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I. INTRODUCTION

HE ambitious capacity and performance targets of the

fifth generation (5G) cellular system motivated academic,
industrial and standardisation bodies to identify three main
themes for the 2020 era. These include network densification
with massive deployment of small cells, spectrum aggregation
with wider allocations at high frequency bands, and multiple-
input multiple-output (MIMO) antenna systems with improved
spectral efficiency [1], [2]. Since the propagation and path
loss increases dramatically at high frequency bands, the latter
can only be used in local area and small cell deployment
scenarios. In other words, network densification and spectrum
extension are highly correlated and they share the same
deployment theme: small cells. Despite the potential gains,
mobility management becomes complex in such scenarios, and
the conventional approaches may not be suitable from sig-
nalling load, monitoring overhead and handover (HO) latency
perspectives.

Typically, any cellular system includes a network and mo-
bile devices, where the former consists of a core-network and a
radio access network (RAN). In cellular terminology, the RAN
consists of several base stations (BSs) that transmit/receive
data and control signals to/from the mobile devices over the air
interface. The users camp on the network by selecting the BS
that offers the highest signal strength (SS) and/or signal quality
(SQ). When the users move, the SS/SQ of the serving BS
degrades while the SS/SQ of a neighbouring BS(s) increases.

This results in a cell reselection operation (if the user is in
idle mode) or a HO operation (if the user is in active mode).

Such an operation requires the user equipment (UE), i.e.,
the mobile device, to continuously monitor SS/SQ of the
serving and the neighbouring BSs. The monitoring is per-
formed at measurement gaps during which the UE cannot
transmit/receive data. For instance, with a measurement gap
periodicity of 200 ms the UE suspends the data transmis-
sion/reception every 200 ms. In dense deployment scenarios,
the rate of change in SS/SQ measurements will be higher
than in current systems due to the smaller cell size and
the large number of available candidates. A fast tracking
of this behaviour requires increasing the measurement gap
periodicity. In addition, a longer measurement gap may be
required when there are several candidate BSs to be monitored
(i.e., in dense deployment scenarios) or when the neighbouring
BSs are operating in several portions of the spectrum. These
enhancements for SS/SQ monitoring could come at the ex-
pense of reducing the achievable data rate and degrading the
quality-of-service (QoS) because more time domain resources
are being reserved for the monitoring process without being
used for data transmission.

At the signalling dimension, the cell reselection process is
mobility-friendly, since cell reselection is performed by the
UE without (or with a minimal) signalling exchange. The
rationale to maintain the reselection decision at the UE side
can be justified since the reselection process does not require
resource release at the source BS or resource assignment at
the target BS. On the other hand, the HO process requires
signalling exchange in a fast, reliable and accurate manner to
avoid service disruption. Each HO includes a decision phase
where the target BS is determined, a preparation phase where
the source and the target BSs exchange the UE parameters
and allocate the radio resources, an execution phase where
the UE disconnects from the source BS and accesses the target
BS, and a completion phase where the data plane path at the
core-network is switched towards the target BS. These phases
requires multiple signalling exchange as follows.

« Signalling exchange between the UE and the serving BS.

« Signalling exchange between the UE and the target BS.

« Signalling exchange between the serving BS and the
target BS.

« Signalling exchange between the serving/target BS and
the core-network.



This procedure is triggered for each HO, thus the signalling
load increases linearly with the number of HOs. Since the HO
rates are expected to increase significantly in dense deploy-
ment scenarios, the associated signalling load may increase
dramatically. In this direction, the overhead could degrade the
performance in both the RAN side and the core-network side.

At the latency dimension, the small cell size requires fast
HO procedures to ensure a successful HO. The latter can be
achieved only when the SS/SQ stays above a certain threshold
during the HO process, see [3] for the HO success/failure
conditions. Based on current standards such as the long term
evolution (LTE), the overall HO latency is in the range of
100—200 ms which is sufficient for the current density levels.
Due to the high SS/SQ rate of change in dense deployment sce-
narios, a faster and light-weight procedure is required to ensure
that the HO process is completed before the success/failure
threshold is reached.

In this paper, we tackle these challenges by proposing a
predictive mobility management scheme that predicts future
HO events along with the expected HO time to enable fast
and advance signalling exchange with minimal overhead and
latency in dense deployments scenarios. A futuristic dual
connectivity RAN architecture with logical separation between
control and data planes is considered due its unique features
and intrinsic signalling-efficient design. The proposed scheme
includes short-term and long-term memories, and it combines
radio frequency (RF) performance to physical proximity along
with the UE contextual information in terms of speed, di-
rection and HO history. To minimise the processing and the
storage requirements whilst improving the prediction and HO
performance, a user-specific prediction triggering threshold
is proposed. A switching criteria between advance and con-
ventional HO signalling is defined, resulting in a predictive
HO scheme with two operation modes. Analytical and system
level simulation results show promising gains in the proposed
scheme w.r.t. the conventional approach.

The reminder of this paper is structured as follows: Sec-
tion II describes the network architecture and presents the
main components of the proposed scheme. Section III develops
the prediction model utilising a memory-full approach, while
Section IV models the context-aware unita to aid the predic-
tion outcome and the HO decision. Section V presents and
discusses numerical and simulation results. Finally, Section VI
concludes the paper.

II. NETWORK ARCHITECTURE AND PROPOSED SCHEME

We propose a memory-full context-aware HO scheme with
mobility prediction and advance signalling to achieve a light-
weight, signalling-efficient and fast HO procedure. We con-
sider the dual connectivity RAN architecture with control/data
plane separation [4] as it has been identified by the third
generation partnership project (3GPP) as one of the candidate
5G RAN features [5]. Fig. 1 shows a high level overview
of this architecture. It consists of a control base station (CBS)
layer and a data base station (DBS) layer. The former is formed
of macro BSs deployed at low frequency bands to provide
ubiquitous connectivity, while the latter is formed of small
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Figure 1: Dual Connectivity RAN with control/data plane separation

BSs deployed at high (or low) frequency bands to provide on-
demand high data rate transmission. The control/data separa-
tion architecture (CDSA) requires the active UE to maintain
a dual connection with both the CBS and the DBS, while
idle UE (and detached UE accessing the network) maintain a
single connection with the CBS only [4], [6], [7]. The DBS
is invisible to both detached and idle UE, and its on-demand
connection with the active UE is established and assisted by
the CBS.

The dual connection feature of the CDSA coupled with con-
textual information enable implementing fast and predictive
HO schemes at the DBS layer. Predicting the UE mobility (at
DBS level rather than the exact location) allows the source
and the candidate DBSs to prepare and reserve resources in
advance, which in turn could simplify the HO process and
minimise the associated monitoring overhead, RAN signalling
and interruption time [8], [9]. In the conventional RAN
architecture, the predictive strategies have tight constraints
since an incorrect prediction with a break-before-make HO
can lead to detaching the UE from the network. In other
words, an incorrect prediction in the conventional RAN does
not only increase the HO latency and signalling overhead, but
also it requires a new UE-network connection establishment.
On the other hand, the CDSA offers relaxed constraints
in implementing predictive HO management strategies. An
incorrect DBS prediction in the CDSA does not require UE-
network connection re-establishment, since the UE maintains
another low rate connection with the CBS. In this direction, we
propose predictive mobility management at DBS-level under
CDSA configuration.

The proposed scheme depends on DBS SS and/or SQ
prediction performed by the UE. This prediction is aided
by UE context information such as location, direction and
speed, in addition to statistical historical information based
on either the UE HO history or the aggregated per-DBS
Neighbour List (NL) HO history. A short-term memory for
the RF measurements and a long-term memory for the HO
history are considered, hence we describe this scheme as a
memory-full context-aware mobility management approach.
The predicted DBS is reported on an event basis to the
serving (i.e., the source) DBS, which decides the reporting
criteria and the HO mode to be followed by the UE. The
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Figure 2: System model of the memory-full context-aware predictive handover scheme

prediction process is triggered only once when a certain
prediction triggering threshold is reached. As shown in Fig. 2,
the memory-full context-aware predictive DBS HO scheme
comprises a location and span estimation unit, a SS and SQ
prediction unit, a history prediction unit, a prediction analysis
unit, a reporting unit, a HO mode decision unit and a HO
mode switch unit.

The UE periodically measures SS and SQ of the serving
DBS and the top-m other detectable DBSs at every measure-
ment gap as in current standards. The 3GPP Measurement
Reporting and Control (MRC) [10] may be re-used as an
example of this measurement and optional reporting mecha-
nism. The reported strongest or best quality DBSs are limited
to m per DBS categorisation as the measurement interval
is limited and measurement power consumption and normal
transmission need to be balanced against the accurate mea-
surement report (MR) cycle. The SS and SQ prediction unit
stores measurements of a subset of the top-m detectable DBSs
that reside within the angular span of the UE direction/speed.
The location and span estimation unit triggers the prediction
process when the UE reaches the inner edge of cell (EoC)
boundary of the serving DBS. The latter can be defined based
on a distance threshold or a SS/SQ threshold. When the
prediction is triggered, the SS and SQ prediction unit uses the
stored measurements to predict SS and/or SQ of the serving
DBS and the candidate DBSs.

The prediction analysis unit evaluates the predicted SS/SQ
to determine if a certain DBS HO criteria is satisfied. If the
predicted SS and/or SQ of a neighbouring DBS meets the HO
criteria, then the prediction analysis unit queries the history
prediction unit. The latter provides the prediction analysis unit
with the probability of successful HO based on either the
UE HO history or the DBS aggregated HO history. Based on
these metrics as well as the predicted HO time, the prediction
analysis unit may command the reporting unit to generate a
new light-weight report called predictive measurement report

(PrMR) and sends it to the serving DBS. This PrMR is sent
only once as opposed to the periodic MR transmission in
the conventional HO approach. At the serving DBS side, the
HO mode decision unit evaluates the PrMR and commands
the UE to operate either in a predictive mode or revert back
to the conventional non-predictive mode. In the former, the
conventional MR is suspended, the HO-related RAN signalling
is performed in advance and HO control is delegated to the
UE. On the other hand, the non-predictive mode follows the
conventional HO procedure where the HO decision is taken
by the serving DBS after the HO criteria is met. Fig 3 shows a
signalling flow diagram for the HO process based on the LTE
X2 HO approach. The operation, algorithms and interactions
of the proposed units are formulated and described in the
following sections.

III. MEMORY-FULL PREDICTION UNITS
A. Signal Strength/Quality Prediction

Fig. 4 shows an exemplary operation of the SS and SQ
prediction unit. It contains a short-term memory that stores
the most recent n active state measurements of the DBSs
that reside within the angular span of the UE direction/speed.
In other words, the SS/SQ prediction window size is n
measurements per DBS. The SS/SQ prediction is based on
measurement trends. To minimise the UE storage requirements
and remove signal fading/fluctuation effects, Grey system
theory [11] is adopted as the trending approach. The Grey
theory has been used in several fields, e.g., for disaster, season
and sequence prediction. It requires limited amount of input
data and implicitly averages this data. The basic concept
depends on translating the data sequence into a monotonic
increasing function, representing this function by a differential
equation and solving it to find the model’s parameters. For the
problem under study (i.e., SS/SQ prediction), a GM(l,l)1 Grey

" the first 1 means the model uses first order differential equations, while the
second 1 means there is one variable.
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model [11] can be constructed for each DBS as:

e The original SS/SQ measurements stored in the short-
term memory are represented as a time series given by:

vy = (570, @,y m) .

where the superscript (0) means original SS/SQ measure-
ments (i.e., before processing) and ¢ = 1, 2, 3, ..., n is
the measurement index.
e An accumulated generating operation (AGO) translates
<0>( ) to a monotonic increasing function y* >(i) as:
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Figure 4: Exemplary operation of the signal strength and signal
quality prediction unit

« Based on (2), an inverse accumulated generating opera-
tion (IAGO) can be formulated as:

y )=y y'(3). 3)

« The GM(1,1) model is defined by the following equation:
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where ¢ is the develop parameter and b is the grey input.
The solution to (4) at time index i is:
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By substituting the IAGO of (3) in (5), the predicted SS/SQ
one measurement gap in advance ypo (i41) can be expressed
as:

b
a
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Similarly, the predicted SS/SQ 7 measurement gaps in advance
can be formulated as:
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Equation (7) can be used to predicted a series of SS/SQ
measurements. However, the model parameters a and b need
to be calculated before the prediction is performed. These
parameters can be obtained by expressing the derivative in

4) as:
dy< )

= Syi41)

W
qu y (i), ®)



and the right hand side of (8) can be replaced with y'* (i +1)
based on the IAGO of (3), i.e.,

dy<1> ).
—_ 1). 9
- Y+ ©)
The mean value of adjacent SS/SQ measurements is:
_ 1 N .
20 =5y + 5y -1 =y ().

Based on (9) and (10), the Grey differential equation of (4)
can be rewritten as:

v ) +a M) =0

(10)

Y

Rearranging (11) and writing the resultant equation in a matrix
form yields:

v @ = (@) 1
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y6) | _ ) RERC
v (n) O
finally, @ and b can be obtained by solving (12), i.e.,
=) 1] [
(1) (0)
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The SS and SQ prediction unit uses this model to predict SS
and SQ of the serving DBS and a subset of the top-m other
detectable DBSs. These results are fed to the prediction analy-
sis unit. It is worth mentioning that other trending techniques,
such as polynomial fitting or sample extrapolation, can be used
instead of the Grey model.

The expected HO time can be predicted based on rate of
SS/SQ degradation. The measurement prediction is a time-
series prediction, and it is performed on a sample-basis. Thus
if the measurement gap A, is constant (such as in current
standards), the SS and SQ prediction unit predicts a series of
measurements until the HO criteria is satisfied (see Fig. 4).
For example, if the prediction is performed for I, samples in
advance (i.e., assuming that the current measurement index is
n, and the predicted SS/SQ that satisfies the HO criteria has
index n + I,), then the predicted remaining time for HO is:

Predicted HO time = I, - A,. (14)

B. History Prediction

The history prediction unit provides statistical historical
information based on a long-term memory that helps the
prediction analysis unit to confirm or reject the measurement-
based HO prediction. It calculates the HO probability from
the serving DBS to the predicted DBS based on either the
aggregated NL HO history [12], [13] or the UE HO history.
The former is already available in current standards at the
network side in the form of a HO frequency table, and it
provides statistical information based on the crowd behaviour.
Table I provides an illustrative example of the NL. HO history

Table I: Aggregated handover history in the long-term memory

To
From
DBS, | DBS, DBS, | DBS,
DBS, 0 Cab Cak Cay
DBSb Cb,u. 0 Cb,k Cb,l
DBSy | Ci. Cht 0 Chy
DBS, Cia Cup Cik 0

in a table format, where C; ; is the NL-based aggregated HO
count from DBS,; to DBS;. Typically, each row in Table I is
maintained by the source DBS. This NL HO history can be
translated into a transition probability. For instance, the NL-
based transition probability ¢, ; from DBS; to DBS; can be

obtained by:
3 Cij
ti, i = s

C.
u,Yu €N, H¥

15)

where N, is the neighbour list of DBS;, i.e., a set of all the
DBSs that are neighbours to DBS;.

The NL-based history can be used for DBSs covering areas
characterised by high batch HO rates. For example, where
multiple UE on a train perform simultaneous HOs. However,
the NL-based approach may not be suitable for individual
users since it provides a coarse and less accurate estimate
based on the crowd behaviour. This suggests a UE-based
approach where individual users maintain separate statistical
information based on their own history. This can be achieved
by maintaining HO history tables as in Table I for each user,
ie., t; ; is computed for each user based on their own C; ;
values, or alternatively ¢; ; can be computed by using our
online history-based prediction scheme in [9].

IV. CONTEXT-AWARE ASSISTANCE UNITS
A. Location and Span Estimation

The main objective of this unit is minimising the UE pro-
cessing load and storage requirements. The prediction process
in Section III-A can be continuously executed until a target
DBS is found. However, such a continuous operation may not
be feasible from battery and processing perspectives. A more
convenient design approach is to trigger the prediction process
when a certain triggering criteria is satisfied. This suggests
a two boundary DBS cell structure, where the prediction
is triggered at the inner boundary while the actual HO is
performed at the outer boundary. Fig. 5 shows two approaches
that can be used by the location and span estimation unit to
trigger the prediction process at the inner boundary, based on
the UE location w.r.t. the serving DBS, i.e., centre of cell
(CoC) or EoC. Notice that the CoC/EoC classification is based
on the inner boundary.

These approaches include position-based distance calcu-
lation and serving DBS signal measurements. The former
requires the serving DBS to broadcast its location, e.g., in the
form of longitude and latitude. Then, the distance between
the UE and the serving DBS can be calculated based on the
UE position (provided by either a GPS or other positioning
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techniques). When this distance equals to or greater than a
certain threshold d,;;, and it is increasing, then the UE
location is EoC and the prediction process is triggered. The
second approach, i.e., the serving DBS signal measurements,
utilises the measured SS/SQ from the serving DBS to trigger
the prediction process. When the serving DBS SS/SQ drops
below a certain threshold yi?ﬁhw then the UE location is EoC
and the prediction process is triggered.

An appropriate setting of d ,,, and/or yi?ﬁhr is of great
importance in improving the performance of the proposed
scheme. A large d,;,, (i.e., low yfghr) setting may result
in a too late prediction, i.e., the HO may happen before
the prediction process is triggered. On the other hand, a
small d,,, (i.e., high yif?hr) setting may lead to a too
early prediction. This in turn increases the error probability,
due to the large gap between the time when the prediction
is performed and the time when the actual HO happens.
In addition, radio channel and/or UE direction will have a
higher changing probability when the actual HO happens. As
an illustrative example, Fig. 6 shows simulation results for
the measurement prediction precision with several prediction
advance periods. As can be noticed, the prediction of the it
SS/SQ measurement is more accurate than the prediction of
the jth SS/SQ measurement, where i<j.

Assuming a constant speed V' and a hysteresis-based HO
criteria, i.e., the HO happens if the following condition is true:

log () = log (1" ) +1og (©).

where y§0> and yflm are the SS/SQ of the serving and the
neighbouring DBSs, respectively, © is the HO hysteresis, and
the parameters in (16) are in linear scale. A HO hysteresis
needs to be applied to the trend to ensure that prevailing
conditions only are acted on to avoid HO ping-pong. For
a general path loss model XRg, where x is the distance-
independent path loss component, R is the distance between
the Tx and the Rx, and £ is the path loss exponent. Then it can
be proved that the actual HO happens after [, measurements
referenced to the prediction triggering point, where I, is
expressed as:

<<q®>é (wfds_m cos(ass))) Cdo
;o an cos(¢n) s.thr an
o o)) (10)7)
va, (1+ (283) (52)1)

where ¢, and q,, are the transmit power of the serving and the
neighbouring DBSs, respectively, ¢ is the inter-site distance,
¢, is the angle between the line connecting the DBSs and the
line connecting the serving DBS with the UE location when
the HO happens, ¢,, is the angle between the line connecting
the DBSs and the line connecting the neighbouring DBS with
the UE location when the HO happens. It can be noticed
that (17) depends on the UE speed. Thus using a DBS-based
unified triggering threshold for all users implies that different
users will have different [, values. Expressed differently, if
the prediction is triggered at the same location for all users,
then low speed users will have to predict more measurements
than high speed users. This may increase the error probability
and decrease the prediction precision as shown in Fig. 6.
This suggests a UE-specific prediction triggering threshold
dg v that takes into account network parameters as well
as UE parameters. This threshold can be obtained by solving
(17) for dg 41, 1.€.,

1
0\ E (Y=, V A, cos(6,)) _
. _(qn) ( e > LV A,
s.thrh UE — 1 . (18)

cos(¢, 0)¢
() (52)

The UE angular span is utilised to narrow down the can-
didate DBS set. A high speed user usually has a smaller
span (i.e., probability of changing the direction is small) as
compared with a low speed user. This allows the former to
store and process measurements of a smaller number of DBSs
as compared with the latter. The location and span estimation
unit calculates the UE angular span 2 by

(16)

Q=2re ", (19)

where 7 is the span gradient. Different DBSs can define
different values for n which can be learned from the users’
behaviour. For instance, a highway DBS may define a large
gradient which results into a small span (i.e., a low mobility
in a highway may be attributed to traffic conditions rather



than to a direction change intention). A new span is defined
when the UE changes its speed abruptly, when the UE changes
its direction by an angle larger than the initial span, or at
regular time intervals. Based on the location of the top-m
detectable DBSs, the location and span estimation unit selects
the DBSs that reside within the UE span as candidates for the
prediction process and store their measurements in the short-
term memory. This result is fed to the SS and SQ prediction
unit.

B. Prediction Analysis and Handover Mode Decision

The prediction analysis unit evaluates the predicted SS/SQ
to determine if a certain HO criteria is satisfied. The latter is
left as an implementation aspect to ensure a generic prediction
scheme that does not depend on a particular HO model. For
instance, the condition of (16) can be used as an example for
the HO criteria. The prediction analysis unit confirms/rejects
the measurement-based prediction based on the UE HO history
and the predicted HO time. Consider ¢, , as the transition
probability from the serving DBS, to the measurement-based
predicted DBS,,, based on either the crowd behaviour or the
individual user behaviour as explained in Section III-B. Define
tmin as the minimum HO probability to confirm the prediction
from a history perspective. Then the prediction analysis unit
confirms the measurement-based prediction if the following
condition is true:

ts, >t

5P —

(20)

min>

and it commands the reporting unit to send a PrMR, which
contains the predicted DBS along with the predicted remaining
time for HO given by (14). Otherwise, the prediction analysis
unit rejects the measurement prediction. Notice that the an-
gular span is accounted for in the monitoring and processing
phase (i.e., t,, belongs to one of the DBSs that reside within
the UE angular span). Fig. 7 provides a flowchart for the
operation flow of the prediction analysis unit.

The HO mode decision unit decides the type of HO to
be followed by the UE, i.e., predictive or non-predictive HO.
In the former, the conventional MRs are suspended, the HO
decision and preparation are performed in advance, and HO
control is delegated to the UE. It is worth mentioning that the
HO mode decision unit can be located at the UE side and
integrated with the prediction analysis unit, thus the outcome
of the latter implicitly defines the HO type. If the final decision
has to be taken based on additional policies defined by the
network (i.e., network-controlled UE-assisted decision), then
the HO mode decision unit can be moved to the DBS side as
shown in Fig. 2.

V. PERFORMANCE EVALUATION
A. Prediction Threshold Analysis

Fig. 8 shows effect of the UE speed on the expected HO
time (in measurement gaps) referenced to the prediction trig-
gering point, with a unified triggering threshold for all users.
The considered network parameters are: ¢, =g, =38 dBm,
=130 m and A,=200 ms. A positive [, value means
that the HO will happen after this value, while a negative
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Figure 7: Flowchart of the operation flow and decisions of the
prediction analysis unit

I, value means a too late prediction (i.e., the HO already
happened before the prediction process is triggered). It can
be noticed in Fig. 8a that using a unified d,,,, value for
all users could result in a too early prediction especially
for low speed users. For instance, with d,;;,, =20 m then
a low speed user with V' =5 km/hr will start the prediction
process 188 measurement gaps in advance before the actual
HO happens. As discussed in Section IV-A and depicted by
Fig. 6, such an early prediction has a higher probability of
error due to the fact that the prediction precision decreases as
the advance period increases. On the other hand, using a large
dg 4py setting of 100 m results in a too late prediction, e.g.,
with V =35 km/hr then the prediction process starts after the
actual HO happens by 99 measurement gaps.

Fig. 8b indicates that the speed effect on the expected
HO time (with a unified triggering threshold) is significantly
influenced by the HO hysteresis. It can be seen that increasing
the hysteresis © increases the slope (in absolute value) of the
HO time vs speed graph when d, ,;,, is constant for all users.
This indicates that a low hysteresis setting may be appropriate
when d ,p,, is unified for all users. Nonetheless, the HO
hysteresis provides other benefits such as delaying the HO
to avoid HO ping-pongs and it removes the SS/SQ fluctuation
effects. As a result, decreasing © may come at the expense of
increasing HO ping-pongs rates.
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Figure 8: User speed vs expected handover time referenced to
prediction triggering point with a unified triggering threshold for all
users

The observations in Fig. 8 motivate a UE-specific prediction
triggering threshold, which is provided in Fig. 9. It can
be noticed that d,,,pyg is inversely proportional to the
UE speed. Expressed differently, low speed users start the
prediction process at a larger distance from the serving DBS
as compared with high speed users. This ensures that all
users predict the same number of SS/SQ measurements, which
in turn allows to set a maximum advance period in order
to control the prediction precision and error probability. For
example, to ensure that the prediction process does not start
more than 8§ measurement gaps before the actual HO happens,
then a user with V' =5 km/hr and V =80 km/hr triggers the
prediction process at 70 m and 37 m, respectively, from the
serving DBS as shown in 9a. Since the expected HO time is
inversely proportional to the distance from the serving DBS,
then increasing the advance period I, reduces d 45, - On
the other hand, Fig. 9b indicates that the UE-specific d; ;5 v E
and the HO hysteresis have a proportional relationship. This
can be linked to the fact that the hysteresis delays the actual
HO. Hence, for a fixed advance prediction period target,
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Figure 9: User speed vs UE-specific prediction triggering threshold

a higher hysteresis setting increases the required prediction
triggering distance from the serving DBS.

B. Prediction Statistics and Gains

System level simulations have been performed to assess
performance and gains of the proposed DBS HO scheme.
Table II provides the considered simulation parameters which
are mostly aligned with the assumptions in [14]. Fig. 10
shows prediction accuracy and statistics for several SS trig-
gering thresholds and HO hysteresis values. It can be noticed
that this scheme provides a 90% prediction accuracy when
yfghr > —62 dBm and HO hysteresis is used (i.e., © >0 dB).
In addition, it significantly reduces the percentage of incorrect
predictions that are not rejected by the prediction analysis
unit. Precisely, only 2.5%—9.6% of the predictions resulted
in HOs to DBSs other than the actual target DBSs. A very
low SS triggering threshold of yi t>hr — 64 dBm with a low
(or no) HO hysteresis setting results in a significant number
of too late predictions. This can be traced to the fact that a
low (or no) hysteresis results in an early HO while a low SS
triggering threshold delays the prediction process. Expressed



Table II: Simulation parameters

Parameter Value

Network layout Hexagonal grid, 19 omnidirectional DBSs

Inter-site distance 130 m
DBS transmit power 38 dBm
Transmit mode SISO (Single Input Single Output)
User density 5 UE/DBS

10 km/hr for 100% of the users
3GPP Typical Urban [15]
3GPP Urban [16]

User speed

Channel model

Path loss model

Frequency 2 GHz

Bandwidth 10 MHz

Scheduler Round robin
Measurement gap 200 ms

100

Percentage (%)
2

Il Correct timely predictions
I Incorrect predictions
[ No candidate DBS is found
[ JToo late (missed) predictions
—64 —62 —60 —58

SS prediction triggering threshold y:(:;r (dBm)

(a) Effect of yfgh,,,, with hysteresis =2 dB
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2 4
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(b) Effect of hysteresis, with yﬁ?ﬁhr = — 62 dBm

Figure 10: Prediction statistics of the measurement-based context-
aided predictive DBS handover scheme

differently, in environments/scenarios where HO hysteresis is
not used, then the location and span estimation unit needs to
be configured to start the prediction process early (i.e., high
yi%w or small d, ;;, setting).

To evaluate HO latency of the proposed scheme, the
approach of [17] has been followed by assuming that the

transmission delay for different messages between the same

Table III: Latency values for handover signalling messages

Latency description ‘ Value (ms)
Transmission latency between DBSs over X2 5
Transmission latency between UE and DBS 6.5

Transmission latency between DBS and MME 8.5
Processing latency at DBS 4
Processing latency at MME 5%
Processing latency at S-GW 5%
Detach and access latency 12

* .
Includes processing.
** Does not include UE context retrieval of 10 ms.

20

Predicitve handover gain (%)

“s8Lgr @B

Figure 11: Handover signalling latency reduction

source-destination pair is the same irrespective of the message
size. Similarly, the processing delay for different messages at
the same node is constant. In addition, it has been assumed
that the mobility management entity (MME) and the serving
gateway (S-GW) are located in the same location, thus the
transmission delay between these nodes is negligible. Table III
provides the latency values which are based on the feasibility
study reported in [18] for the intra-LTE X2 HO procedure.

Fig. 11 shows gains of the proposed scheme in terms of
signalling latency reduction w.r.t. the conventional HO proce-
dure. Based on the latency parameters of Table III, it can be
concluded that the memory-full context-aware predictive HO
scheme reduces the DBS HO latency by 33.6% as compared
with the conventional HO. Fig. 11 also indicates that the
highest gains can be achieved either with a high hysteresis and
alow SS/SQ (i.e., a large UE/serving-DBS distance) triggering
threshold, or with a low hysteresis and a high SS/SQ (i.e., a
small UE/serving-DBS distance) triggering threshold.

VI. CONCLUSION

Predictive HO signalling at DBS-level is proposed in this
paper. With the main objective of minimising the CDSA
HO-related RAN signalling and the associated latency and
monitoring load, a memory-full context-aware predictive DBS
HO is proposed. This scheme includes a proactive HO mode
selection model to minimise the HO signalling latency, since
the predictive HO management strategies may not be suitable



in some cases, e.g., unpredictable users with highly random
mobility profiles or users visiting new DBSs. Considering
the dual connectivity feature of the CDSA, such a predictive
approach can be applied with relaxed constraints.

The proposed scheme is operated at the UE, and it predicts
the expected HO time in addition to the target DBS. It com-
bines physical proximity (i.e., location information at the UE)
to a virtualised UE view of DBS coverage, RF performance
derived from SS/SQ measurements, context information and
HO history. The SS/SQ measurements are modelled as a time
series in a Grey fashion to predict future HO events and
the remaining time for HO. In addition, the UE speed and
direction are utilised to minimise the storage and processing
requirements by narrowing down the candidate DBS set based
on the UE angular span. A UE-specific prediction triggering
threshold is formulated to improve the measurement prediction
precision whilst minimising the UE processing load. For a
certain advance prediction period (and hence a certain preci-
sion target), it has been found that the UE-specific triggering
threshold is inversely proportional (in distance format) and
directly proportional (in SS/SQ format) to the UE speed.
The switching point between predictive and conventional HO
procedures is defined based on the successful HO probability
which is obtained from the history prediction model.

Simulation results show that the proposed predictive scheme
reduces the HO signalling latency by 33.6% as compared with
the conventional LTE X2 HO procedure. These gains depend
on network-defined HO parameters such as the HO hysteresis
and transmit power, in addition to the UE-specific prediction
parameters such as the prediction triggering threshold. This
suggests an appropriate setting of both the network-defined
and the UE-specific parameters to achieve the maximum gain.
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