345 research outputs found

    Memory and resource leak defects and their repairs in Java projects

    Get PDF
    Despite huge software engineering efforts and programming language support, resource and memory leaks are still a troublesome issue, even in memory-managed languages such as Java. Understanding the properties of leak-inducing defects, how the leaks manifest, and how they are repaired is an essential prerequisite for designing better approaches for avoidance, diagnosis, and repair of leak-related bugs. We conduct a detailed empirical study on 491 issues from 15 large open-source Java projects. The study proposes taxonomies for the leak types, for the defects causing them, and for the repair actions. We investigate, under several aspects, the distributions within each taxonomy and the relationships between them. We find that manual code inspection and manual runtime detection are still the main methods for leak detection. We find that most of the errors manifest on error-free execution paths, and developers repair the leak defects in a shorter time than non-leak defects. We also identify 13 recurring code transformations in the repair patches. Based on our findings, we draw a variety of implications on how developers can avoid, detect, isolate and repair leak-related bugs

    Automated Fault Localization in Large Java Applications

    Get PDF
    Modern software systems evolve steadily. Software developers change the software codebase every day to add new features, to improve the performance, or to fix bugs. Despite extensive testing and code inspection processes before releasing a new software version, the chance of introducing new bugs is still high. A code that worked yesterday may not work today, or it can show a degraded performance causing software regression. The laws of software evolution state that the complexity increases as software evolves. Such increasing complexity makes software maintenance harder and more costly. In a typical software organization, the cost of debugging, testing, and verification can easily range from 50% to 75% of the total development costs. Given that human resources are the main cost factor in the software maintenance and the software codebase evolves continuously, this dissertation tries to answer the following question: How can we help developers to localize the software defects more effectively during software development? We answer this question in three aspects. First, we propose an approach to localize failure-inducing changes for crashing bugs. Assume the source code of a buggy version, a failing test, the stack trace of the crashing site, and a previous correct version of the application. We leverage program analysis to contrast the behavior of the two software versions under the failing test. The difference set is the code statements which contribute to the failure site with a high probability. Second, we extend the version comparison technique to detect the leak-inducing defects caused by software changes. Assume two versions of a software codebase (one previous non-leaky and the current leaky version) and the existing test suite of the application. First, we compare the memory footprint of the code locations between two versions. Then, we use a confidence score to rank the suspicious code statements, i.e., those statements which can be the potential root causes of memory leaks. The higher the score, the more likely the code statement is a potential leak. Third, our observation on the related work about debugging and fault localization reveals that there is no empirical study which characterizes the properties of the leak- inducing defects and their repairs. Understanding the characteristics of the real defects caused by resource and memory leaks can help both researchers and practitioners to improve the current techniques for leak detection and repair. To fill this gap, we conduct an empirical study on 491 reported resource and memory leak defects from 15 large Java applications. We use our findings to draw implications for leak avoidance, detection, localization, and repair

    Automatic Static Bug Detection for Machine Learning Libraries: Are We There Yet?

    Full text link
    Automatic detection of software bugs is a critical task in software security. Many static tools that can help detect bugs have been proposed. While these static bug detectors are mainly evaluated on general software projects call into question their practical effectiveness and usefulness for machine learning libraries. In this paper, we address this question by analyzing five popular and widely used static bug detectors, i.e., Flawfinder, RATS, Cppcheck, Facebook Infer, and Clang static analyzer on a curated dataset of software bugs gathered from four popular machine learning libraries including Mlpack, MXNet, PyTorch, and TensorFlow with a total of 410 known bugs. Our research provides a categorization of these tools' capabilities to better understand the strengths and weaknesses of the tools for detecting software bugs in machine learning libraries. Overall, our study shows that static bug detectors find a negligible amount of all bugs accounting for 6/410 bugs (0.01%), Flawfinder and RATS are the most effective static checker for finding software bugs in machine learning libraries. Based on our observations, we further identify and discuss opportunities to make the tools more effective and practical

    PreciseBugCollector: Extensible, Executable and Precise Bug-fix Collection

    Full text link
    Bug datasets are vital for enabling deep learning techniques to address software maintenance tasks related to bugs. However, existing bug datasets suffer from precise and scale limitations: they are either small-scale but precise with manual validation or large-scale but imprecise with simple commit message processing. In this paper, we introduce PreciseBugCollector, a precise, multi-language bug collection approach that overcomes these two limitations. PreciseBugCollector is based on two novel components: a) A bug tracker to map the codebase repositories with external bug repositories to trace bug type information, and b) A bug injector to generate project-specific bugs by injecting noise into the correct codebases and then executing them against their test suites to obtain test failure messages. We implement PreciseBugCollector against three sources: 1) A bug tracker that links to the national vulnerability data set (NVD) to collect general-wise vulnerabilities, 2) A bug tracker that links to OSS-Fuzz to collect general-wise bugs, and 3) A bug injector based on 16 injection rules to generate project-wise bugs. To date, PreciseBugCollector comprises 1057818 bugs extracted from 2968 open-source projects. Of these, 12602 bugs are sourced from bug repositories (NVD and OSS-Fuzz), while the remaining 1045216 project-specific bugs are generated by the bug injector. Considering the challenge objectives, we argue that a bug injection approach is highly valuable for the industrial setting, since project-specific bugs align with domain knowledge, share the same codebase, and adhere to the coding style employed in industrial projects.Comment: Accepted at the industry challenge track of ASE 202

    1997 Research Reports: NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    This document is a collection of technical reports on research conducted by the participants in the 1997 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). This was the 13th year that a NASA/ASEE program has been conducted at KSC. The 1997 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Education Division, NASA Headquarters, Washington, D.C., and KSC. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA in 1997. The NASA/ASEE Program is intended to be a two-year program to allow in-depth research by the university faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC
    corecore