1,075 research outputs found

    Memory-full context-aware predictive mobility management in dual connectivity 5G networks

    Get PDF
    Network densification with small cell deployment is being considered as one of the dominant themes in the fifth generation (5G) cellular system. Despite the capacity gains, such deployment scenarios raise several challenges from mobility management perspective. The small cell size, which implies a small cell residence time, will increase the handover (HO) rate dramatically. Consequently, the HO latency will become a critical consideration in the 5G era. The latter requires an intelligent, fast and light-weight HO procedure with minimal signalling overhead. In this direction, we propose a memory-full context-aware HO scheme with mobility prediction to achieve the aforementioned objectives. We consider a dual connectivity radio access network architecture with logical separation between control and data planes because it offers relaxed constraints in implementing the predictive approaches. The proposed scheme predicts future HO events along with the expected HO time by combining radio frequency performance to physical proximity along with the user context in terms of speed, direction and HO history. To minimise the processing and the storage requirements whilst improving the prediction performance, a user-specific prediction triggering threshold is proposed. The prediction outcome is utilised to perform advance HO signalling whilst suspending the periodic transmission of measurement reports. Analytical and simulation results show that the proposed scheme provides promising gains over the conventional approach

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    Cognitive networking for next generation of cellular communication systems

    Get PDF
    This thesis presents a comprehensive study of cognitive networking for cellular networks with contributions that enable them to be more dynamic, agile, and efficient. To achieve this, machine learning (ML) algorithms, a subset of artificial intelligence, are employed to bring such cognition to cellular networks. More specifically, three major branches of ML, namely supervised, unsupervised, and reinforcement learning (RL), are utilised for various purposes: unsupervised learning is used for data clustering, while supervised learning is employed for predictions on future behaviours of networks/users. RL, on the other hand, is utilised for optimisation purposes due to its inherent characteristics of adaptability and requiring minimal knowledge of the environment. Energy optimisation, capacity enhancement, and spectrum access are identified as primary design challenges for cellular networks given that they are envisioned to play crucial roles for 5G and beyond due to the increased demand in the number of connected devices as well as data rates. Each design challenge and its corresponding proposed solution are discussed thoroughly in separate chapters. Regarding energy optimisation, a user-side energy consumption is investigated by considering Internet of things (IoT) networks. An RL based intelligent model, which jointly optimises the wireless connection type and data processing entity, is proposed. In particular, a Q-learning algorithm is developed, through which the energy consumption of an IoT device is minimised while keeping the requirement of the applications--in terms of response time and security--satisfied. The proposed methodology manages to result in 0% normalised joint cost--where all the considered metrics are combined--while the benchmarks performed 54.84% on average. Next, the energy consumption of radio access networks (RANs) is targeted, and a traffic-aware cell switching algorithm is designed to reduce the energy consumption of a RAN without compromising on the user quality-of-service (QoS). The proposed technique employs a SARSA algorithm with value function approximation, since the conventional RL methods struggle with solving problems with huge state spaces. The results reveal that up to 52% gain on the total energy consumption is achieved with the proposed technique, and the gain is observed to reduce when the scenario becomes more realistic. On the other hand, capacity enhancement is studied from two different perspectives, namely mobility management and unmanned aerial vehicle (UAV) assistance. Towards that end, a predictive handover (HO) mechanism is designed for mobility management in cellular networks by identifying two major issues of Markov chains based HO predictions. First, revisits--which are defined as a situation whereby a user visits the same cell more than once within the same day--are diagnosed as causing similar transition probabilities, which in turn increases the likelihood of making incorrect predictions. This problem is addressed with a structural change; i.e., rather than storing 2-D transition matrix, it is proposed to store 3-D one that also includes HO orders. The obtained results show that 3-D transition matrix is capable of reducing the HO signalling cost by up to 25.37%, which is observed to drop with increasing randomness level in the data set. Second, making a HO prediction with insufficient criteria is identified as another issue with the conventional Markov chains based predictors. Thus, a prediction confidence level is derived, such that there should be a lower bound to perform HO predictions, which are not always advantageous owing to the HO signalling cost incurred from incorrect predictions. The outcomes of the simulations confirm that the derived confidence level mechanism helps in improving the prediction accuracy by up to 8.23%. Furthermore, still considering capacity enhancement, a UAV assisted cellular networking is considered, and an unsupervised learning-based UAV positioning algorithm is presented. A comprehensive analysis is conducted on the impacts of the overlapping footprints of multiple UAVs, which are controlled by their altitudes. The developed k-means clustering based UAV positioning approach is shown to reduce the number of users in outage by up to 80.47% when compared to the benchmark symmetric deployment. Lastly, a QoS-aware dynamic spectrum access approach is developed in order to tackle challenges related to spectrum access, wherein all the aforementioned types of ML methods are employed. More specifically, by leveraging future traffic load predictions of radio access technologies (RATs) and Q-learning algorithm, a novel proactive spectrum sensing technique is introduced. As such, two different sensing strategies are developed; the first one focuses solely on sensing latency reduction, while the second one jointly optimises sensing latency and user requirements. In particular, the proposed Q-learning algorithm takes the future load predictions of the RATs and the requirements of secondary users--in terms of mobility and bandwidth--as inputs and directs the users to the spectrum of the optimum RAT to perform sensing. The strategy to be employed can be selected based on the needs of the applications, such that if the latency is the only concern, the first strategy should be selected due to the fact that the second strategy is computationally more demanding. However, by employing the second strategy, sensing latency is reduced while satisfying other user requirements. The simulation results demonstrate that, compared to random sensing, the first strategy decays the sensing latency by 85.25%, while the second strategy enhances the full-satisfaction rate, where both mobility and bandwidth requirements of the user are simultaneously satisfied, by 95.7%. Therefore, as it can be observed, three key design challenges of the next generation of cellular networks are identified and addressed via the concept of cognitive networking, providing a utilitarian tool for mobile network operators to plug into their systems. The proposed solutions can be generalised to various network scenarios owing to the sophisticated ML implementations, which renders the solutions both practical and sustainable

    Self-Evolving Integrated Vertical Heterogeneous Networks

    Full text link
    6G and beyond networks tend towards fully intelligent and adaptive design in order to provide better operational agility in maintaining universal wireless access and supporting a wide range of services and use cases while dealing with network complexity efficiently. Such enhanced network agility will require developing a self-evolving capability in designing both the network architecture and resource management to intelligently utilize resources, reduce operational costs, and achieve the coveted quality of service (QoS). To enable this capability, the necessity of considering an integrated vertical heterogeneous network (VHetNet) architecture appears to be inevitable due to its high inherent agility. Moreover, employing an intelligent framework is another crucial requirement for self-evolving networks to deal with real-time network optimization problems. Hence, in this work, to provide a better insight on network architecture design in support of self-evolving networks, we highlight the merits of integrated VHetNet architecture while proposing an intelligent framework for self-evolving integrated vertical heterogeneous networks (SEI-VHetNets). The impact of the challenges associated with SEI-VHetNet architecture, on network management is also studied considering a generalized network model. Furthermore, the current literature on network management of integrated VHetNets along with the recent advancements in artificial intelligence (AI)/machine learning (ML) solutions are discussed. Accordingly, the core challenges of integrating AI/ML in SEI-VHetNets are identified. Finally, the potential future research directions for advancing the autonomous and self-evolving capabilities of SEI-VHetNets are discussed.Comment: 25 pages, 5 figures, 2 table

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    Resource Management in Multi-Access Edge Computing (MEC)

    Get PDF
    This PhD thesis investigates the effective ways of managing the resources of a Multi-Access Edge Computing Platform (MEC) in 5th Generation Mobile Communication (5G) networks. The main characteristics of MEC include distributed nature, proximity to users, and high availability. Based on these key features, solutions have been proposed for effective resource management. In this research, two aspects of resource management in MEC have been addressed. They are the computational resource and the caching resource which corresponds to the services provided by the MEC. MEC is a new 5G enabling technology proposed to reduce latency by bringing cloud computing capability closer to end-user Internet of Things (IoT) and mobile devices. MEC would support latency-critical user applications such as driverless cars and e-health. These applications will depend on resources and services provided by the MEC. However, MEC has limited computational and storage resources compared to the cloud. Therefore, it is important to ensure a reliable MEC network communication during resource provisioning by eradicating the chances of deadlock. Deadlock may occur due to a huge number of devices contending for a limited amount of resources if adequate measures are not put in place. It is crucial to eradicate deadlock while scheduling and provisioning resources on MEC to achieve a highly reliable and readily available system to support latency-critical applications. In this research, a deadlock avoidance resource provisioning algorithm has been proposed for industrial IoT devices using MEC platforms to ensure higher reliability of network interactions. The proposed scheme incorporates Banker’s resource-request algorithm using Software Defined Networking (SDN) to reduce communication overhead. Simulation and experimental results have shown that system deadlock can be prevented by applying the proposed algorithm which ultimately leads to a more reliable network interaction between mobile stations and MEC platforms. Additionally, this research explores the use of MEC as a caching platform as it is proclaimed as a key technology for reducing service processing delays in 5G networks. Caching on MEC decreases service latency and improve data content access by allowing direct content delivery through the edge without fetching data from the remote server. Caching on MEC is also deemed as an effective approach that guarantees more reachability due to proximity to endusers. In this regard, a novel hybrid content caching algorithm has been proposed for MEC platforms to increase their caching efficiency. The proposed algorithm is a unification of a modified Belady’s algorithm and a distributed cooperative caching algorithm to improve data access while reducing latency. A polynomial fit algorithm with Lagrange interpolation is employed to predict future request references for Belady’s algorithm. Experimental results show that the proposed algorithm obtains 4% more cache hits due to its selective caching approach when compared with case study algorithms. Results also show that the use of a cooperative algorithm can improve the total cache hits up to 80%. Furthermore, this thesis has also explored another predictive caching scheme to further improve caching efficiency. The motivation was to investigate another predictive caching approach as an improvement to the formal. A Predictive Collaborative Replacement (PCR) caching framework has been proposed as a result which consists of three schemes. Each of the schemes addresses a particular problem. The proactive predictive scheme has been proposed to address the problem of continuous change in cache popularity trends. The collaborative scheme addresses the problem of cache redundancy in the collaborative space. Finally, the replacement scheme is a solution to evict cold cache blocks and increase hit ratio. Simulation experiment has shown that the replacement scheme achieves 3% more cache hits than existing replacement algorithms such as Least Recently Used, Multi Queue and Frequency-based replacement. PCR algorithm has been tested using a real dataset (MovieLens20M dataset) and compared with an existing contemporary predictive algorithm. Results show that PCR performs better with a 25% increase in hit ratio and a 10% CPU utilization overhead

    Network Latency in Teleoperation of Connected and Autonomous Vehicles:A Review of Trends, Challenges, and Mitigation Strategies

    Get PDF
    With remarkable advancements in the development of connected and autonomous vehicles (CAVs), the integration of teleoperation has become crucial for improving safety and operational efficiency. However, teleoperation faces substantial challenges, with network latency being a critical factor influencing its performance. This survey paper explores the impact of network latency along with state-of-the-art mitigation/compensation approaches. It examines cascading effects on teleoperation communication links (i.e., uplink and downlink) and how delays in data transmission affect the real-time perception and decision-making of operators. By elucidating the challenges and available mitigation strategies, the paper offers valuable insights for researchers, engineers, and practitioners working towards the seamless integration of teleoperation in the evolving landscape of CAVs

    A Survey of Beam Management for mmWave and THz Communications Towards 6G

    Full text link
    Communication in millimeter wave (mmWave) and even terahertz (THz) frequency bands is ushering in a new era of wireless communications. Beam management, namely initial access and beam tracking, has been recognized as an essential technique to ensure robust mmWave/THz communications, especially for mobile scenarios. However, narrow beams at higher carrier frequency lead to huge beam measurement overhead, which has a negative impact on beam acquisition and tracking. In addition, the beam management process is further complicated by the fluctuation of mmWave/THz channels, the random movement patterns of users, and the dynamic changes in the environment. For mmWave and THz communications toward 6G, we have witnessed a substantial increase in research and industrial attention on artificial intelligence (AI), reconfigurable intelligent surface (RIS), and integrated sensing and communications (ISAC). The introduction of these enabling technologies presents both open opportunities and unique challenges for beam management. In this paper, we present a comprehensive survey on mmWave and THz beam management. Further, we give some insights on technical challenges and future research directions in this promising area.Comment: accepted by IEEE Communications Surveys & Tutorial
    corecore