56,980 research outputs found

    A spectral hole memory for light at the single photon level

    Get PDF
    We demonstrate a solid state spin-wave optical memory based on stopped light in a spectral hole. A long lived narrow spectral hole is created by optical pumping in the inhomogeneous absorption profile of a Pr3+^{3+}:Y2_2SiO5_5 crystal. Optical pulses sent through the spectral hole experience a strong reduction of their group velocity and are spatially compressed in the crystal. A short Raman pulse transfers the optical excitation to the spin state before the light pulse exits the crystal, effectively stopping the light. After a controllable delay, a second Raman pulse is sent, which leads to the emission of the stored photons. We reach storage and retrieval efficiencies for bright pulses of up to 39%39\,\% in a 5mm5 \,\mathrm{mm}-long crystal. We also show that our device works at the single photon level by storing and retrieving 3μs3\,\mathrm{\mu s}-long weak coherent pulses with efficiencies up to 31%31\,\%, demonstrating the most efficient spin-wave solid state optical memory at the single-photon level so far. We reach an unconditional noise level of (9±1)×103(9\pm1)\times 10^{-3} photons per pulse in a detection window of 4μs4\,\mathrm{\mu s} leading to a signal-to-noise ratio of 33±433 \pm 4 for an average input photon number of 1, making our device promising for long-lived storage of non-classical light.Comment: 5 pages, 4 figure

    Efficient optical pumping using hyperfine levels in 145^{145}Nd3+^{3+}:Y2_2SiO5_5 and its application to optical storage

    Full text link
    Efficient optical pumping is an important tool for state initialization in quantum technologies, such as optical quantum memories. In crystals doped with Kramers rare-earth ions, such as erbium and neodymium, efficient optical pumping is challenging due to the relatively short population lifetimes of the electronic Zeeman levels, of the order of 100 ms at around 4 K. In this article we show that optical pumping of the hyperfine levels in isotopically enriched 145^{145}Nd3+^{3+}:Y2_2SiO5_5 crystals is more efficient, owing to the longer population relaxation times of hyperfine levels. By optically cycling the population many times through the excited state a nuclear-spin flip can be forced in the ground-state hyperfine manifold, in which case the population is trapped for several seconds before relaxing back to the pumped hyperfine level. To demonstrate the effectiveness of this approach in applications we perform an atomic frequency comb memory experiment with 33% storage efficiency in 145^{145}Nd3+^{3+}:Y2_2SiO5_5, which is on a par with results obtained in non-Kramers ions, e.g. europium and praseodymium, where optical pumping is generally efficient due to the quenched electronic spin. Efficient optical pumping in neodymium-doped crystals is also of interest for spectral filtering in biomedical imaging, as neodymium has an absorption wavelength compatible with tissue imaging. In addition to these applications, our study is of interest for understanding spin dynamics in Kramers ions with nuclear spin.Comment: 8 pages, 6 figure

    Quantum Computing in Molecular Magnets

    Full text link
    Shor and Grover demonstrated that a quantum computer can outperform any classical computer in factoring numbers and in searching a database by exploiting the parallelism of quantum mechanics. Whereas Shor's algorithm requires both superposition and entanglement of a many-particle system, the superposition of single-particle quantum states is sufficient for Grover's algorithm. Recently, the latter has been successfully implemented using Rydberg atoms. Here we propose an implementation of Grover's algorithm that uses molecular magnets, which are solid-state systems with a large spin; their spin eigenstates make them natural candidates for single-particle systems. We show theoretically that molecular magnets can be used to build dense and efficient memory devices based on the Grover algorithm. In particular, one single crystal can serve as a storage unit of a dynamic random access memory device. Fast electron spin resonance pulses can be used to decode and read out stored numbers of up to 10^5, with access times as short as 10^{-10} seconds. We show that our proposal should be feasible using the molecular magnets Fe8 and Mn12.Comment: 13 pages, 2 figures, PDF, version published in Nature, typos correcte

    Coherent storage and manipulation of broadband photons via dynamically controlled Autler-Townes splitting

    Full text link
    The coherent control of light with matter, enabling storage and manipulation of optical signals, was revolutionized by electromagnetically induced transparency (EIT), which is a quantum interference effect. For strong electromagnetic fields that induce a wide transparency band, this quantum interference vanishes, giving rise to the well-known phenomenon of Autler-Townes splitting (ATS). To date, it is an open question whether ATS can be directly leveraged for coherent control as more than just a case of "bad" EIT. Here, we establish a protocol showing that dynamically controlled absorption of light in the ATS regime mediates coherent storage and manipulation that is inherently suitable for efficient broadband quantum memory and processing devices. We experimentally demonstrate this protocol by storing and manipulating nanoseconds-long optical pulses through a collective spin state of laser-cooled Rb atoms for up to a microsecond. Furthermore, we show that our approach substantially relaxes the technical requirements intrinsic to established memory schemes, rendering it suitable for broad range of platforms with applications to quantum information processing, high-precision spectroscopy, and metrology.Comment: 14 pages with 6 figures; 3 pages supplementary info with 2 supplementary figure

    Nanophotonic rare-earth quantum memory with optically controlled retrieval

    Get PDF
    Optical quantum memories are essential elements in quantum networks for long distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of its readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory, and time-bin-selective readout via enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes

    Identifying electronic transitions of defects in hexagonal boron nitride for quantum memories

    Full text link
    A quantum memory is a crucial keystone for enabling large-scale quantum networks. Applicable to the practical implementation, specific properties, i.e., long storage time, selective efficient coupling with other systems, and a high memory efficiency are desirable. Though many quantum memory systems have been developed thus far, none of them can perfectly meet all requirements. This work herein proposes a quantum memory based on color centers in hexagonal boron nitride (hBN), where its performance is evaluated based on a simple theoretical model of suitable defects in a cavity. Employing density functional theory calculations, 257 triplet and 211 singlet spin electronic transitions have been investigated. Among these defects, we found that some defects inherit the Λ\Lambda electronic structures desirable for a Raman-type quantum memory and optical transitions can couple with other quantum systems. Further, the required quality factor and bandwidth are examined for each defect to achieve a 95\% writing efficiency. Both parameters are influenced by the radiative transition rate in the defect state. In addition, inheriting triplet-singlet spin multiplicity indicates the possibility of being a quantum sensing, in particular, optically detected magnetic resonance. This work therefore demonstrates the potential usage of hBN defects as a quantum memory in future quantum networks.Comment: 12 pages, 6 figure

    Memory-Assisted Quantum Key Distribution with a Single Nitrogen-Vacancy Center

    Get PDF
    Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) is a promising scheme that aims to improve the rate-versus-distance behavior of a QKD system by using the state-of-the-art devices. It can be seen as a bridge between current QKD links to quantum repeater based networks. While, similar to quantum repeaters, MA-MDI-QKD relies on quantum memory (QM) units, the requirements for such QMs are less demanding than that of probabilistic quantum repeaters. Here, we present a variant of MA-MDI-QKD structure that relies on only a single physical QM: a nitrogen-vacancy center embedded into a cavity where its electronic spin interacts with photons and its nuclear spin is used for storage. This enables us to propose a simple but efficient MA-MDI-QKD scheme resilient to memory errors and capable of beating, in terms of rate and reach, existing QKD demonstrations. We also show how we can extend this setup to a quantum repeater system, reaching, thus, larger distances

    Coherent Storage of Temporally Multimode Light Using a Spin-Wave Atomic Frequency Comb Memory

    Full text link
    We report on coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr3+:Y2SiO5 to spin-waves in the hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of 5 temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light.Comment: 17 pages, 5 figure
    corecore