39,303 research outputs found

    Time as a guide to cause

    Get PDF
    How do people learn causal structure? In two studies we investigated the interplay between temporal order, intervention and covariational cues. In Study 1 temporal order overrode covariation information, leading to spurious causal inferences when the temporal cues were misleading. In Study 2 both temporal order and intervention contributed to accurate causal inference, well beyond that achievable through covariational data alone. Together the studies show that people use both temporal order and interventional cues to infer causal structure, and that these cues dominate the available statistical information. We endorse a hypothesis-driven account of learning, whereby people use cues such as temporal order to generate initial models, and then test these models against the incoming covariational data

    Fisheye Consistency: Keeping Data in Synch in a Georeplicated World

    Get PDF
    Over the last thirty years, numerous consistency conditions for replicated data have been proposed and implemented. Popular examples of such conditions include linearizability (or atomicity), sequential consistency, causal consistency, and eventual consistency. These consistency conditions are usually defined independently from the computing entities (nodes) that manipulate the replicated data; i.e., they do not take into account how computing entities might be linked to one another, or geographically distributed. To address this lack, as a first contribution, this paper introduces the notion of proximity graph between computing nodes. If two nodes are connected in this graph, their operations must satisfy a strong consistency condition, while the operations invoked by other nodes are allowed to satisfy a weaker condition. The second contribution is the use of such a graph to provide a generic approach to the hybridization of data consistency conditions into the same system. We illustrate this approach on sequential consistency and causal consistency, and present a model in which all data operations are causally consistent, while operations by neighboring processes in the proximity graph are sequentially consistent. The third contribution of the paper is the design and the proof of a distributed algorithm based on this proximity graph, which combines sequential consistency and causal consistency (the resulting condition is called fisheye consistency). In doing so the paper not only extends the domain of consistency conditions, but provides a generic provably correct solution of direct relevance to modern georeplicated systems

    Peculiarities of massive vectormesons and their zero mass limits

    Get PDF
    Massive QED, in contrast with its massless counterpart, possesses two conserved charges; one is a screened (vanishing) Maxwell charge which is directly associated with the massive vector mesons through the identically conserved Maxwell current. A somewhat peculiar situation arises for couplings of Hermitian matter fields to massive vector potentials; in that case the only current is the screened Maxwell current and the coupling disappears in the massless limit. In case of selfinteracting massive vector mesons the situation becomes even more peculiar in that the usually renormalizability guaranteeing validity of the first order power-counting criterion breaks down in second order and requires the compensatory presence of additional Hermitian H-fields. Some aspect of these observation have already been noticed in the BRST gauge theoretic formulation, but here we use a new setting based on string-local vector mesons which is required by Hilbert space positivity. The coupling to H-fields induces Mexican hat like selfinteractions; they are not imposed and bear no relation with spontaneous symmetry breaking; they are rather consequences of the foundational causal localization properties realized in a Hilbert space setting. In case of selfinteracting massive vectormesons their presence is required in order to maintain the first order power-counting restriction of renormalizability also in second order. The presentation of the new Hilbert space setting for vector mesons which replaces gauge theory and extends on-shell unitarity to its off-shell counterpart is the main motivation for this work. The new Hilbert space setting also shows that the second order Lie-algebra structure of selfinteracting vector mesons is a consequence of the principles of QFT and promises a deeper understanding of the origin of confinement.Comment: 34 pages Latex, several additional remarks and citations, improved formulations, same as published versio

    Causal Consistency: Beyond Memory

    Get PDF
    In distributed systems where strong consistency is costly when not impossible, causal consistency provides a valuable abstraction to represent program executions as partial orders. In addition to the sequential program order of each computing entity, causal order also contains the semantic links between the events that affect the shared objects -- messages emission and reception in a communication channel , reads and writes on a shared register. Usual approaches based on semantic links are very difficult to adapt to other data types such as queues or counters because they require a specific analysis of causal dependencies for each data type. This paper presents a new approach to define causal consistency for any abstract data type based on sequential specifications. It explores, formalizes and studies the differences between three variations of causal consistency and highlights them in the light of PRAM, eventual consistency and sequential consistency: weak causal consistency, that captures the notion of causality preservation when focusing on convergence ; causal convergence that mixes weak causal consistency and convergence; and causal consistency, that coincides with causal memory when applied to shared memory.Comment: 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Mar 2016, Barcelone, Spai

    An analysis of update ordering in a cluster of replicated servers

    Full text link
    This paper analyses update ordering and its impact on the performance of a cluster of replicated servers. We propose a model for update orderings and constraints and develop a number of algorithms for implementing different ordering constraints. A performance study is then carried out to analyse the update ordering model.<br /

    The Ambiguity of Simplicity

    Full text link
    A system's apparent simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Thus, notions of absolute physical simplicity---minimal structure or memory---at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the "elegance" of competing theories, may be fundamentally subjective, perhaps even beyond the purview of physics itself. It also raises challenging questions in model selection between classical and quantum descriptions. Fortunately, experiments are now beginning to probe measures of simplicity, creating the potential to directly test for ambiguity.Comment: 7 pages, 6 figures, http://csc.ucdavis.edu/~cmg/compmech/pubs/aos.ht
    • 

    corecore