&O MPPT is developed.

Here, GWO handles the initial stages of maximum power point(MPP) track-

ing followed by application of the P&O algorithm at the final stage in view of

achieving faster convergence to the global peak (GP). So, the resulting GWO-PO
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exhibits superior performance in terms of faster convergence to GP and reduced

computational burden.

- S. Mohanty, B. Subudhi and P. K Ray, A Grey Wolf Assisted Perturb &

Observe MPPT Algorithm for a PV System, IEEE Trans on Energy Con-

version, DOI:10.1109/TEC.2016.2633722.

7.2 Suggestions for the future work

• In this thesis, an analytical modeling of PV modules for handling non-uniform

solar irradiances is pursued first and subsequently a new Ring pattern configu-

ration for PV modules is developed to achieve maximum power and fill factor.

Further,the thesis proposed two new MPPT techniques namely GWO and Hybrid

based MPPT for tracking global peak under PSCs for standalone PV systems.

An immediate extension of the above work is to apply these algorithms to a

Grid connected PV system. An utility grid may have different conventional and

nonconventional sources. If the PV system is not properly controlled, then grid

may become unstable. As the dynamics of PV system is dependent greatly on

fluctuation of solar irradiance and temperature, there is a strong research need

of studying dynamic stability of the PV system.

• Other evolutionary computing techniques can also be explored for determining

maximum power for a PV system subjected to PSCs. The obtained MPPT can

be applied to Solar-Wind Hybrid system to achieve higher efficiency of energy

conversion.
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