1,017 research outputs found

    Toward New Ecologies of Cyberphysical Representational Forms, Scales, and Modalities

    Get PDF
    Research on tangible user interfaces commonly focuses on tangible interfaces acting alone or in comparison with screen-based multi-touch or graphical interfaces. In contrast, hybrid approaches can be seen as the norm for established mainstream interaction paradigms. This dissertation describes interfaces that support complementary information mediations, representational forms, and scales toward an ecology of systems embodying hybrid interaction modalities. I investigate systems combining tangible and multi-touch, as well as systems combining tangible and virtual reality interaction. For each of them, I describe work focusing on design and fabrication aspects, as well as work focusing on reproducibility, engagement, legibility, and perception aspects

    Blending the Material and Digital World for Hybrid Interfaces

    Get PDF
    The development of digital technologies in the 21st century is progressing continuously and new device classes such as tablets, smartphones or smartwatches are finding their way into our everyday lives. However, this development also poses problems, as these prevailing touch and gestural interfaces often lack tangibility, take little account of haptic qualities and therefore require full attention from their users. Compared to traditional tools and analog interfaces, the human skills to experience and manipulate material in its natural environment and context remain unexploited. To combine the best of both, a key question is how it is possible to blend the material world and digital world to design and realize novel hybrid interfaces in a meaningful way. Research on Tangible User Interfaces (TUIs) investigates the coupling between physical objects and virtual data. In contrast, hybrid interfaces, which specifically aim to digitally enrich analog artifacts of everyday work, have not yet been sufficiently researched and systematically discussed. Therefore, this doctoral thesis rethinks how user interfaces can provide useful digital functionality while maintaining their physical properties and familiar patterns of use in the real world. However, the development of such hybrid interfaces raises overarching research questions about the design: Which kind of physical interfaces are worth exploring? What type of digital enhancement will improve existing interfaces? How can hybrid interfaces retain their physical properties while enabling new digital functions? What are suitable methods to explore different design? And how to support technology-enthusiast users in prototyping? For a systematic investigation, the thesis builds on a design-oriented, exploratory and iterative development process using digital fabrication methods and novel materials. As a main contribution, four specific research projects are presented that apply and discuss different visual and interactive augmentation principles along real-world applications. The applications range from digitally-enhanced paper, interactive cords over visual watch strap extensions to novel prototyping tools for smart garments. While almost all of them integrate visual feedback and haptic input, none of them are built on rigid, rectangular pixel screens or use standard input modalities, as they all aim to reveal new design approaches. The dissertation shows how valuable it can be to rethink familiar, analog applications while thoughtfully extending them digitally. Finally, this thesis’ extensive work of engineering versatile research platforms is accompanied by overarching conceptual work, user evaluations and technical experiments, as well as literature reviews.Die Durchdringung digitaler Technologien im 21. Jahrhundert schreitet stetig voran und neue GerĂ€teklassen wie Tablets, Smartphones oder Smartwatches erobern unseren Alltag. Diese Entwicklung birgt aber auch Probleme, denn die vorherrschenden berĂŒhrungsempfindlichen OberflĂ€chen berĂŒcksichtigen kaum haptische QualitĂ€ten und erfordern daher die volle Aufmerksamkeit ihrer Nutzer:innen. Im Vergleich zu traditionellen Werkzeugen und analogen Schnittstellen bleiben die menschlichen FĂ€higkeiten ungenutzt, die Umwelt mit allen Sinnen zu begreifen und wahrzunehmen. Um das Beste aus beiden Welten zu vereinen, stellt sich daher die Frage, wie neuartige hybride Schnittstellen sinnvoll gestaltet und realisiert werden können, um die materielle und die digitale Welt zu verschmelzen. In der Forschung zu Tangible User Interfaces (TUIs) wird die Verbindung zwischen physischen Objekten und virtuellen Daten untersucht. Noch nicht ausreichend erforscht wurden hingegen hybride Schnittstellen, die speziell darauf abzielen, physische GegenstĂ€nde des Alltags digital zu erweitern und anhand geeigneter Designparameter und EntwurfsrĂ€ume systematisch zu untersuchen. In dieser Dissertation wird daher untersucht, wie MaterialitĂ€t und DigitalitĂ€t nahtlos ineinander ĂŒbergehen können. Es soll erforscht werden, wie kĂŒnftige Benutzungsschnittstellen nĂŒtzliche digitale Funktionen bereitstellen können, ohne ihre physischen Eigenschaften und vertrauten Nutzungsmuster in der realen Welt zu verlieren. Die Entwicklung solcher hybriden AnsĂ€tze wirft jedoch ĂŒbergreifende Forschungsfragen zum Design auf: Welche Arten von physischen Schnittstellen sind es wert, betrachtet zu werden? Welche Art von digitaler Erweiterung verbessert das Bestehende? Wie können hybride Konzepte ihre physischen Eigenschaften beibehalten und gleichzeitig neue digitale Funktionen ermöglichen? Was sind geeignete Methoden, um verschiedene Designs zu erforschen? Wie kann man Technologiebegeisterte bei der Erstellung von Prototypen unterstĂŒtzen? FĂŒr eine systematische Untersuchung stĂŒtzt sich die Arbeit auf einen designorientierten, explorativen und iterativen Entwicklungsprozess unter Verwendung digitaler Fabrikationsmethoden und neuartiger Materialien. Im Hauptteil werden vier Forschungsprojekte vorgestellt, die verschiedene visuelle und interaktive Prinzipien entlang realer Anwendungen diskutieren. Die Szenarien reichen von digital angereichertem Papier, interaktiven Kordeln ĂŒber visuelle Erweiterungen von UhrarmbĂ€ndern bis hin zu neuartigen Prototyping-Tools fĂŒr intelligente KleidungsstĂŒcke. Um neue DesignansĂ€tze aufzuzeigen, integrieren nahezu alle visuelles Feedback und haptische Eingaben, um Alternativen zu Standard-EingabemodalitĂ€ten auf starren Pixelbildschirmen zu schaffen. Die Dissertation hat gezeigt, wie wertvoll es sein kann, bekannte, analoge Anwendungen zu ĂŒberdenken und sie dabei gleichzeitig mit Bedacht digital zu erweitern. Dabei umfasst die vorliegende Arbeit sowohl realisierte technische Forschungsplattformen als auch ĂŒbergreifende konzeptionelle Arbeiten, Nutzerstudien und technische Experimente sowie die Analyse existierender Forschungsarbeiten

    Proceedings of the Second International Workshop on Physicality, Physicality 2007

    Get PDF

    Interaction Methods for Smart Glasses : A Survey

    Get PDF
    Since the launch of Google Glass in 2014, smart glasses have mainly been designed to support micro-interactions. The ultimate goal for them to become an augmented reality interface has not yet been attained due to an encumbrance of controls. Augmented reality involves superimposing interactive computer graphics images onto physical objects in the real world. This survey reviews current research issues in the area of human-computer interaction for smart glasses. The survey first studies the smart glasses available in the market and afterwards investigates the interaction methods proposed in the wide body of literature. The interaction methods can be classified into hand-held, touch, and touchless input. This paper mainly focuses on the touch and touchless input. Touch input can be further divided into on-device and on-body, while touchless input can be classified into hands-free and freehand. Next, we summarize the existing research efforts and trends, in which touch and touchless input are evaluated by a total of eight interaction goals. Finally, we discuss several key design challenges and the possibility of multi-modal input for smart glasses.Peer reviewe

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    VRIA: A Web-based Framework for Creating Immersive Analytics Experiences

    Get PDF
    We present, a Web-based framework for creating Immersive Analytics (IA) experiences in Virtual Reality.is built upon WebVR, A-Frame, React and D3.js, and offers a visualization creation workflow which enables users, of different levels of expertise, to rapidly develop Immersive Analytics experiences for the Web. The use of these open-standards Web-based technologies allows us to implement VR experiences in a browser and offers strong synergies with popular visualization libraries, through the HTMLDocument Object Model (DOM). This makesubiquitous and platform-independent. Moreover, by using WebVR’s progressive enhancement, the experiencescreates are accessible on a plethora of devices. We elaborate on our motivation for focusing on open-standards Web technologies, present thecreation workflow and detail the underlying mechanics of our framework. We also report on techniques and optimizations necessary for implementing Immersive Analytics experiences on the Web, discuss scalability implications of our framework, and present a series of use case applications to demonstrate the various features of . Finally, we discuss current limitations of our framework, the lessons learned from its development, and outline further extensions

    The usability attributes and evaluation measurements of mobile media AR (augmented reality)

    Get PDF
    This research aims to develop a tool for creating user-based design interfaces in mobile augmented reality (MAR) education. To develop a design interface evaluation tool, previous literature was examined for key design elements in the educational usage of MAR. The evaluation criteria identified were presence, affordance, and usability. The research used a focus group interview with 7 AR experts to develop a basic usability evaluation checklist, which was submitted to factor analysis for reliability by 122 experts in practice and academia. Based on this checklist, a MAR usability design interface test was conducted with seven fourth-grade elementary students. Then, it conducted follow-up structured interviews and questionnaires. This resulted in 29 questions being developed for the MAR interface design checklist.ope

    LandMarkAR: An application to study virtual route instructions and the design of 3D landmarks for indoor pedestrian navigation with a mixed reality head-mounted display

    Get PDF
    Mixed Reality (MR) interfaces on head-mounted displays (HMDs) have the potential to replace screen-based interfaces as the primary interface to the digital world. They potentially offer a more immersive and less distracting experience compared to mobile phones, allowing users to stay focused on their environment and main goals while accessing digital information. Due to their ability to gracefully embed virtual information in the environment, MR HMDs could potentially alleviate some of the issues plaguing users of mobile pedestrian navigation systems, such as distraction, diminished route recall, and reduced spatial knowledge acquisition. However, the complexity of MR technology presents significant challenges, particularly for researchers with limited programming knowledge. This thesis presents “LandMarkAR” to address those challenges. “LandMarkAR” is a HoloLens application that allows researchers to create augmented territories to study human navigation with MR interfaces, even if they have little programming knowledge. “LandMarkAR” was designed using different methods from human-centered design (HCD), such as design thinking and think-aloud testing, and was developed with Unity and the Mixed Reality Toolkit (MRTK). With “LandMarkAR”, researchers can place and manipulate 3D objects as holograms in real-time, facilitating indoor navigation experiments using 3D objects that serve as turn-by-turn instructions, highlights of physical landmarks, or other information researchers may come up with. Researchers with varying technical expertise will be able to use “LandMarkAR” for MR navigation studies. They can opt to utilize the easy-to-use User Interface (UI) on the HoloLens or add custom functionality to the application directly in Unity. “LandMarkAR” empowers researchers to explore the full potential of MR interfaces in human navigation and create meaningful insights for their studies
    • 

    corecore