1,205 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Integrative OMICS Data-Driven Procedure Using a Derivatized Meta-Analysis Approach

    Full text link
    The wealth of high-throughput data has opened up new opportunities to analyze and describe biological processes at higher resolution, ultimately leading to a significant acceleration of scientific output using high-throughput data from the different omics layers and the generation of databases to store and report raw datasets. The great variability among the techniques and the heterogeneous methodologies used to produce this data have placed meta-analysis methods as one of the approaches of choice to correlate the resultant large-scale datasets from different research groups. Through multi-study meta-analyses, it is possible to generate results with greater statistical power compared to individual analyses. Gene signatures, biomarkers and pathways that provide new insights of a phenotype of interest have been identified by the analysis of large-scale datasets in several fields of science. However, despite all the efforts, a standardized regulation to report large-scale data and to identify the molecular targets and signaling networks is still lacking. Integrative analyses have also been introduced as complementation and augmentation for meta-analysis methodologies to generate novel hypotheses. Currently, there is no universal method established and the different methods available follow different purposes. Herein we describe a new unifying, scalable and straightforward methodology to meta-analyze different omics outputs, but also to integrate the significant outcomes into novel pathways describing biological processes of interest. The significance of using proper molecular identifiers is highlighted as well as the potential to further correlate molecules from different regulatory levels. To show the methodology's potential, a set of transcriptomic datasets are meta-analyzed as an example

    Current advances in systems and integrative biology

    Get PDF
    Systems biology has gained a tremendous amount of interest in the last few years. This is partly due to the realization that traditional approaches focusing only on a few molecules at a time cannot describe the impact of aberrant or modulated molecular environments across a whole system. Furthermore, a hypothesis-driven study aims to prove or disprove its postulations, whereas a hypothesis-free systems approach can yield an unbiased and novel testable hypothesis as an end-result. This latter approach foregoes assumptions which predict how a biological system should react to an altered microenvironment within a cellular context, across a tissue or impacting on distant organs. Additionally, re-use of existing data by systematic data mining and re-stratification, one of the cornerstones of integrative systems biology, is also gaining attention. While tremendous efforts using a systems methodology have already yielded excellent results, it is apparent that a lack of suitable analytic tools and purpose-built databases poses a major bottleneck in applying a systematic workflow. This review addresses the current approaches used in systems analysis and obstacles often encountered in large-scale data analysis and integration which tend to go unnoticed, but have a direct impact on the final outcome of a systems approach. Its wide applicability, ranging from basic research, disease descriptors, pharmacological studies, to personalized medicine, makes this emerging approach well suited to address biological and medical questions where conventional methods are not ideal

    Statistical learning methods for multi-omics data integration in dimension reduction, supervised and unsupervised machine learning

    Get PDF
    Over the decades, many statistical learning techniques such as supervised learning, unsupervised learning, dimension reduction technique have played ground breaking roles for important tasks in biomedical research. More recently, multi-omics data integration analysis has become increasingly popular to answer to many intractable biomedical questions, to improve statistical power by exploiting large size samples and different types omics data, and to replicate individual experiments for validation. This dissertation covers the several analytic methods and frameworks to tackle with practical problems in multi-omics data integration analysis. Supervised prediction rules have been widely applied to high-throughput omics data to predict disease diagnosis, prognosis or survival risk. The top scoring pair (TSP) algorithm is a supervised discriminant rule that applies a robust simple rank-based algorithm to identify rank-altered gene pairs in case/control classes. TSP usually generates greatly reduced accuracy in inter-study prediction (i.e., the prediction model is established in the training study and applied to an independent test study). In the first part, we introduce a MetaTSP algorithm that combines multiple transcriptomic studies and generates a robust prediction model applicable to independent test studies. One important objective of omics data analysis is clustering unlabeled patients in order to identify meaningful disease subtypes. In the second part, we propose a group structured integrative clustering method to incorporate a sparse overlapping group lasso technique and a tight clustering via regularization to integrate inter-omics regulation flow, and to encourage outlier samples scattering away from tight clusters. We show by two real examples and simulated data that our proposed methods improve the existing integrative clustering in clustering accuracy, biological interpretation, and are able to generate coherent tight clusters. Principal component analysis (PCA) is commonly used for projection to low-dimensional space for visualization. In the third part, we introduce two meta-analysis frameworks of PCA (Meta-PCA) for analyzing multiple high-dimensional studies in common principal component space. Theoretically, Meta-PCA specializes to identify meta principal component (Meta-PC) space; (1) by decomposing the sum of variances and (2) by minimizing the sum of squared cosines. Applications to various simulated data shows that Meta-PCAs outstandingly identify true principal component space, and retain robustness to noise features and outlier samples. We also propose sparse Meta-PCAs that penalize principal components in order to selectively accommodate significant principal component projections. With several simulated and real data applications, we found Meta-PCA efficient to detect significant transcriptomic features, and to recognize visual patterns for multi-omics data sets. In the future, the success of data integration analysis will play an important role in revealing the molecular and cellular process inside multiple data, and will facilitate disease subtype discovery and characterization that improve hypothesis generation towards precision medicine, and potentially advance public health research

    Integrative Gene Set Analysis: Application to Platinum Pharmacogenomics

    Get PDF
    Integrative genomics has the potential to uncover relevant loci, as clinical outcome and response to chemotherapies are most likely not due to a single gene (or data type) but rather a complex relationship involving genetic variation, mRNA, DNA methylation, and copy number variation. In addition to this complexity, many complex phenotypes are thought to be controlled by the interplay of multiple genes within the same molecular pathway or gene set (GS). To address these two challenges, we propose an integrative gene set analysis approach and apply this strategy to a cisplatin (CDDP) pharmacogenomics study involving lymphoblastoid cell lines for which genome-wide SNP and mRNA expression data was collected. Application of the integrative GS analysis implicated the role of the RNA binding and cytoskeletal part GSs. The genes LMNB1 and CENPF, within the cytoskeletal part GS, were functionally validated with siRNA knockdown experiments, where the knockdown of LMNB1 and CENPF resulted in CDDP resistance in multiple cancer cell lines. This study demonstrates the utility of an integrative GS analysis strategy for detecting novel genes associated with response to cancer therapies, moving closer to tailored therapy decisions for cancer patients.National Institutes of Health (U.S.) (NIH/NCI GM61388)National Institutes of Health (U.S.) (NIH/NCI CA140879)National Institutes of Health (U.S.) (NIH/NCI GM86689)National Institutes of Health (U.S.) (NIH/NCI CA130828)National Institutes of Health (U.S.) (NIH/NCI CA138461)National Institutes of Health (U.S.) (NIH/NCI CA102701)Mayo Foundation for Medical Education and Researc

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table

    Mini-Workshop: Recent Developments in Statistical Methods with Applications to Genetics and Genomics

    Get PDF
    Recent progress in high-throughput genomic technologies has revolutionized the field of human genetics and promises to lead to important scientific advances. With new improvements in massively parallel biotechnologies, it is becoming increasingly more efficient to generate vast amounts of information at the genomics, transcriptomics, proteomics, metabolomics etc. levels, opening up as yet unexplored opportunities in the search for the genetic causes of complex traits. Despite this tremendous progress in data generation, it remains very challenging to analyze, integrate and interpret these data. The resulting data are high-dimensional and very sparse, and efficient statistical methods are critical in order to extract the rich information contained in these data. The major focus of the mini-workshop, entitled “Recent Developments in Statistical Methods with Applications to Genetics and Genomics”, has been on integrative methods. Relevant research questions included the optimal study design for integrative genomic analyses; appropriate handling and pre-processing of different types of omics data; statistical methods for integration of multiple types of omics data; adjustment for confounding due to latent factors such as cell or tissue heterogeneity; the optimal use of omics data to enhance or make sense of results identified through genetic studies; and statistical and computational strategies for analysis of multiple types of high-dimensional data

    MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights.

    Get PDF
    Since its first release over a decade ago, the MetaboAnalyst web-based platform has become widely used for comprehensive metabolomics data analysis and interpretation. Here we introduce MetaboAnalyst version 5.0, aiming to narrow the gap from raw data to functional insights for global metabolomics based on high-resolution mass spectrometry (HRMS). Three modules have been developed to help achieve this goal, including: (i) a LC-MS Spectra Processing module which offers an easy-to-use pipeline that can perform automated parameter optimization and resumable analysis to significantly lower the barriers to LC-MS1 spectra processing; (ii) a Functional Analysis module which expands the previous MS Peaks to Pathways module to allow users to intuitively select any peak groups of interest and evaluate their enrichment of potential functions as defined by metabolic pathways and metabolite sets; (iii) a Functional Meta-Analysis module to combine multiple global metabolomics datasets obtained under complementary conditions or from similar studies to arrive at comprehensive functional insights. There are many other new functions including weighted joint-pathway analysis, data-driven network analysis, batch effect correction, merging technical replicates, improved compound name matching, etc. The web interface, graphics and underlying codebase have also been refactored to improve performance and user experience. At the end of an analysis session, users can now easily switch to other compatible modules for a more streamlined data analysis. MetaboAnalyst 5.0 is freely available at https://www.metaboanalyst.ca
    • …
    corecore