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Abstract
This paper introduces volume springs that provide

the volume effect to a surface model when it is deformed.
The estimation of the properties of the model takes the
real material properties into consideration, where each
spring stiffness is derived based on the elasticity, rigidity
and compressibility modulus. The proposed model can
be adopted to simulate soft objects such as a deformable
human breast, and it can be further extended to address
other material properties.

Keywords: Deformable Model, Mass Spring Systems,
Volume Preservation

1. Introduction

Soft volume simulation has been employed in
computer animation, product design as well as medical
training. For instance, in medical simulation, the organs
are geometrically modelled into 3 dimensional volumes
based on medical data such as the CT/MRI scans. This
volume data can then be rendered in a virtual
environment based on the organ’s material and
mechanical properties.

However, due to the issue of computational as well
as geometrical complexities, there is a significant interest
in utilising surface data as an alternative to its volume
counterpart. The main issue is the non-existence of
volume information for the surface model. Furthermore
volume simulation requires constant volume preservation
as well as correct volume behaviour during simulation.
Generally, a surface model would collapse under gravity
and without the internal volume, determining the correct
deformation effect would be a challenge.

2. Related Works

The most common method in achieving a volume
model using surface data is by re-meshing the surface
model in order to create internal volume. However, this
creates computational overhead during simulation
imposed by a more complex volume network. The
addition of new artificial springs [1] to the existing
volume mesh produces an object that is stiffer than it
should be [2]. There are also attempts that employ
surface data which addressed shape preservation but not
volume [3][4]. [2] introduced weighted constraints that
control the deformation distribution of the muscle
instead of using additional springs. However, this

method is fundamentally focusing on the local radius of
influence of the interaction and is not influenced by the
orientation of the interaction force.

A more effective shape preserving method has been
embedded into the Mass Spring Systems (MSS) where
the springs are placed at the mesh nodes. They are also
known as the Local Shape Memory [5]. These springs
have been employed to simulate non-linear skin
behaviour of a virtual thigh [6][7]. [8] administered these
springs to preserve object shape during simulation.
However, the stiffness of the springs was either
statistically fine-tuned based on predefined properties [9]
or regularly distributed. [10] extended this method by
extracting the properties of the springs based on radial
links [11][12].

Volume behaviour is influenced by the properties
estimated for the model. Regular properties distribution
is very common where the regular node concentration is
assumed [1][13][14][15]. In the case of irregular node
concentrations, the mesh topology is modified to be as
regular as possible [16][17]. However, when a portion of
the surface model is refined, the regular topology
becomes irregular. Consequently, the properties require
re-estimation within the refined area. [8] attempted
properties re-estimation after surface refinement based
on the topology but the behaviour patterns between the
coarse and the refined area do not coincide. The
behaviour is improved by our method discussed in [10]
where these patterns achieve a higher level of co-
incidence.

3. The Proposed Deformable Model

Figure 1 Interacting with a Deformable Breast
Model

The scope of dynamic behaviour in this research is
within a constrained space, such as a human breast fixed
on a static body (Figure 1). The model is constructed
from the surface mesh and the dynamic behaviour is
achieved by employing the surface MSS with volume



preserving springs. The assumption is that the initial
shape of object is convex with known centre of mass.

To address the issue of properties estimation as well
as the non-existence of inner volume for the proposed
surface model, the object’s internal volume represented
by the surface elements has to be considered. This
framework extended the scheme described in [10], where
a surface mass spring systems with additional shape
preserving springs are employed.

3.1. The Mass Spring Model

The model is made up of nodes and edges as
illustrated by the wireframe breast model in figure 1.
This geometrical topology represents the topology of the
mass spring systems. The proposed model is made up of
the surface springs and the volume springs.

The surface MSS is based on the surface mesh
topology where the springs are represented by the edges
of the triangular elements (Figure 2 (a)). For instance,
the edge that connects the nodes with mass mi and mj is
the spring with stiffness kij.

(a) (b)

Figure 2 Surface MSS a) the surface spring b)
the volume spring

For the spring link ij (Figure 2(a)) , the internal force
Fij is
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, where ||pj–pi|| is the magnitude of the displacement of
the current state of the spring link ij, lij is the rest length
of the spring link, and Kij is the stiffness (spring)
coefficient of the node pair.

The proposed volume spring (Figure 2 (b)) has been
commonly utilised to preserve the shape of the model at
equilibrium. They behave in a similar way as the surface
spring but the rest length of each spring is zero.
Therefore, based on Equation (1), the reaction force at
inner spring will only affect mass at node i,
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,where Ki is the stiffness of the inner spring at node i, p’i

is the new position of node i at runtime and pi is the
anchored position of node i.

In order to not only preserve the object shape but
also maintain a constant object volume during

simulation, the concept of these shape preserving springs
has been extended.

3.2. Volume Relationship

The elasticity modulus of a material is extracted
from the stress and strain relationship of the material,
where a constant magnitude of force is imposed along
the axis parallel to the normal of the surface. This
relationship can be employed to discretise the surface
model into tetrahedral volumes which guide the initial
properties estimation at equilibrium.

In a MSS, the internal and external forces directly
influence the dynamic behaviour of the nodes and not the
triangular elements. Therefore, the volume under the
triangular elements of the surface mesh should be
discretised along the surface normal at the node.

The radial link method in [10] is extended, where
the new distance vector with length Li’, relative to the
object centre of mass, the initial length Li and the surface
normal at the node, are derived. The new volume (Figure
3) is based on node pi relative to the new centre point ci

and the other nodes or vertices of the triangular element.
Therefore, the new centre point ci, relative to the

object centre and the new distance L’i,, has to be derived
from the relationship. The new L’i is the scalar
projection of Li along the normal unit vector at point pi.
Similar discretisation and volume calculation will be
carried out for the other nodes relative to their respective
normals and neighbouring triangles.

This explicit discretisation method is used to guide
the estimation of mass and spring stiffness as the volume
directly influences the amount of mass and the stiffness
of the volume springs at the nodes.

Figure 3 Explicit Discretisation based on the
Normal at i

This approach is more accurate compared to the radial
link method [10]. For instance, for a rectangular prism
with regular mesh topology, the properties for the inner
stiffness and mass for the nodes (as illustrated in figure
4) should be the same. Radial links method (4(b))
produces irregular values based on the irregular volume
discretisation.



(a) (b)

Figure 4 Explicit Discretisation – cross
sectional view (a) proposed approach (b) radial

approach

3.3. The Estimation of Mass and Spring
Stiffness

The total mass of the model has to replicate the total
mass of the real object. Therefore, the estimation method
has to take mass preservation into account. This has to be
true even when the mesh topology is modified.
Therefore, the mass at node i, based on the discretisation
in figure 3, is estimated as
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, where the estimation ratio for each node is the total
volume under the neighbouring triangular elements t (of
which node i is a member) divided by the total volume
for all n nodes, and M is the object mass.

The surface spring stiffness is estimated based on a
distribution algorithm which has been commonly
employed to estimate the behaviour of a membrane with
irregular mesh topology [10] [13] [18] [19].

The stiffness of the volume preserving springs
describes the level of elasticity of the virtual space or
volume represented by the node. Therefore, the value of
the stiffness is influenced by the stress and strain
relationship along the axis parallel to the normal at the
node. The stiffness dimension based on the normal
elasticity (Young’s Modulus) and rigidity (Shear
modulus) is initialised before the simulation. The
dimension is defined as
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, where , KE and KG are the spring stiffness based on
linear elasticity modulus and shear (rigidity) modulus
respectively, E is the Young’s Modulus and v is the
Poisson Ratio of the material.

The behaviour of the spring stiffness at runtime
depends on the orientation of the acting force along each
spring. When force direction is parallel to the normal at i,
the stiffness will be the perfect elastic stiffness. But
when force direction is perpendicular to the normal at i,
the stiffness refers to the shear stiffness. The stiffness Ki

of the spring at each node i is derived at runtime:
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, where N and F are the normal and force at node i.

3.4. Volume Behaviour

In order to preserve volume during simulation, the
spring dimension can be extended to address other
properties such as bulk elasticity as a factor against
volume variation during simulation. Bulk stiffness KB at
node i is
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Volume displacement during simulation can be
derived based on the volume calculation employed in
[2]. This calculation will be correct even when the
surface becomes concave during simulation. Therefore,
force at node i along its normal unit vector at a time step
without any external force interaction on the surface is
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, where ΔV is the volume displacement, and wi is the
weighted constraints that control the distribution of the
volume penalty force. The constraint is generally set to
1, which means the volume change affects all nodes
equally but constrained by their respective bulk stiffness.

Therefore, in order to correctly distribute the
interaction force effect to the object surface, the
weighted constraints have to be correctly distributed
based on the interaction radius of influence where, the
sum of the constraints is equal to the number of nodes.

The radius of influence [2] has been modified and
the interaction force orientation is introduced as the
correction factor. If the surface nodes are within the
radius of influence r, weight at node i is
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, where pi and pf are the position vector of node i and the
position of where force is imposed respectively.

Since the sum of weighted constraints is equal to the
number of nodes [2], the constraint values have to be
normalised. Upon interaction, the direction of the
volume penalty force at node i depends on the position of
node i relative to the point of interaction. Therefore,
based on Equation (3) and (4), the penalty force at node i
is
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4. Empirical Evaluations

The framework for the empirical evaluations has
been implemented on top of Microsoft Visual C++,
OpenGL and OpenHaptics platforms. Phantom Desktop
haptic device has been employed to provide the
interaction and the desktop PC has the specification of
Intel Pentium 4, 2.40 GHz and 1 G RAM. The object
mass is 100 g, and each time step denotes 0.01 s. To
evaluate the estimation method and the feasibility of
having a 3 dimensional stiffness, 2 schemes have been
compared:

 Scheme A : Single stiffness dimension



 Scheme B : The Proposed Deformable Model
(3 stiffness dimensions)

Further comparisons are carried out against the
Finite Element Model (FEM) and volume MSS (VMSS).
The elasticity modulus is re-extracted from the model to
evaluate if the proposed model emulates the same
material behaviour.

4.1. Properties Estimation

The stiffness of the springs is based on the real
elasticity properties of the object material. Therefore, to
evaluate the proposed properties estimation framework,
the Young’s modulus (E) can be derived from the strain
and stress relationship of the proposed deformable model
and compared to the original E. The same experiment is
repeated for other surface mesh complexities. The values
(table 1) demonstrate that the proposed model can
closely emulate the volume material behaviour.

Table 2 Young’s Modulus (E) of the model
compared to the original values (E = 67 pa and

100 pa)

Model
(nodes)

Cube
(602)

Cube
(1352)

Cube
(2402)

E(67 pa) 67.8 66.8 67.0

E(100 pa) 100.07 98.7 98.7

To evaluate the re-estimation of properties, a local
surface area is refined and the properties are then re-
estimated. A constant force is imposed on a node and the
displacement data is collected. The displacement patterns
within the coarse and the refined area are compared [8]
[10]. If the patterns are identical, the deformation
behaviour is preserved despite the change in the mesh
topology. The displacement behaviours are studied
where 2 values are analysed:

 The standard deviation between the 2 patterns
determines their level of co-incidence. The
smaller the standard deviation, the more
identical the patterns are

 The mean deviation of the 2 patterns represents
the error in behaviour after refinement. The
least value indicates the least deviation from the
original behaviour

Figure 5 describes the findings based on a sphere
model with irregular mesh topology to illustrate the
concept. The standard deviations comparison in 5(a)
shows that B produces high level of similarity or
coincidence between the displacement patterns.
Furthermore, scheme B maintains a minimal
displacement deviation for any magnitude of force
compared to scheme A where its deviation increases with
force (5 (b)). Hence, the analysis concludes that the
proposed scheme B preserves the properties and the local
dynamic behaviour with minimal standard deviation
when a local area is refined. Tests have been carried out

on models with various mesh complexities and they also
draw similar conclusions.

Standard Deviation Comparison
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Figure 5 (a) B Denotes the most coincidence in
the displacement patterns (c) B maintains the

least error

4.2. Performance Evaluation

A simple performance test has been carried out to
illustrate that the surface data reduces the computational
cost. Table 2 shows that the average frame per second
(FPS) achieved by the VMSS and the proposed surface
model.

Table 2 Comparing Frame per Second (FPS)

Model
(nodes)

Cube
(602 )

Cube
(135 )

Cube
(2402)

Sphere
(1000)

VMSS 77 37 20 47
Scheme B 80 44 25 77

4.3. Volume Behaviour

To produce a more realistic global deformation
based on the interaction force radius and orientation of
influence, the weighted constraints are manipulated at
runtime. When the weighted constraints are set to 1, the
global deformation as in figure 6 (a) is produced. Upon
interaction, the weighted constraint at each node is
changed during simulation in regards to the radius and



the interaction force orientation at runtime.
Consequently, figure 6 (b) shows that at runtime, the
automatic constraint derivation based on the force
orientation and radius of influence produces a more
realistic behaviour.

(a) (b)

Figure 6 Shape Deformation Effect (a) uniform
constraints (b) constraints extracted at runtime

Other models such as cubes with different surface
mesh complexities have been compared with the FEM
model as analysed by SolidWorks/Cosmos. A shear force
is imposed on the top surface while the opposite surface
is fixed. When compared with FEM, the shape produced
is similar with minor deviation (Figure 7).

Figure 7 Shape Comparison (a) FEM (b) Scheme
B

When a constant force is imposed on the surface, the
object shape changes and deforms. The analysis
concludes that the irregular framework preserves the
object volume with the least volume deviation as
illustrated by the average deviation percentage
comparison in figure 8.
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Figure 8 The Percentage of the Mean Volume
Deviation from the Volume at Rest

5. Conclusions

This paper has illustrated the feasibility of
employing a surface mass spring system that is able to
emulate soft volume behaviour. The proposed model
introduces volume springs which stiffness is extracted
based on the explicit discretisation of the underlying
surface mesh based on the node normal, the
neighbouring triangular elements and the object centre.

The stiffness has 3 dimensions that represent the
level of elasticity, rigidity (shear) and compressibility
(bulk). The runtime extraction of the stiffness during the
simulation is relative to force orientation as well as the
weighted constraints to control the global deformation
effect upon interaction. This addresses the anisotropic
behaviour of the surface nodes.

Local deformation behaviour is preserved regardless
of the mesh resolutions. The global deformation effect is
achieved despite the non-existence of internal volume. It
displays similar behaviour with the FEM model and
produces minimal deviation from the original elasticity
modulus. Furthermore, the computational performance is
better than the volume counterpart. Even though the
proposed method is based on materials that are linearly
elastic, homogeneous and incompressible, it can also be
extended to address other properties.

The framework is currently explored in the ongoing
research in breast simulation. Further evaluations such as
the perception test with the users will be carried out to
verify the visual and haptic feedback experienced by the
users

References

[1] Bourguignon D. and Cani M. P.: Controlling Anisotropy
in Mass-Spring Systems, Computer. Animation and
Simulation 2000, 113-123

[2] Hong M., Jung S., Choi M., Welch S.: Fast Volume
Preservation for a Mass-Spring System, IEEE Computer
Graphics and Applications, September/October 2006, 83-
91

[3] Nedel L. P. and Thalmann D.: Real-Time Muscle
Deformations Using Mass Spring Systems, Proc.
Computer Graphics Int’l, IEEE Press, 1998, pages 156-
165

[4] Aubel A, Thalmann D: Realistic Deformation of Human
Body Shapes, Proc. Computer Animation and Simulation
2000, Interlaken, August 2000, pp. 125-135.

[5] Marchal M., Promayon E.: Troccaz J.: Simulating
Complex Organ Interactions: Evaluation of a Soft Tissue
Discrete Model, ISVC 2005, LNCS 3804, pages 175-182,
© Springer-Verlag Berlin Heidelberg 2005

[6] Mendoza C., Sundaraj K.; Laugier C.: Issues in
Deformable Virtual Objects Simulation with Force
Feedback, International Advanced Robotics Program
(IARP): International Workshop on Human Robot
Interfaces, Rome - Italy, 2002.

[7] Laugier C., Mendoza C., Sundaraj K: Towards a Realistic
Medical Simulator using Virtual Environments and Haptic
Interaction, Robotics Research: The Tenth International



Symposium, Springer Tracts in Advanced Robotics
Volume 6/2003

[8] Choi Y., Hong M., Choi M.; Kim M.: Adaptive Surface-
deformable Model with Shape-preserving Spring, Journals
of Computer Animation and Virtual Worlds, Comp. Anim.
Virtual Worlds 2005, number 16, pages 69-83

[9] Zhang J., Payandeh S., Dill J.: Haptic Subdivision: an
Approach to Defining Level-of-Detail in Haptic
Rendering, Proceedings of the 10 Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator
Systems, Orlando, FL, March, 2002, pages 201-208

[10] Arnab S., Raja V.: Irregular Surface Mesh Topology for
Volumetric Deformable Model, The 4th INTUITION
International Conference and Workshop, 4-5 October
2007 , Athens, Greece

[11] Vassilev T. and Spanlang B.: A Mass-Spring Model for
Real Time Deformable Solids, Proceedings of East-West
Vision 2002, pp. 149-154, Graz, Austria, September 12-
13, 2002

[12] Balaniuk R. and Salisbury K.: Soft Tissue Simulation
using the Radial Element Method, IS4TM-International
Symposium on Surgery Simulation and Soft Tissue
Modelling, France, June 12-13 2003

[13] Gelder A. V.:. Approximate Simulation of Elastic
Membranes by Triangulated Spring Meshes, Journal of
Graphics Tools 1998, 3(2), pages 21-41

[14] Delingette H.: Towards Realistic Soft Tissue Modeling in
Medical Simulation, Proceedings of the IEEE: Special
Issue on Surgery Simulation, 512-523, April 1998

[15] Brown J., Sorkin S., Bruyns C.: Real Time Simulation of
Deformable Objects: Tools and Application, In Comp.
Animation, 2001

[16] Deussen O., Kobbelt., Tucke P.: Using Simulated
Annealing to Obtain Good Nodal Approximations of
Deformable Objects, Computer Animation and Simulation
’95, Springer-Verlag, 1995

[17] Bielser D.: A Framework for Open Surgery Simulation,
Doctor of Technical Sciences Thesis, Swiss Federal
Institute of Technology, ETH, Zurich, 2003

[18] Maciel A., Boulic R., Thalmann D.: Towards a
Parameterization Method for Virtual Soft Tissues Based
on Properties of Biological Tissue, In International
Symposium on Surgery Simulation and Soft Tissue
Modeling, 2003

[19] Lloyd B. A., Szekely G., Harders M.: Identification of
Spring parameters for Deformable Object Simulation,
IEEE Transactions on Visualisation and Computer
Graphics, Vol. 13, No. 5, Sept/Oct 2007


	1
	sylvester-gmai08 final

