11,720 research outputs found

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Let Your CyberAlter Ego Share Information and Manage Spam

    Full text link
    Almost all of us have multiple cyberspace identities, and these {\em cyber}alter egos are networked together to form a vast cyberspace social network. This network is distinct from the world-wide-web (WWW), which is being queried and mined to the tune of billions of dollars everyday, and until recently, has gone largely unexplored. Empirically, the cyberspace social networks have been found to possess many of the same complex features that characterize its real counterparts, including scale-free degree distributions, low diameter, and extensive connectivity. We show that these topological features make the latent networks particularly suitable for explorations and management via local-only messaging protocols. {\em Cyber}alter egos can communicate via their direct links (i.e., using only their own address books) and set up a highly decentralized and scalable message passing network that can allow large-scale sharing of information and data. As one particular example of such collaborative systems, we provide a design of a spam filtering system, and our large-scale simulations show that the system achieves a spam detection rate close to 100%, while the false positive rate is kept around zero. This system has several advantages over other recent proposals (i) It uses an already existing network, created by the same social dynamics that govern our daily lives, and no dedicated peer-to-peer (P2P) systems or centralized server-based systems need be constructed; (ii) It utilizes a percolation search algorithm that makes the query-generated traffic scalable; (iii) The network has a built in trust system (just as in social networks) that can be used to thwart malicious attacks; iv) It can be implemented right now as a plugin to popular email programs, such as MS Outlook, Eudora, and Sendmail.Comment: 13 pages, 10 figure

    TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs

    Full text link
    Given a large graph, how can we determine similarity between nodes in a fast and accurate way? Random walk with restart (RWR) is a popular measure for this purpose and has been exploited in numerous data mining applications including ranking, anomaly detection, link prediction, and community detection. However, previous methods for computing exact RWR require prohibitive storage sizes and computational costs, and alternative methods which avoid such costs by computing approximate RWR have limited accuracy. In this paper, we propose TPA, a fast, scalable, and highly accurate method for computing approximate RWR on large graphs. TPA exploits two important properties in RWR: 1) nodes close to a seed node are likely to be revisited in following steps due to block-wise structure of many real-world graphs, and 2) RWR scores of nodes which reside far from the seed node are proportional to their PageRank scores. Based on these two properties, TPA divides approximate RWR problem into two subproblems called neighbor approximation and stranger approximation. In the neighbor approximation, TPA estimates RWR scores of nodes close to the seed based on scores of few early steps from the seed. In the stranger approximation, TPA estimates RWR scores for nodes far from the seed using their PageRank. The stranger and neighbor approximations are conducted in the preprocessing phase and the online phase, respectively. Through extensive experiments, we show that TPA requires up to 3.5x less time with up to 40x less memory space than other state-of-the-art methods for the preprocessing phase. In the online phase, TPA computes approximate RWR up to 30x faster than existing methods while maintaining high accuracy.Comment: 12pages, 10 figure

    Semantic Concept Co-Occurrence Patterns for Image Annotation and Retrieval.

    Get PDF
    Describing visual image contents by semantic concepts is an effective and straightforward way to facilitate various high level applications. Inferring semantic concepts from low-level pictorial feature analysis is challenging due to the semantic gap problem, while manually labeling concepts is unwise because of a large number of images in both online and offline collections. In this paper, we present a novel approach to automatically generate intermediate image descriptors by exploiting concept co-occurrence patterns in the pre-labeled training set that renders it possible to depict complex scene images semantically. Our work is motivated by the fact that multiple concepts that frequently co-occur across images form patterns which could provide contextual cues for individual concept inference. We discover the co-occurrence patterns as hierarchical communities by graph modularity maximization in a network with nodes and edges representing concepts and co-occurrence relationships separately. A random walk process working on the inferred concept probabilities with the discovered co-occurrence patterns is applied to acquire the refined concept signature representation. Through experiments in automatic image annotation and semantic image retrieval on several challenging datasets, we demonstrate the effectiveness of the proposed concept co-occurrence patterns as well as the concept signature representation in comparison with state-of-the-art approaches
    corecore