10,965 research outputs found

    Survey of Finite Element Method-Based Real-Time Simulations

    Get PDF
    The finite element method (FEM) has deservedly gained the reputation of the most powerful, highly efficient, and versatile numerical method in the field of structural analysis. Though typical application of FE programs implies the so-called “off-line” computations, the rapid pace of hardware development over the past couple of decades was the major impetus for numerous researchers to consider the possibility of real-time simulation based on FE models. Limitations of available hardware components in various phases of developments demanded remarkable innovativeness in the quest for suitable solutions to the challenge. Different approaches have been proposed depending on the demands of the specific field of application. Though it is still a relatively young field of work in global terms, an immense amount of work has already been done calling for a representative survey. This paper aims to provide such a survey, which of course cannot be exhaustive

    Chapter 4: simulating a deformable object using a surface mass spring system

    Get PDF
    This paper introduces volume springs that provide the volume effect to a surface model when it is deformed The estimation of the properties of the model takes the real material properties into consideration, where each spring stiffness is derived based on the elasticity, rigidity and compressibility modulus. The proposed model can be adopted to simulate soft objects such as a deformable human breast, and it can be further extended to address other material properties

    Wing flutter boundary prediction using an unsteady Euler aerodynamic method

    Get PDF
    Modifications to an existing three-dimensional, implicit, upwind Euler/Navier-Stokes code (CFL3D Version 2.1) for the aeroelastic analysis of wings are described. These modifications, which were previously added to CFL3D Version 1.0, include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the government flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 degree swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary

    Damage localization map using electromechanical impedance spectrums and inverse distance weighting interpolation: Experimental validation on thin composite structures

    Get PDF
    Piezoelectric sensors are widely used for structure health monitoring technique. In particular, electromechanical impedance techniques give simple and low-cost solutions for detecting damage in composite structures. The purpose of the method proposed in this article is to generate a damage localization map based on both indicators computed from electromechanical impedance spectrums and inverse distance weighting interpolation. The weights for the interpolation have a physical sense and are computed according to an exponential law of the measured attenuation of acoustic waves. One of the main advantages of the method, so-called data-driven method, is that only experimental data are used as inputs for our algorithm. It does not rely on any model. The proposed method has been validated on both one-dimensional and two-dimensional composite structures

    Soft volume simulation using a deformable surface model

    Get PDF
    The aim of the research is to contribute to the modelling of deformable objects, such as soft tissues in medical simulation. Interactive simulation for medical training is a concept undergoing rapid growth as the underlying technologies support the increasingly more realstic and functional training environments. The prominent issues in the deployment of such environments centre on a fine balance between the accuracy of the deformable model and real-time interactivity. Acknowledging the importance of interacting with non-rigid materials such as the palpation of a breast for breast assessment, this thesis has explored the physics-based modelling techniques for both volume and surface approach. This thesis identified that the surface approach based on the mass spring system (MSS) has the benefits of rapid prototyping, reduced mesh complexity, computational efficiency and the support for large material deformation compared to the continuum approach. However, accuracy relative to real material properties is often over looked in the configuration of the resulting model. This thesis has investigated the potential and the feasibility of surface modelling for simulating soft objects regardless of the design of the mesh topology and the non-existence of internal volume discretisation. The assumptions of the material parameters such as elasticity, homogeneity and incompressibility allow a reduced set of material values to be implemented in order to establish the association with the surface configuration. A framework for a deformable surface model was generated in accordance with the issues of the estimation of properties and volume behaviour corresponding to the material parameters. The novel extension to the surface MSS enables the tensile properties of the material to be integrated into an enhanced configuration despite its lack of volume information. The benefits of the reduced complexity of a surface model are now correlated with the improved accuracy in the estimation of properties and volume behaviour. Despite the irregularity of the underlying mesh topology and the absence of volume, the model reflected the original material values and preserved volume with minimal deviations. Global deformation effect which is essential to emulate the run time behaviour of a real soft material upon interaction, such as the palpation of a generic breast, was also demonstrated, thus indicating the potential of this novel technique in the application of soft tissue simulation

    SmartSIM - a virtual reality simulator for laparoscopy training using a generic physics engine

    Get PDF
    International audienceVirtual reality (VR) training simulators have started playing a vital role in enhancing surgical skills, such as hand–eye coordination in laparoscopy, and practicing surgical scenarios that cannot be easily created using physical models. We describe a new VR simulator for basic training in lapa-roscopy, i.e. SmartSIM, which has been developed using a generic open‐source physics engine called the simulation open framework architecture (SOFA). This paper describes the systems perspective of SmartSIM including design details of both hardware and software components, while highlighting the critical design decisions. Some of the distinguishing features of SmartSIM include: (i) an easy‐to‐fabricate custom‐built hardware interface; (ii) use of a generic physics engine to facilitate wider accessibility of our work and flexibility in terms of using various graph-ical modelling algorithms and their implementations; and (iii) an intelligent and smart evaluation mechanism that facilitates unsupervised and independent learning

    Aeroelastic analysis of wings using the Euler equations with a deforming mesh

    Get PDF
    Modifications to the CFL3D three dimensional unsteady Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. The modifications involve including a deforming mesh capability which can move the mesh to continuously conform to the instantaneous shape of the aeroelastically deforming wing, and including the structural equations of motion for their simultaneous time-integration with the governing flow equations. Calculations were performed using the Euler equations to verify the modifications to the code and as a first step toward aeroelastic analysis using the Navier-Stokes equations. Results are presented for the NACA 0012 airfoil and a 45 deg sweptback wing to demonstrate applications of CFL3D for generalized force computations and aeroelastic analysis. Comparisons are made with published Euler results for the NACA 0012 airfoil and with experimental flutter data for the 45 deg sweptback wing to assess the accuracy of the present capability. These comparisons show good agreement and, thus, the CFL3D code may be used with confidence for aeroelastic analysis of wings
    corecore