24 research outputs found

    MULTI-MODEL SYSTEMS IDENTIFICATION AND APPLICATION

    Get PDF

    Model-based Calibration of Engine Control Units Using Gaussian Process Regression

    Get PDF
    Reducing the number of tests on vehicles is one of the most important requirements for increasing cost efficiency in the calibration process of engine control units (ECU). Here, employing virtual vehicles for a model-based calibration of ECUs is essential. Modelling components for virtual vehicles can be a tedious and time-consuming task. In this context, data-based modelling techniques can be an attractive alternative to physical models to increase efficiency in the modelling process. Data-based models can incorporate unknown nonlinearities encoded in the sampled data, resulting in more accurate models in practice. In combination with automated measurement, data-based modelling can help to significantly accelerate the calibration process. Furthermore, the fast simulation speed of the resulting models allows their implementation into real-time simulation environments, such as Hardware-in-the-Loop (HiL) systems, and thus enables a model-based calibration of the related ECU software function. However, generating appropriate data for learning dynamic models, i.e., the transient Design of Experiments (DoE), is not straightforward, since system boundaries and permissible excitation frequencies are not known beforehand. Thus the training data of the system measurement will be inconsistent and the main challenge of the identification process is to deal with this data to achieve a globally valid model. Furthermore, when dealing with dynamic systems in an automotive context, the Engine Control Unit typically changes operating modes while driving. Thus nonlinearities and changes of physical structures appear, which need to be considered in the model. In this thesis, a modelling system called the Local Gaussian Process Regression (LGPR), is used and adapted in order to receive a flexible modelling approach, which allows an iterative modelling process and obtains robust and globally valid dynamic models. The adapted LGPR approach is employed for the ECU calibration of dynamical automotive systems, which is critical regarding system excitation. Using LGPR, it is possible to measure the system iteratively while exploring the relevant state-space regions and improving the quality of the model step by step. The results show that LGPR is beneficial for iterative modelling of dynamical systems. Compared to the traditional Gaussian Process Regression (GPR) modelling approach, LGPR yields better results regarding the variable system dynamics

    Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling

    Get PDF
    This paper aims at providing an in-depth overview of designing interpretable fuzzy inference models from data within a unified framework. The objective of complex system modelling is to develop reliable and understandable models for human being to get insights into complex real-world systems whose first-principle models are unknown. Because system behaviour can be described naturally as a series of linguistic rules, data-driven fuzzy modelling becomes an attractive and widely used paradigm for this purpose. However, fuzzy models constructed from data by adaptive learning algorithms usually suffer from the loss of model interpretability. Model accuracy and interpretability are two conflicting objectives, so interpretation preservation during adaptation in data-driven fuzzy system modelling is a challenging task, which has received much attention in fuzzy system modelling community. In order to clearly discriminate the different roles of fuzzy sets, input variables, and other components in achieving an interpretable fuzzy model, a taxonomy of fuzzy model interpretability is first proposed in terms of low-level interpretability and high-level interpretability in this paper. The low-level interpretability of fuzzy models refers to fuzzy model interpretability achieved by optimizing the membership functions in terms of semantic criteria on fuzzy set level, while the high-level interpretability refers to fuzzy model interpretability obtained by dealing with the coverage, completeness, and consistency of the rules in terms of the criteria on fuzzy rule level. Some criteria for low-level interpretability and high-level interpretability are identified, respectively. Different data-driven fuzzy modelling techniques in the literature focusing on the interpretability issues are reviewed and discussed from the perspective of low-level interpretability and high-level interpretability. Furthermore, some open problems about interpretable fuzzy models are identified and some potential new research directions on fuzzy model interpretability are also suggested. Crown Copyright © 2008

    Modelling of Driver and Pedestrian Behaviour – A Historical Review

    Get PDF
    Driver and pedestrian behaviour significantly affect the safety and the flow of traffic at the microscopic and macroscopic levels. The driver behaviour models describe the driver decisions made in different traffic flow conditions. Modelling the pedestrian behaviour plays an essential role in the analysis of pedestrian flows in the areas such as public transit terminals, pedestrian zones, evacuations, etc. Driver behaviour models, integrated into simulation tools, can be divided into car-following models and lane-changing models. The simulation tools are used to replicate traffic flows and infer certain regularities. Particular model parameters must be appropriately calibrated to approximate the realistic traffic flow conditions. This paper describes the existing car-following models, lane-changing models, and pedestrian behaviour models. Further, it underlines the importance of calibrating the parameters of microsimulation models to replicate realistic traffic flow conditions and sets the guidelines for future research related to the development of new models and the improvement of the existing ones.</p

    Proceedings. 25. Workshop Computational Intelligence, Dortmund, 26. - 27. November 2015

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 25. Workshops „Computational Intelligence“ des Fachausschusses 5.14 der VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA) , der vom 26. – 27. November 2015 in Dortmund stattfindet

    Proceedings. 22. Workshop Computational Intelligence, Dortmund, 6. - 7. Dezember 2012

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 22. Workshops "Computational Intelligence" des Fachausschusses 5.14 der VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA) der vom 6. - 7. Dezember 2012 in Dortmund stattgefunden hat. Die Schwerpunkte sind Methoden, Anwendungen und Tools für - Fuzzy-Systeme, - Künstliche Neuronale Netze, - Evolutionäre Algorithmen und - Data-Mining-Verfahren sowie der Methodenvergleich anhand von industriellen Anwendungen und Benchmark-Problemen

    Proceedings - 28. Workshop Computational Intelligence, Dortmund, 29. - 30. November 2018

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 28. Workshops Computational Intelligence. Die Schwerpunkte sind Methoden, Anwendungen und Tools für Fuzzy-Systeme, Künstliche Neuronale Netze, Evolutionäre Algorithmen und Data-Mining-Verfahren sowie der Methodenvergleich anhand von industriellen und Benchmark-Problemen

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Data driven nonlinear dynamic models for predicting heavy-duty diesel engine torque and combustion emissions

    Get PDF
    Diesel engines' reliable and durable structures, high torque generation capabilities at low speeds, and fuel consumption efficiencies make them irreplaceable for heavy-duty vehicles in the market. However, ine ciencies in the combustion process result in the release of emissions to the environment. In addition to the restrictive international regulations for emissions, the competitive demands for more powerful engines and increasing fuel prices obligate heavy-duty engine and vehicle manufacturers to seek for solutions to reduce the emissions while meeting the performance requirements. In line with these objectives, remarkable progress has been made in modern diesel engine systems such as air handling, fuel injection, combustion, and after-treatment. However, such systems utilize quite sophisticated equipment with a large number of calibratable parameters that increases the experimentation time and effort to find the optimal operating points. Therefore, a dynamic model-based transient calibration is required for an e cient combustion optimization which obeys the emission limits, and meets the desired power and efficiency requirements. This thesis is about developing optimizationoriented high delity nonlinear dynamic models for predicting heavy-duty diesel engine torque and combustion emissions. Contributions of the thesis are: (i) A new design of experiments is proposed where air-path and fuel-path input channels are excited by chirp signals with varying frequency pro les in terms of the number and directions of the sweeps. The proposed approach is a strong alternative to the steady-state experiment based approaches to reduce the testing time considerably and improve the modeling accuracy in both steady-state and transient conditions. (ii) A nonlinear nite impulse response (NFIR) model is developed to predict indicated torque by including the estimations of friction, pumping and inertia torques in addition to the torque measured from the engine dynamometer. (iii) Two different nonlinear autoregressive with exogenous input (NARX) models are proposed to predict NOx emissions. In the first structure, input regressor set for the nonlinear part of the model is reduced by an orthogonal least square (OLS) algorithm to increase the robustness and decrease the sensitivity to parameter changes, and linear output feedback is employed. In the second structure, only the previous output is used as the output regressor in the model due to the stability considerations. (iv) An analysis of model sensitivities to parameter changes is conducted and an easy-tointerpret map is introduced to select the best modeling parameters with limited testing time in powertrain development. (v) Soot (particulated matter) emission is predicted using LSTM type networks which provide more accurate and smoother predictions than NARX models. Experimental results obtained from the engine dynamometer tests show the e ectiveness of the proposed models in terms of prediction accuracies in both NEDC (New European Driving Cycle) and WHTC (World Harmonized Transient Cycle) cycle
    corecore