
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



  



 

 

 

 

 

 

 

Anne Koziolek, Ina Schaefer, 

Christoph Seidl (Hrsg.) 

 

 

Software Engineering 2021 

 
Fachtagung des GI-Fachbereichs Softwaretechnik 

 

22. – 26. Februar 2021 

Braunschweig/Virtuell 

 

 

 

 

 

 

 

 

 

 
Gesellschaft für Informatik e.V. (GI) 



Lecture Notes in Informatics (LNI) - Proceedings 

Series of the Gesellschaft für Informatik (GI) 

  

Volume P-310 

 

ISBN 978-3-88579-704-3 

ISSN 1617-5468 

 

Volume Editors 

Prof. Dr.-Ing. Anne Koziolek 

 Institute for Program Structures and Data Organization  

 Karlsruhe Institute of Technology 

 Am Fasanengarten 5, 76131 Karlsruhe, Germany 

 anne.koziolek@kit.edu 

Prof. Dr.-Ing. Ina Schaefer 

 Institute of Software Engineering and Automotive Informatics 

 Technische Universität Braunschweig  

 Mühlenpfordtstraße 23, 38106 Braunschweig, Germany 

 i.schaefer@tu-braunschweig.de  

Prof. Dr.-Ing. Christoph Seidl 

 Department of Computer Science 

 IT University of Copenhagen 

 Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark 

 chse@itu.dk 

 

Series Editorial Board 

Andreas Oberweis, KIT Karlsruhe,  

(Chairman, andreas.oberweis@kit.edu) 

Torsten Brinda, Universität Duisburg-Essen, Germany 

Dieter Fellner, Technische Universität Darmstadt, Germany 

Ulrich Flegel, Infineon, Germany 

Ulrich Frank, Universität Duisburg-Essen, Germany 

Michael Goedicke, Universität Duisburg-Essen, Germany 

Ralf Hofestädt, Universität Bielefeld, Germany 

Wolfgang Karl, KIT Karlsruhe, Germany 

Michael Koch, Universität der Bundeswehr München, Germany 

Peter Sanders, Karlsruher Institut für Technologie (KIT), Germany 

Andreas Thor, HFT Leipzig, Germany 

Ingo Timm, Universität Trier, Germany 

Karin Vosseberg, Hochschule Bremerhaven, Germany 

Maria Wimmer, Universität Koblenz-Landau, Germany 

 

Dissertations 

Steffen Hölldobler, Technische Universität Dresden, Germany 

Thematics 

Andreas Oberweis, Karlsruher Institut für Technologie (KIT), Germany 

 



Seminars 

Andreas Oberweis, Karlsruher Institut für Technologie (KIT), Germany 

 

 Gesellschaft für Informatik, Bonn 2020 

printed by Köllen Druck+Verlag GmbH, Bonn  

 

 
 

This book is licensed under a Creative Commons BY-SA 4.0 licence. 

 

  





Vorwort 

Herzlich willkommen zur Tagung Software Engineering 2021 (SE 21) des Fachbereichs 

Softwaretechnik der Gesellschaft für Informatik (GI). Die jährliche Tagung des Fachbe-

reichs Softwaretechnik der GI hat sich als Plattform für den Austausch und die Zusam-

menarbeit in allen Bereichen der Softwaretechnik etabliert. Der Austausch erstreckt sich 

dabei sowohl auf neueste akademische Erkenntnisse als auch auf aktuelle industrielle 

Trends und Praktiken. Die Tagung richtet sich sowohl an Softwareentwicklerinnen und 

Softwareentwickler aus der Praxis, als auch an Forscherinnen und Forscher aus dem aka-

demischen Umfeld. Software ist der wesentliche Bestandteil um aktuelle Herausforderun-

gen in Wirtschaft und Gesellschaft zu meistern und auch weiterhin weltweit wettbewerbs-

fähige Produkte und Dienstleistungen anbieten zu können. 

Die SE 21 bietet im wissenschaftlichen Hauptprogramm ein “Best-Of” der international 

in Fachzeitschriften und Konferenzen veröffentlichten Arbeiten deutschsprachiger Auto-

ren. Sie umfasst eine große Bandbreite an Themen, die beispielsweise in der International 

Conference on Software Engineering (ICSE), den IEEE Transactions on Software Engi-

neering (TSE), den ACM Transactions of Software Engineering and Methodology 

(TOSEM) und der ACM Joint European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering (ESEC/FSE) und vielen weiteren ein-

schlägigen Fachzeitschriften und Konferenzen veröffentlicht wurden. Die angenommenen 

wissenschaftlichen Beiträge decken dabei ein weites Spektrum des Software Engineering 

ab, das sich in einem vielfältigen Programm widerspiegelt. 

Das wissenschaftliche Hauptprogramm der SE 21 wird durch sechs Workshops ergänzt, 

in denen weitere Themen im kleineren Kreis intensiv diskutiert werden:  

Requirement Management in Enterprise Systems Projects (AESP’21) 

Automotive Software Engineering (ASE’21) 

Avionics Systems and Software Engineering (AvioSE’21) 

Evolution and Maintenance of Long-Living Systems (EMLS’21) 

Software Engineering in Cyber-Physical Production Systems (SECPPS’21) 

Software Engineering for E-Learning-Systems (SEELS’21) 

Wir danken allen, die zum Gelingen der Konferenz beigetragen haben, insbesondere den 

Autoren und den Gutachtern, den Keynote-Speakern, den Organisatoren der Workshops 

und Tracks, den Teilnehmern, den Sponsoren (IAV Automotive Engineering und eck*cel-

lent IT) und Unterstützern (Kenzler Conference Management, der Technischen Universi-

tät Braunschweig im Allgemeinen und dem Institut für Softwaretechnik und Fahrzeugin-

formatik im Speziellen sowie der GI e.V.), dem Local Organizer Michael Nieke, der 

Proceedings Chair Sofia Ananieva sowie allen Helferinnen und Helfern, die die Durch-

führung der Konferenz auch im virtuellen Format ermöglicht haben.  

Braunschweig, im Februar 2021  

Ina Schaefer, Christoph Seidl und Anne Koziolek 



Sponsoren 

 
Wir danken den folgenden Unternehmen für die Unterstützung der Konferenz. 

 

 

 

 

  

 
 

 

eck*cellent IT GmbH 

 

 

Theodor-Heuss-Straße 2 

38122 Braunschweig 

IAV GmbH Ingenieurgesellschaft 

Auto und Verkehr 

 

Carnotstraße 1 

10587 Berlin 

Webseite 

https://eckcellent-it.de/ 
Webseite 

https://www.iav.com/ 



Tagungsleitung 
 

Gesamtleitung: Ina Schaefer, Technische Universität Braunschweig 

 

Leitung des Programmkomitees:  Anne Koziolek, Karlsruhe Institute of Technology 

  Christoph Seidl, IT University of Copenhagen 

 

Industrie: Andreas Vogelsang, University of Cologne 

  Elmar Juergens, CQSE GmbH 

   

Workshops: Sebastian Götz, Technische Universität Dresden 

  Andreas Wortmann, RWTH Aachen University 

 

Tools & Demos:  Lukas Linsbauer, Technische Universität  

Braunschweig 

 

Lokale Organisation: Michael Nieke, Technische Universität Braunschweig 

 

Proceedings: Sofia Ananieva, FZI Research Center for Information 

  Technology 

 

Publicity:  Adrian Hoff, IT University of Copenhagen 

 

Programmkomitee 
 

Sven Apel Universität des Saarlandes 

Stefan Biffl TU Wien 

Ruth Breu Universität Innsbruck 

Gordon Fraser Universität Passau 

Sabine Glesner TU Berlin 

Martin Glinz Universität Zürich 

Lars Grunske Humboldt-Universität zu Berlin 

Wilhelm Hasselbring Christian-Albrechts-Universität zu Kiel 

Barbara Paech Universität Heidelberg 

Martin Pinzger Universität Klagenfurt 

Klaus Pohl Universität Duisburg-Essen 

Rick Rabiser Johannes Kepler Universität Linz 

Ina Schaefer TU Braunschweig 

Klaus Schmid Universität Hildesheim 

André van Hoorn Universität Stuttgart 

Andreas Vogelsang Universität zu Köln 

Manuel Wimmer Johannes Kepler Universität Linz 

Uwe Zdun Universität Wien 

 

 





Inhaltsverzeichnis

Keynotes

Ralf S. Engelschall

Schönheit und Unzulänglichkeit von Software-Architektur . . . . . . . . . 19

Wissenschaftliches Hauptprogramm

Manuel Benz, Erik K. Kristensen, Linghui Luo, Nataniel Borges Jr.,

Eric Bodden, Andreas Zeller

Heaps’n Leaks: How Heap Snapshots Improve Android Taint Analysis . . 23

Stefanie Beyer, Christian Macho, Massimiliano Di Penta and Martin

Pinzger

What Kind of Questions Do Developers Ask on Stack Overflow? A

Comparison of Automated Approaches to Classify Posts Into Question

Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Andreas Dann, Ben Hermann, Eric Bodden

ModGuard: Identifying Integrity & Confidentiality Violations in Java Modules 29

Marian Daun, Jennifer Brings, Thorsten Weyer

Validierung von CPS-Spezifikationen . . . . . . . . . . . . . . . . . . . . 33

Wolfram Fenske, Jacob Krüger, Maria Kanyshkova, Sandro Schulze

#ifdef Directives and Program Comprehension: The Dilemma between

Correctness and Preference . . . . . . . . . . . . . . . . . . . . . . . . . 35

Jannik Fischbach, Andreas Vogelsang, Dominik Spies, Andreas

Wehrle, Maximilian Junker, Dietmar Freudenstein

Specmate: Automated Creation of Test Cases from Acceptance Criteria . . 37

Stefan Fischer, Gabriela Karoline Michelon, Rudolf Ramler, Lukas

Linsbauer, Alexander Egyed

Automated Reuse of Test Cases for Highly Configurable Software Systems 39



Sergio García, Daniel Strüber, Davide Brugali, Thorsten Berger,

Patrizio Pelliccione

Robotics Software Engineering: A Perspective from the Service Robotics

Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Christopher Gerking, David Schubert

Component-Based Refinement and Verification of Information-Flow

Security Policies for Cyber-Physical Microservice Architectures . . . . . 43

Stefan Götz, Matthias Tichy, Raffaela Groner

Claimed Advantages and Disadvantages of (dedicated) Model

Transformation Languages: A Systematic Literature Review . . . . . . . . 45

Rahul Gopinath, Nikolas Havrikov, Alexander Kampmann, Ezekiel

Soremekun, Andreas Zeller

Learning Circumstances of Software Failures . . . . . . . . . . . . . . . . 47

Rahul Gopinath, Björn Mathis, Andreas Zeller

Mining Input Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Raffaela Groner, Luis Beaucamp, Matthias Tichy, Steffen Becker

An Exploratory Study on Performance Engineering in Model Transformations 51

Steffen Herbold

On the Cost and Profit of Software Defect Prediction . . . . . . . . . . . 53

Steffen Herbold, Alexander Trautsch, Fabian Trautsch

On the Feasibility of Automated Prediction of Bug and Non-Bug Issues . . 55

Steffen Herbold, Aynur Amirfallah, Fabian Trautsch, Jens Grabowski

A Systematic Mapping Study of Developer Social Network Research . . . . . 57

Jörg Holtmann, Jan-Philipp Steghöfer, Michael Rath, David Schmelter

Cutting through the Jungle: Disambiguating Model-based Traceability

Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Arno Kesper, Viola Wenz, Gabriele Taentzer

Detecting Quality Problems in Research Data; A Model-Driven Approach . 61

Lukas Kirschner, Ezekiel Soremekun, Andreas Zeller

Isolating Faults in Failure-Inducing Inputs . . . . . . . . . . . . . . . . . 63



Jil Klünder, Dzejlana Karajic, Paolo Tell, Oliver Karras, Christian

Münkel, Jürgen Münch, Stephen G. MacDonell, Regina Hebig, Marco

Kuhrmann

Determining Context Factors for Hybrid Development Methods with

Trained Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Alexander Knüppel, Inga Jatzkowski, Marcus Nolte, Tobias Runge,

Thomas Thüm, Ina Schaefer

Skill-Based Verification of Cyber-Physical Systems . . . . . . . . . . . . . . 67

Jacob Krüger, Thorsten Berger

An Empirical Analysis of the Costs of Clone- and Platform-Oriented

Software Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Jacob Krüger, Regina Hebig

What Developers (Care to) Recall: An Interview Survey on Smaller System . 71

Dorian Leroy, Erwan Bousse, Manuel Wimmer, Tanja Mayerhofer,

Benoit Combemale, Wieland Schwinger

Behavioral Interfaces for Executable DSLs . . . . . . . . . . . . . . . . . 73

Andreas Metzger, Clément Quinton, Zoltán Mann, Luciano Baresi,

Klaus Pohl

Feature-Modell-geführtes Online Reinforcement Learning . . . . . . . . . 75

Malte Mues, Till Schallau, Falk Howar

Security Analysis with Jaint . . . . . . . . . . . . . . . . . . . . . . . . . 77

Stefan Mühlbauer, Sven Apel, Norbert Siegmund

Accurate Modeling of Performance Histories for Evolving Software Systems 79

Hoang Lam Nguyen, Nebras Nassar, Timo Kehrer, Lars Grunske

MoFuzz: Fuzzing for MDSE Tools . . . . . . . . . . . . . . . . . . . . . . 81

Felix Pauck, Heike Wehrheim

Cooperative Android App Analysis with CoDiDroid . . . . . . . . . . . . 83

Nataniel Pereira Borges Jr., Nikolas Havrikov, Andreas Zeller

Generating Tests that Cover Input Structure . . . . . . . . . . . . . . . . 85

Florian Pudlitz, Florian Brokhausen, Andreas Vogelsang

Testing Procedures Based on Requirements Annotations . . . . . . . . . . . 87



Rick Rabiser, Klaus Schmid, Holger Eichelberger, Michael

Vierhauser, Paul Grünbacher

A Domain Analysis of Resource and Requirements Monitoring . . . . . . . 91

Tobias Runge, Ina Schaefer, Loek Cleophas, Thomas Thüm, Derrick

Kourie, Bruce W. Watson

Tool Support for Correctness-by-Construction . . . . . . . . . . . . . . . 93

Aaron Schlutter, Andreas Vogelsang

Trace Link Recovery Using Semantic Relation Graphs and Spreading

Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Ezekiel Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske,

Andreas Zeller

Probabilistic Grammar-based Test Generation . . . . . . . . . . . . . . . . 97

Helge Spieker, Arnaud Gotlieb

Learning to Generate Fault-revealing Test Cases in Metamorphic Testing . 99

Patrick Stöckle, Bernd Grobauer, Alexander Pretschner

Automated Implementation of Windows-related Security-Configuration Guides 101

Daniel Strüber, Anthony Anjorin, Thorsten Berger

Variability Representations in Class Models: An Empirical Assessment . . 103

Cem Sürücü, Bianying Song, Jacob Krüger, Gunter Saake, Thomas

Leich

Using Key Performance Indicators to Compare Software-Development

Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Alexander Trautsch, Steffen Herbold, Jens Grabowski

Static Analysis Warning Evolution and the Effects of PMD . . . . . . . . . 107

Fabian Trautsch, Steffen Herboldh, Jens Grabowski

Are Unit and Integration Test Definitions Still Valid for Modern Java

Projects? An Empirical Study on Open-Source Projects . . . . . . . . . . 109

Alex Villazón, Haiyang Sun, Andrea Rosà, Eduardo Rosales, Daniele

Bonetta, Isabella Defilippis, Sergio Oporto, Walter Binder

Automated Large-scale Multi-language Dynamic Program Analysis in the Wild 111



Andreas Vogelsang, Jonas Eckhardt, Daniel Mendez, Moritz Berger

Views on Quality Requirements in Academia and Practice: Commonalities,

Differences, and Context-Dependent Grey Areas . . . . . . . . . . . . . . 113

Stefan Wagner, Daniel Méndez Fernández, Michael Felderer, Antonio

Vetrò, Marcos Kalinowski, Roel Wieringa, Dietmar Pfahl et al.

Status Quo in Requirements Engineering . . . . . . . . . . . . . . . . . . 115

Sebastian Weigelt, Vanessa Steurer, Tobias Hey, Walter F. Tichy

Programming in Natural Language with fuSE . . . . . . . . . . . . . . . . 117

Florian Wiesweg, Andreas Vogelsang, Daniel Mendez

Data-driven Risk Management for Requirements Engineering: An

Automated Approach based on Bayesian Networks . . . . . . . . . . . . . 119

Franz Zieris, Lutz Prechelt

Explaining Pair Programming Session Dynamics from Knowledge Gaps . . 121

Workshops

Christoph Weiss, Johannes Keckeis

2nd Workshop on Requirement Management in Enterprise Systems

Projects (AESP’21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Patrick Ebel, Steffen Helke, Ina Schaefer, Andreas Vogelsang

18th Workshop on Automotive Software Engineering (ASE’21) . . . . . . . . 127

Björn Annighöfer, Andreas Schweiger, Marina Reich

3rd Workshop on Avionics Systems and Software Engineering (AvioSE’21) 129

Robert Heinrich, Reiner Jung, Marco Konersmann, Eric Schmieders

8th Collaborative Workshop on Evolution and Maintenance of Long-Living

Software Systems (EMLS’21) . . . . . . . . . . . . . . . . . . . . . . . . . 131

Rick Rabiser, Birgit Vogel-Heuser, Manuel Wimmer, Alois Zoitl

Workshop on Software Engineering in Cyber-Physical Production

Systems (SECPPS’21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Sven Strickroth, Michael Striewe

Workshop on Software Engineering for E-Learning Systems (SEELS’21) . 135





Keynotes





Schönheit und Unzulänglichkeit von Software-Architektur

Ralf S. Engelschall 1

Software-Architektur ist die Königsdisziplin schlechthin im industriellen Software-

Engineering. Sie zeigt sich aber oft von zwei gegensčtzlichen Seiten: sie kann einerseits

konzeptionell čußerst elegant und wunderschön sein, andererseits ist sie in der Praxis

regelmčßig schwach und unzulčnglich.

Was steckt dahinter? Wieso tun wir uns auch nach 50 Jahren Software-Engineering immer

noch so schwer mit Software-Architektur? An welchen Stellen sollten wir erneut forschen

und die Disziplin eventuell noch Mal überdenken? Wie können wir die kommenden

Generationen von Software-Architekten noch besser ausbilden?

1 msg systems ag, msg Research, Robert-Bürkle-Straße 1, 85737 Ismaning, Germany ralf.engelschall@msg.group

cba doi:10.18420/SE2021_01

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 19

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_01
mailto:ralf.engelschall@msg.group
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_01




Wissenschaftliches Hauptprogramm





Heaps’n Leaks: How Heap Snapshots Improve Android Taint

Analysis

Manuel Benz1, Erik Krogh Kristensen2, Linghui Luo3, Nataniel P. Borges Jr. 4, Eric

Bodden5, Andreas Zeller6

Abstract: The assessment of information flows is an essential part of analyzing Android apps, and is
frequently supported by static taint analysis. Its precision, however, can suffer from the analysis not
being able to precisely determine what elements a pointer can (and cannot) point to. Recent advances
in static analysis suggest that incorporating dynamic heap snapshots, taken at one point at runtime,
can significantly improve general static analysis. In this paper, we investigate to what extent this also
holds for taint analysis, and how various design decisions, such as when and how many snapshots are
collected during execution, and how exactly they are used, impact soundness and precision. We have
extended FlowDroid to incorporate heap snapshots, yielding our prototype Heapster, and evaluated it
on DroidMacroBench, a novel benchmark comprising real-world Android apps that we also make
available as an artifact. The results show 1. the use of heap snapshots lowers analysis time and memory
consumption while increasing precision; 2. a very good trade-off between precision and recall is
achieved by a mixed mode in which the analysis falls back to static points-to relations for objects for
which no dynamic data was recorded; and 3. while a single heap snapshot (ideally taken at the end of
the execution) suffices to improve performance and precision, a better trade-off can be obtained by
using multiple snapshots.

Keywords: points-to analysis; heap snapshot; taint analysis; Soot; Android

1 Introduction

Android is the world’s most popular mobile operating system. Its official marketplace,

Google Play Store, holds more than 3.3 million apps, which can be installed on billions of

devices. To perform their tasks, apps frequently interact with sensitive information—from

private images to banking details. Research shows that security-related bugs introduced by

developers frequently put this sensitive information at risk [En11; En14; Gr12; Ra15].

To identify such sensitive information leaks, taint analysis detects potential leaks by

determining if data acquired on a sensitive source reaches a sink, where the information

would no longer be secure. Such taint flows can be detected statically or dynamically. A

static taint analysis, which we focus on in this paper, reasons about all possible execution

1 Paderborn University, Department of Computer Science manuel.benz@codeshield.de
2 Aarhus University, Department of Computer Science erik@cs.au.dk
3 Paderborn University, Department of Computer Science linghui.luo@upb.de
4 CISPA Helmholtz Center for Information Security, Department of Computer Science nataniel.borges@cispa.

saarland
5 Paderborn University & Fraunhofer IEM, Department of Computer Science eric.bodden@upb.de
6 CISPA Helmholtz Center for Information Security, Department of Computer Science zeller@cispa.saarland

cba doi:10.18420/SE2021_02

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 23

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_02
mailto:manuel.benz@codeshield.de
mailto:erik@cs.au.dk
mailto:linghui.luo@upb.de
mailto:nataniel.borges@cispa.saarland
mailto:nataniel.borges@cispa.saarland
mailto:eric.bodden@upb.de
mailto:zeller@cispa.saarland
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_02


paths in a program and aims to achieve (close to) perfect recall, i.e., it seeks to identify

virtually all potentially sensitive information leaks. Static analyses, though, often suffer from

a trade-off between accuracy and scalability. Although existing taint analysis tools such

as FlowDroid [Ar14] can be configured to conduct a relatively precise flow, context, and

field-sensitive analysis, such configuration needs to be identified by possibly inexperienced

users—and imprecise configuration causes the taint analysis to report substantial amounts

of false positives [LBS18].

A recent approach by Grech et al. addresses this problem by extending static pointer analysis

with information extracted from heap snapshots, collected at runtime. As the authors

show, one can improve soundness [Gr17] by augmenting statically computed points-to

information with additional data from the heap snapshots. Conversely, one can improve

precision by restricting static points-to computation to such information present in the heap

snapshots [Gr18].

In this work, we present an empirical study in which we seek to reproduce the original

experiments revised by Grech et al. but also go significantly beyond them to address these

open questions. We make the following original contributionsȷ

Using heap snapshots for Android taint analysis. We investigate how heap snapshots

impacts the soundness and precision, not just of simple pointer analysis, but of a concrete

client analysis, a static Android taint analysis.

Assessment of design decisions. We investigate how various essential design decisions

impact precision and soundness of the analysis. In particular, we evaluate the impact of two

novel extensionsȷ

• information not only from a single heap snapshot but multiple ones, e.g., collected at

various times during the execution; and

• dynamic heap models collected at runtime (precise, but possibly unsound) versus

pure static heap models (sound, but possibly imprecise) versus mixed models that

seek to define a sensible middle ground between those two extremes by focusing on

precision and enhancing a dynamic model with static information.

Implementation and Benchmark. To evaluate the above decisions, we implemented

Heapster, an extension to FlowDroid that can incorporate heap dumps. Additionally, we

created DroidMacroBench, a set of 12 real-world Android applications that we manually

labeled with ground truth for taint analyses.

Evaluation. We explore the impact of different design decisions about when to collect and

how to consume heap snapshots. In our evaluation we show thatȷ

• adding heap snapshots can significantly improve the precision of taint analysis (from

50.3% to up to 94.7%);

• while restricting points-to information to that of the heap snapshots offers high

precision it significantly harms recall. Our mixed mode solution, however, provides

24 Manuel Benz, Erik K. Kristensen, Linghui Luo, Nataniel Borges Jr., Eric Bodden,

Andreas Zeller



both good precision (77.1%) and good recall (68.4%). Its F1 score is the highest

among all configurations;

• in all evaluated scenarios, incorporating heap snapshots significantly lowers the

amount of computational resources required by the taint analysis, moreover, in 90%

of the scenarios it also improves the analysis performance; and

• while a single heap snapshot, taken at the end of the runtime, suffices to significantly

increase the analysis precision, additional snapshots, taken at different times, are

beneficial for the analysis recall, achieving the best overall F1 score.

For details please consider the full paper accessible at https://dl.acm.org/doi/10.1145/

3377811.3380438 and https://www.hni.uni-paderborn.de/pub/10027.

References

[Ar14] Arzt, S.; Rasthofer, S.; Fritz, C.; Bodden, E.; Bartel, A.; Klein, J.; Traon, Y. L.;

Octeau, D.; McDaniel, P. D.ȷ FlowDroidȷ precise context, flow, field, object-

sensitive and lifecycle-aware taint analysis for Android apps. Inȷ ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’14,

Edinburgh, United Kingdom - June 09 - 11, 2014. Pp. 259–269, 2014, urlȷ

http://doi.acm.org/10.1145/2594291.2594299.

[En11] Enck, W.; Octeau, D.; McDaniel, P. D.; Chaudhuri, S.ȷ A Study of Android

Application Security. Inȷ 20th USENIX Security Symposium, San Francisco, CA,

USA, August 8-12, 2011, Proceedings. USENIX Association, 2011, urlȷ http:

//static.usenix.org/events/sec11/tech/full%5C_papers/Enck.pdf.

[En14] Enck, W.; Gilbert, P.; Chun, B.-G.; Cox, L. P.; Jung, J.; McDaniel, P.; Sheth, A. N.ȷ

TaintDroidȷ An Information-Flow Tracking System for Realtime Privacy Moni-

toring on Smartphones William. Communications of the ACM 57/3, pp. 99–106,

2014, issnȷ 00010782, arXivȷ 1005.3014, urlȷ http://dl.acm.org/citation.

cfm?doid=2566590.2494522.

[Gr12] Grace, M. C.; Zhou, W.; Jiang, X.; Sadeghi, A.ȷ Unsafe exposure analysis of

mobile in-app advertisements. In (Krunz, M.; Lazos, L.; Pietro, R. D.; Trappe, W.,

eds.)ȷ Proceedings of the Fifth ACM Conference on Security and Privacy in

Wireless and Mobile Networks, WISEC 2012, Tucson, AZ, USA, April 16-18,

2012. ACM, pp. 101–112, 2012, urlȷ https://doi.org/10.1145/2185448.

2185464.

[Gr17] Grech, N.; Fourtounis, G.; Francalanza, A.; Smaragdakis, Y.ȷ Heaps don’t lieȷ

countering unsoundness with heap snapshots. PACMPL 1/OOPSLA, 68ȷ1–68ȷ27,

2017, urlȷ https://doi.org/10.1145/3133892.

HeapsŠn Leaks: How Heap Snapshots Improve Android Taint Analysis 25

https://dl.acm.org/doi/10.1145/3377811.3380438
https://dl.acm.org/doi/10.1145/3377811.3380438
https://www.hni.uni-paderborn.de/pub/10027
http://doi.acm.org/10.1145/2594291.2594299
http://static.usenix.org/events/sec11/tech/full%5C_papers/Enck.pdf
http://static.usenix.org/events/sec11/tech/full%5C_papers/Enck.pdf
http://dl.acm.org/citation.cfm?doid=2566590.2494522
http://dl.acm.org/citation.cfm?doid=2566590.2494522
https://doi.org/10.1145/2185448.2185464
https://doi.org/10.1145/2185448.2185464
https://doi.org/10.1145/3133892


[Gr18] Grech, N.; Fourtounis, G.; Francalanza, A.; Smaragdakis, Y.ȷ Shooting from the

heapȷ ultra-scalable static analysis with heap snapshots. Proceedings of the 27th

ACM SIGSOFT International Symposium on Software Testing and Analysis -

ISSTA 2018/, pp. 198–208, 2018, urlȷ http://dl.acm.org/citation.cfm?

doid=3213846.3213860.

[LBS18] Luo, L.; Bodden, E.; Spčth, J.ȷ A Qualitative Analysis of Taint-Analysis Results,

tech. rep., Heinz Nixdorf Institute, Paderborn University, Aug. 2018.

[Ra15] Rasthofer, S.; Arzt, S.; Hahn, R.; Kohlhagen, M.; Bodden, E.ȷ (In)Security

of Backend-as-a-Service. Inȷ blackhat europe 2015. Nov. 2015, urlȷ http:

//bodden.de/pubs/rah+15backend.pdf.

26 Manuel Benz, Erik K. Kristensen, Linghui Luo, Nataniel Borges Jr., Eric Bodden,

Andreas Zeller

http://dl.acm.org/citation.cfm?doid=3213846.3213860
http://dl.acm.org/citation.cfm?doid=3213846.3213860
http://bodden.de/pubs/rah+15backend.pdf
http://bodden.de/pubs/rah+15backend.pdf


What Kind of Questions Do Developers Ask on Stack

Overflow? A Comparison of Automated Approaches to

Classify Posts Into Question Categories

Stefanie Beyer1, Christian Macho1, Massimiliano Di Penta2, Martin Pinzger1

Abstract: Stack Overflow (SO) is among the most popular question and answers sites used by
developers. Labeling posts with tags is one of the features to facilitate searching and browsing SO
posts. However, existing tags mainly refer to technological aspects but not to the purpose of a question.
In this paper, we argue that tagging posts with their purpose can facilitate developers to find the posts
that provide an answer to their question. We first present a harmonization of existing taxonomies of
question categories, that represent the purpose of a question, into seven categories. Next, we present
two approaches to automate the classification of posts into the seven question categories, one using
regular expressions and one using machine learning. Evaluating both approaches on an independent
test set, we found that our regular expressions outperform machine learning. Applying the regular
expressions on posts related to Android app development, showed that the categories API USAGE,
CONCEPTUAL, and DISCREPANCY are most frequently assigned. By integrating our approach into
SO, posts could be manually tagged with our categories which would allow developers to search posts
by question category.

Keywords: Stack Overflow; Classification; Question Categories; Program Understanding

Many developers use question and answer forums, such as Stack Overflow (SO), to discuss

and solve their development issues. To refine the search and describe the questions briefly,

each question post on SO is labeled with 1 to 5 tags. These tags often describe technological

aspects of the questions but lack to describe the motivation of the author which is necessary

to understand the issue [Be17].

Given the number of questions that are newly posted each day, manually assigning such

tags to the posts is considered no feasible. In this work, we set out to automate the process

of labeling posts with tags that represent the why questions are asked (question categories).

These tags are important to understand the most difficult aspects of software development

and the usage of APIs [AS13].

We manually classified 1000 posts into seven question categories that we obtained by com-

paring taxonomies found by prior studies [AS13, Be17, BP14, RS15, TBS11]. Additionally,

we marked 2.192 phrases that indicate a particular question category. Then, we used the

manually created data set to supervise the automated classification of posts into question

categories. First, we implemented a classifier based on regular expressions that we derived

1 University of Klagenfurt, stefanie.beyer@aau.at
2 University of Sannio, dipenta@unisannio.it

cba doi:10.18420/SE2021_03

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 27

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_03
mailto:stefanie.beyer@aau.at
mailto:dipenta@unisannio.it
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_03


by combining recurrent patterns in the phrases. Second, we trained machine learning (ML)

models using Random Forest and Support Vector Machine on the phrases to classify the

posts into the seven question categories.

We evaluated the performance of our approaches on an independent test set of 110 SO

posts that were neither used to extract patterns for the regular expressions nor used to

train and test the models before. The results showed that the regex approach achieves

an average precision and recall of 0.90 and 0.90, respectively, which outperforms the

ML approaches. Furthermore, the regex approach is much faster and easier to adapt. The

application of the regex approach to all studied questions confirmed our findings that API

USAGE, DISCREPANCY, and CONCEPTUAL are the most frequently occurring question

categories. Furthermore, the results show that the majority of the posts is classified in one

to three categories and that the categories are mostly not overlapping.

By integrating the regex classifier into SO, several improvements could be achieved. First,

the automated nature of our approach can help to tag historical posts that still lack tags

that describe non-technical aspects of the posts. Tagging existing posts automatically will

increase the chances that historical posts will also be tagged with newly introduced tags.

Second, we enable developers posting questions by applying our approach to their post

draft and suggesting related question categories to improve the characterization of the

posts through the assigned tags. Third, both of these applications consequently help to

find appropriate posts when developers are searching for help on SO. Lastly, the question

categories can be used to improve existing approaches, such as Seahawk and Prompter, that

suggest suitable code snippets to provide more accurate postings.

Literaturverzeichnis

[AS13] Allamanis, M.; Sutton, C.ȷ Why, when, and whatȷ Analyzing Stack Overflow questions by
topic, type, and code. Inȷ Proceedings of the Working Conference on Mining Software
Repositories. IEEE, S. 53–56, May 2013.

[Be17] Beyer, S.; Macho, C.; Di Penta, M.; Pinzger, M.ȷ Analyzing the Relationships between
Android API Classes and their References on Stack Overflow. Technical report, University
of Klagenfurt, University of Sannio, 2017.

[BP14] Beyer, S.; Pinzger, M.ȷ A manual categorization of android app development issues on
Stack Overflow. Inȷ Proceedings of the International Conference on Software Maintenance
and Evolution. IEEE, S. 531–535, 2014.

[RS15] Rosen, C.; Shihab, E.ȷ What are mobile developers asking about? A large scale study using
stack overflow. Empirical Software Engineering, 21ȷ1–32, 2015.

[TBS11] Treude, C.; Barzilay, O.; Storey, M. A.ȷ How Do Programmers Ask and Answer Questions
on the Web? (NIER Track). Inȷ Proceedings of the International Conference on Software
Engineering. ACM, S. 804–807, 2011.

28 Stefanie Beyer, Christian Macho, Massimiliano Di Penta and Martin Pinzger



ModGuard: Identifying Integrity & Confidentiality

Violations in Java Modules (Short Summary)

Andreas Dann1, Ben Hermann1, Eric Bodden12

Abstract: This short paper« presents a static analysis for the novel challenge of analyzing Java
modules. Since modules have only been recently introduced with Java 9, we point out the impact of
modules both from the security and the static code analysis perspective. In particular, we introduce a
static analysis that allows developers to assess if a module successfully encapsulates internal data,
along with a formal definition of a module’s entrypoints.

Keywords: Static Code Analysis; Module System; Java 9

1 Overview

With the release of version 9, Java introduced the module system Jigsaw. It enables developers

to explicitly declare which packages and types are exposed and which are internal [Or15].

Although modules can encapsulate internal types, they do not prevent the unintentional

leak of security-sensitive data, e.g., secret keys, giving rise to integrity and confidentiality

violations. Confining data by leveraging the module system requires reasoning about data

flows between modules and which classes, methods, and fields are actually accessible from

outside the module.

To complement Java’s module system with means to identify unintended data leaks, we

present ModGuard» , a novel static analysis to identify escaping instances, fields, or

methods. Further, we clarify if existing applications may benefit from the guarantees

provided by the module system by conducting a case study on Apache Tomcat.

2 What are modules?

Like “traditional” JAR files, modules assemble related packages, native code, and resources.

Additionally, modules further contain a static module descriptor file (module-info.java).

A descriptor file specifies the module’s unique name, the exported packages, and the other

modules it requires.

Up to Java 8, every public class was visible to any other on the classpath. In Java 9, a class

contained in a module ( 𝑗𝑎𝑣𝑎.𝑑𝑒𝑠𝑘𝑡𝑜𝑝) may only access another module’s ( 𝑗𝑎𝑣𝑎.𝑥𝑚𝑙) class

if it requires that module, and the module exports the package [Or1»] (cf. Figure 1).

1 Heinz Nixdorf Institute, Paderborn University, Germany <firstname>.<lastname>@uni-paderborn.de
2 Fraunhofer IEM, Germany
«The full-paper is available online [DHB19]
»https://github.com/secure-software-engineering/modguard

cba doi:10.18420/SE2021_04

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 29

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_04
mailto:<firstname>.<lastname>@uni-paderborn.de
https://github.com/secure-software-engineering/modguard
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_04


java.xmljava.desktop

java.base

exports java.xml

com.sun

exports javax.swing

exports java.lang

jdk.internal

java.datatransfer

exports java.awt

exports 

java.awt.datatransfer

Fig. 1ȷ Blueȷ Module Dep.; Dashedȷ Exported Pkg.

But crucially instances of internal types can still

escape their module. Further, the methods and

fields inherited from exported supertypes can

be invoked, e.g., 𝑗𝑎𝑣𝑎.𝑑𝑒𝑠𝑘𝑡𝑜𝑝 may invoke ex-

ported methods on instances escaping 𝑐𝑜𝑚.𝑠𝑢𝑛.

3 How to identify data leaks & escaping instances?

Identifying unintended data flows using static analyses on individual modules is challenging.

The analysis must be conducted on open code much alike call-graph construction for

libraries [Re16]ȷ a module can be linked to any other, and the analysis must foresee all ways

in which those other modules may invoke it.

Parse class Files to 
Jimple 

1. Initialization 2. Entrypoint 3. Client Analysis

Compute
Entrypoints

Perform 
P/Taint Analysis

Build Module
Graph

Identify
Violations

Fig. 2ȷ ModGuard’s Analysis Steps.

To cope with this challenge, we define all poten-

tial interactions with a module in the form of a

so-called entrypoint model using Datalog-based

analysis rules extending Doop [SB11; SKB1»].

The model distinguishes between explicit and

implicitly entrypoints. Explicit entrypoints are methods whose declaring type is exported

and can be invoked directly. Also, they may grant access to the so-called implicit entrypoints.

Implicit entrypoints are methods that inherit, implement, or override methods of exported

supertypes but are declared by an internal type whose instances may escape.

Based on the entrypoint model, we designed the analysis ModGuard (cf. Figure 2). After

computing the entrypoints, ModGuard checks which fields, returned values, and classes

became accessible as a result of invoking of the entrypoints by computing their points-to

set. To identify violations, ModGuard intersects the points-to set with the point-to set of

security-sensitive types and fields. If the intersection is non-empty, ModGuard reports a

violation.

4 Can Modules help to confine data?

To clarify if applications may benefit from the guarantees provides by the module system, we

exemplary studied Apache Tomcat 8.5.21. Since Tomcat not yet uses modules, we migrated

every JAR to a module, following Corwin et al. [Co0«]. Our case study shows that such a

naïve migration fails to mitigate confidentiality and integrity violations, as ModGuard

found violations in 12 out of 26 Tomcat modules.

5 Conclusion

ModGuard may help developers to leverage the module system security-wise by identifying

the exposure of security-sensitive data or objects. The Apache Tomcat example shows that

to confine sensitive data successfully, developers must introduce modules with care.

30 Andreas Dann, Ben Hermann, Eric Bodden



References

[Co0«] Corwin, J.; Bacon, D. F.; Grove, D.; Murthy, C.ȷ MJȷ a rational module system

for Java and its applications. Inȷ OOPSLA ’0« Proceedings of the 18th annual

ACM SIGPLAN conference on Object-oriented programing, systems, languages,

and applications. Vol. «8, ACM, pp. 2»1–25», 200«, isbnȷ 15811«7125, urlȷ

http://doi.acm.org/10.1145/949343.9493.

[DHB19] Dann, A.; Hermann, B.; Bodden, E.ȷ ModGuardȷ Identifying Integrity Confiden-

tiality Violations in Java Modules. IEEE Transactions on Software Engineering/,

pp. 1–1, 2019, urlȷ http://dx.doi.org/10.1109/TSE.2019.2931331.

[Or1»] Oracle Corporationȷ JEP 261ȷ Module System, 201», urlȷ http://openjdk.

java.net/jeps/261.

[Or15] Oracle Corporationȷ JEP 260ȷ Encapsulate Most Internal APIs, 2015, urlȷ

http://openjdk.java.net/jeps/260.

[Re16] Reif, M.; Eichberg, M.; Hermann, B.; Lerch, J.; Mezini, M.ȷ Call Graph

Construction for Java Libraries. Inȷ Proceedings of the 2016 2»th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. FSE 2016,

ACM, Seattle, WA, USA, pp. »7»–»86, 2016, isbnȷ 978-1-»50«-»218-6, urlȷ

http://doi.acm.org/10.1145/2950290.2950312.

[SB11] Smaragdakis, Y.; Bravenboer, M.ȷ Using Datalog for Fast and Easy Program

Analysis. Inȷ Proceedings of the First International Conference on Datalog

Reloaded. Datalog’10, Springer-Verlag, Oxford, UK, pp. 2»5–251, 2011, isbnȷ

978-«-6»2-2»205-2, urlȷ http://dx.doi.org/10.1007/978-3-642-24206-

9_14.

[SKB1»] Smaragdakis, Y.; Kastrinis, G.; Balatsouras, G.ȷ Introspective Analysisȷ Context-

sensitivity, Across the Board. Inȷ Proceedings of the «5th ACM SIGPLAN

Conference on Programming Language Design and Implementation. PLDI ’1»,

ACM, Edinburgh, United Kingdom, pp. »85–»95, 201», isbnȷ 978-1-»50«-

278»-8, urlȷ http://doi.acm.org/10.1145/2594291.2594320.

ModGuard: Identifying Integrity & ConĄdentiality Violations in Java Modules 31

http://doi.acm.org/10.1145/949343.9493
http://dx.doi.org/10.1109/TSE.2019.2931331
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/260
http://doi.acm.org/10.1145/2950290.2950312
http://dx.doi.org/10.1007/978-3-642-24206-9_14
http://dx.doi.org/10.1007/978-3-642-24206-9_14
http://doi.acm.org/10.1145/2594291.2594320




Verbesserung manueller Validierungsprozesse von

CPS-Spezifikationen durch Review-Modelle auf Instanzebene

Marian Daun1, Jennifer Brings2, Thorsten Weyer3

Abstract: Dieser Vortrag berichtet von dem Beitrag Do Instance-level Review Diagrams Support
Validation Processes of Cyber-Physical System Specifications: Results from a Controlled Experiment
[DBW20], der auf der IEEE/ACM International Conference on Software and System Processes
(ICSSP) 2020 vorgestellt und in dem Konferenzband veröffentlicht wurde. Im Rahmen des Beitrags
wurde untersucht, inwiefern manuelle Validierungsprozesse für cyber-physische Systeme durch die
Erstellung von Review-Modellen auf Instanzebene verbessert werden können. Mit einem Experiment
konnte gezeigt werden, dass die Wahl des Review-Modells (d.h., ob ein Modell auf Typebene oder auf
Instanzebene untersucht wird) Auswirkungen auf die Qualitčt der Inspektion hat.

Keywords: Manuelle Validierung; Modellbasierte Entwicklung; Experiment

1 Einleitung

Inspektionen von Entwicklungsartefakten sind ein bedeutender Bestandteil der Qualitčtssi-

cherung für sicherheitskritische Systeme. In der Vergangenheit wurde hierzu untersucht, ob

modellbasierte Spezifikationen von der Erzeugung dedizierter Review-Modelle profitieren

können [DWP19, Da15b, Da19]. Hier haben sich insbesondere Spezifikationen in Notation

von Message Sequence Charts als vorteilhaft erwiesen.

Bei der Validierung kollaborativer cyber-physische Systeme (CPS) ergeben sich neue

Herausforderungen. Kollaborative CPS bilden Systemverbünde, um Ziele zu erreichen, die

Einzelsysteme nicht erreichen können. Bspw. kann durch den Zusammenschluss mehrerer

Fahrzeuge zu einem Platoon eine zusčtzliche CO2-Reduktion erzielt werden. Durch die damit

verbundene Eigenschaft der Offenheit können sich zahlreiche unterschiedliche kollaborative

CPS zur Laufzeit zusammenschließen. Dadurch entsteht eine Vielzahl von Konfigurationen

des Systemverbunds, die bei der Entwicklung und insbesondere bei der Validierung

zu berücksichtigen sind. Die Betrachtung des Interaktionsverhaltens auf Typebene wird

erschwert, da die vielen möglichen Konfigurationen in Abhčngigkeit von den jeweils

beteiligten Instanzen unterschiedliches Verhalten aufweisen und auch aufweisen sollen

[Da15a]. Hierdurch gestaltet sich die Validierung dieses Interaktionsverhaltens schwierig.

1 Universitčt Duisburg-Essen, paluno - The Ruhr Institute for Software Technology, 45127 Essen, Deutschland

marian.daun@paluno.uni-due.de
2 Universitčt Duisburg-Essen, paluno - The Ruhr Institute for Software Technology, 45127 Essen, Deutschland

jennifer.brings@paluno.uni-due.de
3 Universitčt Duisburg-Essen, paluno - The Ruhr Institute for Software Technology, 45127 Essen, Deutschland

thorsten.weyer@paluno.uni-due.de

cba doi:10.18420/SE2021_05

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 33

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_05
mailto:marian.daun@paluno.uni-due.de
mailto:jennifer.brings@paluno.uni-due.de
mailto:thorsten.weyer@paluno.uni-due.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_05


2 Beitrag

Hierzu haben wir untersucht, ob Review-Modelle auf Instanzebene oder auf Typebene

besser geeignet sind, um die Validierung kollaborativer CPS zu unterstützen.

In unserem Beitrag haben wir mit einem Experiment gezeigt, dass in diesen Fčllen die

Inspektion der Typmodelle nicht ausreichend ist, da eben diese kombinatorischen Konfi-

gurationen nicht abgebildet werden. Des Weiteren ist die systematische Erzeugung von

Review-Modellen auf Instanzebene geeignet, um Validierungsprozesse adčquat zu unterstüt-

zen. Es hat sich herausgestellt, dass die Nutzung von Instanzmodellen ausdrucksstčrker und

effektiver ist als die Nutzung von Typmodellen. Darüber hinaus werden Instanzmodelle auch

vom Validierer als unterstützender wahrgenommen. Unterschiede ergeben sich bezüglich

der Größe des Instanzmodells, d.h., wie viele Instanzen eines Typs abgebildet werden.

Literaturverzeichnis

[Da15a] Daun, M.; Brings, J.; Bandyszak, T.; Bohn, P.; Weyer, T.ȷ Collaborating Multiple System
Instances of Smart Cyber-physical Systemsȷ A Problem Situation, Solution Idea, and
Remaining Research Challenges. Inȷ 2015 IEEE/ACM 1st International Workshop on
Software Engineering for Smart Cyber-Physical Systems. S. 48–51, 2015.

[Da15b] Daun, Marian; Salmon, Andrea; Weyer, Thorsten; Pohl, Klausȷ The Impact of Students’
Skills and Experiences on Empirical Resultsȷ A Controlled Experiment with Undergraduate
and Graduate Students. Inȷ Proceedings of the 19th International Conference on Evaluation
and Assessment in Software Engineering. EASE ’15, ACM, New York, NY, USA, S.
29ȷ1–29ȷ6, 2015.

[Da19] Daun, M.; Brings, J.; Krajinski, L.; Weyer, T.ȷ On the Benefits of using Dedicated Models
in Validation Processes for Behavioral Specifications. Inȷ 2019 IEEE/ACM International
Conference on Software and System Processes (ICSSP). S. 44–53, May 2019.

[DBW20] Daun, Marian; Brings, Jennifer; Weyer, Thorstenȷ Do Instance-level Review Diagrams
Support Validation Processes of Cyber-Physical System Specificationsȷ Results from a
Controlled Experiment. Inȷ ICSSP ’20ȷ International Conference on Software and System
Processes, Seoul, Republic of Korea, 26-28 June, 2020. ACM, S. 11–20, 2020.

[DWP19] Daun, Marian; Weyer, Thorsten; Pohl, Klausȷ Improving manual reviews in function-
centered engineering of embedded systems using a dedicated review model. Software and
Systems Modeling, 18(6)ȷ3421–3459, 2019.

34 Marian Daun, Jennifer Brings, Thorsten Weyer



#ifdef Directives and Program Comprehension:

The Dilemma between Correctness and Preference

Wolfram Fenske1, Jacob Krüger2, Maria Kanyshkova2, Sandro Schulze2

Abstract: In this extended abstract, we summarize our paper with the homonymous title published at
the International Conference on Software Maintenance and Evolution (ICSME) 2020 [Fe20].

Keywords: Configurable Systems; Preprocessors; Program Comprehension; Refactoring; Empirical

Study

The C PreProcessor (CPP) is a simple, yet effective tool to implement configuration options

in a software system. For this purpose, the CPP provides text-based directives to enable

conditional compilation, following the annotate-and-remove paradigm. Each directive is

associated with a macro (i.e., the configuration option), which controls the presence or

absence of the source code surrounded by its opening (e.g., #ifdef) and closing (e.g., #endif)

directives. Due to its simplicity, the CPP is widely used in industrial and open-source

systems from various domains—prominent examples being the Linux Kernel with over 26

million lines of code and more than 15 thousand configuration options, Hewlett-Packard’s

printer firmware, and the Apache web server. The CPP allows developers to customize

such systems to specific customer requirements, safety regulations, resource restrictions, or

non-functional properties.

While the CPP is established in practice, it is also heavily criticized for several issues

perceived as problematic. For instance, researchers suspect that the CPP impedes program

comprehension, fosters code scattering as well as tangling, harms maintainability, and

increases fault proneness. The most prominent issue that has been investigated in greater

detail are undisciplined CPP directives, that is, directives that are not aligned with syntactic

units in the source code. However, some studies on the CPP led to contradicting results

and most studies are limited in their validity, for example, because they exclusively rely on

automated repository mining or because controlled experiments involved mostly a smaller

number of students. Only two previous experiments (one on undisciplined directives, one

on faults) involved a larger number of experienced practitioners.

In our paper, we present a large-scale empirical study on the impact of refactoring CPP

directives to be more comprehensible. We selected five real-world code example from Emacs

and Vim that previous work indicates to be particularly “smelly” (i.e., hard to comprehend).

Building on findings of previous studies, we employed three types of refactoring to improve

1 pure-systems GmbH, Magdeburg, Germany, Emailȷ wolfram.fenske@pure-systems.com
2 Otto-von-Guericke-University Magdeburg, Germany, Emailȷ jkrueger@ovgu.de, sanschul@ovgu.de

cba doi:10.18420/SE2021_06

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 35

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_06
mailto:wolfram.fenske@pure-systems.com
mailto:jkrueger@ovgu.de
mailto:sanschul@ovgu.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_06


the comprehensibility of the source code by reducing the complexity of the present CPP

directives. We then designed an online study that comprised an experiment and a survey,

combining objective and subjective empirical data for the same code examples—which

has not been done in previous work that always focused on either experimental or survey

data. Our study was split into two different versions, both sharing one code example to

assure that we could compare between the versions. Moreover, each version comprised

two original and two refactored code examples. For each example, our participants solved

two program comprehension tasks (i.e., the experiment) during which we measured their

objective correctness. Afterwards, we asked them to assess the quality of the code and

CPP directives (i.e., the survey) to elicit their subjective opinion. We sent our study to

7,791 C developers of open-source projects hosted on GitHub who made their data publicly

available. Overall, we received 521 responses with an almost even split between the two

study versions (i.e., 260 to 261). Using this methodology, we considerably extend previous

studies by combining objective and subjective measurements in a large-scale study.

The core findings we derive from our results areȷ

• Our participants performed slightly worse on refactored code in terms of correctly solv-

ing the defined program-comprehension tasks, despite existing evidence suggesting

that the refactoring should have improved their program comprehension.

• Our participants preferred the refactored CPP directives over those in the original

code examples, aligning with existing evidence.

• Most interestingly, our participants’ objective comprehension performance and

their subjective preferences contradict each other and existing evidence on the

comprehensibility and refactoring of CPP directives.

• Refactoring CPP directives may result in developers perceiving the overall code

quality as worse, indicating a trade-off between the quality of the CPP directives and

the quality of the underlying source code.

Overall, our results imply a surprising dilemma not covered by previous studies, challenging

common beliefs in the context of program comprehension of CPP directives. In our future

work, we will investigate this dilemma between objective performance and subjective

preference in more detail using further empirical research methods.

Bibliography

[Fe20] Fenske, Wolfram; Krüger, Jacob; Kanyshkova, Maria; Schulze, Sandroȷ #ifdef Directives and
Program Comprehensionȷ The Dilemma between Correctness and Preference. Inȷ International
Conference on Software Maintenance and Evolution. ICSME. IEEE, pp. 255–266, 2020.

36 Wolfram Fenske, Jacob Krüger, Maria Kanyshkova, Sandro Schulze



Specmate: Automated Creation of Test Cases from

Acceptance Criteria

Jannik Fischbach1, Andreas Vogelsang2, Dominik Spies3, Andreas Wehrle4, Maximilian

Junker5, Dietmar Freudenstein6

Abstract: We summarize the paper Specmate: Automated Creation of Test Cases from Acceptance
Criteria [Fi20b], which was presented at the 2020 edition of the IEEE International Conference on
Software Testing, Verification and Validation (ICST).

Keywords: test case creation; natural language processing; model-based testing; user stories; agile

software development

1 Introduction

User stories are an established instrument for the notation of system requirements in agile

software projects. A user story is fulfilled if all specified acceptance criteria (AC) are

satisfied. This requires testing the defined AC by creating, executing, and maintaining both

positive and negative test cases (Acceptance Testing). Test case design is a very laborious

activity that easily accounts for 40-70 % of the total effort in the testing process: First,

the right input-output combinations need to be determined to comprehensively test the

requirement, which is not trivial, especially for complex system requirements [Fi20a].

Secondly, the number of test cases should be kept to a minimum to avoid unnecessary testing

efforts. Furthermore, the creation of test cases has to be mostly done manually since there is

a lack of tool support. Existing approaches support the test case generation from formal and

semi-formal requirements, but are not suitable for informal requirement descriptions based

on unrestricted natural language. Unrestricted natural language, however, is the dominant

way of formulating AC, as we found in the analysis of 961 user stories from two projects

together with our industry partner Allianz Deutschland. We address this research gap and

present Specmate as an approach to reduce the manual effort of deriving test cases from

AC by applying Natural Language Processing (NLP).

1 Qualicen GmbH, Munich, Germany, jannik.fischbach@qualicen.de
2 University of Cologne, Germany, vogelsang@cs.uni-koeln.de
3 Qualicen GmbH, Munich, Germany, dominik.spies@qualicen.de
4 Qualicen GmbH, Munich, Germany, andreas.wehrle@qualicen.de
5 Qualicen GmbH, Munich, Germany, maximilian.junker@qualicen.de
6 Allianz Deutschland AG, Munich, Germany, dietmar.freudenstein@allianz.de

cba doi:10.18420/SE2021_07

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 37

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_07
mailto:jannik.fischbach@qualicen.de
mailto:vogelsang@cs.uni-koeln.de
mailto:dominik.spies@qualicen.de
mailto:andreas.wehrle@qualicen.de
mailto:maximilian.junker@qualicen.de
mailto:dietmar.freudenstein@allianz.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_07


2 Our Approach

We argue that a valuable automated solution for generating test cases from user stories and

their AC can only be created by understanding both their content and form. For this purpose,

we analyze 961 user stories provided by our industrial partner to determine requirements

for the automated approach. Based on these requirements, we design an approach based

on NLP to generate corresponding test cases automatically. We follow the idea of Model-

Based-Testing and introduce an intermediate layer between the user stories and the final test

cases. We extract the AC from the user stories and transfer each into a test model. Since we

found in our case study that the expected system behavior is usually described in the form

of cause and effect relationships (e.g. In the case of <cause>, the system shall <effect>),

we use Cause-Effect-Graphs (CEG) as test models. In order to transfer the AC into a CEG,

the relevant causes and effects must be identified within the AC. For this purpose we apply

Dependency Parsing and first convert each AC into a dependency tree. Subsequently, we

traverse the dependency tree and generate the CEG. Finally, we derive the minimum number

of test cases from the CEG by applying the Basic Path Sensitization Technique.

3 Our Results

Our case study demonstrates that not every user story provides functional information

to generate test cases. Depending on the project, user stories are increasingly used as a

means of communication. In contrast, about 31.1 % to 50.1 % of the observed user stories

describe the functionality by AC. We hypothesize that there is a high automation potential

in test case derivation from these functional user stories. In this context, a major challenge

arises in processing the informal nature of the AC, which is the dominant type of notation.

Despite the use of unstructured language, the majority of AC are characterized by recurring

patterns, of which cause-effect-relationships have the broadest application. We evaluated

Specmate based on 604 test cases that have been manually derived from 72 user stories by

test designers from our industry partner. Our experiments underline the practical benefits

of Specmate. 56 % of the manually created test cases could be generated automatically

and missing negative test cases are added. The missing 44 % stems from required domain

knowledge and poor data quality within the AC. We hypothesize that a full automation of

the test creation from AC can hardly be achieved. Our approach should therefore be seen as

a supplement to the existing manual process.

Bibliography

[Fi20a] Fischbach, J.; Femmer, H.; Mendez, D.; Fucci, D.; Vogelsang, A.: What Makes Agile Test
Artifacts Useful? An Activity-Based Quality Model from a Practitioners’ Perspective. In:
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM). 2020.

[Fi20b] Fischbach, J.; Vogelsang, A.; Spies, D.; Wehrle, A.; Junker, M.; Freudenstein, D.: SPECMATE:
Automated Creation of Test Cases from Acceptance Criteria. In: IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). 2020.

38 Jannik Fischbach, Andreas Vogelsang, Dominik Spies, Andreas Wehrle, Maximilian

Junker, Dietmar Freudenstein



Automated Reuse of Test Cases for Highly Configurable

Software Systems

Stefan Fischer1, Gabriela Karoline Michelon2, Rudolf Ramler3, Lukas Linsbauer 4,

Alexander Egyed5

Abstract: In this work, we report about our research results [Fi20] initially published in the
journal Empirical Software Engineering, volume 25, issue 6, pp. 5295–5332, November 2020,
https://doi.org/10.1007/s10664-020-09884-x. We performed experiments on test reusability
across configurations of highly configurable software systems. First, we used manually written tests
for specific configurations of three configurable systems and investigated how changing configuration
options affects these tests. Subsequently, we applied an approach developed for automated reuse,
ECCO (Extraction and Composition for Clone-and-Own), to automatically generate tests for new
configurations from the existing, manually written tests. The experiments showed that our generated
tests had a higher or equal success rate compared to direct reuse and they generally achieved a higher
code coverage. It can be concluded that automating the reuse of tests for configurable software can
substantially reduce the effort for adapting existing tests and it supports a rigorous testing process.

Keywords: Variability; Configurable software; Clone-and-own; Reuse; Testing

1 Summary

Many large software systems are designed to be highly configurable with hundreds or

thousands of configuration options. They introduce the flexibility to adapt the system

to specific customer needs. However, some combinations of configuration options may

result in undesired interactions, i.e., one option having unintended negative side effects

on the behavior associated with another configuration option. Testing configurations for

interactions is inherently challenging, because a large number of configuration options

means that there are often myriads of possible configurations that can be derived, each

showing a potentially different behavior. Combinatorial Interaction Testing (CIT) selects

configurations that cover combinations of n configuration options (often referred to as

n-wise testing) to reduce the amount of configurations to test to a viable number [Lo15].

Nevertheless, the actual test cases still need to be adapted to reflect the individual behavior

1 Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria, stefan.fischer@scch.at
2 Johannes Kepler University, Institute for Software Systems Engineering and LIT Secure and Correct Systems

Lab, Linz, Austria, gabriela.michelon@jku.at
3 Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria, rudolf.ramler@scch.at
4 Technische Universit¨at Braunschweig, Institute of Software Engineering and Automotive Informatics, Braun-

schweig, Germany, l.linsbauer@tu-braunschweig.de
5 Johannes Kepler University, Institute for Software Systems Engineering, Linz, Austria, alexander.egyed@jku.at

cba doi:10.18420/SE2021_08

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 39

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_08
https://doi.org/10.1007/s10664-020-09884-x
mailto:stefan.fischer@scch.at
mailto:gabriela.michelon@jku.at
mailto:rudolf.ramler@scch.at
mailto:l.linsbauer@tu-braunschweig.de
mailto:alexander.egyed@jku.at
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_08


of each selected configuration, which can result in significant extra effort for testing. Thus,

Krüger et al. discussed the need for automated test refactoring for the adoption of more

systematic reuse approaches [Kr18]. In the presented work, we performed experiments on

test reuse across configurations of configurable software systems (RQ1) and investigate how

automated reuse affects the testing effort and the resulting coverage (RQ2).

The focus of our work is on reusing existing (e.g., manually written) test cases dedicated

to specific configurations of the system. These specific test cases are reused for testing

other, so far untested configurations combining previously tested configurations. We applied

an automated approach for reuse, ECCO (Extraction and Composition for Clone-and-

Own) [Fi14], to automatically generate new variants of tests from existing ones. ECCO

dissects the existing tests according to the related configuration options and combines

the obtained fragments to new test cases matching the options of the new configurations

under test. For our experiments, we used three different configurable systemsȷ StackSPL,

ArgoUML, and Bugzilla (version 3.4 and 5.1). We investigated direct reuse of existing

tests and automated reuse by generating tests for new configurations, which were obtained

by pairwise and three-wise combination of configuration options. The measures used for

evaluation were success rate (i.e., the number of test cases that passed on a new configuration

without adaption) and code coverage (as well as mutation testing for one of the systems).

Our experiments showed that a large proportion of the existing test cases could be reused

on new configurations. For our first two systems, nearly all individual test variants could

be directly reused, and for the two versions of Bugzilla from 70% to even 100% of tests

cases could be reused. Automatically reusing tests yielded better results in success rate (avg.

improvement 27.8%) and code coverage (avg. improvement 5-10.1%). These results suggest

a considerable advantage for applying automated test reuse over the direct reuse, which

requires additional manual effort for adapting failing test cases.

Literaturverzeichnis

[Fi14] Fischer, Stefan; Linsbauer, Lukas; Lopez-Herrejon, Roberto Erick; Egyed, Alexanderȷ Enhan-
cing clone-and-own with systematic reuse for developing software variants. Inȷ 2014 IEEE
International Conference on Software Maintenance and Evolution. IEEE, S. 391–400, 2014.

[Fi20] Fischer, Stefan; Michelon, Gabriela Karoline; Ramler, Rudolf; Linsbauer, Lukas; Egyed,
Alexanderȷ Automated test reuse for highly configurable software. Empirical Software
Engineering, S. 1–38, 2020.

[Kr18] Krüger, Jacob; Al-Hajjaji, Mustafa; Schulze, Sandro; Saake, Gunter; Leich, Thomasȷ Towards
automated test refactoring for software product lines. Inȷ Proceedings of the 22nd International
Systems and Software Product Line Conference-Volume 1. S. 143–148, 2018.

[Lo15] Lopez-Herrejon, Roberto E; Fischer, Stefan; Ramler, Rudolf; Egyed, Alexanderȷ A first
systematic mapping study on combinatorial interaction testing for software product lines. Inȷ
2015 IEEE Eighth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, S. 1–10, 2015.

40 Stefan Fischer, Gabriela Karoline Michelon, Rudolf Ramler, Lukas Linsbauer,

Alexander Egyed



Robotics Software Engineering: A Perspective from the

Service Robotics Domain (Summary)

Sergio García 1, Daniel Strüber 2, Davide Brugali 3, Thorsten Berger 4, Patrizio Pelliccione 5

Abstract: We present our paper published in the proceedings of the ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering 2020.
Robots that support humans by performing useful tasks (a.k.a., service robots) are booming worldwide.
In contrast to industrial robots, the development of service robots comes with severe software
engineering challenges, since they require high levels of robustness and autonomy to operate in highly
heterogeneous environments. As a domain with critical safety implications, service robotics faces a
need for sound software development practices. In this paper, we present the first large-scale empirical
study to assess the state of the art and practice of robotics software engineering. We conducted 18
semi-structured interviews with industrial practitioners working in 15 companies from 9 different
countries and a survey with 156 respondents (from 26 countries) from the robotics domain. Our
results provide a comprehensive picture of (i) the practices applied by robotics industrial and academic
practitioners, including processes, paradigms, languages, tools, frameworks, and reuse practices,
(ii) the distinguishing characteristics of robotics software engineering, and (iii) recurrent challenges
usually faced, together with adopted solutions. The paper concludes by discussing observations,
derived hypotheses, and proposed actions for researchers and practitioners.

Keywords: robotics; software engineering; interview study; questionnaire study

1 Introduction

Service robots are a rising robotics domain with broad applications in many fields, such as lo-

gistics, healthcare, telepresence, maintenance, domestic tasks, education, and entertainment.

Service robots are robots that performs useful tasks for humans or equipment (excluding

industry automation robots). Compared to industrial robotics, the service robotics domain

is more challenging, since these robots usually operate in unconstrained environments,

often populated by humans, requiring high degrees of robustness and autonomy.

Despite software playing an ever-increasing role in robotics, the current software engineering

(SE) practices are perceived as insufficient, often leading to error-prone and hardly main-

tainable and evolvable software. Robotic systems are an advanced type of cyber-physical sys-

1 Chalmers | University of Gothenburg, Sweden sergio.garcia@gu.se
2 Radboud University, Nijmegen, Netherlands d.strueber@cs.ru.nl
3 University of Bergamo, Bergamo, Italy davide.brugali@unibg.it
4 Chalmers | University of Gothenburg, Sweden thorsten.berger@gu.se
5 Chalmers | University of Gothenburg, Sweden and University of L’Aquila, L’Aquila, Italy patrizio.pelliccione@

gu.se

cba doi:10.18420/SE2021_09

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 41

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_09
mailto:sergio.garcia@gu.se
mailto:d.strueber@cs.ru.nl
mailto:davide.brugali@unibg.it
mailto:thorsten.berger@gu.se
mailto:patrizio.pelliccione@gu.se
mailto:patrizio.pelliccione@gu.se
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_09


tem (CPS), made up of an intricate blend of hardware, software, and environmental compon-

ents. SE, despite its beneficial role in other CPS domains (e.g., automotive, aeronautics), has

traditionally been considered an auxiliary concern of robotic system construction. A possible

reason is that robots in factory automation have built-in proprietary controllers for repetitive

tasks, therefore, allowing a simple programming style. The heavy lifting is in the domains of

mechanics, electronics, and automatic control. In contrast, to achieve autonomy when interac-

ting in highly heterogeneous environments, service robots are equipped with a large variabi-

lity of functionalities for perception, control, planning, learning, and multimodal interaction

with the human operator [Ga19]. The integration, customization, and evolution of these func-

tionalities give rise to a large amount of complexity, the management of which is a challenging

task. SE systematic practices could play a crucial role in the management of such complexity.

Systematic studies about the specific software development practices and tools applied in

service robotics as well as the challenges faced by practitioners in this domain are currently

lacking. Towards this goal, our paper [Ga20] assesses the current SE practices applied to the

domain of service robotics, as well as its distinguishing characteristics and faced challenges.

To collect data, we conducted 18 semi-structured interviews with industrial robotics experts

working for 15 companies from 9 different countries. We accompany this study with an online

survey, targeting industrial and academic practitioners in the robotics domain, from which we

collect 156 responses. To the best of our knowledge, our study is the first with this ambition.

Highlights from our results include the following observationsȷ We discovered that roboti-

cists are predominantly focused on implementation and real-world testing, often favored over

simulation. We learned that robotic control systems are typically developed as component-

based systems, implemented by developers who may come from different backgrounds (e.g.,

mechanical, electrical, or software engineers). We also elicited the main characteristics of

robotics SE, where the cyber-physical nature of robots and the variety of disciplines required

to develop a complete robotic system were highlighted. These characteristics increase the

complexity of robots’ control software, calling for systematic practices as modeling and the

usage of software architectures to improve the development process. Our respondents ranked

challenges related to robustness and validation as most pressing, and typically address them

by applying thorough testing processes. Based on our observations, we also identify research

themes that deserve further investigation. We provide conjectures for why these themes are

currently under-investigated and recommendations for both researchers and practitioners.

Literaturverzeichnis

[Ga19] García, Sergio; Strüber, Daniel; Brugali, Davide; Di Fava, Alessandro; Schillinger, Philipp;
Pelliccione, Patrizio; Berger, Thorstenȷ Variability Modeling of Service Robotsȷ Experiences
and Challenges. Inȷ VaMoS. ACM, S. 8, 2019.

[Ga20] García, Sergio; Strüber, Daniel; Brugali, Davide; Berger, Thorsten; Pelliccione, Patrizioȷ
Robotics Software Engineeringȷ A Perspective from the Service Robotics Domain. Inȷ
ESEC/FSE. S. 593–604, 2020.

42 Sergio García, Daniel Strüber, Davide Brugali, Thorsten Berger, Patrizio Pelliccione



Component-Based Refinement and Verification of

Information-Flow Security Policies for Cyber-Physical

Microservice Architectures

Christopher Gerking 1, David Schubert2

Abstract: This publication is based on our paper presented at the IEEE International Conference on
Software Architecture 2019 [GS19].

Keywords: security policy; information flow; microservice architecture; cyber-physical systems

1 Composable Security for Cyber-Physical Systems

Cyber-physical systems (CPS) are closely interconnected with the outside world, exchanging

information with different parties. From a security viewpoint, it is therefore crucial for

software engineers to ensure that confidential information is never leaked to unauthorized

third parties. To protect CPS against such security leaks, the flow of information must

be regulated and analyzed in the early design phase. Formal methods for regulation and

analysis are provided by the theory of information-flow security. Due to the popularity of

component-based design principles (e.g., such as the microservice architectural style), the

software of CPS is increasingly composed of multiple components. Thus, each component

must be provided with an individual security policy that regulates the flow of information

between the component’s interfaces. To satisfy the security regulations of the composite

system, these policies must be composable in a way that prevents unauthorized information

flows from end to end.

However, the composability of properties like security is a problem that requires careful

investigation by software engineers. Over the last decade, secure information flow has

become known as a so-called hyperproperty [CS10]. Due to their formal characteristics,

such properties are hard to compose in general. Therefore, a careless composition of secure

components is at risk of leading to an insecure system [Ma02]. In our publication [GS19],

we provided software engineers with means to ensure the composability of information-

flow security in the presence of domain-specific CPS characteristics. Thereby, we enable

microservice architectures of CPS to be composed securely. Our contributions address both

regulation and analysis of the information flow.

1 Karlsruhe Institute of Technology (KIT), Software Design and Quality, Am Fasanengarten 5, 76131 Karlsruhe,

Germany, christopher.gerking@kit.edu, httpsȷ//orcid.org/0000-0001-5531-9607
2 Fraunhofer Institute for Mechatronic Systems Design (IEM), Software Engineering and IT Security, Zukun-

ftsmeile 1, 33102 Paderborn, Germany, david.schubert@iem.fraunhofer.de

cba doi:10.18420/SE2021_10

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 43

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_10
https://orcid.org/0000-0001-5531-9607
mailto:christopher.gerking@kit.edu
https://orcid.org/0000-0001-5531-9607
mailto:david.schubert@iem.fraunhofer.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_10


2 Refining Information-Flow Regulations

As our first contribution, we address the refinement of security regulations during the

decomposition of systems into components. To this end, we provide software engineers

with a set of architectural well-formedness rules for the security policies of components.

These rules are used to distinguish regular refinements from those that are irregular because

they put the composite system at risk of unauthorized information flows. Our work is based

on a well-founded theory of composability for information-flow properties [Ma02], but

applies these theoretical foundations to the engineering practice at the architectural level.

To ensure applicability in the domain of CPS, our rule set is tailored to the asynchronous

communication between components, exchanging information by passing messages to each

other. Applying our rules ensures that, as long as all constituent components adhere to their

refined security policies, the composite system is free of any information leaks.

3 Timing-Sensitive Analysis of the Information Flow

Our second contribution is a tool-supported verification technique that enables engineers

to analyze the message-passing behavior of a component for unauthorized information

flows. To account for the fact that CPS are real-time systems, our technique is timing-

sensitive. Thus, it detects so-called timing channels, which are information leaks that are

exploitable by observing the instant of time at which messages are passed. In combination,

our contributions enable a compositional security analysis, in which the analysis results are

securely composable out of the box [Ge20]. Thereby, we assure software engineers that a

composition of secure components is riskless because it will always lead to a secure system.

To evaluate the accuracy of our contributions, we conducted a security-related extension of

the community case study CoCoME for component-based systems.

References

[CS10] Clarkson, M. R.; Schneider, F. B.ȷ Hyperproperties. Journal of Computer Security

18/6, pp. 1157–1210, 2010, doiȷ 10.3233/JCS-2009-0393.

[Ge20] Gerking, C.ȷ Model-driven information flow security engineering for cyber-

physical systems, PhD thesis, Paderborn University, 2020, doiȷ 10.17619/UNIPB/

1-1033.

[GS19] Gerking, C.; Schubert, D.ȷ Component-Based Refinement and Verification of

Information-Flow Security Policies for Cyber-Physical Microservice Architectures.

Inȷ IEEE International Conference on Software Architecture, Proceedings. ICSA

2019. IEEE, pp. 61–70, 2019, doiȷ 10.1109/ICSA.2019.00015.

[Ma02] Mantel, H.ȷ On the Composition of Secure Systems. Inȷ 2002 IEEE Symposium

on Security and Privacy, Proceedings. IEEE Computer Society, pp. 88–101, 2002,

doiȷ 10.1109/SECPRI.2002.1004364.

44 Christopher Gerking, David Schubert

https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.17619/UNIPB/1-1033
https://doi.org/10.17619/UNIPB/1-1033
https://doi.org/10.1109/ICSA.2019.00015
https://doi.org/10.1109/SECPRI.2002.1004364


Claimed Advantages and Disadvantages of (dedicated) Model

Transformation Languages: A Systematic Literature Review

Stefan Götz1, Matthias Tichy1, Raffaela Groner1

Abstract: There exists a plethora of claims about the advantages and disadvantages of model
transformation languages compared to general purpose programming languages. With our work,
published at the Software and Systems Modelling Journal in 2020 [GTG20], we aim to create an
overview over these claims in literature and systematize evidence thereof. For this purpose we
conducted a systematic literature review by following a systematic process for searching and selecting
relevant publications and extracting data. We selected a total of 58 publications, categorized claims
about model transformation languages into 14 separate groups and conceived a representation to track
claims and evidence through literature. From our results we conclude that: (i) current literature claims
many advantages of model transformation languages but also points towards certain deficits and (ii)
there is insufficient evidence for claimed advantages and disadvantages and (iii) a lack of research
interest into the verification of claims.

Keywords: Model Transformation Language; DSL; Model Transformation; MDSE; advantages;

disadvantages; SLR

Ever since the dawn of Model-Driven Engineering at the beginning of the century, model

transformations, supported by dedicated transformation languages [Hi13], have been an

integral part of model-driven development. Model transformation languages (MTLs) have

ever since been associated with advantages for the development of model transformations

compared to general purpose programming languages. Many of these advantages are

reiterated time and time again throughout literature often without any actual evidence to

support the statements. This makes it difficult for readers to grasp which properties of

MTLs are verifiably true and which might still only be of visionary nature. The goal of our

study is to identify and categorize claims about advantages and disadvantages of model

transformation languages made throughout the literature and to gather available evidence

thereof. For this purpose we performed a systematic review [BSP16] of claims about model

transformation languages and evidence for those claims in literature. Lastly, we analysed

and discussed the extracted claims and evidence to: (i) provide an overview over claimed

advantages and disadvantages and their origin, (ii) the current state of evidence thereof and

(iii) identify areas where further research is necessary.

Of the 58 selected publication 32 publications mention advantages and 36 publications

mention disadvantages. Moreover four publications provide empirical evidence for either

advantages or disadvantages while 12 publications use citations to support their claims and 14

1 Ulm University, Institute for Software Engineering and Compiler Construction, James-Franck-Ring 1, 89081

Ulm, Germany stefan.goetz@uni-ulm.de

cba doi:10.18420/SE2021_11

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 45

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_11
mailto:stefan.goetz@uni-ulm.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_11


publications use other means such as examples and experience of the authors to back up their

statements. In total we were able to extract 127 claims about model transformation languages

which we were able to sort into 14 different categories. The categories include properties

that are expected to show up such as performance, expressiveness and comprehensibility but

also less obvious groups such as verification or versatility. An effort by us to categorize the

extracted claims along existing taxonomies of model transformation language features failed

because ~70% of all claims are made broadly and without reference to specific features of

MTLs that aid the advantage or disadvantage. Regarding the state of evidence we found

that current literature exhibits a deficit in evidence (empirical or otherwise) for asserted

properties of MTLs. We also identified several potential reasons and barriers for why current

literature lacks evidence. First there is the fact that designing and conducting rigorous

studies to examine model transformation languages requires a substantial amount of time

and effort. A fact that is further hampered by the lack of easily available study subjects.

Next is the fallacy that because MTLs are DSLs they bear the same advantages that other

DSLs exhibit. We believe that the benefits attributed to DSLs can only point to potential

advantages that MTLs may have, rather than being a certainty. Lastly there is the effect,

that statements can become ‘established’ facts by virtue of being reiterated often enough or

being cited multiple times without the cited source actually providing any evidence. This

can lead to a distorted factual picture and makes it often impossible to find the origin of a

claim.

We conclude that: (i) current literature claims many advantages of MTLs but also points

towards deficits owed to the mostly experimental nature of the languages and its limited

domain, (ii) there is insufficient evidence for and (iii) research about properties of model

transformation languages. Our results suggest a lack of effort put into the evaluation of model

transformation languages and their potential advantages or disadvantages. We believe that a

significant portion of current research efforts that are being invested into the development

of new features should instead be spent on evaluating the state of the art in hopes of

ascertaining both what current MTLs are lacking most and where their strengths really lie.

We also suggest that in future publications, claims on benefits and disadvantages of model

transformation languages be made more specific and include mentions of the features that

aid or hamper the benefits. This will allow a more nuanced and focused discussion of the

issue and make statements less vulnerable to basic scrutiny.

Bibliography

[BSP16] Boot, Andrew; Sutton, Anthea; Papaioannou, Diana: Systematic Approaches to a Successful
Literature Review. Sage, 2016.

[GTG20] Götz, Stefan; Tichy, Matthias; Groner, Raffaela: Claimed advantages and disadvantages of
(dedicated) model transformation languages: a systematic literature review. Software and
Systems Modeling, 2020.

[Hi13] Hinkel, Georg: An approach to maintainable model transformations with an internal DSL.
PhD thesis, National Research Center, 2013.

46 Stefan Götz, Matthias Tichy, Raffaela Groner



Learning Circumstances of Software Failures

Rahul Gopinath1, Nikolas Havrikov2, Alexander Kampmann«, Ezekiel Soremekun»,

Andreas Zeller5

Abstract: A program fails. Under which circumstances does the failure occur? Starting with a
single failure-inducing input (“The input ((4)) fails”) and an input grammar, this talk presents two
techniques that use systematic tests to automatically determine the circumstances under which the
failure occurs. The DDSet algorithm [Go20] generalizes the input to an _abstract failure-inducing
input_ that contains both (concrete) terminal symbols and (abstract) nonterminal symbols from the
grammar—for instance, “((〈expr〉))”, which represents any expression in double parentheses. The
Alhazen technique [Ka20] takes this even further, using decision trees to learn input properties such
as length or numerical values associated with failuresȷ “The error occurs as soon as there are two
parentheses or more.” Such abstractions can be used as debugging diagnostics, characterizing the
circumstances under which a failure occurs; and as producers of additional failure-inducing tests to
help design and validate fixes and repair candidates. Both have the potential to significantly boost
speed and quality of software debugging.

Keywords: debugging; grammar; error diagnosis

1 Introduction

A program may fail when processing certain inputs, and it is not often clear why. Not

all parts of the input may contribute equally to the failure, and the developers need to

understand the exact circumstances of program failure. We introduce two techniques to help

the developers.

Our DDSet algorithm reduces a given failure inducing input to its abstract form, precisely

identifying the failure causing parts of the input. Our Alhazen technique, on the other

hand, analyses the input interpretations and automatically builds and refines hypotheses

about why the program failed.

2 DDSet

Given a failure inducing input, and the program grammar, DDSet starts by minimizing the

failure inducing input to its minimal form using hierarchical delta debugging. DDSet starts

1 CISPA Helmholtz Center for Information Security, Saarbrücken rahul.gopinath@cispa.de
2 CISPA Helmholtz Center for Information Security, Saarbrücken nikolas.havrikov@cispa.de
« CISPA Helmholtz Center for Information Security, Saarbrücken alexander.kampmann@cispa.de
» CISPA Helmholtz Center for Information Security, Saarbrücken ezekiel.soremekun@cispa.de
5 CISPA Helmholtz Center for Information Security, Saarbrücken zeller@cispa.de

cba doi:10.18420/SE2021_12

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 47

https://creativecommons.org/licenses/by-sa/4.0/
mailto:rahul.gopinath@cispa.de
mailto:nikolas.havrikov@cispa.de
mailto:alexander.kampmann@cispa.de
mailto:ezekiel.soremekun@cispa.de
mailto:zeller@cispa.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_12


from the root node of the input parse tree, and checks whether any node could be replaced

by a randomly generated node of the same kind while reproducing the observed failure. If a

node that can be thus replaced is marked abstract. The abstract failure inducing inputs are

produced by collapsing the annotated parse tree to the corresponding string where abstract

nodes are left as non-terminals. Such abstractions can be used to generate further failure

inducing inputs by replacing non-terminal symbols in the string with random expansions of

the same non-terminal.

In our evaluation the inputs generated from abstractions induced failures 99.9% of the time.

3 Alhazen

Imagine you have a calculator program that fails on the input “sqrt(-900)”, and passes with

“tan(9)”. Alhazen uses a context-free grammar to decompose the inputs into individual

parts, in the example “function == sqrt”, “function == tan”, “number == -900” and “number

== 9”. Those are used as features for a decision-tree learner. Such a tree learner generates a

model which can decide between failing and non-failing inputs. In the example, the tree

learner provides the hypothesis that the program fails if “number <= -»»5.5”. This is not

correct, but explains all available observations. Alhazen proceeds to generate inputs which

challenge this hypothesis. We execute those tests and use the new observations to refine the

model. After several iterations of this feedback loop, Alhazen comes up with the correct

hypothesisȷ The program fails if “number <= 0”.

Our evaluation shows, thatAlhazen’s final hypothesis classified 92% of all inputs correctly.

4 Conclusion

DDSet and Alhazen are techniques for explaining why a program fails, and their

explanations are complementary. DDSet focuses on identifying syntactical properties

directly related to structural elements. Alhazen’s hypotheses identify concrete values or

value ranges, arguing about semantic, rather than syntactic, input properties. Evaluation

results show that both approaches can be used to generate more failure-inducing inputs,

predict whether an input triggers a failure or provide insights into why a failure occurs.

Bibliography

[Go20] Gopinath, Rahul; Kampmann, Alexander; Havrikov, Nikolas; Soremekun, Ezekiel; Zeller,
Andreasȷ Abstracting Failure-Inducing Inputs. Inȷ ISSTA 2020. July 2020.

[Ka20] Kampmann, Alexander; Havrikov, Nikolas; Soremekun, Ezekiel; Zeller, Andreasȷ When does
my Program do this? Learning Circumstances of Software Behavior. Inȷ ESEC/FSE 2020.
November 2020.

48 Rahul Gopinath, Nikolas Havrikov, Alexander Kampmann, Ezekiel Soremekun,

Andreas Zeller



Mining Input Grammars

Rahul Gopinath1, Björn Mathis2, Andreas Zeller3

Abstract: To assess the behavior of a program, one needs to understand its inputs—their sources, their
structure, and how they lead to individual behavior. But as syntax and semantics of inputs are almost
never completely specified, humans and computers constantly have to figure out how to produce a
particular behavior.

In this abstract, we show how to automatically extract accurate, well-structured input grammars from
existing programs. Such input grammars are useful for software testing, as they can serve as producers
of valid, high-quality inputs for software testing that easily pass through parsing and validation to
reliably trigger the desired program behavior. Moreover, they allow testers to control which inputs are
to be produced—in contrast to the majority of fuzzers, that operate as black boxes.

Our Mimid prototype [GMZ20] uses dynamic tainting to extract input grammars from given programs—
grammars that are well-structured and highly readable, even for complex recursive input formats
such as JavaScript or JSON. Specific parser-directed test generators [Ma19; MGZ20] systematically
explore the input syntax, such that grammars can be mined even without any given inputs.

Keywords: grammar; grammar mining; automated testing; fuzzing; input generation

1 Introduction

Understanding the input specification is key to understanding the program behavior, but

few come with an input specification. Even if an input specification is given, it may be

obsolete, incomplete, or incorrect. Given that inaccuracy in the input specification is

a blind spot, it is important to obtain accurate input specifications. We describe three

key techniques for recovering accurate input specifications from a given program. Our

techniques work on all styles of handwritten recursive descent programs. We start by

generating unbiased input samples [Ma19] that explore the input space of even complex

parsers with tokenisation [MGZ20]. The execution traces of these input samples are then

used to decompose the given input into parse trees, which are then combined and abstracted

into a general grammar [GMZ20]. The grammars obtained are well readable and accurate.

1 CISPA Helmholtz Center for Information Security, Saarbrücken rahul.gopinath@cispa.de
2 CISPA Helmholtz Center for Information Security, Saarbrücken bjoern.mathis@cispa.de
3 CISPA Helmholtz Center for Information Security, Saarbrücken zeller@cispa.de

cba doi:10.18420/SE2021_13

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 49

https://creativecommons.org/licenses/by-sa/4.0/
mailto:rahul.gopinath@cispa.de
mailto:bjoern.mathis@cispa.de
mailto:zeller@cispa.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_13


2 Grammar Mining

Mimid relies on input decomposition to construct the grammar, and uses three key insights.

The first insight is that the dynamic program dependence tree of the input processing

is structurally equivalent to the parse tree. Next, Mimid limits itself to the context-free

decomposition of the input. Hence, it only tracks the input decomposition in the first level

parser. Finally, any input character is consumed by the node that accesses it last. Each

character is attached to the node in the dynamic control dependence tree that consumed it.

The parse trees resulting from the application of these techniques are then collapsed. Each

node of a parse tree corresponds to a particular expansion in the corresponding grammar

where the node name corresponds to the non-terminal symbol of the expansion, and the

names of the child nodes correspond to the non-terminal symbols in the expansion. Any

attached characters become the terminal symbols in the expansion. All such expansions are

collected, and repetition of node sequences is abstracted out to produce the final grammar.

In our evaluation, the mined grammars had an accuracy of approximately 90% as producers

and as recognizers.

3 Parser Directed Input Generation

For Mimid to be effective, it needs input samples that cover every input feature. One can’t

rely on existing input corpus as such a corpus may not exist, and even if one exists, it may not

cover all features. Parser directed test generation provides a solution. Our technique [Ma19]

injects instrumentation to differentiate between incorrect and invalid inputs. We also track

the comparisons made to the last index of the input. We start with an empty input, and

extend the input with a random character if the input was found to be incomplete. If on the

other hand, the input was found to be incorrect, the last character added is removed, and

is replaced by one of the characters it was compared against. Proceeding in this fashion,

complete valid inputs are achieved. While tokenisation of inputs can reduce the effectiveness,

we show [GMZ20] that tokenisation specific instrumentation can overcome this issue.

References

[GMZ20] Gopinath, R.; Mathis, B.; Zeller, A.ȷ Mining Input Grammars from Dynamic

Control Flow. Inȷ ESEC/FSE. artifactȷ httpsȷ//github.com/vrtrha/mimid, Nov.

2020, urlȷ https://publications.cispa.saarland/3101/.

[Ma19] Mathis, B.; Gopinath, R.; Mera, M.; Kampmann, A.; Höschele, M.; Zeller, A.ȷ

Parser-Directed Fuzzing. Inȷ PLDI 2019. June 2019, urlȷ https : / /

publications.cispa.saarland/2823/.

[MGZ20] Mathis, B.; Gopinath, R.; Zeller, A.ȷ Learning Input Tokens for Effective

Fuzzing. Inȷ ISSTA 2020. Pp. 1–11, July 2020, urlȷ https://publications.

cispa.saarland/3135/.

50 Rahul Gopinath, Björn Mathis, Andreas Zeller

https://publications.cispa.saarland/3101/
https://publications.cispa.saarland/2823/
https://publications.cispa.saarland/2823/
https://publications.cispa.saarland/3135/
https://publications.cispa.saarland/3135/


An Exploratory Study on Performance Engineering in

Model Transformations

Raffaela Groner1, Luis Beaucamp1, Matthias Tichy1, Steffen Becker2

Abstract: Model–Driven Software Engineering is used to deal with the increasing complexity of
software, but this trend also leads to larger and more complex models and model transformations.
While improving the performance of transformation engines has been a focus, there does not exist
any empirical study on how transformation developers deal with performance issues. We used a
quantitative questionnaire to investigate whether the performance of transformations is actually
important for transformation developers. Based on the answers to the questionnaire, we conducted
qualitative semi-structured interviews. The results of the online survey show that 43 of 81 participants
have already tried to improve the performance of a transformation and 34 participants are sometimes
or only rarely satisfied with the execution performance. Based on the answers from our 13 interviews,
we identified different strategies to prevent or find performance issues in model transformations as
well as different types of causes of performance issues and solutions to resolve them. We compiled
a collection of tool features perceived helpful by the interviewees for finding causes. Overall, our
results show that performance of transformations is relevant and that there is a lack of support for
transformation developers without detailed knowledge of the engine to solve performance issues.
This summary refers to our work, which was accepted for the Foundation Track of the ACM / IEEE
23rd International Conference on Model Driven Engineering Languages and Systems (MODELS) in
2020 [Gr20].

Keywords: Mixed Method Study; Model Transformation; ATL; Henshin; QVTo; Viatra; Performance

Engineering

Due to the increasing size and complexity of software systems to be developed, the size

and complexity of models used in Model–Driven Software Engineering (MDSE) is also

increasing. Since these models serve as input for model transformations, this trend can

lead to an increasing execution time of transformations until a performance issue occurs.

Currently, there is a lot of research that deals with the performance of the transformation

engine, for example by improving the engine [Fr17] or developing approaches that speed up

the transformation execution by parallel execution [BWV16]. However, there is still a lack

of research focusing on whether transformation developers have to deal with performance

issues and, if they do, how they try to solve them. Therefore, we conducted an explorative

mixed method study, consisting of a quantitative online survey and qualitative interviews.

The results show that 43 out of 81 survey respondents have already tried to analyze or

improve the performance of their transformations. The issues mentioned are long execution

1 Ulm University, Institute for Software Engineering and Programming Languages, James–Franck–Ring, D–89069

Ulm, Germany raffaela.groner@uni-ulm.de, luis.beaucamp@uni-ulm.de, matthias.tichy@uni-ulm.de
2 University of Stuttgart, Institute for Software Engineering, Universitčtsstraße, D–70569 Stuttgart, Germany

steffen.becker@iste.uni-stuttgart.de

cba doi:10.18420/SE2021_14

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 51

https://creativecommons.org/licenses/by-sa/4.0/
mailto:raffaela.groner@uni-ulm.de
mailto:luis.beaucamp@uni-ulm.de
mailto:matthias.tichy@uni-ulm.de
mailto:steffen.becker@iste.uni-stuttgart.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_14


times and high memory consumption. The transformation developers have developed

techniques to prevent performance issues or to find causes. For example, they carry out

performance tests to prevent issues. The strategies used to find causes vary depending on the

knowledge of the engine and the available information. Since most of the languages do not

provide any support for such an analysis at the transformation level, pure users can only try to

find possible causes through trial–and–error. Developers with more knowledge of the engine,

use tools, e.g. a Java profiler, at the engine level to analyze the performance. The developers

have discovered different causes for performance issues that occur either at the engine level,

the transformation level, or in the input model. Causes on the engine level include, e.g.,

properties of the engine, for instance in some engines, lists are copied multiple times to

avoid side effects. In case of transformations, e.g., expensive OCL expressions can be the

cause of performance issues. On the model level, certain structures, such as deep inheritance

hierarchies, can be the cause. With regard to the solutions used, there are only a few that

require adjustment of the engine. Instead, the developers try to improve the execution time,

e.g., by defining their transformations more unambiguous through stricter preconditions or

by using language concepts like caching. It also becomes clear that the developers want

more information about a transformation execution at the transformation level. For example,

they want not only information like execution time or memory consumption, but also tracing

information about how a transformation is executed. They also want more tool support, e.g.,

profilers at the transformation level or analyses to detect expensive operations.

Some transformation developers have already developed techniques for analyzing and

improving the performance, but these work mainly at the engine level. Therefore, these

techniques are not applicable for pure users, although many solutions could be applied by

them, since they do not require any engine customization. In order to address this problem,

we want to develop an approach in our future work that will also help pure users to identify

causes for performance issues and to fix them.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) - Ti 803/4-1.

Bibliography

[BWV16] Burgueño, Loli; Wimmer, Manuel; Vallecillo, Antonioȷ A Linda-based platform for
the parallel execution of out-place model transformations. Information and Software
Technology, 79ȷ17 – 35, 2016.

[Fr17] Fritsche, Lars; Leblebici, Erhan; Anjorin, Anthony; Schürr, Andyȷ A Look-Ahead Strategy
for Rule-Based Model Transformations. Inȷ MODELS (Satellite Events). volume 2019 of
CEUR Workshop Proceedings. CEUR-WS.org, pp. 45–53, 2017.

[Gr20] Groner, Raffaela; Beaucamp, Luis; Tichy, Matthias; Becker, Steffenȷ An Exploratory
Study on Performance Engineering in Model Transformations. Inȷ Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems. MODELS ’20, Association for Computing Machinery, New York, NY, USA, p.
308–319, 2020.

52 Raffaela Groner, Luis Beaucamp, Matthias Tichy, Steffen Becker



On the Cost and Profit of Software Defect Prediction

Steffen Herbold1

Abstract: We summarize the article On the cost and profit of software defect prediction [He19],
which was published in the IEEE Transactions on Software Engineering in 2019.

Keywords: Defect Prediction; Costs; Return On Investment

1 Overview

The article “On the cost and profit of software defect prediction” published in the IEEE

Transactions on Software Engineering in 2019 propose a cost model to enable the estimation

of the expected profit when using machine learning models for defect prediction [He19].

Defect prediction can be a powerful tool to guide the use of quality assurance resources.

However, while lots of research covered methods for defect prediction as well as methodolog-

ical aspects of defect prediction research, the actual cost saving potential of defect prediction

is still unclear. We close this research gap and formulate a cost model for software defect

prediction. We derive mathematically provable boundary conditions that must be fulfilled

by defect prediction models such that there is a positive profit when the defect prediction

model is used. Our cost model includes aspects like the costs for quality assurance, the costs

of post-release defects, the possibility that quality assurance fails to reveal predicted defects.

2 Results

Our results show that the unrealistic assumption that defects only affect a single software

artifact leads to inaccurate cost estimations. Moreover, the results indicate that thresholds

for machine learning metrics like precision and recall are also not suited to define success

criteria for software defect prediction.

Bibliography

[He19] Herbold, Steffenȷ On the costs and profit of software defect prediction. IEEE Transactions on
Software Engineering, (01)ȷ1–1, dec 2019.

1 Karlsruher Institut für Technologie, Institute AIFB, Kaiserstr. 89, 761«« Karlsruhe, Deutschland steffen.herbold@

kit.edu

cba doi:10.18420/SE2021_15

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 53

https://creativecommons.org/licenses/by-sa/4.0/
mailto:steffen.herbold@kit.edu
mailto:steffen.herbold@kit.edu
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_15




On the Feasibility of Automated Prediction of Bug and

Non-Bug Issues

Steffen Herbold1, Alexander Trautsch2, Fabian Trautsch«

Abstract: We summarize the article On the feasibility of automated prediction of bug and non-bug
issues [HTT20], which was published in the Empirical Software Engineering in 2020.

Keywords: issue type prediction; bug issues; recommendation systems; empirical software enginee-

ring

1 Overview

The article “On the feasibility of automated prediction of bug and non-bug issues” published

in Empirical Software Engineering in 2020 considers the application of machine learning for

the automated classification of issue types, e.g., for research purposes or as a recommendation

system [HTT20]. Issue tracking systems are used to track and describe tasks in the

development process, e.g., requested feature improvements or reported bugs. However, past

research has shown that the reported issue types often do not match the description of the

issue. Within our work, we evaluate the state of the art of issue type prediction system can

accurately identify bugs. We also investigate if manually specified knowledge can improve

such systems.

2 Results

While we found that manually specified knowledge about contents is not useful, respecting

structural aspects can be valuable. Our experiments show that issue type prediction system

can be trained based on large amounts of unvalidated data and still be sufficiently accurate

to be useful. Overall, the misclassifications of the automated system are comparable to the

misclassifications made by developers.

1 Karlsruher Institut für Technologie, Institute AIFB, Kaiserstr. 89, 761«« Karlsruhe, Deutschland steffen.herbold@

kit.edu
2 Georg-August-Universitčt Göttingen, Institute für Informatik, Goldschmidtstr. 7, «7077 Göttingen, Deutschland

alexander.trautsch@cs.uni-goettingen.de
« Georg-August-Universitčt Göttingen, Institute für Informatik, Goldschmidtstr. 7, «7077 Göttingen, Deutschland

fabian.trautsch@cs.uni-goettingen.de

cba doi:10.18420/SE2021_16

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 55

https://creativecommons.org/licenses/by-sa/4.0/
mailto:steffen.herbold@kit.edu
mailto:steffen.herbold@kit.edu
mailto:alexander.trautsch@cs.uni-goettingen.de
mailto:fabian.trautsch@cs.uni-goettingen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_16


Literatur

[HTT20] Herbold, S.; Trautsch, A.; Trautsch, F.ȷ On the feasibility of automated prediction

of bug and non-bug issues. Empirical Software Engineering 25/6, S. 5«««–5«69,

Sep. 2020, urlȷ https://doi.org/10.1007/s10664-020-09885-w.

56 Steffen Herbold, Alexander Trautsch, Fabian Trautsch

https://doi.org/10.1007/s10664-020-09885-w


A Systematic Mapping Study Of Developer Social Network

Research

Steffen Herbold1, Aynur Amirfallah2, Fabian Trautsch«, Jens Grabowski»

Abstract: We summarize the article A systematic mapping study of developer social network
research [He21], which was published in the Journal of Systems and Software in 2020.

Keywords: Developer social networks; Mapping study; Literature survey

1 Overview

The article “A systematic mapping study of developer social network research” published in

the Journal of Systems and Software in 2020 presents the results of a systematic mapping

study of the state of the art of developer social network research [He21]. Developer social

networks (DSNs) are a tool for the analysis of community structures and collaborations

between developers in software projects and software ecosystems. We identified 255

primary studies on DSNs. We mapped the primary studies to research directions, collected

information about the data sources and the size of the studies, and conducted a bibliometric

assessment.

2 Results

We found that nearly half of the research investigates the structure of developer communities.

Other frequent topics are prediction systems build using DSNs, collaboration behavior

between developers, and the roles of developers. Moreover, we determined that many

publications use a small sample size regarding the number of projects, which could be

problematic for the external validity of the research. Our study uncovered several open

issues in the state of the art, e.g., studying inter-company collaborations, using multiple

information sources for DSN research, as well as general lack of reporting guidelines or

replication studies.

1 Karlsruher Institut für Technologie, Institute AIFB, Kaiserstr. 89, 761«« Karlsruhe, Deutschland steffen.herbold@

kit.edu
2 Georg-August-Universitčt Göttingen, Institut für Informatik, Goldschmidtstr. 7, «7077 Göttingen, Deutschland

aynur.amirfallah@stud.uni-goettingen.de
« Georg-August-Universitčt Göttingen, Institut für Informatik, Goldschmidtstr. 7, «7077 Göttingen, Deutschland

fabian.trautsch@cs.uni-goettingen.de
» Georg-August-Universitčt Göttingen, Institut für Informatik, Goldschmidtstr. 7, «7077 Göttingen, Deutschland

jens.grabowski@cs.uni-goettingen.de

cba doi:10.18420/SE2021_17

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 57

https://creativecommons.org/licenses/by-sa/4.0/
mailto:steffen.herbold@kit.edu
mailto:steffen.herbold@kit.edu
mailto:aynur.amirfallah@stud.uni-goettingen.de
mailto:fabian.trautsch@cs.uni-goettingen.de
mailto:jens.grabowski@cs.uni-goettingen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_17


Literatur

[He21] Herbold, S.; Amirfallah, A.; Trautsch, F.; Grabowski, J.ȷ A systematic mapping

study of developer social network research. Journal of Systems and Software 171/,

S. 110802, 2021.

58 Steffen Herbold, Aynur Amirfallah, Fabian Trautsch, Jens Grabowski



Cutting through the Jungle: Disambiguating Model-based

Traceability Terminology (Extended Abstract)

Jörg Holtmann1, Jan-Philipp Steghöfer 2, Michael Rath3, David Schmelter4

Abstract: This extended abstract summarizes our distinguished paper [Ho20], published and presented

in 2020 at the 28𝑡ℎ IEEE International Requirements Engineering Conference (RE’20).

Keywords: Traceability; Requirements Engineering; Model-based Engineering; Terminology

Natural language remains the dominant documentation format for requirements specifications

for software-intensive systems. At the same time, models are increasingly applied in the

engineering of such systemsȷ Embedded systems development heavily relies on model-

based systems engineering for interdisciplinary communication and model-driven software

development for early automated analyses and code generation. In combination, the

development processes for software-intensive systems include intertwined development

phases producing, among others, informal system requirements, semi-formal system design

models, informal software requirements, formal software design models, code, and tests.

At the same time, traceability is demanded by many development and safety standards for

software-intensive systems and has to be established throughout the development lifecycle.

The term traceability and its definition originate in the Requirements Engineering (RE)

research community, which also provides a terminology for this area. However, existing

definitions even only within the RE research community partially contradict each other.

Looking moreover into the modeling research community, its literature on model-based

traceability uses the same terms with different meanings. Furthermore, additional aspects

that go beyond the traceability terminology shaped by the RE community are relevant when

working with models. For example, when models are transformed during development to

yield other models with more fine-grained granularity and additional details, trace links

between the source models and the target models can be established automatically. In

addition, trace links are often stored in external trace models or are included in models in

languages such as the Unified Modeling Language or the Systems Modeling Language. The

traceability definitions from the RE community do not yet cover such cases. Thus, there is

the need to extend these definitions to cover cases from model-based engineering.

1 Software Engineering & IT Security, Fraunhofer IEM, Paderborn, Germany, joerg.holtmann@iem.fraunhofer.de
2 Chalmers | University of Gothenburg, Gothenburg, Sweden jan-philipp.steghofer@gu.se
3 Technische Universitčt Ilmenau, Ilmenau, Germany michael.rath@tu-ilmenau.de
4 Software Engineering & IT Security, Fraunhofer IEM, Paderborn, Gemany, david.schmelter@iem.fraunhofer.de

cba doi:10.18420/SE2021_18

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 59

https://creativecommons.org/licenses/by-sa/4.0/
mailto:joerg.holtmann@iem.fraunhofer.de
mailto:jan-philipp.steghofer@gu.se
mailto:michael.rath@tu-ilmenau.de
mailto:david.schmelter@iem.fraunhofer.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_18


Whereas existing secondary studies list the terminology from both communities, they do not

resolve conflicts or add missing aspects. They also circumscribe concepts rather than naming

them concretely while reusing existing terminology with additional identifiers. However, a

domain terminology is the common ground for a set of people communicating with each

other. Thus, a scientific community has to define its own terminology as the basis for an

efficient communication and conduct of research. Consequently, with the inclusion of the

modeling research community it becomes necessary to extend the RE terminology, include

new terms, dissolve term conflicts, and dismiss terms that cannot be defined unambiguously.

In order to disambiguate the terminology on traceability of both the RE and the modeling

research communities, we conducted a multi-stage literature review. Figure 1 sketches our

research method, which consists of several iterative refinements of the yielded terminology

and an accompanying taxonomy. Our results are based on and validated with a tertiary

literature review and samples from primary literature. We include a mapping to how the

secondary and primary studies in the review use the concepts in our terminology.

1: Identification of
common definitions

2: Validation with
secondary sources

3: Taxonomy
refinement

4: Validation with
primary sources

Gotel et al.: Traceability fundamentals. 

Software and Systems Traceability '12.

T. Kühne: Matters of

(meta-) modeling. SoSyM '06.

N. Aizenbud-Reshef et al.: Model 

traceability. IBM Systems Journal '06.

J. Holtmann: Model-based Traceability. 
Sect. 2.1, PhD Thesis Holtmann '19.

Filtering &
snowballing

7 secondary sources

47 publications
Independent concept mapping

by 2 authors per paper with
subsequent joint discussion

and harmonization

“model-driven/-based 
& traceability 

& survey / review”

Under construction
mindmap for terminology

taxonomy

Finalized feature model
specifying the terminology

taxonomy

22 selected
primary sources

Concept
mapping

…

Fig. 1ȷ Overview of our research method—iterative refinement of the terminology and its taxonomy

Thus, the contribution of our paper is a terminology that disambiguates the different terms

used in model-based traceability. Furthermore, we provide a taxonomy specified by means

of a feature model, which conceptually visualizes the structure of our terminology and

formalizes the relationships between certain terms. As a side effect, this terminology serves

as a classification scheme for how trace links are used in model-based environments. Since

primary studies rarely define the properties of the traceability approach they propose, our

work helps comparing and contrasting different approaches. Summarizing, we believe our

work will simplify discussions between requirements engineers and engineers working with

models since they can now use a set of unambiguous terms to discuss traceability concepts.

Bibliography

[Ho20] Holtmann, Jörg; Steghöfer, Jan-Philipp; Rath, Michael; Schmelter, Davidȷ Cutting through the

Jungleȷ Disambiguating Model-based Traceability Terminology. Inȷ 28𝑡ℎ IEEE International
Requirements Engineering Conference (RE’20). IEEE, pp. 8–19, 2020. Distinguished Paper.

60 Jörg Holtmann, Jan-Philipp Steghöfer, Michael Rath, David Schmelter



Detecting Quality Problems in Research Data: A

Model-Driven Approach1

Arno Kesper2, Viola Wenz2, Gabriele Taentzer2

Abstract: The quality of research data is essential for scientific progress. A major challenge in
data quality assurance is the localisation of quality problems that are inherent to data. Based on the
observation of a dynamic shift in the database technologies employed, we present a model-driven
approach to analyse the quality of research data. It allows a data engineer to formulate anti-patterns
that are generic concerning the database format and technology. A domain expert chooses a pattern
that has been adapted to a specific database technology and concretises it for a domain-specific
database format. The resulting concrete pattern is used by a data analyst to locate quality problems in
the database. As a proof of concept, we implemented tool support that realises this approach for XML
databases. We evaluated our approach concerning expressiveness and performance.

The original paper has been published at the International Conference on Model Driven Engineering
Languages and Systems 2020 [KWT20].

Keywords: Data quality; Model-driven development; Pattern matching

1 Introduction

As scientific progress highly depends on the quality of research data, there are strict

requirements for data quality coming from the scientific community. Relevant quality

dimensions include consistency, completeness and precision. In a qualitative study on

cultural heritage data we observed a variety of data quality problems. Examples include

imprecise, redundant and semantically incorrect data. A major step to data quality assurance

is to analyse the inherent quality problems. Due to the dynamic digitalisation in specific

scientific fields, different database technologies and data formats may be used. In the digital

humanities, for example, a shift from relational to XML and further to graph databases

can be observed. To cope with this challenge, we present a model-driven approach to

data quality analysis. Given a large variety of data quality problems, which may have

various concrete forms, a model-driven approach is promising to develop technology- and

format-independent concepts and tooling for data quality analysis.

1 This work was partially funded by the German Federal Ministry of Education and Research (BMBF) grant

16QK06A.
2 Philipps-Universitčt Marburg, Marburg, Germany, {arno.kesper, viola.wenz, taentzer}@uni-marburg.de

cba doi:10.18420/SE2021_19

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 61

https://creativecommons.org/licenses/by-sa/4.0/
mailto:arno.kesper@uni-marburg.de
mailto:viola.wenz@uni-marburg.de
mailto:taentzer@uni-marburg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_19


2 Approach

Fig. 1ȷ Workflow of pattern creation and application

Our model-driven approach to data qual-

ity analysis is based on the observation

that many quality problems show anti-

patterns. In contrast to related approaches,

it allows data engineers to specify parame-

terised anti-patterns for data quality prob-

lems that are generic concerning the un-

derlying database technology and format.

Such a generic pattern can be adapted

to several database technologies, result-

ing in abstract patterns. Depending on

the database technology this can be done

(semi-)automatically by a data engineer. A

domain expert chooses an abstract pattern as template and concretises it to a domain-specific

database format and to a concrete quality problem. The resulting concrete pattern is then

automatically translated into a corresponding query language. A data analyst can apply

the concrete pattern to localise occurrences of the quality problem in a database. The data

analyst can then initiate an improvement process.

The core of the approach is a metamodel for patterns. It currently supports generic, XML-

adapted abstract and concrete patterns. The metamodel is designed to allow extensions for

further database technologies. Patterns are defined as first-order logic conditions over graphs.

We use directed graphs to interpret data independently of the database technology. Our

implementation includes a mapping between graphs and XML data as well as a translation

of XML-adapted concrete patterns to XQuery. Mappings for other database technologies

are outlined in our paper.

The evaluation of our approach based on cultural heritage data revealed that its strength lies

in detecting structural problems. The expressiveness can be expanded by integrating further

techniques for quality analysis, such as similarity metrics.

Our overall goal is to develop a framework for quality assurance of research data, where the

detection of quality problems is the first essential step. In general, there is a need for powerful

tools that analyse the quality of data. Data quality assurance is also of particular importance

in the context of data-intensive software systems, which have gained interest in recent years.

Hence, this topic affects not only data engineering but also software engineering.

Bibliography

[KWT20] Kesper, Arno; Wenz, Viola; Taentzer, Gabrieleȷ Detecting Quality Problems in Research
Dataȷ A Model-Driven Approach. Inȷ Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems. MODELS ’20,
Association for Computing Machinery, New York, NY, USA, p. 354–364, 2020.

62 Arno Kesper, Viola Wenz, Gabriele Taentzer



Isolating Faults in Failure-Inducing Inputs

Lukas Kirschner1, Ezekiel Soremekun2«, Andreas Zeller»

Abstract: Program failures are often caused by faulty inputs (e.g. due to data corruption). When an
input induces failure, one needs to debug the input data, i.e. isolate faults to obtain valid input data.
Typically, debuggers focus on diagnosing faults in the program, rather than the input. This talk instead
presents an approach that automatically repairs faults in the input data, without requiring program
analysis. In addition, we present empirical data on the causes and prevalence of invalid inputs in
practice, we found that four percent of inputs in the wild are invalid.

We present a general-purpose algorithm called ddmax that automatically isolates faults in invalid
inputs and recovers the maximal valid input data. The aim of ddmax is to (1) identify which parts of
the input data prevent processing by the program, and (2) recover as much of the (valuable) input data
as possible.

Given a program and an invalid input, through experiments, ddmax recovers and repairs as much
data as possible. The difference between the original failing input and the “maximized” passing input
includes all input fragments that could not be processed, i.e. the fault. This approach is useful for
automatically debugging and repairing invalid inputs.

Keywords: Program Inputs; Debugging; Input Repair; Fault Localisation

1 Summary

This article is an abridged version of our reseach paper titled “Debugging Inputs” which is

published in the proceedings of the fourty-second IEEE/ACM International Conference on

Software Engineering (ICSE) [KSZ20].

When a program fails, the failure can be caused by a faulty input (e.g. corrupt data)ȷ Which

portion of the input data is faulty? Which part of the input contains valid data? Identifying

faults in program inputs is challenging because input files often have complex structures

and are required to conform to specific syntactic and semantic rules.

General-purpose automated debugging techniques specialize in diagnosing faults in program

code [Bö17; Wo16], rather than the input data. Notably, input reduction techniques simplify

failure-inducing inputs to aid developers during debugging. For instance, delta debugging

(ddmin) [ZH02] simplifies inputs to a smaller subset that reproduces a failure. However,

1 CISPA Helmholtz Center for Information Security, Saarbrücken s8lukirs@stud.uni-saarland.de
2 SnT, University of Luxembourg, Luxembourg ezekiel.soremekun@uni.lu
« This work was done while working at CISPA Helmholtz Center for Information Security, Saarbrücken
» CISPA Helmholtz Center for Information Security, Saarbrücken zeller@cispa.de

cba doi:10.18420/SE2021_20

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 63

https://creativecommons.org/licenses/by-sa/4.0/
mailto:s8lukirs@stud.uni-saarland.de
mailto:ezekiel.soremekun@uni.lu
mailto:zeller@cispa.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_20


ddmin is not a good fit for input debuggingȷ It produces the smallest subset of the input

that also produces an input error – typically a single character – which is neither helpful

for diagnosis nor data recovery. In contrast to input reduction, input debugging requires

isolating faults in the input data, i.e., (1) identifying which parts of the input data prevent

processing, and (2) recovering as much of the (valuable) input data as possible.

We present a general-purpose algorithm called ddmax that automatically isolate faults

in inputs [KSZ20]. We obtain ddmax by inverting the original delta debugging (ddmin)

algorithm [ZH02], such that it maximizes the subset of the input that can still be processed

by the program through test experiments. It repeatedly adds data from the originally failing

input (first larger pieces, then smaller pieces) as long as the failure does not occur. Eventually,

it isolates faults by providing all input fragments that could not be processed, i.e., the

difference between the failing input and the “maximized” passing input. In this work, we

present two variants of ddmaxȷ (1) lexical ddmax which repairs arbitrary invalid inputs at

the character level, and (2) syntactic ddmax which performs input repair on the parse tree.

In our evaluation of thousands of input files, we found that four percent of inputs in the

wild are invalid, they could not be processed either by their grammar or program(s). In

our evaluation of the effectiveness of ddmax, ddmax repaired about 69% of input files and

recovered about 78% of valid data, within one minute per input. A comparison of the fault

diagnosis of ddmax to that of ddmin showed that, on average, only 12% of a ddmin diagnosis

contains the failure cause, while a third of the diagnosis contains noise, i.e., valid data.

We have presented ddmax– the first generic technique for automatically repairing failure-

inducing inputs, it recovers a maximal subset of the input that can still be processed by the

program at hand. Our work opens the door for a number of exciting research opportunities

in the following areasȷ synthesizing input structures, semantic input repair and fuzzing.

References

[Bö17] Böhme, M.; Soremekun, E. O.; Chattopadhyay, S.; Ugherughe, E.; Zeller, A.ȷ

Where is the bug and how is it fixed? An experiment with practitioners. Inȷ

Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering. Pp. 117–128, 2017.

[KSZ20] Kirschner, L.; Soremekun, E.; Zeller, A.ȷ Debugging Inputs. Inȷ 2020 IEEE/ACM

»2nd International Conference on Software Engineering (ICSE). IEEE, 2020,

urlȷ https://publications.cispa.saarland/3060/.

[Wo16] Wong, W. E.; Gao, R.; Li, Y.; Abreu, R.; Wotawa, F.ȷ A survey on software fault

localization. IEEE Transactions on Software Engineering »2/8, pp. 707–7»0,

2016.

[ZH02] Zeller, A.; Hildebrandt, R.ȷ Simplifying and isolating failure-inducing input.

IEEE Transactions on Software Engineering 28/2, pp. 18«–200, 2002.

64 Lukas Kirschner, Ezekiel Soremekun, Andreas Zeller

https://publications.cispa.saarland/3060/


Determining Context Factors for Hybrid Development

Methods with Trained Models

Jil Klünder1, Dzejlana Karajic2, Paolo Tell«, Oliver Karras», Christian Münkel5,

Jürgen Münch6, Stephen G. MacDonell 7, Regina Hebig8, Marco Kuhrmann9

Abstract: Selecting a suitable development method for a specific project context is one of the
most challenging activities in process design. To extend the so far statistical construction of hybrid
development methods, we analyze 829 data points to investigate which context factors influence
the choice of methods or practices. Using exploratory factor analysis, we derive five base clusters
consisting of up to 10 methods. Logistic regression analysis then reveals which context factors have
an influence on the integration of methods from these clusters in the development process. Our results
indicate that only a few context factors including project/product size and target application domain
significantly influence the choice.

This summary refers to the paper “Determining Context Factors for Hybrid Development Methods
with Trained Models”. This paper was published in the proceedings of the International Conference
on Software and System Process in 2020.

Keywords: Software Process; Hybrid Development Method; Trained Models

1 Introduction

Nowadays, most software development processes do not consist of a single method and/or

practice. Research has shown that the combination of different methods and practices into

a so-called hybrid method is state-of-the-practice. Research has shown, how a “typical”

hybrid method looks like, and how a hybrid method can be statistically constructed [Te20].

Problem Statement & Objective So far, hybrid methods have been devised based on

experience and over time [Kl19]. However, it remains unclear which factors need to be

considered when devising such a hybrid method. Therefore, in this paper, we analyze which

(context) factors can help to derive a suitable hybrid method.

1 Leibniz Universitčt Hannover, Germany, jil.kluender@inf.uni-hannover.de
2 University of Passau, Germany, dzejlana.karajic@gmail.com
« IT University Copenhagen, Denmark, pate@itu.dk
» Leibniz Universitčt Hannover, Germany, oliver.karras@inf.uni-hannover.de
5 Leibniz Universitčt Hannover, Germany, christian@muenkel.cc
6 Reutlingen University, Germany, j.muench@computer.org
7 Auckland University of Technology, New Zealand, stephen.macdonell@aut.ac.nz
8 Chalmers | University of Gothenburg, Sweden, regina.hebig@cse.gu.se
9 University of Passau, Germany, kuhrmann@acm.org

cba doi:10.18420/SE2021_21

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 65

https://creativecommons.org/licenses/by-sa/4.0/
mailto:jil.kluender@inf.uni-hannover.de
mailto:dzejlana.karajic@gmail.com
mailto:pate@itu.dk
mailto:oliver.karras@inf.uni-hannover.de
mailto:christian@muenkel.cc
mailto:j.muench@computer.org
mailto:stephen.macdonell@aut.ac.nz
mailto:regina.hebig@cse.gu.se
mailto:kuhrmann@acm.org
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_21


Contribution We analyze a subset of the HELENA dataset consisting of 829 data points

using exploratory factor analysis and logistic regression analysis. We cluster the set of

methods and investigate which context factors influence the likelihood of using methods

from a specific cluster.

Our results reveal that only a few context factors including the company size and some target

application domains influence the likelihood of using methods from one of the clusters.

2 Results

The exploratory factor analysis on 829 data points from the HELENA dataset revealed five

clusters consisting of up to ten methods. These clusters can be described as mainly agile,

mainly traditional or a mixture of agile and traditional methods. The logistic regression

analysis then reveals for each of the clusters, which context factors influence the likelihood of

using methods from the respective cluster. Our results indicate that (1) companies working

distributed across one continent tend to use agile methods, (2) the target application domain

has an influence in some cases (defense systems, space systems, telecommunication, web

applications), and («) small projects tend to use traditional methods. In all other cases, our

analysis did not reveal significant influences. In the last step, we extend the method clusters

with frequently used practices following a construction process similar to Tell et al. [Te20].

3 Conclusion & Future Work

Our paper [Kl20] documents context factors that influence the likelihood of using methods

and practices from a specific set. As, according to our results, context factors seem to be not

as relevant as they are supposed to be, future work should investigate which other factors

decide on the shape hybrid methods.

Bibliography

[Kl19] Klünder, Jil; Hebig, Regina; Tell, Paolo; Kuhrmann, Marco; Nakatumba-Nabende, Joyce;
Heldal, Rogardt; Krusche, Stephan; Fazal-Baqaie, Masud; Felderer, Michael; Bocco, Marcela
Fabiana Genero et al.ȷ Catching up with method and process practiceȷ An industry-informed
baseline for researchers. Inȷ 2019 IEEE/ACM »1st International Conference on Software
Engineeringȷ Software Engineering in Practice (ICSE-SEIP). IEEE, pp. 255–26», 2019.

[Kl20] Klünder, Jil; Karajic, Dzejlana; Tell, Paolo; Karras, Oliver; Münkel, Christian; Münch, Jürgen;
MacDonell, Stephen G; Hebig, Regina; Kuhrmann, Marcoȷ Determining Context Factors for
Hybrid Development Methods with Trained Models. Inȷ Proceedings of the International
Conference on Software and System Processes. pp. 61–70, 2020.

[Te20] Tell, Paolo; Klünder, Jil; Küpper, Steffen; Raffo, David; MacDonell, Stephen; Münch, Jürgen;
Pfahl, Dietmar; Linssen, Oliver; Kuhrmann, Marcoȷ Towards the statistical construction of
hybrid development methods. Journal of Softwareȷ Evolution and Process, p. e2«15, 2020.

66 Jil Klünder, Dzejlana Karajic, Paolo Tell, Oliver Karras, Christian Münkel,

Jürgen Münch, Stephen G. MacDonell, Regina Hebig, Marco Kuhrmann



Skill-Based Verification of Cyber-Physical Systems

Alexander Knüppel1, Inga Jatzkowski2, Marcus Nolte3, Tobias Runge Knüppel4, Thomas

Thüm5, Ina Schaefer6

Abstract: This work has been accepted at the 23rd International Conference on Fundamental
Approaches to Software Engineering, held as part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020 [Kn20].

The increase of complexity in modeling cyber-physical systems poses a challenge for formally ensuring
their functional correctness. Lack of expert knowledge and scalability are two limiting factors that
prohibit a seamless integration into today’s software engineering processes. To address this challenge,
we propose to adopt and formalize the notion of skill graphs, an abstract and easy-to-use modeling
notion for representing automated vehicle driving maneuvers. For formally verifying that skill graphs
are well-formed and comply with a given set of safety requirements, we incorporate hybrid programs
into our formalization. Hybrid programs constitute a program notion for cyber-physical systems on the
basis of differential dynamic logic, which enables deductive and compositional verification following
the idea of Hoare-style reasoning. That is, simpler verified skill graphs can be combined to exhibit
complex maneuvers while validity is retained (i.e., without the need of re-verification). To showcase
the benefits of our theoretical considerations, we implemented our framework in an open-source tool
named Skeditor and conducted a case study exhibiting an automatic vehicle follow mode.

Keywords: Deductive verification; design by contract; formal methods; theorem proving; hybrid

program; cyber-physical systems

Nowadays, cyber-physical systems are ubiquitously present in our lives and have a direct

impact on most humans. As the complexity of modern cyber-physical systems increases while

also being applied for safety-critical tasks, formal verification methods are required. This

poses a major challenge on developers and engineering processes in the early development

stages to ensure functional correctness. Hence, an important challenge is to derive modeling

and verification techniques that (1) are easy to integrate into the software development cycle

by reducing modeling complexity and (2) allow to identify severe requirement and modeling

mistakes at design time. To address this challenge, we propose a model-based verification

framework called Skeditor and an accompanying IDE that allows to prototype driving

maneuvers (e.g., following a leading a vehicle) and verify their adherence to a set of formal

requirements.

1 TU Braunschweig a.knueppel@tu-bs.de
2 TU Braunschweig jatzkowski@ifr.ing.tu-bs.de
3 TU Braunschweig nolte@ifr.ing.tu-bs.de
4 TU Braunschweig tobias.runge@tu-bs.de
5 University of Ulm thomas.thuem@uni-ulm.de
6 TU Braunschweig i.schaefer@tu-bs.de

cba doi:10.18420/SE2021_22

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 67

https://creativecommons.org/licenses/by-sa/4.0/
mailto:a.knueppel@tu-bs.de
mailto:jatzkowski@ifr.ing.tu-bs.de
mailto:nolte@ifr.ing.tu-bs.de
mailto:tobias.runge@tu-bs.de
mailto:thomas.thuem@uni-ulm.de
mailto:i.schaefer@tu-bs.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_22


To achieve this goal, Skeditor combines two concepts, namely skill graphs and hybrid

programms. Skill graphs were introduced by Reschka et al. [Re15] and serve as modeling

notation, following the principle of separation of concerns by enabling the decomposition

of more complex maneuvers into modular, reusable, and inter-related building blocks (i.e.,

skills). To model the behavior of skills that interact with the physical environment (i.e.,

controllers), we rely on hybrid programs [Pl18], which comprise a program notation for

cyber-physical systems together with a deductive calculus to prove controller correctness.

One of the most important properties of our formalization is compositionality, for which

we defined a composition operator for skill graphs. That is, smaller provably correct skill

graphs can be combined while correctness is retained without the need of re-verification.

In our evaluation, we modeled and verified a skill graph representing a vehicle follow

mode combining two simpler maneuvers, namely following a leading vehicle and following

hard shoulder (i.e. the lateral and longitudinal control tasks). We modeled each of these

maneuvers individually and measured the verification effort with KeYmaera X [Fu15].

Due to the typical overlap in skills for both maneuvers, our results show that the composition

reduces the total verification effort by 53% compared to monolithic modeling.

In summary, we provide the first formalization of skill graphs including tool support and

show how they can be combined with hybrid programming as a formal underpinning. As

demonstrated in our work, Skeditor allows developers to prototype driving maneuvers

and verify their safety as part of the early software development life cycle, while – due to

compositionality – costly re-verification can be minimized.

Bibliography

[Fu15] Fulton, Nathan; Mitsch, Stefan; Quesel, Jan-David; Völp, Marcus; Platzer, Andréȷ KeYmaera
Xȷ An Axiomatic Tactical Theorem Prover for Hybrid Systems. Inȷ International Conference
on Automated Deduction. Springer, pp. 527–538, 2015.

[Kn20] Knüppel, Alexander; Jatzkowski, Inga; Nolte, Marcus; Thüm, Thomas; Runge, Tobias; Schae-
fer, Inaȷ Skill-Based Verification of Cyber-Physical Systems. Inȷ International Conference on
Fundamental Approaches to Software Engineering. Springer, Cham, pp. 203–223, 2020.

[Pl18] Platzer, Andréȷ Logical Foundations of Cyber-Physical Systems, volume 662. Springer, 2018.

[Re15] Reschka, Andreas; Bagschik, Gerrit; Ulbrich, Simon; Nolte, Marcus; Maurer, Markusȷ Ability
and Skill Graphs for System Modeling, Online Monitoring, and Decision Support for Vehicle
Guidance Systems. Inȷ 2015 IEEE Intelligent Vehicles Symposium (Vol. IV). IEEE, pp.
933–939, 2015.

68 Alexander Knüppel, Inga Jatzkowski, Marcus Nolte, Tobias Runge, Thomas Thüm, Ina

Schaefer



An Empirical Analysis of the Costs of Clone- and

Platform-Oriented Software Reuse

Jacob Krüger1, Thorsten Berger2

Abstract: In this extended abstract, we summarize our paper with the homonymous title published at
the Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE) 2020 [KB20].

Keywords: Economics; Software reuse; Empirical study; Clone & own; Software product line;

Platform engineering

Software reuse is a core practice to reduce development costs and improve the quality of

software systems. Organizations typically employ one of two strategies to reuse softwareȷ

Clone & Own. When employing this strategy, developers create an independent clone of

an existing system and adapt it to new customer requirements.

Platform Orientation. When employing this strategy, developers implement a code base

that allows them to derive customized variants based on concepts from product-line

engineering, such as variability mechanisms (e.g., preprocessors) and feature models.

Either strategy has its pros and cons, enforcing different software architectures and devel-

opment activities. Clone & own is cheap and readily available, for instance, in the form of

branches in version-control systems—which is why most organization start reusing software

based on this strategy. However, particularly when maintaining cloned variants becomes a

burden, most organizations migrate these variants towards a platform—which requires high

upfront investments, but promises to substantially reduce development and maintenance

costs as well as the time-to-market of new variants.

Deciding which strategy to employ is a core decision for any organization and has long-term

impact in its software development. Despite this importance, the costs resulting from either

strategy are not well-understood and, in fact, there is a lack of systematically elicited data

to provide guidance for organizations. In our paper, we describe an empirical study with

which we elicited such data, investigating the development activities, costs, cost factors,

and benefits of both reuse strategies. For this purpose, we combined a systematic literature

1 Otto-von-Guericke-University Magdeburg, Germany

jkrueger@ovgu.de
2 Ruhr-University Bochum, Germany & Chalmers | University of Gothenburg, Sweden

bergert@chalmers.se

cba doi:10.18420/SE2021_23

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 69

https://creativecommons.org/licenses/by-sa/4.0/
mailto:jkrueger@ovgu.de
mailto:bergert@chalmers.se
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_23


review of 57 publications that report quantified costs on software reuse with 26 interviews at

a large organization. During the interviews, we elicited the software-reuse process employed

at the organization. Furthermore, we asked interviewees to do informed, judgment-based

cost estimations for a concrete variant they developed, and to assess the impact of cost

factors on developing variants. We triangulated the data from both sources to confirm and

refute common hypotheses on software reuse, providing concrete empirical data.

Among others, the core findings of our study areȷ

• The organization employs a development process that integrates clone & own with

platform orientation. Such processes have recently also been identified for other

organizations and open-source projects, but are still rarely considered in research.

• The success of reuse heavily depends on establishing platform orientation, with our

data suggesting total median savings of 52 %. Particularly the reduced costs of variant

development (-67 %) and quality assurance (-60 %) are major pros of a platform.

• A critical success factor for platform orientation is the quality of the code base, which

is why fewer bugs are found (-70 %) in established platforms. Our data confirms

additional benefits, such as a substantially reduced time-to-market (-63 %), and

highlights the impact of various cost factors, particularly developers’ knowledge

regarding the software.

In total, we identified 18 pieces of confirmatory evidence for established hypotheses on

software reuse, also indicating that a platform is preferable over clone & own—which does

promise benefits, but on a lower level. Moreover, we identified seven inconclusive and three

refuting pieces of evidence, suggesting that (1) clone & own and platform orientation are

not strictly separated in practice; (2) change propagation can be more problematic in a

platform compared to clone & own; and (3) platforms are essential to successfully establish

innovative variants in new markets.

Our contribution is the first evidence-based body-of-knowledge on the costs of two established

reuse strategies, providing important insights for research and practice. For instance, this

body-of-knowledge helps practitioners understand both reuse strategies and improve their

decision making, while we highlight open problems and particularly costly activities to

provide guidance for further research. In future work, we will investigate our inconclusive

and refuting evidence in more detail. Also, we will conduct additional studies to verify our

data and derive a decision model that helps organizations decide for a reuse strategy.

Bibliography

[KB20] Krüger, Jacob; Berger, Thorstenȷ An Empirical Analysis of the Costs of Clone- and Platform-
Oriented Software Reuse. Inȷ Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE. ACM, pp. 432–444,
2020.

70 Jacob Krüger, Thorsten Berger



What Developers (Care to) Recall:

An Interview Survey on Smaller Systems

Jacob Krüger1, Regina Hebig2

Abstract: This extended abstract summarizes our paper with the homonymous title published at the
International Conference on Software Maintenance and Evolution (ICSME) 2020 [KH20].

Keywords: Knowledge; Information needs; Developers’ memory

Developers have to understand the behavior and properties of the software in their system

in order to extend and maintain it, which is referred to as program comprehension. While

studying program comprehension, researchers have conducted empirical studies aiming to

analyze the readability of source code (e.g., based on different identifier names), investigated

developers’ information needs (e.g., what questions come to a developer’s mind during their

tasks), and designed techniques to support knowledge recovery (e.g., by reverse engineering

information). Interestingly, researchers have rarely investigated developers’ memory decay

or what knowledge they consider important to remember, and thus keep in their mind.

Understanding what knowledge developers memorize helps to scope tools, practices, and

research. For instance, experts may require more light-weight code searching capabilities,

due to their memorized knowledge. In contrast, novices or new team members may require

extensive documentation or the help of experts to understand the system architecture, which

may be tacit knowledge experts aim to memorize. Moreover, such needs may vary depending

on the type of knowledge, for example, the system’s architecture versus meta information

about the team or the system’s evolution.

Motivated by our previous work, we investigated the connection between developers’

memory decay, types of knowledge, and what knowledge developers consider important to

remember. To this end, we started with a systematic literature review of 14 papers that are

concerned with a total of 456 questions developers ask during maintenance and development

tasks. We analyzed the 420 questions that the authors classified into 81 classes to gain a

first understanding of developers’ knowledge needs. Then, we re-classified all questions to

unify the classes and get a consolidated overview. Building on our insights, we derived a

semi-structured interview guide, which we used to conduct 17 interviews with developers

from different areas (i.e., academia, industry, open-source), domains (e.g., web services,

machine learning, static code analysis), and countries (e.g., Germany, Sweden, France). We

1 Otto-von-Guericke-University Magdeburg, Germany

jkrueger@ovgu.de
2 Chalmers | University of Gothenburg, Sweden

regina.hebig@cse.gu.se

cba doi:10.18420/SE2021_24

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 71

https://creativecommons.org/licenses/by-sa/4.0/
mailto:jkrueger@ovgu.de
mailto:regina.hebig@cse.gu.se
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_24


remark that most of the systems we asked our interviewees about were comparably small

(i.e., 1–6 developers, four with more than 100 k lines of code). During each interview, we

started with a self-assessment of the interviewee’s familiarity (i.e., remaining knowledge)

with the system overall and with respect to three types of knowledge (i.e., architecture,

meta, code), which we repeated after each section related to these types. We then asked our

interviewee to recall answers to six questions from the systematic literature review on each

of the three different types of knowledge from their memory (i.e., a total of 18 different

questions). Afterwards, but before checking for correctness, we asked each interviewee to

rate the importance of the three knowledge types and individual questions.

Triangulating from the results of our systematic literature review and our interview survey,

our core findings areȷ

• Developers consider more abstract knowledge about their system (e.g., the system

architecture and intentions of the code) more important to remember.

• Developers can recall knowledge for questions they consider important more often

correctly than for those they consider less important.

• Developers may be reliable in doing self-assessments of their familiarity, but, inter-

estingly, these self-assessments usually decreased after answering questions about

their system from memory.

In our paper, we report various additional insights that have important implications for

practice and motivate new research directions. For instance, our results support our aforemen-

tioned assumptions that developers aim to remember a system’s architecture. Consequently,

practitioners have to think about how to document and maintain the corresponding informa-

tion explicitly, to avoid that the tacit knowledge is lost over time. Moreover, our findings

provide guidance on how to structure teams or onboard new developers, while researchers

may explore new techniques for reverse engineering information. As direct future work,

we are working on extensions of our study to overcome its limitations (e.g., small system

sizes, number of participants). For this purpose, we are planning and conducting additional

empirical studies (e.g., surveys, controlled experiments) to reinforce our findings.

Bibliography

[KH20] Krüger, Jacob; Hebig, Reginaȷ What Developers (Care to) Recallȷ An Interview Survey on
Smaller Systems. Inȷ International Conference on Software Maintenance and Evolution.
ICSME. IEEE, pp. 46–57, 2020.

72 Jacob Krüger, Regina Hebig



Behavioral Interfaces for Executable DSLs

Dorian Leroy1, Erwan Bousse2, Manuel Wimmer3, Tanja Mayerhofer4, Benoit Combemale5,

Wieland Schwinger6

Abstract: This work summarizes our paper [Le20] originally published in the Journal of Software
and Systems Modeling in 2020 about a novel language engineering approach.

Keywords: Domain Specific Languages, Metamodeling, Language Workbenches

A large amount of domain-specific languages (DSLs) are used to represent behavioral

aspects of systems in the form of behavioral models [BCW17]. Executable domain-specific

languages (xDSLs) enable the execution of behavioral models [Ma13]. While an execution

is mostly driven by the model’s content (e.g., control structures, conditionals, transitions,

method calls), many use cases require interacting with the running model, such as simulating

scenarios in an automated or interactive way or coupling system models with environment

models. The management of these interactions is usually hard-coded into the semantics of

xDSLs, which prevents its reuse for other xDSLs and the provision of generic interaction

tools.

To tackle these issues, we propose a novel metalanguage for complementing the definition of

xDSLs with explicit behavioral interfaces to enable external tools to interact with executable

models in a unified way. A behavioral interface defines a set of events specifying how

external tools can interact with models that conform to xDSLs implementing the interface.

Additionally, we define two types of relationships involving behavioral interfacesȷ the

implementation relationship and the subtyping relationship. An implementation relationship

ties a behavioral interface to a given operational semantics implementation. Subtyping

relationships allow to build event abstraction hierarchies, indicating that events from one

interface can be abstracted or refined as events from another interface.

We implemented the proposed metalanguage in the GEMOC Studio, an Eclipse-based

language and modeling workbench for xDSLs, and evaluate the approach with three

1 Institute of Business Informatics - Software Engineering, JKU Linz, Altenbergerstr. 69, 4040 Linz, Austria

dorian.leroy@jku.at
2 Nantes Software Modeling Group, University of Nantes, Chemin de la Houssiniere, 44322 Nantes, France

erwan.bousse@ls2n.fr
3 Institute of Business Informatics - Software Engineering, JKU Linz, Altenbergerstr. 69, 4040 Linz, Austria

manuel.wimmer@jku.at
4 Business Informatics Group, TU Wien, Favoritenstr. 9-11, 1040 Wien, Austria mayerhofer@big.tuwien.ac.at
5 DiverSE Team, University of Rennes 1, 263 Avenue du General Leclerc, 35042 Rennes, France benoit.

combemale@irisa.fr
6 Institute of Telecooperation, JKU Linz, Altenbergerstr. 69, 4040 Linz, Austria wieland.schwinger@jku.at

cba doi:10.18420/SE2021_25

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 73

https://creativecommons.org/licenses/by-sa/4.0/
mailto:dorian.leroy@jku.at
mailto:erwan.bousse@ls2n.fr
mailto:manuel.wimmer@jku.at
mailto:mayerhofer@big.tuwien.ac.at
mailto:benoit.combemale@irisa.fr
mailto:benoit.combemale@irisa.fr
mailto:wieland.schwinger@jku.at
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_25


demonstration casesȷ (𝑖) we show that the proposed metalanguage can be used to define the

behavioral interface of xDSLs; (𝑖𝑖) we show that behavioral interfaces enable the definition

of generic tools and their reuse across several xDSLs; (𝑖𝑖𝑖) we show that a single behavioral

interface can be subtyped by several xDSLs, allowing to interact with and reason about the

execution of models through a common behavioral interface.

References

[BCW17] Brambilla, M.; Cabot, J.; Wimmer, M.ȷ Model-Driven Software Engineering in

Practice. Morgan & Claypool, 2017.

[Le20] Leroy, D.; Bousse, E.; Wimmer, M.; Mayerhofer, T.; Combemale, B.;

Schwinger, W.ȷ Behavioral interfaces for executable DSLs. Softw. Syst. Model.

19/4, pp. 1015–1043, 2020, urlȷ https://doi.org/10.1007/s10270-020-

00798-2.

[Ma13] Mayerhofer, T.; Langer, P.; Wimmer, M.; Kappel, G.ȷ xMOFȷ Executable DSMLs

Based on fUML. In (Erwig, M.; Paige, R. F.; Wyk, E. V., eds.)ȷ Proceedings of

the 6th International Conference on Software Language Engineering (SLE).

Vol. 8225. Lecture Notes in Computer Science, Springer, pp. 56–75, 2013,

urlȷ https://doi.org/10.1007/978-3-319-02654-1%5C_4.

74 Dorian Leroy, Erwan Bousse, Manuel Wimmer, Tanja Mayerhofer, Benoit

Combemale, Wieland Schwinger

https://doi.org/10.1007/s10270-020-00798-2
https://doi.org/10.1007/s10270-020-00798-2
https://doi.org/10.1007/978-3-319-02654-1%5C_4


Feature-Modell-geführtes Online Reinforcement Learning
für Selbst-adaptive Systeme

Andreas Metzger1, Clément Quinton2, Zoltăn Mann3, Luciano Baresi4, Klaus Pohl5

Abstract: Wir stellen Lernstrategien für selbst-adaptive Systeme vor, welche Feature-Modelle aus
der Software-Produktentwicklung nutzen, um den Lernprozess zur Laufzeit zu beschleunigen.

Keywords: Adaptation; Reinforcement Learning; Feature Modell; Cloud Service

1 Überblick

Motivation. Ein selbst-adaptives System ist in der Lage sich zur Laufzeit anzupassen und
somit auf Verčnderungen in seiner Umgebung zu reagieren. Eine Herausforderung bei der
Entwicklung selbst-adaptiver Systeme ist festzulegen, wann und wie sich das System zur
Laufzeit anpassen soll. Dies erfordert die Antizipation der möglichen Umgebungssituationen
sowie genaue Kenntnis der Effekte der jeweiligen Adaptionen. Aufgrund von unvollstčndigem
Wissen zur Design-Zeit ist dies im Allgemeinen nicht vollstčndig möglich [We19]. Eine
Lösung ist Online Reinforcement Learning, also bestčrkendes Lernen, das auf Basis von
Laufzeit-Feedback geeignete Adaptionen lernt.

Problemstellung. Unser als [Me20] vorgestellter Beitrag adressiert zwei wesentliche Pro-
bleme bisheriger Online Reinforcement Learning Ansčtze für selbst-adaptive Systemeȷ
(1) Bisherige Ansčtze probieren zufčllig neue Adaptionen aus, um Feedback über die
Wirksamkeit der Adaptation zur Laufzeit sammeln. Wird die Menge der Adaptionsmöglich-
keiten groß, dann kann diese Zufallsauswahl zu einem langsamen Lernprozess führen. (2)
Bisherige Ansčtze können mit Änderungen der Umgebung wčhrend des Lernprozesses, sog.
Nicht-Stationaritčt, umgehen (siehe z.B. [PMP20]). Mit Verčnderungen der Systemlogik
und somit einer Verčnderung der möglichen Adaptationen können diese Verfahren jedoch
nicht umgehen. Eine solche Verčnderung der Systemlogik erfolgt typischerweise im Rahmen
der Software-Evolution, durch welche neue Adaptionsmöglichkeiten hinzugefügt sowie
bestehende verčndert oder entfernt werden können.
1 paluno, University of Duisburg-Essen, Essen, Germany, andreas.metzger@paluno.uni-due.de
2 University of Lille, Inria, Lille, France,clement.quinton@univ-lille.fr
3 paluno, University of Duisburg-Essen, Essen, Germany, zoltan.mann@paluno.uni-due.de
4 Politecnico di Milano, Milan, Italy, luciano.baresi@polimi.it
5 paluno, University of Duisburg-Essen, Essen, Germany, klaus.pohl@paluno.uni-due.de

cba doi:10.18420/SE2021_26

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 75

https://creativecommons.org/licenses/by-sa/4.0/
mailto:andreas.metzger@paluno.uni-due.de
mailto:clement.quinton@univ-lille.fr
mailto:zoltan.mann@paluno.uni-due.de
mailto:luciano.baresi@polimi.it
mailto:klaus.pohl@paluno.uni-due.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_26


Lösungsansatz. Als Lösung schlagen wir Feature-Modell-geführte Lernstrategien vor. Wir
nutzen Feature-Modelle aus der Software-Produktlinienentwicklung zur Spezifikation der
Adaptionsmöglichkeiten in kompakter Form [MP14], wie in Abb. 1 illustriert.

Nbr of Concurrent Users  1000

Adaptation

Web 

Application

Data

Logging

Content

Discovery

Min Max

Medium

Search
Recommen-

dation



  



Web 

Application

Data

Logging

Content

Discovery

Min Max

Medium

Search
Recommen-

dation



 



Nbr of Concurrent Users  1000
Mandatory

Optional

Alternative

 Activated

Abb. 1ȷ Beispiel für die Spezifikation von Adaptionsmöglichkeiten mittels Feature-Modellen

Unsere Lernstrategien identifizieren z.B. mittels der Deltas zwischen den Variabilitčtsmodel-
len vor und nach der Evolution die Verčnderungen der Adaptionsmöglichkeiten. Diese Deltas
werden genutzt, um den Lernprozess des Reinforcement-Learning-Agenten geeignet zu
steuern. So können neu hinzugefügte Adaptionen z.B. mit einer höheren Wahrscheinlichkeit
ausgeführt werden als bereits bekannte Adaptionen.

Experimentergebnisse. In unseren Experimenten erweitern wir den weit verbreiteten
Q-Learning-Algorithmus um unsere Lernstrategien. An einem adaptiven Cloud Service
konnten wir eine Beschleunigung des Lernprozesses von bis zu ca. 60% messen.6

Danksagung. Die Ergebnisse entstanden im Rahmen der europčischen H2020-Projekte
ENACT (Förderkennzeichen 780351) und FogProtect (Förderkennzeichen 871525).

Literaturverzeichnis
[Me20] Metzger, Andreas; Quinton, Clément; Mann, Zoltăn Ădăm; Baresi, Luciano; Pohl, Klausȷ

Feature Model-Guided Online Reinforcement Learning for Self-Adaptive Services. In
(Kafeza, Eleana; Benatallah, Boualem; Martinelli, Fabio; Hacid, Hakim; Bouguettaya,
Athman; Motahari, Hamid, Hrsg.)ȷ 18th Int’l Conf. on Service-Oriented Computing (ICSOC
2020). Springer, LNCS 12571, 2020.

[MP14] Metzger, Andreas; Pohl, Klausȷ Software product line engineering and variability manage-
mentȷ Achievements and challenges. In (Herbsleb, James D.; Dwyer, Matthew B., Hrsg.)ȷ
ICSE Future of Software Engineering Track (FOSE 2014). ACM, S. 70–84, 2014.

[PMP20] Palm, Alexander; Metzger, Andreas; Pohl, Klausȷ Online Reinforcement Learning for
Self-Adaptive Information Systems. In (Dustdar, Schahram; Yu, Eric; Salinesi, Camille;
Rieu, Dominique; Pant, Vik, Hrsg.)ȷ 32nd Int’l Conf. on Advanced Information Systems
Engineering (CAiSE 2020). Springer, LNCS 12127, S. 169–184, 2020.

[We19] Weyns, Dannyȷ Software Engineering of Self-adaptive Systems. In (Cha, Sungdeok; Taylor,
Richard N.; Kang, Kyo Chul, Hrsg.)ȷ Handbook of Software Engineering, S. 399–443.
Springer, 2019.

6Code und Datenȷ https://git.uni-due.de/online-reinforcement-learning/icsoc-2020-artefacts

76 Andreas Metzger, Clément Quinton, Zoltán Mann, Luciano Baresi, Klaus Pohl

https://git.uni-due.de/online-reinforcement-learning/icsoc-2020-artefacts


Jaint: A Framework for User-Defined Dynamic

Taint-Analyses based on Dynamic Symbolic Execution of

Java Programs

Malte Mues1, Till Schallau1, Falk Howar1

Abstract: We summarize the paper „Jaintȷ A Framework for User-Defined Dynamic Taint-Analyses
Based on Dynamic Symbolic Execution of Java Programs“, published at the sixteenth international
conference on integrated formal methods in November 2020 [MSH20]. Reliable and scalable methods
for security analyses of Java applications are an important enabler for a secure digital infrastructure.
In this paper, we present a security analysis that integrates dynamic symbolic execution and dynamic
multi-colored taint analysis of Java programs, combining the precision of dynamic analysis with
the exhaustive exploration of symbolic execution. We implement the approach in the Jaint tool,
based on Jdart [Lu16], a dynamic symbolic execution engine for Java PathFinder, and evaluate its
performance by comparing precision and runtimes to other research tools on the OWASP benchmark
set. The paper also presents a domain-specific language for taint analyses that is more expressive than
the source and sink specifications found in publicly available tools and enables precise, CWE-specific
specification of undesired data flows. This summary presents Jaint’s language and the evaluation.

Keywords: Dynamic Symbolic Execution; Domain Specific Languages; Java Bytecode Analysis;

Dynamic Taint Analysis

Specification of Taint Analyses

Jaint provides a domain-specific language for specifying undesired data flows from tainted

sources to protected sinks that may be interrupted by flow through sanitization methods.

The paper presents the grammar of the language along with usage examples. Here, we only

present one small exampleȷ command injection attacks (CWE 782) use parameters of a

HTTP request as executable commands in a shell, i.e., in a command that is executed as a new

process. Methods that match patterns Runtime.exec(*) and ProcessBuilder.*(command)

are considered protected sinksȷ

𝑆𝑟𝑐 ::= 𝑐𝑚𝑑𝑖 + ← (_ : ∗HttpServletRequest) .get∗()

𝑆𝑖𝑛𝑘 ::= 𝑐𝑚𝑑𝑖 → (_ : java.lang.Runtime) .exec(∗) , (_ : java.lang.ProcessBuilder) .∗(command)

The zenodo archive accompanying the paper contains a version of Jaint with taint

specifications for the eleven classes of CWEs in the OWASP benchmark set.«

1 TU Dortmund, LS XIV Software Engineering - Automated Quality Assurance Group, Otto-Hahn-Str. 12, »»227

Dortmund, Deutschland {malte.mues,till.schallau,falk.howar}@tu-dortmund.de
2httpsȷ//cwe.mitre.org/data/definitions/78.html
«http://doi.org/10.5281/zenodo.4060244

cba doi:10.18420/SE2021_27

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 77

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{malte.mues, till.schallau, falk.howar}@tu-dortmund.de
http://doi.org/10.5281/zenodo.4060244
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_27


Fig. 1ȷ Precision of Jaint on the OWASP benchmark set [MSH20].

Performance of Jaint on the OWASP benchmark set

Figure 1 shows the precision of Jaint on the OWASP benchmark set. The paper contains a

detailed discussion and more obtained results, including runtimes. Most of the compared

tools fall in one of two categoriesȷ dynamic analyses are precise but miss many vulnerabilities

(lower left corner in the plot). Static analyses discover many vulnerabilities but suffer from

high false positive rates (upper right corner of the plot). Jaint, in contrast, combines the

exhaustive exploration of symbolic execution with the precision of dynamic analysis (upper

left corner of the plot).

In the paper, we showed that Jaint beats the OWASP benchmark. This, of course, can only

serve as initial validation of the approachȷ most benchmark instances consist only of few,

easy to hit execution paths. We plan future work in two directionsȷ (1) validation of Jaint

on real-world examples, and (2) development of a more realistic benchmark set.

Bibliography

[Lu16] Luckow, Kasper Sůe; Dimjasevic, Marko; Giannakopoulou, Dimitra; Howar, Falk; Is-
berner, Malte; Kahsai, Temesghen; Rakamaric, Zvonimir; Raman, Vishwanathȷ JDartȷ A
Dynamic Symbolic Analysis Framework. In (Chechik, Marsha; Raskin, Jean-Franęois,
eds)ȷ Proceedings of TACAS 2016. volume 96«6 of LNCS. Springer, pp. »»2–»59, 2016.

[MSH20] Mues, Malte; Schallau, Till; Howar, Falkȷ Jaintȷ A Framework for User-Defined Dynamic
Taint-Analyses Based on Dynamic Symbolic Execution of Java Programs. In (Dongol,
Brijesh; Troubitsyna, Elena, eds)ȷ Proceedings of IFM 2020. volume 125»6 of LNCS.
Springer, pp. 12«–1»0, 2020.

78 Malte Mues, Till Schallau, Falk Howar



Accurate Modeling of Performance Histories for Evolving

Software Systems

Stefan Mühlbauer1, Sven Apel2, Norbert Siegmund3

Abstract: Learning from the history of a software system’s performance behavior does not only help
discovering and locating performance bugs, but also supports identifying evolutionary performance
patterns and general trends. Exhaustive regression testing is usually impractical, because rigorous
performance benchmarking requires executing realistic workloads per revision, resulting in large
execution times. We devise a novel active revision sampling approach that aims at tracking and
understanding a system’s performance history by approximating the performance behavior of a
software system across all of its revisions. In short, we iteratively sample and measure the performance
of specific revisions to learn a performance-evolution model. We select revisions based on how
uncertainty our models predicts their correspondent performance values. Technically, we use Gaussian
Process models that not only estimates performance for each revision, but also provides an uncertainty
value alongside. This way, we iteratively improve our model with only few measurements. Our
evaluation with six real-world configurable software system demonstrates that Gaussian Process
models are able to accurately estimate the performance-evolution histories with only few measurements
and to reveal interesting behaviors and trends, such as change points.

Keywords: Software Performance; Software Evolution; Test Prioritization

Summary

Throughout a software system‘s development history, its non-functional properties, such

as performance, evolve alongside. Individual modifications of the code base (revisions)

or batches thereof can entail changes in performance. Unless identified and addressed,

detrimental performance changes can add up to performance degrading over time. The

retrospective analysis of existing histories can unveil causative revisions and, subsequently,

help prioritize revisions for future performance regression testing. As performance mea-

surements come at a considerable cost, it is intractable to assess all revisions. Instead, the

challenge is to find a trade-off between measurement effort and accuracy of estimating

performance.

We devise a novel probabilistic active learning algorithm to accurately approximate the

performance history of a software system based on measurements of a specific workload

with few measurements [MAS19]. Our approach is not only able to provide performance

1 Leipzig University, Institute of Computer Science, muehlbauer@informatik.uni-leipzig.de
2 Saarland University, Saarland Informatics Campus, apel@cs.uni-saarland.de
3 Leipzig University, Institute of Computer Science, norbert.siegmund@uni-leipzig.de

cba doi:10.18420/SE2021_28

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 79

https://creativecommons.org/licenses/by-sa/4.0/
mailto:muehlbauer@informatik.uni-leipzig.de
mailto:apel@cs.uni-saarland.de
mailto:norbert.siegmund@uni-leipzig.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_28


estimations for all revisions, but also reports an uncertainty measure alongside. We use

this uncertainty measure to decide for each revision whether our estimation is sufficiently

accurate or whether we need to refine the approximation by including more measurements.

To increase reliability where necessary, the algorithm selects and prioritizes new revisions

for performance measurement based on the reported uncertainty and relearns the underlying

Gaussian Process model.

Fig. 1ȷ GP approximation of a performance his-

tory with a single change point (at revision 120).

0 50 100 150 200 250
Time [revision id]

0

5

10

Pe
rfo

rm
an

ce

Posterior Mean
Ground Truth
Maximum Uncertainty

Posterior Uncertainty
Training Sample

We use Gaussian Processes (GPs) for time

series data as a framework to model the per-

formance history of a software system and

obtain respective estimations. In a nutshell,

a GP can be conceived as a distribution over

functions (hereȷ performance as a function

of revisions). Evaluating the GP for a revi-

sion will yield a Gaussian N(𝜇, 𝜎) with a

mean performance estimate 𝜇 and a variance

measure𝜎. The variance𝜎 is lower around re-

visions for which we have actual performance

measurements at hand and can be interpreted

as a measure of prediction uncertainty. The

shape of an approximated performance history is determined by the GP’s covariance

function – a hyper parameter often called kernel. The kernel encodes further properties

of the modeled performance histories, such as whether to expect a continuous estimation.

At large, we evaluate the GP for all revisions to obtain an approximation as in Fig. 1 with

regions of low and high uncertainty, the latter indicates the need for further measurements.

The key idea of our approach is the followingȷ We let the uncertainty measures guide the

selection of new revisions to measure performance for. That is, we interpret the prediction

uncertainty as a measure of how much we expect this measurement to improve the overall

prediction accuracy. We repeatedly estimate performance across all revisions and add new

measurements until the minimum uncertainty falls below a user-specified threshold.

We perform a series of experiments with the six real-world subject system from a variety

of domains (file compression, scientific computing, image processing). Across different

kernels evaluated, we obtained the most accurate approximations of performance histories

in setups with the Brownian kernel. From such approximations, we are able to identify and

pinpoint change points to individual revisions.

Bibliography

[MAS19] Mühlbauer, Stefan; Apel, Sven; Siegmund, Norbertȷ Accurate Modeling of Performance
Histories for Evolving Software Systems. Inȷ Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, pp. 640–652,
2019.

80 Stefan Mühlbauer, Sven Apel, Norbert Siegmund



MoFuzz: A Fuzzer Suite for Testing Model-Driven Software

Engineering Tools – Summary

Hoang Lam Nguyen1, Nebras Nassar 2, Timo Kehrer1, Lars Grunske1

Abstract: Fuzzing or fuzz testing is an established technique that aims to discover unexpected
program behavior (e. g., bugs, vulnerabilities, or crashes) by feeding automatically generated data into
a program under test. However, the application of fuzzing to test Model-Driven Software Engineering
(MDSE) tools is still limited because of the difficulty of existing fuzzers to provide structured,
well-typed inputs, namely models that conform to typing and consistency constraints induced by
a given meta-model and underlying modeling framework. We present three different approaches
for fuzzing MDSE toolsȷ A graph grammar-based fuzzer and two variants of a coverage-guided
mutation-based fuzzer working with different sets of model mutation operators. Our evaluation on a
set of real-world MDSE tools shows that our approaches can outperform both standard fuzzers and
model generators w.r.t. their fuzzing capabilities. Moreover, we found that each of our approaches
comes with its own strengths and weaknesses in terms of code coverage and fault finding capabilities,
thus complementing each other and forming a fuzzer suite for testing MDSE tools.

Keywords: Model-Driven Software Engineering; Modeling Tools; Fuzzing; Automated Model

Generation; Eclipse Modeling Framework

1 Summary

Fuzzing (also known as fuzz testing) automatically generates a large number of inputs and

feeds them to the program under test to discover unexpected program behavior and evaluate

the program’s reliability. In our work, we investigate the fuzzing of Model-Driven Software

Engineering (MDSE) tools which are based on the Eclipse Modeling Framework (EMF).

Fuzzing MDSE tools is a challenging task, since (i) the test inputs must adhere to complex

input constraints (e. g., well-typedness and valid multiplicities w.r.t. the input meta model)

in order to pass the initial syntactic and semantic validation stages of the input processing

pipeline, and (ii) the generated input models must be interesting/diverse enough to exercise

a variety of code paths.

Building upon recent advances in automated model generation and structure-aware fuzzing,

we propose three different fuzzers as part of our fuzzer suite MoFuzz [Ng20]ȷ a graph-

grammar based fuzzer and two mutation-based approaches. The graph grammar-based fuzzer

is based on the recently introduced EMF Model Generator [Na20], which is able to

efficiently generate large, properly-typed EMF models with valid multiplicities. Conceptually,

1 Humboldt-Universitčt zu Berlin, Germany, {nguyehoa,kehrer,grunske}@informatik.hu-berlin.de
2 Philipps-Universitčt Marburg, Germany, nassarn@informatik.uni-marburg.de

cba doi:10.18420/SE2021_29

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 81

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{nguyehoa,kehrer,grunske}@informatik.hu-berlin.de
mailto:nassarn@informatik.uni-marburg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_29


the fuzzer first translates the meta-model into a constructive language specification (i. e.,

the grammar), which is then leveraged to generate models in a two-phased approach. First,

the model increase phase creates model elements without violating upper multiplicity

bounds. Then, the model completion phase completes the intermediate model to a valid

EMF model. Overall, the graph-grammar based fuzzer attempts to broadly explore the

space of valid instance models in an efficient manner. The mutation-based fuzzers are based

on a widely used technique in automated fault detection, namely coverage-guided fuzzing

(CGF) [LZZ18], which we adapt to the domain of MDSE as follows. First, a random set of

seed models is generated using automated model generation techniques to initialize the input

queue. Afterwards, both approaches continuously select an input model from the queue,

apply model-based mutations on it, and retain the mutated input only if it increases coverage.

The goal is to incrementally evolve the inputs in the queue to exercise deep paths. While both

fuzzers essentially employ mutations that add, delete, or change model elements, one uses

generic mutation operators based on the EMF Edit API, whereas the other automatically

derives consistency-preserving mutation operators from the meta-model [Ke16].

Our implementation of MoFuzz builds upon JQF [PLS19], a feedback-directed fuzz testing

framework for Java. We have evaluated MoFuzz gainst the Zest algorithm implemented

by JQF, and the EMF random instantiator [At15] on a set of real-world MDSE tools.

The results of our evaluation indicate that MoFuzz can improve code coverage as well as

the number of exposed crashes when fuzzing MDSE tools. In terms of coverage, the graph

grammar-based fuzzer of MoFuzz performed the best, while the mutation-based fuzzer

using EMF Edit API mutations triggered the most crashes.

Bibliography

[At15] AtlanModȷ EMF Random Instantiator. https://github.com/atlanmod/mondo-atlzoo-
benchmark/tree/master/fr.inria.atlanmod.instantiator/, 2015. Accessedȷ November 
24, 2020.

[Ke16] Kehrer, Timo; Taentzer, Gabriele; Rindt, Michaela; Kelter, Udoȷ Automatically Deriving
the Specification of Model Editing Operations from Meta-Models. Inȷ 9th International
Conference on Theory and Practice of Model Transformations (ICMT). pp. 173–188, 2016.

[LZZ18] Li, Jun; Zhao, Bodong; Zhang, Chaoȷ Fuzzingȷ a survey. Cybersecurity, 1(1)ȷ6, 2018.

[Na20] Nassar, Nebras; Kosiol, Jens; Kehrer, Timo; Taentzer, Gabrieleȷ Generating Large EMF
Models Efficiently - A Rule-Based, Configurable Approach. Inȷ 23rd International Confer-
ence on Fundamental Approaches to Software Engineering (FASE). Springer, pp. 224–244,
2020.

[Ng20] Nguyen, Hoang Lam; Nassar, Nebras; Kehrer, Timo; Grunske, Larsȷ MoFuzzȷ A Fuzzer Suite
for Testing Model-Driven Software Engineering Tools. Inȷ 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 2020.

[PLS19] Padhye, Rohan; Lemieux, Caroline; Sen, Koushikȷ JQFȷ Coverage-Guided Property-Based
Testing in Java. Inȷ 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). pp. 398–401, 2019.

82 Hoang Lam Nguyen, Nebras Nassar, Timo Kehrer, Lars Grunske

https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator/
https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator/


Cooperative Android App Analysis with CoDiDroid

Felix Pauck1, Heike Wehrheim2

Abstract: Novel Android app analysis tools as well as improved versions of available tools are
frequently proposed. These proposed tools often tackle a specific single issue that cannot be handled
with existing tools. Consequently, the best analysis possible should use the advantages of each and
every tool. With CoDiDroid we present an analysis framework that allows to combine analysis tools
such that the best out of each tool is used for a more comprehensive and more precise cooperative
analysis. Our experimental results show indeed that CoDiDroid allows to setup cooperative analyses
which are beneficial with respect to effectiveness, accuracy and scalability.

Keywords: Android Taint Analysis; Tools; Cooperation; Precision

1 Cooperative Analysis

Combinations of different Android app analysis tools have been used before to enhance

existing analysis. One well-known example is IccTA, a tool that beneficially combines IC3

with FlowDroid. Thereby the intra-component analysis of FlowDroid is lifted-up to inter-

component level. However, this combination is hard-coded in the tool itself. Its components

cannot be swapped out and the analysis cannot be extended by including another tool without

adapting IccTA. In a cooperative analysis as proposed by Pauck and Wehrheim [PW19] it is

possible to combine arbitrary analyses. The following example illustrates what a cooperative

analysis is capable of. The section thereafter introduces the framework required to compose

a cooperative Android app analysis, namely CoDiDroid [Pa19].

Example

The example depicted in Figure 1 shows two taint flows that leak sensitive information.

A taint flow describes the connection of a source and a sink. A source extracts sensitive

information. In the example the device identification number represents the extracted

sensitive data which is read in statement 𝑠1 (see Figure 1). Two sinks (𝑠4, 𝑠7) may leak this

information via logging or sending an SMS. In order to detect both leaks an analysis tool

must be (1) lifecycle-aware, (2) able to resolve reflection, (3) analyze native code and (4)

successfully handle Inter-App-Communication (IAC). Sadly, there exists no such analysis

tool. However, FlowDroid is able to perform an intra-component, lifecycle-aware taint

analysis, DroidRA is able to resolve reflection, NOAH can discover sources and sinks in

native code, IC3 allows to gather information about an app’s exit and entry points which

can be used by PIM to find connections between those that are realized via intents (IAC).

1 Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany fpauck@mail.uni-paderborn.de
2 Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany wehrheim@uni-paderborn.de

cba doi:10.18420/SE2021_30

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 83

https://creativecommons.org/licenses/by-sa/4.0/
mailto:fpauck@mail.uni-paderborn.de
mailto:wehrheim@uni-paderborn.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_30


DroidRA NOAH      IC3     FlowDroid PIM

Fig. 1: Example: Two taint flows that include reflection, IAC and a native method call

Most of these tools were designed as standalone tools without having cooperation in mind.

Nonetheless, CoDiDroid allows to compose a single analysis that not least successfully

analyzes the described example by detecting both taint flows. The figure visualizes which

parts of these taint flows are detected by which tool.

2 The CoDiDroid framework

The cooperative (and distributed) analysis framework CoDiDroid takes (1) a task in form

of a query as input, (2) generates subtasks to answer each part of the query, (3) distributes

these subtasks onto tools available in its configuration and in the end (4) merges tool answers

to respond to the initial query. The Android App Analysis Query Language (AQL) and its

execution system (AQL-System) is extensively used to do so. Along with CoDiDroid we

thus proposed AQL-WebServices that allow to execute tools in different environments and

exchange results. Also by employing the AQL, ReproDroid [PBW18] could be used to

evaluate CoDiDroid against the state-of-the-art, revealing that cooperative analysis pays

off by outperforming standalone tools with respect to effectiveness, scalability and accuracy

in terms of precision, recall and F-measure.

Note, detailed evaluation results and all the reference of the mentioned tools can be found

in the original paper [PW19].

Bibliography

[Pa19] Pauck, Felix: , CoDiDroid, 2019. https://FoelliX.github.io/CoDiDroid last 
accessed 11/16/2020.

[PBW18] Pauck, Felix; Bodden, Eric; Wehrheim, Heike: Do Android taint analysis tools keep their
promises? In: Proceedings of ESEC/FSE 2018, Lake Buena Vista, FL, USA. ACM, 2018.

[PW19] Pauck, Felix; Wehrheim, Heike: Together strong: cooperative Android app analysis. In:
Proceedings of ESEC/FSE 2019, Tallinn, Estonia. ACM, 2019.

84 Felix Pauck, Heike Wehrheim

https://FoelliX.github.io/CoDiDroid


Generating Tests that Cover Input Structure

Nataniel Pereira Borges Jr.1, Nikolas Havrikov2, Andreas Zeller3

Abstract: To systematically test a program, one needs good inputs—inputs that are valid such that
they are not rejected by the program, and inputs that cover as much of the input space as possible in
order to reach a maximum of functionality.

We present recent techniques to systematically cover input structure. Our k-path algorithm for grammar
production [HZ19] systematically covers syntactic elements of the input as well as their combinations.
We show how to learn such input structures from graphical user interfaces, notably their interaction
language [DBJZ19]. Finally, we demonstrate that knowledge bases such as DBPedia can be a reliable
source of semantically coherent inputs [Wa20]. All these techniques result in a significantly higher
code coverage than state of the art.

Keywords: grammar; coverage; automated testing; input generation; knowledge-base; android

1 Achieving Grammar Coverage

Testing programs with randomly generated inputs is a cost-effective means to test programs

for robustness. However, to reach deep layers of a program, the inputs must be syntactically

valid. Using a grammar to specify the language of program inputs lends itself well to solving

this problemȷ A grammar-based test generator uses such a grammar to expand its start

symbol into further symbols repeatedly until only terminal symbols are left, constituting an

input. When generating inputs, intuitively, a high variation in the inputs should lead to a

high variation in program behavior.

We present a notion of grammar coverage called 𝑘-path coverage and an approach for quickly

achieving it. A 𝑘-path consists of 𝑘 consecutive symbols along a valid derivation sequence

in a derivation tree or a grammar. For any given grammar the number of 𝑘-paths is finite

and one can generate a set of inputs exhibiting all of them by greedily deriving towards

yet unvisited 𝑘-paths while keeping track of any 𝑘-paths covered incidentally. Having fully

derived a targeted 𝑘-path, we promptly close off the current tree as quickly as possible and

start generating a new one for the next unvisited 𝑘-path.

1 CISPA Helmholtz Center for Information Security, Saarbrücken nataniel.borges@cispa.de
2 CISPA Helmholtz Center for Information Security, Saarbrücken nikolas.havrikov@cispa.de
3 CISPA Helmholtz Center for Information Security, Saarbrücken zeller@cispa.de

cba doi:10.18420/SE2021_31

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 85

https://creativecommons.org/licenses/by-sa/4.0/
mailto:nataniel.borges@cispa.de
mailto:nikolas.havrikov@cispa.de
mailto:zeller@cispa.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_31


2 UI Element Interactions

In the context of testing a mobile app, automated test generators systematically identify and

interact with its user interface elements. One key challenge hereby is to synthesize inputs

that effectively and efficiently cover app behavior. This is usually approached by having a

model mapping UI elements to actions they usually accept. Such a model can be mined

statically from an app or dynamically from observing its executions. Both these approaches,

however, are biased towards the distribution originally mined. They work well if the app

under test is similar to those used to train the model, but fail if it is dissimilar.

We present a technique that automatically adapts the model to the app at hand by approaching

test generation as an instance of the multi-armed bandit problem, where a finite set of

resources (actions) has to be distributed among competing alternatives (UI elements) to

increase its reward (test quality). We use reinforcement learning to address test generation

from this perspective and to systematically and gradually adjust our test generation strategy

towards the application under test.

3 Using Knowledge Bases

Staying in the context of mobile apps, many take complex data as input, such as travel

booking, map locations, or online banking information. These inputs are, however, expensive

to generate manually and challenging to synthesize automatically. Past research indicated

that knowledge bases could be a reliable source of semantically coherent inputs.

We propose an approach for leveraging knowledge bases for mobile app test generation

comprising four stepsȷ Given a UI state, we start by identifying and matching descriptive

labels with input fields according to a set of metrics based on the Gestalt principles. We

then use natural language processing to extract a concept associated with each label. We

use the extracted concepts, instead of the original labels, to query knowledge bases for input

values. Finally, we fill all input elements with the queried values and randomly interact with

the non-input elements.

Bibliography

[DBJZ19] Degott, Christian; Borges Jr., Nataniel Pereira; Zeller, Andreasȷ Learning User Interface
Element Interactions. Inȷ ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2019). July 2019.

[HZ19] Havrikov, Nikolas; Zeller, Andreasȷ Systematically Covering Input Structure. Inȷ
IEEE/ACM International Conference on Automated Software Engineering (ASE 2019).
November 2019.

[Wa20] Wanwarang, Tanapuch; Borges Jr., Nataniel Pereira; Bettscheider, Leon; Zeller, Andreasȷ
Testing Apps With Real-World Inputs. Inȷ 1st IEEE/ACM International Conference on
Automation of Software Test (AST 2020). May 2020.

86 Nataniel Pereira Borges Jr., Nikolas Havrikov, Andreas Zeller



What Am I Testing and Where? Comparing Testing

Procedures Based on Lightweight Requirements Annotations

Florian Pudlitz1, Florian Brokhausen2, Andreas Vogelsang«

Abstract:

The article was originally published in the international journal Empirical Software Engineering
with the title “What am I testing and where? Comparing testing procedures based on lightweight
requirements annotations” [PBV20].

Keywords: Annotation; Requirements modeling; Test management; Test evaluation; Simulation

1 Overview

Software complexity has increased dramatically in many areas in recent years, for example

due to increasing automation or stronger interconnectivity between devices. This results in

growing challenges in requirements and test management. Nowadays, system requirements

are often written in natural language, which makes automated processing more difficult.

The goal is to ensure that all requirements are checked despite the increasing complexity of

the test cases. Previous test procedures use a transformation of requirements specification

into test specification with consideration of the traceability of test results. However, these

procedures reach their limits in complex test scenarios in different test levels, because the

system runs through several situations automatically. For example, when testing driver

assistance systems in real test drives or in traffic simulations with several hundred vehicles,

new test approaches are required. In addition, it is not yet possible to make any statements

about the similarity of test levels or test scenarios within a test level.

Our approach is based on a Multilevel Markup Language for annotating text passages in

natural language requirements [PVB19]. The test engineer has the possibility to mark up

text passages and observe them in test runs. After a test run, the log data is evaluated

and the results can be displayed in relation to the annotations in the natural language

requirements. Manual annotation can be partially automated by using machine learning

algorithms [PBV19].

1 Technische Universitčt Berlin, Fachgebiet Distributed and Operating Systems, Straße des 17. Juni 1«5, 1062«

Berlin, Deutschland, florian.pudlitz@tu-berlin.de
2 Technische Universitčt Berlin, Fachgebiet für Fluidsystemdynamik, Straße des 17. Juni 1«5, 1062« Berlin,

Deutschland, florian.brokhausen@tu-berlin.de
« Universitčt zu Köln, Lehrstuhl für Software and Systems Engineering, Weyertal 121, 509«1 Köln, Deutschland,

vogelsang@cs.uni-koeln.de

cba doi:10.18420/SE2021_32

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 87

https://creativecommons.org/licenses/by-sa/4.0/
mailto:florian.pudlitz@tu-berlin.de
mailto:florian.brokhausen@tu-berlin.de
mailto:vogelsang@cs.uni-koeln.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_32


Our experimental evaluation, shown schematically in Figure 1, investigates four different

evaluation foci based on annotations of the Multilevel Markup Language. First, it investigates

large scale usage of the markup language, the annotation scalability. Second, we examine

Test Case Allignment, which examines how well the test levels fit the requirements. Third,

in Test Stage Compliance, we compare the test levels with respect to the annotations in the

requirements. Fourthly, we compare the test scenarios that have been performed, the Test

Stage Similarity.

Fig. 1ȷ Schematics of the experimental setup.

We investige two different test stages. On the one hand, we chose a traffic simulation with

1«00 vehicles for all evaluations carried out, since simulations are becoming increasingly

important, especially in the automotive sector. On the other hand, we used real driving data

from 5« test drives. Investigations have shown that the use of field user data, especially in

the automotive area, has been of little importance so far, but will be further expanded in the

future [EBV20].

2 Results

Our experiment shows how different test levels are linked to natural language requirements.

The test engineer receives not only concrete evaluations of the annotations but also holistic

statements about test coverage of requirements. With regards to the performed simulation,

75 (25.5%) of the 29» requirements exclusively contain fulfilled annotations. The evaluation

of the real trips shows that 80 (27.2%) of the considered requirements contain fulfilled

annotations only. In contrast, 75 (25.5%) requirements are entirely unfulfilled within the

simulation with regards to the inherent annotations and »2 (1».«%) with respect to real

driving data.

88 Florian Pudlitz, Florian Brokhausen, Andreas Vogelsang



Bibliography

[EBV20] Ebel, Patrick; Brokhausen, Florian; Vogelsang, Andreasȷ The Role and Potentials of
Field User Interaction Data in the Automotive UX Development Lifecycleȷ An Industry
Perspective. Association for Computing Machinery, New York, NY, USA, p. 1»1–150,
2020.

[PBV19] Pudlitz, Florian; Brokhausen, Florian; Vogelsang, Andreasȷ Extraction of System States from
Natural Language Requirements. Inȷ 27th IEEE International Requirements Engineering
Conference (RE). 2019.

[PBV20] Pudlitz, Florian; Brokhausen, Florian; Vogelsang, Andreasȷ What Am I Testing and Where?
Comparing Testing Procedures based on Lightweight Requirements Annotations. Empirical
Software Engineering, 2020.

[PVB19] Pudlitz, Florian; Vogelsang, Andreas; Brokhausen, Florianȷ A Lightweight Multilevel
Markup Language for Connecting Software Requirements and Simulations. In (Knauss,
Eric; Goedicke, Michael, eds)ȷ Requirements Engineeringȷ Foundation for Software Quality.
Springer International Publishing, Cham, pp. 151–166, 2019.

Testing Procedures Based on Requirements Annotations 89





A Domain Analysis of Resource and Requirements

Monitoring: Towards a Comprehensive Model of the

Software Monitoring Domain

Rick Rabiser1, Klaus Schmid2, Holger Eichelberger2, Michael Vierhauser3, Paul

Grünbacher4

Abstract: This is a summary of an article (with the same title) we published in the Information
and Software Technology Journal in 2019 describing a domain model we developed to structure and
systematize the field of software monitoring as well as a reference architecture to support developing
software monitoring approaches.

Keywords: Software monitoring; Requirements monitoring; Resource monitoring; Domain model;

Reference architecture

1 Summary

Complex software systems need to be monitored as their full behavior only emerges at

run-time, e.g., when interacting with other systems or their environment. Diverse software

monitoring approaches [Ra19, Ra17] have been developed in diverse communities for

various kinds of systems and purposes. They observe and check properties or quality

attributes of software systems during operation. For instance, requirements monitoring

approaches check at run-time whether a software system adheres to its requirements, while

resource or performance monitoring approaches collect information about the consumption

of computing resources by the monitored system. Many venues publish research on software

monitoring, often using diverse terminology, and focusing on different monitoring aspects

and phases. We provide a domain model to structure and systematize the field of software

monitoring, starting with requirements and resource monitoring. Based on earlier efforts,

we systematically analyzed 47 existing requirements and resource monitoring approaches

to iteratively refine the domain model and also to develop a reference architecture for

software monitoring approaches. Our domain model covers the key elements of monitoring

approaches and allows analyzing their commonalities and differences. Together with the

reference architecture, our domain model supports the development of integrated monitoring

solutions.

1 LIT CPS, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria, rick.rabiser@jku.at
2 SSE, University of Hildesheim, Germany, schmid@sse.uni-hildesheim.de
3 SE, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria, michael.vierhauser@jku.at
4 ISSE, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria, paul.gruenbacher@jku.at

cba doi:10.18420/SE2021_33

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 91

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_32
mailto:rick.rabiser@jku.at
mailto:schmid@sse.uni-hildesheim.de
mailto:michael.vierhauser@jku.at
mailto:paul.gruenbacher@jku.at
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_33


Bibliography

[Ra17] Rabiser, Rick; Guinea, Sam; Vierhauser, Michael; Baresi, Luciano; Grünbacher, Paulȷ A
Comparison Framework for Runtime Monitoring Approaches. Journal of Systems and
Software, 125ȷ309–321, 2017.

[Ra19] Rabiser, Rick; Schmid, Klaus; Eichelberger, Holger; Vierhauser, Michael; Guinea, Sam;
Grünbacher, Paulȷ A Domain Analysis of Resource and Requirements Monitoringȷ Towards
a Comprehensive Model of the Software Monitoring Domain. Information and Software
Technology, 111ȷ86–109, 2019.

92 Rick Rabiser, Klaus Schmid, Holger Eichelberger, Michael Vierhauser, Paul

Grünbacher



Tool Support for Correctness-by-Construction

Tobias Runge1, Ina Schaefer2, Loek Cleophas3, Thomas Thüm4, Derrick Kourie5, Bruce

W. Watson6

Abstract: This work was published at the International Conference on Fundamental Approaches
to Software Engineering (FASE) 2019 [Ru19]. We tackled a fundamental problem of missing tool
support of the correctness-by-construction (CbC) methodology that was proposed by Dijsktra and
Hall and revised to a light-weight and more amenable version by Kourie and Watson. Correctness-
by-construction (CbC) is an incremental approach to create programs using a set of small, easily
applicable refinement rules that guarantee the correctness of the program with regard to its pre- and
postcondition specifications. Our goal was to implement a functional and user-friendly IDE, so that
developers will adapt to the CbC approach and benefit from its advantages (e.g., defects can be easily
tracked through the refinement structure of the program). The tool has a hybrid textual and graphical
IDE that programmers can use to refine a specification into a correct implementation. The textual
editor fits programmers that want to stay in their familiar environment, while the graphical editor
highlights the refinement structure of the program to give visual feedback if errors occur, using KeY
as verification backend. The tool was evaluated regarding feasibility and effort to develop correct
programs. Here, slight benefits in comparison to a standard verification approach were discovered.

Keywords: correctness-by-construction; tool support; formal methods; verification

Overview

Correctness-by-Construction (CbC) [KW12] is a methodology to construct formally correct

programs guided by a pre-/postcondition specification. Starting with an abstract program,

formally verified refinement rules are applied to incrementally refine the program to a

concrete implementation. In the literature [KW12, Wa16], CbC is described as having many

benefitsȷ The structured reasoning discipline that is enforced by the refinement rules reduces

the appearance of defects. If defects do occur, they can be tracked through the refinement

structure. Furthermore, the formal process increases trust in the program. To check these

benefits, we implement tool support that enables CbC to be used by programmers. We

want to compare CbC with the prevalent post-hoc verification approach, where program

correctness is proven after construction.

1 TU Braunschweig, Germany tobias.runge@tu-bs.de
2 TU Braunschweig, Germany i.schaefer@tu-bs.de
3 TU Eindhoven, The Netherlands and Stellenbosch University, South Africa l.g.w.a.cleophas@tue.nl
4 Ulm University, Germany thomas.thuem@uni-ulm.de
5 Stellenbosch University, South Africa derrick@fastar.org
6 Stellenbosch University, South Africa bruce@fastar.org

cba doi:10.18420/SE2021_34

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 93

https://creativecommons.org/licenses/by-sa/4.0/
mailto:tobias.runge@tu-bs.de
mailto:i.schaefer@tu-bs.de
mailto:l.g.w.a.cleophas@tue.nl
mailto:thomas.thuem@uni-ulm.de
mailto:derrick@fastar.org
mailto:bruce@fastar.org
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_34


In this work, we present CorC, an IDE that supports the CbC approach with a hybrid textual

and graphical user interface. The IDE support users to apply refinement rules to an abstract

program until the program is fully refined. In each refinement step, the correct application

is guaranteed by using the theorem prover KeY [Ah16]. Each proof obligation can be

immediately discharged during program development. In the textual editor, programmers

enrich source code with specification and directly see if a refinement is unprovable. The

graphical editor is useful to get an overview of all refinement steps and track errors in the

program. To not burden programmers, they can switch automatically between both views.

As CbC is not tailored to a specific host language, we implemented CorC in such a way that

the language can be exchangedȷ Any imperative programming language with a specification

language and an automatic verification tool can be integrated.

In our evaluation, we compared CorC with standard post-hoc verification using KeY as

prover in both cases. We investigated the hypothesis whether the verification of algorithms

is faster with CorC than with post-hoc verification. Therefore, we implemented seven

algorithms with CorC and as plain Java code with specification. In each case, we measured

that the verification time was lower for CorC, indicating a reduced proof complexity. The

result is even statistically significant which provides empirical evidence for our hypothesis.

In summary, we extended the KeY ecosystem with tool support for the correctness-by-

construction methodology. With CorC, programmers can utilize CbC to construct correct

programs and use the results to bootstrap post-hoc verification as an additional check if

necessary. They can reduce the verification time, as demonstrated in our evaluation, and

benefit from synergistic effects of both approaches.

Bibliography

[Ah16] Ahrendt, Wolfgang; Beckert, Bernhard; Bubel, Richard; Hčhnle, Reiner; Schmitt, Peter H;
Ulbrich, Mattiasȷ Deductive Software Verification–The KeY Bookȷ From Theory to Practice,
volume 10001. Springer, 2016.

[KW12] Kourie, Derrick G; Watson, Bruce Wȷ The Correctness-by-Construction Approach to
Programming. Springer Science & Business Media, 2012.

[Ru19] Runge, Tobias; Schaefer, Ina; Cleophas, Loek; Thüm, Thomas; Kourie, Derrick; Watson,
Bruce W.ȷ Tool Support for Correctness-by-Construction. Inȷ Fundamental Approaches to
Software Engineering. volume 11424 of Lecture Notes in Computer Science. Springer, pp.
25–42, 2019.

[Wa16] Watson, Bruce W; Kourie, Derrick G; Schaefer, Ina; Cleophas, Loekȷ Correctness-by-
Construction and Post-hoc Verificationȷ A Marriage of Convenience? Inȷ International
Symposium on Leveraging Applications of Formal Methods. volume 9952 of Lecture Notes
in Computer Science. Springer, pp. 730–748, 2016.

94 Tobias Runge, Ina Schaefer, Loek Cleophas, Thomas Thüm, Derrick Kourie, Bruce

W. Watson



Trace Link Recovery Using Semantic Relation Graphs and

Spreading Activation

Aaron Schlutter1, Andreas Vogelsang2

Abstract: The paper was first published at the 28th IEEE International Requirements Engineering
Conference in 2020. Trace Link Recovery tries to identify and link related existing requirements with
each other to support further engineering tasks. Existing approaches are mainly based on algebraic
Information Retrieval or machine-learning. Machine-learning approaches usually demand reasonably
large and labeled datasets to train. Algebraic Information Retrieval approaches like distance between
tf-idf scores also work on smaller datasets without training but are limited in providing explanations
for trace links. In this work, we present a Trace Link Recovery approach that is based on an explicit
representation of the content of requirements as a semantic relation graph and uses Spreading
Activation to answer trace queries over this graph. Our approach is fully automated including an
NLP pipeline to transform unrestricted natural language requirements into a graph. We evaluate our
approach on five common datasets. Depending on the selected configuration, the predictive power
strongly varies. With the best tested configuration, the approach achieves a mean average precision
of »0% and a Lag of 50%. Even though the predictive power of our approach does not outperform
state-of-the-art approaches, we think that an explicit knowledge representation is an interesting artifact
to explore in Trace Link Recovery approaches to generate explanations and refine results.

Keywords: Traceability; Natural Language; Semantic Relation Graph; Spreading Activation

Trace Link Recovery (TLR) is a common problem in software engineering. While many

tasks profit from links between related development artifacts, these are laborious to maintain

manually and therefore rarely exist in projects. Automatic approaches aim for supporting

engineers in finding related artifacts and creating trace links. Information Retrieval (IR)

approaches build upon the assumption that if engineers refer to the same aspects of the

system, similar language is used. Thus, tools suggest trace links based on Natural Language

(NL) content.

State-of-the-art approaches use algebraic IR models (e.g., VSM, LSI), probabilistic models

(e.g., LDA), or machine-learning approaches. These approaches rely on implicit models

of key terms in documents (e.g., as points in a vector space or as probability distribution).

Trace links are recovered based on similarity notions defined over these models. Therefore,

it is hard to analyze and explain why specific trace links are identified in the model. Another

drawback of machine-learning approaches is the need to train the models on reasonably

large datasets. However, datasets usually consists of less than 500 artifacts (at least the ones

used in scientific publications). [BRA1»]

1 Technische Universitčt Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Deutschland aaron.schlutter@tu-berlin.de
2 Universitčt zu Köln, SSE, Weyertal 121, 509«1 Köln, Deutschland vogelsang@cs.uni-koeln.de

cba doi:10.18420/SE2021_35

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 95

https://creativecommons.org/licenses/by-sa/4.0/
mailto:aaron.schlutter@tu-berlin.de
mailto:vogelsang@cs.uni-koeln.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_35


In our paper [SV20], we present a novel approach for TLR using semantic relations between

parts of NL, stored in a semantic relation graph, and search trace links by Spreading

Activation, a semantic search graph algorithm. While the approach is fully automated, it

does not have any prerequisites with regard to the format or content of natural language

and is scalable to various sizes of corpora. To improve the user confidence, we are able

to generate an explanation between each query and target requirement by identifying and

highlighting the contributing text passages.

The semantic relation graph is an explicit model of the knowledge represented in requirements.

Our pipeline translates them automatically into vertices and edges that depict semantic

parts of common NL (e.g., words and phrases within sentences, but also documents and

corpora). The structure supports that single words have a greater distance (i.e., are less

relevant) to a certain specification than phrases or whole statements. We use Spreading

Activation [Ha19] to identify related requirements. The graph algorithm spreads activation

in pulses over the vertices starting from a query vertex. Vertices with higher activation

indicate higher relevance. Thus, we build a candidate list to sort all (reachable) targets based

on their relations.

We applied the approach on 5 datasets [HHPL19] from different domains commonly used

in TLR research, and evaluated in terms of mean average precision and Lag for answer sets

of 5, 10, and «0 candidates. With the best tested configuration, our approach achieves an

average precision around »0% and a Lag around 50%. While this performance does not

outperform existing state-of-the-art approaches, the explicit representation of requirements

content allows to “follow” a trace link through a chain of statements that may serve as an

explanation why a trace link exists.

Bibliography

[BRA1»] Borg, Markus; Runeson, Per; Ardö, Andersȷ Recovering from a decadeȷ A systematic
mapping of information retrieval approaches to software traceability. Empirical Software
Engineering (EMSE), 19(6)ȷ1565–1616, 201». httpsȷ//doi.org/10.1007/s1066»-01«-9255-
y.

[Ha19] Hartig, Kerstinȷ Entwicklung eines Information-Retrieval-Systems zur Unterstützung
von Gefčhrdungs- und Risikoanalysen. PhD thesis, Technische Universitčt Berlin, 2019.
httpsȷ//doi.org/10.1»279/depositonce-8»08.

[HHPL19] Huffman Hayes, Jane; Payne, Jared; Leppelmeier, Malloryȷ Toward Improved Artificial
Intelligence in Requirements Engineeringȷ Metadata for Tracing Datasets. Inȷ Arti-
ficial Intelligence for Requirements Engineering (AIRE). IEEE, pp. 256–262, 2019.
httpsȷ//doi.org/10.1109/REW.2019.00052.

[SV20] Schlutter, Aaron; Vogelsang, Andreasȷ Trace Link Recovery using Semantic Relation
Graphs and Spreading Activation. Inȷ Requirements Engineering. IEEE, pp. 20–«1, 2020.
httpsȷ//doi.org/10.1109/RE»8521.2020.00015.

96 Aaron Schlutter, Andreas Vogelsang



Probabilistic Grammar-based Test Generation

Ezekiel Soremekun12, Esteban Pavese«, Nikolas Havrikov», Lars Grunske5, Andreas Zeller6

Abstract: Given a program that has been tested on some sample input(s), what does one test next? To
further test the program, one needs to construct inputs that cover (new) input features, in a manner that
is different from the initial samples. This talk presents an approach that learns from past test inputs to
generate new but different inputs.

To achieve this, we present an approach called inputs from hell which employs probabilistic context-
free grammars to learn the distribution of input elements from sample inputs. In this work, we
employ probabilistic grammars as input parsers and producers. Applying probabilistic grammars as
input parsers, we learn the statistical distribution of input features in sample inputs. As a producer,
probabilistic grammars ensure that generated inputs are syntactically correct by construction, and it
controls the distribution of input elements by assigning probabilities to individual production rules.
Thus, we create inputs that are dissimilar to the sample by inverting learned probabilities.

In addition, we generate failure-inducing inputs by learning from inputs that caused failures in the
past, this gives us inputs that share similar features and thus also have a high chance of triggering
bugs. This approach is useful for bug reproduction and testing for patch completeness.

Keywords: Grammar; Test Case Generation; Probabilistic Grammars; Input Samples

1 Summary

This article is an abridged version of our paper titled “Inputs from Hellȷ Learning Input

Distributions for Grammar-Based Test Generation” which is published in the proceedings

of the IEEE Transactions on Software Engineering (TSE) [So20].

Grammar-based test generation techniques automatically produce thousands of valid inputs

for software testing [HZ19]. However, it is also important to test programs on diverse inputs,

in order to explore different features. In this work, we address the problem of generating

syntactically valid inputs that are (dis)similar to seen inputs. Specifically, given a program

that has been tested on some sample inputs, we ask the followingȷ Which inputs should one

test next? How can one generate inputs that are (dis)similar to the initial samples? To further

1 SnT, University of Luxembourg, Luxembourg ezekiel.soremekun@uni.lu
2 This work was done while working at CISPA Helmholtz Center for Information Security, Saarbrücken
« Department of Computer Science, Humboldt-Universitčt zu Berlin pavesees@informatik.hu-berlin.de
» CISPA Helmholtz Center for Information Security, Saarbrücken nikolas.havrikov@cispa.de
5 Department of Computer Science, Humboldt-Universitčt zu Berlin grunske@informatik.hu-berlin.de
6 CISPA Helmholtz Center for Information Security, Saarbrücken zeller@cispa.de

cba doi:10.18420/SE2021_36

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 97

https://creativecommons.org/licenses/by-sa/4.0/
mailto:ezekiel.soremekun@uni.lu
mailto:pavesees@informatik.hu-berlin.de
mailto:nikolas.havrikov@cispa.de
mailto:grunske@informatik.hu-berlin.de
mailto:zeller@cispa.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_36


test the program, one needs to construct inputs that cover new input features. Hence, the

developer is tasked with the generation of syntactically valid but different inputs.

To tackle this challenge, we present a probabilistic grammar-based test generation approach

called inputs from hell. The main idea of this technique is to apply probabilistic context-free

grammars (PCFG) as input parsers to learn the distribution of input elements from sample

inputs, then apply the learned grammar as a producer. Specifically, applying probabilistic

grammars as parsers, we learn the frequency of occurrence of production rules in sample

inputs. Then, we apply the learned PCFG as a producer to serve two major purposes, (1) it

ensures that generated inputs are syntactically correct by construction, and (2) it controls

the distribution of input elements by assigning probabilities to individual production rules.

This approach allows for three test generation strategiesȷ 1) Common inputs – by generating

inputs using the learned probabilistic grammar, we can create inputs that are similar to the

sample; this is useful for regression testing. 2) Uncommon inputs – inverting the learned

probabilities in the grammar yields inputs that are strongly dissimilar to the sample; this is

useful for completing a test suite with (different) inputs that test uncommon features, yet are

syntactically valid. «) Failure-inducing inputs – learning from inputs that caused failures

in the past gives us inputs that share similar features and thus also have a high chance of

triggering bugs; this is useful for testing the completeness of fixes.

We examined the effectiveness of our approach using 20 subject programs and three input

formats. Our experimental results show that “common inputs” reproduced 96% of the

program features (i.e. methods) induced by the samples. In contrast, for almost all subjects

(95%), the “uncommon inputs” covered significantly different methods from the samples.

By learning from failure-inducing samples, our approach reproduced all failures triggered

by the sample inputs and also reveals new failures.

We have presented a technique that applies PCFG to generate (dis)similar test inputs. This

approach provides a general and cost-effective means to generate test cases that can then be

targeted to the commonly used portions of the software, or to the rarely used features.

Bibliography

[HZ19] Havrikov, Nikolas; Zeller, Andreasȷ Systematically covering input structure. Inȷ 2019 «»th
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, pp.
189–199, 2019.

[So20] Soremekun, Ezekiel; Pavese, Esteban; Havrikov, Nikolas; Grunske, Lars; Zeller, Andreasȷ
Inputs from Hellȷ Learning Input Distributions for Grammar-Based Test Generation. Inȷ
IEEE Transactions on Software Engineering. 2020.

98 Ezekiel Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske, Andreas Zeller



Learning to Generate Fault-revealing Test Cases in

Metamorphic Testing

Helge Spieker1, Arnaud Gotlieb1

Abstract: Metamorphic Testing is a software testing paradigm which aims at using necessary
properties of a system under test, called metamorphic relations (MR), to either check its expected
outputs, or to generate new test cases [Se16]. Metamorphic Testing has been successful to test
programs for which a full oracle is unavailable or to test programs with uncertainties on expected
outputs such as learning systems. In this paper, we formulate the effective selection of MRs as a
reinforcement learning problem, based on contextual bandits. Our method Adaptive Metamorphic
Testing sequentially selects a MR that is expected to provide the highest payoff, i.e., that is most
likely to reveal faults. Which MRs are likely to reveal faults is learned from successive exploration
trials. The bandit explores the available MRs and evaluates the fault landscape of the system under
test, thereby providing valuable information to the tester. We present experimental results over two
applications in machine learning, namely image classification and object detection, where Adaptive
Metamorphic Testing efficiently identifies weaknesses of the tested systems. The original paper
”Adaptive Metamorphic Testing with Contextual Bandits” first appeared in the Journal of Systems and
Software (2020) [SG20].

Keywords: Software Testing; Metamorphic Testing; Machine Learning; Contextual Bandits

Metamorphic testing (MT) is a testing paradigm, in which a source test case is transformed

into a new follow-up test case for which the exact expected outcome is unknown, but a

relation between the source and follow-up test case is available [CCY98, Ch18]. MT aims

at using necessary properties of a software under test to either check its expected outputs

or to generate new test cases. By execution of the follow-up test case it can be confirmed

whether the system-under-test behaves according to the so-called metamorphic relation. If

the relation is violated, a failure in the system has been identified. Metamorphic testing

thereby addresses the oracle problem in software testing, where it is impossible or difficult

to know the exact system output for a test case.

Typical examples for successful applications include machine learning models used for

classification tasks, for which only stochastic behaviors can be specified [Ba15]. Indeed,

these models are often initially trained with existing datasets and then exploited to classify

new data samples. However, the expected class of any new data sample is unknown and thus,

these samples cannot be used for testing the trained models. Fortunately, transformations

over the data samples which do not change their (unknown) class, are usually available. By

applying these transformations, i.e. the metamorphic relations (MRs) in MT, it becomes

possible to effectively test machine learning models and their training [Mu08, DHG17].

1 Simula Research Laboratory, Norway {helge,arnaud}@simula.no

cba doi:10.18420/SE2021_37

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 99

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{helge,arnaud}@simula.no
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_37


This papers addresses the problem of MR selection, i.e. determining which from a set

of known MRs are best suited to discover faults in the system under test. We formulate

the effective selection of MRs as a reinforcement learning problem, based on contextual

bandits [LZ07]. Our method Adaptive Metamorphic Testing (AMT) defines a test transfor-

mation bandit which sequentially selects a MR that is expected to provide highest payoff,

i.e., is most likely to reveal faults. Which MRs are likely to reveal faults is learned from

successive exploration trials. The bandit explores the different MRs and evaluates the fault

landscape of the system under test, thereby providing valuable information to the tester.

Learning the selection of MRs can be useful when testing under resource-constraints, for

example in cases where the system under test changes are frequently integrated and tested,

but also for infrequent testing when the number of MRs is large or their checking is costly.

We have applied our method to test deep learning systems for computer vision. Adaptive

metamorphic testing showed to find the same failure rate and distribution than exhaustive

testing while requiring less test executions, which can be costly or at least time-consuming.

At the same time, it’s error discovery is stronger than pure random testing, because it can

adapt to the strengths of the available metamorphic relations for certain test cases. Our

implementation and datasets are available atȷ https://github.com/HelgeS/tetraband

Bibliography

[Ba15] Barr, Earl T.; Harman, Mark; McMinn, Phil; Shahbaz, Muzammil; Yoo, Shinȷ The Oracle
Problem in Software Testingȷ A Survey. IEEE Transactions on Software Engineering,
»1(5)ȷ507–525, 2015.

[CCY98] Chen, T.Y.; Cheung, S.C.; Yiu, S.M.ȷ Metamorphic Testingȷ A New Approach for Generating
Next Test Cases. Technical Report HKUST-CS98-01, Department of Computer Science,
Hong Kong University of Science and Technology, Hong Kong, 1998.

[Ch18] Chen, Tsong Yueh; Kuo, Fei-Ching; Liu, Huai; Poon, Pak-Lok; Towey, Dave; Tse, T. H.;
Zhou, Zhi Quanȷ Metamorphic Testingȷ A Review of Challenges and Opportunities. ACM
Computing Surveys, 51(1), 2018.

[DHG17] Ding, Junhua; Hu, Xin-Hua; Gudivada, Venkatȷ A Machine Learning Based Framework
for Verification and Validation of Massive Scale Image Data. IEEE Transactions on Big
Data, 26(«)ȷ1–1, 2017.

[LZ07] Langford, John; Zhang, Tongȷ The Epoch-Greedy Algorithm for Multi-Armed Bandits
with Side Information. Inȷ Advances in Neural Information Processing Systems 20 (NIPS
2007). pp. 817–82», 2007.

[Mu08] Murphy, Christian; Kaiser, Gail; Hu, Lifeng; Wu, Leonȷ Properties of Machine Learning
Applications for Use in Metamorphic Testing. Proc. of the 20th International Conference
on Software Engineering and Knowledge Engineering (SEKE), pp. 867–872, 2008.

[Se16] Segura, Sergio; Fraser, Gordon; Sanchez, Ana B.; Ruiz-Cortes, Antonioȷ A Survey on
Metamorphic Testing. IEEE Transactions on Software Engineering, »2(9)ȷ805–82», 2016.

[SG20] Spieker, Helge; Gotlieb, Arnaudȷ Adaptive Metamorphic Testing with Contextual Bandits.
Journal of Systems and Software, 165ȷ11057», July 2020.

100 Helge Spieker, Arnaud Gotlieb

https://github.com/HelgeS/tetraband


Automated Implementation of Windows-related

Security-Configuration Guides

Patrick Stöckle1, Bernd Grobauer2, Alexander Pretschner3

Abstract: Dieser Vortrag wurde auf der 35. IEEE/ACM International Conference on Automated
Software Engineering (ASE) prčsentiert. Unsicher konfigurierte Gerčte stellen ein großes Sicherheits-
problem dar. Eine Möglichkeit, dieses Problem zu lösen, sind öffentlich verfügbare und standartisierte
Sicherheitskonfigurationsrichtlinien. Dieser Ansatz birgt jedoch die Schwierigkeit, dass Administrato-
ren auf Basis der Anleitungen in diesen Richtlinien ihre Systeme manuell sichern müssen. Dieses
manuelle Sichern ist teuer und fehleranfčllig. In unserem Beitrag prčsentieren wir einen Ansatz,
mit dem wir Richtlinien für Windows-Systeme automatisiert anwenden können. Dafür wenden wir
Techniken der Sprachverarbeitung an. Im ersten Teil unserer Evaluation können wir anhand einer
öffentlichen Richtlinie für Windows 10 zeigen, dass unser Ansatz für 83% der Regeln keinerlei
menschliche Interaktion benötigt. Im zweiten Teil zeigen wir anhand von 12 öffentlichen Richtlinien
mit über 2000 Regeln, dass unser Ansatz die Regeln zu 97% korrekt anwendet. So wird die sichere
Konfiguration von Windows-Systemen einfacher und wir hoffen, dass dies zukünftig zu weniger
Sicherheitsvorfčllen führen wird.

Keywords: Sicherheit; Konfigurationsmanagement; Computerlinguistik

Fehlkonfigurationen verringern die Sicherheit eines Systems, indem sie Schwachstellen

einführen, die oft schwer aufzuspüren sind. Administratoren zufolge gibt es einen Hauptfaktor

dafürȷ mangelndes Wissen. [Di18] Eine Möglichkeit, mit diesem Problem umzugehen, ist

das Verwenden von bestehenden Sicherheitskonfigurationsrichtlinien. Diese bestehen aus

Regeln für ein bestimmtes Softwaresystem wie Windows 10. Jede Regel erklčrt, welche

Einstellung auf welchen Wert gesetzt werden sollte, um das System sicherer zu machen,

und warum wir sie anwenden sollte. Bekannte Herausgeber solcher Richtlinien sind das

Center for Internet Security (CIS) oder die Defense Information Systems Agency (DISA).

Die Herausgeber veröffentlichen ihre Richtlinien in Formaten wie PDF und im Extensible

Configuration Checklist Description Format (XCCDF), das Teil des Security Content

Automation Protocol (SCAP) ist. Obwohl XCCDF als maschinenlesbares Format konzi-

piert ist, sind die Anweisungen zur Implementierung der Sicherheitseinstellungen nur in

menschenlesbarer Form enthalten. Die vorhandenen Richtlinien lösen zwar das Problem

des mangelnden Wissens, bringen aber eine neue Herausforderung mit sichȷ Automatische

Umsetzungen sind im SCAP-Standard nicht spezifiziert. Die Herausgeber umgehen diese

Hürde manchmal, indem sie zusčtzliche Artefakte wie Skripte oder Backup-Dateien zur

1 Technische Universitčt München (TUM), Boltzmannstr. 3, 85748 Garching b. München patrick.stoeckle@tum.de
2 Siemens AG bernd.grobaueratsiemens.com
3 Technische Universitčt München (TUM), Boltzmannstr. 3, 85748 Garching b. München alexander.pretschner@

tum.de

cba doi:10.18420/SE2021_38

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 101

https://creativecommons.org/licenses/by-sa/4.0/
mailto:patrick.stoeckle@tum.de
mailto:bernd.grobauer at siemens.com
mailto:alexander.pretschner@tum.de
mailto:alexander.pretschner@tum.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_38


Verfügung stellen. Dies ist auf drei Arten problematischȷ Erstens gibt es solche Artefakte

nicht für alle Richtlinien. Zweitens werden die Richtlinien hčufig aktualisiert und die

Artefakte müssen auf Herausgeber-Seite oft und manuell aktualisiert werden. Drittens

wird bei eigenstčndigen Artefakten für die Implementierung das Anpassen (tailoring) von

Richtlinien umstčndlich und fehleranfčllig. Eine einfache und leichte Anpassung ist jedoch

unerlčsslich, da Richtlinien von CIS oder DISA nie ohne Anpassungen in der eigenen

Organisation umgesetzt werden.

Unsere für Windows-Betriebssysteme und -Anwendungen realisierte Lösung für dieses

Problem besteht aus drei Schritten. Zuerst verarbeiten wir die Dateien, die definieren, welche

Einstellungen auf einem Windows-basierten System existieren, und speichern das Ergebnis,

um wčhrend der Umsetzung darauf zugreifen zu können. Zweitens nutzen wir Techniken der

Computerlinguistik, um die Einstellungen und die geforderten Werte aus den Richtlinien zu

extrahieren. Wir verwenden die Informationen des ersten Schritts, um zu überprüfen, ob

die extrahierte Einstellung existiert und ob der extrahierte Wert eine gültige Eingabe für

diese Einstellung ist. So können wir das Risiko falsch extrahierter Werte auf ein Minimum

reduzieren. Drittens übersetzen wir die Einstellungen und Werte unter Verwendung der

Informationen aus dem ersten Schritt in ihre tatsčchliche Umsetzung. Unsere Beitrčge sindȷ

• eine Proof-of-Concept-Implementierung unseres Ansatzes.

• eine Schritt-für-Schritt-Dokumentation unseres Ansatzes unter Verwendung der DISA

Windows Server 2016 Richtlinie4 und eine aktualisierte Version für 20195 . Hierbei

können wir zeigen, dass unser Ansatz 83% der Regeln ohne manuellen Aufwand

umsetzen kann.

• eine Evaluation unseres Ansatzes unter Verwendung bestehender Richtlinien von

DISA und CIS mit über 2000 Regeln6 ; unser Ansatz setzt die gegebenen Regeln zu

97% korrekt um.

Durch unseren Ansatz wird die sichere Konfiguration von Windows-Systemen deutlich ein-

facher. Wir hoffen, dass in Zukunft mehr Administratoren ihre Systeme sicher konfigurieren

werden und so das Risiko von Sicherheitsvorfčllen sinkt.

Literatur

[Di18] Dietrich, C.; Krombholz, K.; Borgolte, K.; Fiebig, T.ȷ Investigating System

Operators’ Perspective on Security Misconfigurations. Inȷ Proceedings of the 2018

ACM SIGSAC Conference on Computer and Communications Security. CCS ’18,

ACM, Toronto, Canada, S. 1272–1289, 2018, isbnȷ 978-1-4503-5693-0, urlȷ

http://doi.acm.org/10.1145/3243734.3243794.

4swhȷ1ȷdirȷc3803619f51702199b19405547e2be2f2f55bdd2
5swhȷ1ȷdirȷ13ffd9d2566c64afdedd414336a95a35605392d7
6swhȷ1ȷdirȷb5c15f48b2c288f58533c9354bea3703ffbbb0dd

102 Patrick Stöckle, Bernd Grobauer, Alexander Pretschner

http://doi.acm.org/10.1145/3243734.3243794
https://archive.softwareheritage.org/swh:1:dir:c3803619f51702199b19405547e2be2f2f55bdd2/
https://archive.softwareheritage.org/swh:1:dir:13ffd9d2566c64afdedd414336a95a35605392d7/
https://archive.softwareheritage.org/swh:1:dir:b5c15f48b2c288f58533c9354bea3703ffbbb0dd/


Variability Representations in Class Models: An Empirical

Assessment (Summary)

Daniel Strüber1, Anthony Anjorin2, Thorsten Berger3

Abstract: We present our paper originally published in the proceedings of the ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems 2020 (MODELS).
Owing to the ever-growing need for customization, software systems often exist in many different
variants. To avoid the need to maintain many different copies of the same model, developers of
modeling languages and tools have recently started to provide representations for such variant-rich
systems, notably variability mechanisms that support the implementation of differences between model
variants. Available mechanisms either follow the annotative or the compositional paradigm, each of
them having unique benefits and drawbacks. Language and tool designers select the used variability
mechanism often solely based on intuition. A better empirical understanding of the comprehension of
variability mechanisms would help them in improving support for effective modeling. In this paper,
we present an empirical assessment of annotative and compositional variability mechanisms for class
models. We report and discuss findings from an experiment with 73 participants, in which we studied
the impact of the chosen variability mechanisms during model comprehension tasks. We find that,
compared to the baseline of listing all model variants separately, the annotative technique did not affect
developer performance. Use of the compositional mechanism correlated with impaired performance.
For a subset of our tasks the annotative mechanism is preferred to the compositional one and the
baseline. We present actionable recommendations concerning support of flexible, tasks-specific
solutions, and the transfer of best established best practices from the code domain to models.

Keywords: model-driven engineering; class models; variability; software product lines

1 Summary

Variant-rich systems can offer companies major strategic advantages, such as the ability to

deliver tailor-made software products to their customers. Still, when developing a variant-rich

system, severe challenges may arise during maintenance, evolution, and analysis, especially

when variants are developed in the naive clone-and-own approach, that is, by copying

and modifying them. As companies begin to streamline their development workflows for

building variant-rich systems, they recognize a need for variability management in all key

development artifacts, including models. The car industry is particularly outspoken on their

need for model-level variability mechanisms.

Recognizing this need, researchers have started building variability mechanisms for models.

Variability mechanisms are now available both for UML and DSMLs. Adoption in several

1 Radboud University, Nijmegen, Netherlands d.strueber@cs.ru.nl
2 IAV Automotive Engineering, Germany tony@anjorin.de
3 Chalmers | University of Gothenburg, Sweden thorsten.berger@chalmers.se

cba doi:10.18420/SE2021_39

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 103

https://creativecommons.org/licenses/by-sa/4.0/
mailto:d.strueber@cs.ru.nl
mailto:tony@anjorin.de
mailto:thorsten.berger@chalmers.se
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_39


industrial DSMLs has demonstrated the general feasibility of model-level variability

mechanisms in practice. Still, language and tool designers are offered little guidance on

selecting the most effective variability mechanism for their purposes. In fact, there is a

lack of evidence to support the preference of one mechanism over the other. Arguably,

comprehensibility is a decisive factor for the efficiency of a variability mechanism—for

any maintenance and evolution activity (e.g. bugfixing, feature implementations), the

developers first need to understand the existing system. A better empirical understanding

of the comprehension of variability mechanisms could support the development of more

effective modeling languages and tools.

To this end, our paper [SAB20] presents an empirical study of variability mechanisms

for class models, an ubiquitous modeling language. In a fully randomized experiment

performed with 73 participants with relevant background, we studied how the choice of

variability mechanism affects performance during model comprehension tasks. We consider

two selected variability mechanisms that are representative for two main typesȷ Annotative

mechanisms maintain an integrated, annotated representation of all variants. They are

conceptually simple, but can impair understandability since elements are cluttered with

variability information. Compositional mechanisms allow to compose a set of smaller

sub-models to form a larger model. They are appealing as they establish a clear separation of

concerns, but involve a composition step which might be cognitively challenging. We aimed

to shed light on the impact of these inherent trade-offs by using an annotative mechanism

(model templates [CA05, St18]) and a compositional one (model refinement [An14]).

We present the following resultsȷ 1. Compared to working with an explicit enumeration of all

variants, the annotative mechanism generally lead to a similar performance (completion times

and correctness scores) and subjective difficulty ratings. 2. The compositional mechanism

generally lead to worse performance and difficulty ratings. 3. The variability mechanism

preferred by most participants depended on the considered task.

Bibliography

[An14] Anjorin, Anthony; Saller, Karsten; Lochau, Malte; Schürr, Andyȷ Modularizing triple graph
grammars using rule refinement. Inȷ FASE. Springer, pp. 340–354, 2014.

[CA05] Czarnecki, Krzysztof; Antkiewicz, Michałȷ Mapping features to modelsȷ A template
approach based on superimposed variants. Inȷ GPCE. Springer, pp. 422–437, 2005.

[SAB20] Strüber, Daniel; Anjorin, Anthony; Berger, Thorstenȷ Variability Representations in Class
Modelsȷ An Empirical Assessment. Inȷ MODELS. pp. 239–256, 2020.

[St18] Strüber, Daniel; Rubin, Julia; Arendt, Thorsten; Chechik, Marsha; Taentzer, Gabriele;
Plöger, Jenniferȷ Variability-based model transformationȷ formal foundation and application.
FAC, 30(1)ȷ133–162, 2018.

104 Daniel Strüber, Anthony Anjorin, Thorsten Berger



Using Key Performance Indicators to Compare

Software-Development Processes

Cem Sürücü1,2, Bianying Song1, Jacob Krüger2, Gunter Saake2, Thomas Leich3

Abstract: Extended abstract of our paper published at the Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE) 2020 [Sü20].

Keywords: Key performance indicators; Quality assurance; Monitoring; Experience report

Large software-developing organizations are often structured around various organizational

units that cooperate in software-development processes. While the specialization of such

units yields advantages, it can be challenging to keep an overview of complex development

processes, to maintain transparency, comparability as well as traceability, and to steer business

decisions—especially, when the units use varying metrics to measure and monitor a specific

part of the whole development process. To tackle such challenges, key performance indicators

are measured to compare an organization’s performance with respect to specified objectives

throughout whole development processes. Still, the structure of large organizations and the

corresponding challenges also pose difficulties while introducing key performance indicators.

In our paper, we describe an experience report on establishing key performance indicators

at Volkswagen Financial Services AG (VWFS), a large international organization in the

finance sector with over 16 000 employees. We report how we introduced and use key

performance indicators at VWFS to facilitate end-to-end analyses of software-development

processes, pointing out their value, challenges we faced, and recommendations for other

organizations. For this purpose, we present our light-weight, technology-independent

methodology that allowed us to receive fast feedback from our stakeholders. While applying

this methodology, we customized one existing, defined three new, and built on seven

established key performance indicators to address the requirements of VWFS. To define

the scope of our methodology and the key performance indicators we used, we closely

collaborated with our stakeholders to define six criteria we aimed to improveȷ transparency,

intelligibility, coverage, quantification, comparability, and communication. For each criterion,

we report the impact we experienced from establishing the key performance indicators, and

1 Volkswagen Financial Services AG

Cem.Sueruecue@vwfs.com

Bianying.Song@vwfs.com
2 Otto-von-Guericke University Magdeburg

jkrueger@ovgu.de

saake@ovgu.de
3 Harz University of Applied Sciences

tleich@hs-harz.de

cba doi:10.18420/SE2021_40

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 105

https://creativecommons.org/licenses/by-sa/4.0/
mailto:Cem.Sueruecue@vwfs.com
mailto:Bianying.Song@vwfs.com
mailto:jkrueger@ovgu.de
mailto:saake@ovgu.de
mailto:tleich@hs-harz.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_40


demonstrate five examples for concrete improvements we derived. Finally, we share six

lessons learned to help other organizations and practitionersȷ (1) choose proper tooling and

understand the limitations of using off-the-shelf solutions; (2) define and customize the

key performance indicators they need to measure; (3) to get feedback from stakeholders,

communicate benefits, and, thereby, facilitate acceptance; (4) understand why and how to

incorporate stakeholders to create benefits for different target groups; (5) evaluate the value

and usability of their key performance indicators; and (6) to be aware of, as well as control,

costs and benefits of key performance indicators in a business case. By establishing our

defined set of key performance indicators, we successfully improved with respect to the

criteria defined. The success of these improvements has been underpinned by our ability to

better compare the quality of software releases as well as affirmative feedback from users,

managers, and other stakeholders.

Building on our experiences, we recently intensified our use of key performance indicators to

compare different software-development processes, methods, and technologies during a shift

to a more agile paradigm—aiming to measure and assess the benefits of this transformation.

In this context, we have transformed the teamwork for developing special-business software

from the predominant distributed, interacting organizational units to multidisciplinary,

cross-functional agile teams. Up until now, we have measured and reported our defined set

of key performance indicators across all relevant organizational units for more than one

year, covering multiple software releases that provide a reliable data basis for comparing

conventional waterfall and mixed-method development to the newly established agile

paradigm. We focus particularly on comparing timely requirements, test progress, as

well as software quality before (i.e., defect analysis of internal deliverables) and after

(i.e., incident analysis and delivery speed of external deliverables on productive systems)

releases. By investigating our data on the agile transformation, we conclude that we have

to measure additional properties that help us capture agile-specific practices and values,

such as multidisciplinary, cross-functional teamwork with fast feedback. For this purpose,

we are currently analyzing what properties we need to measure, how to translate these

into key performance indicators, and how to make them comparable between different

software-development processes. Consequently, we argue that valuable future work is to

study what key performance indicators we established are relevant for agile processes, how

to adjust and introduce new key performance indicators for agile processes, how to ensure

comparability, and what differences we experience between measuring as well as using

different software-development processes, methods, and technologies.

Bibliography

[Sü20] Sürücü, Cem; Song, Bianying; Krüger, Jacob; Saake, Gunter; Leich, Thomasȷ Establishing
Key Performance Indicators for Measuring Software-Development Processes at a Large
Organization. Inȷ Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ESEC/FSE. ACM, 2020.

106 Cem Sürücü, Bianying Song, Jacob Krüger, Gunter Saake, Thomas Leich



A Longitudinal Study of Static Analysis Warning Evolution

and the Effects of PMD on Software Quality in Apache Open

Source Projects (Summary)

Alexander Trautsch1, Steffen Herbold2, Jens Grabowski«

Abstract: This article summarizes our work originally published in the journal Empirical Software
Engineering [THG20].

Keywords: Static code analysis; Quality evolution; Software metrics; Software quality

Software engineering best practices have included the use of static analysis tools for years.

These tools can help developers spot common coding mistakes and maintainability problems.

Static analysis tools work by analyzing source code or byte code and perform pattern

matching to find problematic lines of code. While they are seen by developers as quality

improving there are also problems with false positives.

While some studies are investigating static analysis tools, none were focused on the evolution

of warnings over the complete development history for a general purpose static analysis

tool. In our study we use PMD as the static analysis tool. It contains a broad set of warnings,

works directly on source code and has been under development for many years. Therefore,

it is able to provide us with a comprehensive history of static analysis warnings in our study

subjects.

We investigate 5» open source Java projects under the umbrella of the Apache Software

Foundation. We collect up to 17 years of development history of our study subjects

and plot the evolution and trends of static analysis warnings. Overall, we collect static

analysis warnings and the number of logical lines of code for 112,266 commits of our

study subjects. We also collect all reported bugs and complete build information including

information from Maven Central for all study subjects. This data collection is facilitated by

SmartSHARK [Tr17, Tr20] and a local HPC system.

As we do not want to rely on a heuristic to find removed warnings we include all warnings

in every commit and plot the warning density, i.e., the sum of all warnings divided by the

number of logical lines of code. To further restrict noise we only investigate production

1 Georg-August-Universitčt Göttingen, Institut für Informatik, Goldschmidtstrasse 7, «7077 Göttingen, Deutschland

alexander.trautsch@cs.uni-goettingen.de
2 Karlsruher Institut für Technologie, AIFB, Kaiserstr. 89, 761«« Karlsruhe, Deutschland steffen.herbold@kit.edu
« Georg-August-Universitčt Göttingen, Institut für Informatik, Goldschmidtstrasse 7, «7077 Göttingen, Deutschland

grabowski@cs.uni-goettingen.de

cba doi:10.18420/SE2021_41

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 107

https://creativecommons.org/licenses/by-sa/4.0/
mailto:alexander.trautsch@cs.uni-goettingen.de
mailto:steffen.herbold@kit.edu
mailto:grabowski@cs.uni-goettingen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_41


code, excluding tests, documentation and example code. As we are interested in trends we

restrict the commit graph of our study subjects to a single path to remove noise due to

release branches.

Our study explores two main research questions. How are static analysis warnings evolving

over time and what is the impact of using PMD. We want to know if “code gets better”,

i.e., are static analysis warnings removed over the observed development history. We find

that while the sum of warnings usually increases the warning density decreases in most

projects. The types of warnings that drive this positive trend are mostly related to coding

best practices, e.g., naming, brace and design warnings. On average, every study subject

removes «.5 warnings per 1000 logical lines of code per year.

Using PMD as indicated in the build process of the study subjects has a positive impact on

the number of warnings, however this is not the case in all of our study subjects. We find

that the use of a specialized configuration of rules for PMD has a negligible impact on the

removal of warnings. If we calculate trends of warning density we find that the instances

where PMD was used are not statistically significantly better than those without PMD.

However, if we use the sum of static analysis warnings there is a statistically significant,

albeit small difference.

When we use defect density as a proxy metric for external software quality we find that

years in which PMD is part of the build process perform slightly better. However, this part

of the study is limited by the available data and will be investigated in more detail in a

follow-up study.

Bibliography

[THG20] Trautsch, Alexander; Herbold, Steffen; Grabowski, Jensȷ A Longitudinal Study of Static
Analysis Warning Evolution and the Effects of PMD on Software Quality in Apache Open
Source Projects. Empirical Software Engineering, 2020.

[Tr17] Trautsch, Fabian; Herbold, Steffen; Makedonski, Philip; Grabowski, Jensȷ Addressing
problems with replicability and validity of repository mining studies through a smart data
platform. Empirical Software Engineering, August 2017.

[Tr20] Trautsch, Alexander; Trautsch, Fabian; Herbold, Steffen; Ledel, Benjamin; Grabowski,
Jensȷ The SmartSHARK Ecosystem for Software Repository Mining. Inȷ Proceedings
of the ACM/IEEE »2nd International Conference on Software Engineeringȷ Companion
Proceedings. ICSE ’20, Association for Computing Machinery, New York, NY, USA, p.
25–28, 2020.

108 Alexander Trautsch, Steffen Herbold, Jens Grabowski



Are Unit and Integration Test Definitions Still Valid for

Modern Java Projects? An Empirical Study on Open-Source

Projects

Fabian Trautsch1, Steffen Herbold2, Jens Grabowski«

Abstract: We summarize the article Are unit and integration test definitions still valid for modern
Java projects? An empirical study on open-source projects [THG20], which was published in the
Journal of Systems and Software in 2020.

Keywords: Software testing; Unit testing; Integration testing; Empirical software engineering

1 Overview

The article “Are unit and integration test definitions still valid for modern Java projects? An

empirical study on open-source projects” published in the Journal of Systems and Software

in 2020 presents the results of our investigations of the defect detection capability of unit and

integration tests [THG20]. While the software development context evolved over time, the

definitions of unit and integration tests remained unchanged. There is no empirical evidence,

if these commonly used definitions still fit to modern software development. We evaluate

if the existing standard definitions of unit and integration tests are still valid in modern

software development context through the analysis of the defect types that are detected,

because there should be differences according to the standard literature. We classify test

cases according to the definition of the IEEE and use mutation testing to assess their defect

detection capabilities.

2 Results

We analyzed 9«56 unit tests and 29»61 integration tests and could not find any evidence

that one test type is more capable of detecting certain defect types than the other one. This

implies that we need to reconsider the definitions of unit and integration tests and suggest

that the current property-based definitions may be exchanged with usage-based definitions.

1 Georg-August-Universitčt Göttingen, Institute für Informatik, Goldschmidtstr. 7, «7077 Göttingen, Deutschland

fabian.trautsch@cs.uni-goettingen.de
2 Karlsruher Institut für Technologie, Institute AIFB, Kaiserstr. 89, 761«« Karlsruhe, Deutschland steffen.herbold@

kit.edu
« Georg-August-Universitčt Göttingen, Institute für Informatik, Goldschmidtstr. 7, «7077 Göttingen, Deutschland

jens.grabowski@cs.uni-goettingen.de

cba doi:10.18420/SE2021_42

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 109

https://creativecommons.org/licenses/by-sa/4.0/
mailto:fabian.trautsch@cs.uni-goettingen.de
mailto:steffen.herbold@kit.edu
mailto:steffen.herbold@kit.edu
mailto:jens.grabowski@cs.uni-goettingen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_42


Bibliography

[THG20] Trautsch, Fabian; Herbold, Steffen; Grabowski, Jensȷ Are unit and integration test definitions
still valid for modern Java projects? An empirical study on open-source projects. Journal
of Systems and Software, 159ȷ110»21, 2020.

110 Fabian Trautsch, Steffen Herboldh, Jens Grabowski



Automated Large-scale Multi-language Dynamic Program

Analysis in the Wild

Alex Villazón1, Haiyang Sun2, Andrea Rosà3, Eduardo Rosales4, Daniele Bonetta5, Isabella

Defilippis6, Sergio Oporto7, Walter Binder8

Abstract: Our paper published in the proceedings of the 33rd European Conference on Object-Oriented
Programming (ECOOP 2019) [Vi19a] proposes NAB, a novel framework to execute custom dynamic
analysis on open-source software hosted in public repositories. The publication is complemented by an
accepted artifact [Vi19b]. Analyzing today’s large code repositories has become an important research
area for understanding and improving different aspects of modern software systems. Despite the
presence of a large body of work on mining code repositories through static analysis, studies applying
dynamic analysis to open-source projects are scarce and of limited scale. Nonetheless, being able to
apply dynamic analysis to the projects hosted in public code repositories is fundamental for large-scale
studies on the runtime behavior of applications, which can greatly benefit the programming-language
and software-engineering communities. NAB is fully automatic, language-agnostic, and scalable.
We describe NAB’s key features and architecture. We also present three case studies on more than
56K Node.js, Java, and Scala projects, enabling us to 1) understand how developers use JavaScript
Promises, 2) identify bad coding practices in JavaScript applications, and 3) locate task-parallel Java
and Scala workloads suitable for inclusion in a domain-specific benchmark suite. A preliminary
version of NAB is available at http://dag.inf.usi.ch/software/nab/

Keywords: Dynamic program analysis; code repositories; GitHub; Node.js; Java; Scala; promises;
JIT-unfriendly code; task granularity

Bibliography

[Vi19a] Villazón, Alex; Sun, Haiyang; Rosà, Andrea; Rosales, Eduardo; Bonetta, Daniele; Defilippis,
Isabella; Oporto, Sergio; Binder, Walterȷ Automated Large-scale Multi-language Dynamic
Program Analysis in the Wild. Inȷ Proceedings of the 33rd European Conference on
Object-Oriented Programming (ECOOP). pp. 20ȷ1–20ȷ27, 2019.

[Vi19b] Villazón, Alex; Sun, Haiyang; Rosà, Andrea; Rosales, Eduardo; Bonetta, Daniele; Defilippis,
Isabella; Oporto, Sergio; Binder, Walterȷ Automated Large-Scale Multi-Language Dynamic
Program Analysis in the Wild (Artifact). Dagstuhl Artifacts Series, 5(2)ȷ11ȷ1–11ȷ3, 2019.

1 Universidad Privada Boliviana, Bolivia avillazon@upb.edu
2 Università della Svizzera italiana, Switzerland haiyang.sun@usi.ch
3 Università della Svizzera italiana, Switzerland andrea.rosa@usi.ch
4 Università della Svizzera italiana, Switzerland rosale@usi.ch
5 Oracle Labs, United States daniele.bonetta@oracle.com
6 Universidad Privada Boliviana, Bolivia isabelladefilippis@upb.edu
7 Universidad Privada Boliviana, Bolivia sergiooporto@upb.edu
8 Università della Svizzera italiana, Switzerland walter.binder@usi.ch

cba doi:10.18420/SE2021_43

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 111

https://creativecommons.org/licenses/by-sa/4.0/
http://dag.inf.usi.ch/software/nab/
mailto:avillazon@upb.edu
mailto:haiyang.sun@usi.ch
mailto:andrea.rosa@usi.ch
mailto:rosale@usi.ch
mailto:daniele.bonetta@oracle.com
mailto:isabelladefilippis@upb.edu
mailto:sergiooporto@upb.edu
mailto:walter.binder@usi.ch
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_43




Views on Quality Requirements in Academia and Practice:

Commonalities, Differences, and Context-Dependent Grey

Areas

Andreas Vogelsang 1, Jonas Eckhardt 2, Daniel Mendez 3, Moritz Berger 4

Abstract: This article originally appeared in Information and Software Technology (IST) [Vo20].
Context: Quality requirements (QRs) are a topic of constant discussions both in industry and academia.
While many academic endeavors contribute to the body of knowledge about QRs, practitioners may
have different views. Objective: We report on a study to better understand the extent to which available
research statements on QRs from academic publications, are reflected in the perception of practitioners.
Our goal is to analyze differences, commonalities, and context-dependent grey areas in the views of
academics and practitioners. Method: We conducted a survey with 109 practitioners to assess their
agreement with the selected research statements about QRs. Based on a statistical model, we evaluate
the impact of a set of context factors to the perception of research statements. Results: Our results
show that a majority of the statements is well respected by practitioners; however, not all of them.
When examining the different groups of respondents, we noticed deviations of perceptions that lead
to new research questions. Conclusions: Our results help identifying context-dependent differences
about how academics and practitioners view QRs and statements where further research is useful.

Keywords: quality requirements; non-functional requirements; context factors; requirements engi-

neering; survey; empirical study

We want to better understand the extent to which available research statements on quality

requirements [Gl07] are consistent with the perceptions held by practitioners. In particular,

we aim at understanding the extent to which the views and perceptions held by practitioners

are corroborated by those of academics. More precisely, we want to understand how well

research statements frequently referred to in academic works are perceived by practitioners

in their respective context. Questions we opt for answering are: (1) What is the agreement

of practitioners with existing research statements about QRs? (2) Which context factors

(e.g., industrial sector, company size, experience) influence the agreement of practitioners

with research statements about QRs? (3) Can we assign a specific perception of QRs to

stereotypical groups of practitioners?

Our hope is that an increased understanding of the practitioners’ beliefs and views helps us

identifying differences, commonalities, and context-dependent grey areas and pinpoint to

existing (and regularly cited) statements where further context-dependent research would

1 University of Cologne, Software & Systems Engineering, Cologne, Germany vogelsang@cs.uni-koeln.de
2 Tableau Software, Munich, Germany, jonaseckhardt@googlemail.com
3 Blekinge Institute of Technology and fortiss GmbH, Blekinge, Sweden and Munich, Germany, daniel.mendez@

bth.se
4 Universitčt Bonn, Bonn, Germany, moritz.berger@imbie.uni-bonn.de

cba doi:10.18420/SE2021_44

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 113

https://creativecommons.org/licenses/by-sa/4.0/
mailto:vogelsang@cs.uni-koeln.de
mailto:jonaseckhardt@googlemail.com
mailto:daniel.mendez@bth.se
mailto:daniel.mendez@bth.se
mailto:moritz.berger@imbie.uni-bonn.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_44


be useful. The paper makes the following contributions: (1) We define a set of 21 research

statements about quality requirements from a total of 17 exemplary and commonly cited

research papers from the RE research community. (2) We survey practitioners from several

application domains and business contexts regarding their agreement with the previously

identified statements about quality requirements. The survey results suggest that practitioners

hold strong, and diverse opinions, and that some results inspire more passion and dissension

than others. (3) We provide a statistical model that allows evaluating the impact of specific

context factors on the perception of research statements. The results of the evaluation

show that the perception of some research statements is homogeneous across different

development contexts while the perception of others strongly depends on the context. (4)

We provide a detailed discussion of the results and contrast them with the original studies

from which the statements emerged.

Our intention is not to criticize selected academic manuscripts but to increase our under-

standing on (1) how much practitioners’ views differ with respect to their daily working

context, and (2) what we, the research community, can learn from it. Our vision is to

contribute to reducing the gap between industrial practice and problems, and academic

contributions and solution proposals.

In the past, we have conducted a number of studies in which we investigated the percep-

tion [EVM16b] and use [EVM16a, EMV15] of quality requirements by practitioners. The

research questions, results, and the underlying data presented in this article are original

in the sense that they have not been addressed in a previous analysis and consequently in

a publication. The only commonality between the study at hand and one of our previous

publications [EVM16b] is that the data underlying these studies have been collected using

the same questionnaire (but different parts of it).

Bibliography

[EMV15] Eckhardt, Jonas; Mendéz Fernăndez, Daniel; Vogelsang, Andreas: How to specify Non-
functional Requirements to support seamless modeling? A Study Design and Preliminary
Results. In: 9th International Symposium on Empirical Software Engineering and
Measurement (ESEM). 2015.

[EVM16a] Eckhardt, Jonas; Vogelsang, Andreas; Mendéz Fernăndez, Daniel: Are Non-functional
Requirements Really Non-functional? An Investigation of Non-functional Requirements
in Practice. In: 38th International Conference on Software Engineering (ICSE). 2016.

[EVM16b] Eckhardt, Jonas; Vogelsang, Andreas; Mendéz Fernăndez, Daniel: On the Distinction of
Functional and Quality Requirements in Practice. In: 17th International Conference on
Product-Focused Software Process Improvement (PROFES). 2016.

[Gl07] Glinz, Martin: On non-functional requirements. In: 15th IEEE International Requirements
Engineering Conference (RE). 2007.

[Vo20] Vogelsang, Andreas; Eckhardt, Jonas; Mendez, Daniel; Berger, Moritz: Views on quality
requirements in academia and practice: commonalities, differences, and context-dependent
grey areas. Information and Software Technology (IST), 121, 2020.

114 Andreas Vogelsang, Jonas Eckhardt, Daniel Mendez, Moritz Berger



Status Quo in Requirements Engineering: A Theory and a

Global Family of Surveys

Stefan Wagner1, Daniel Méndez Fernăndez2, Michael Felderer3, Antonio Vetrò4, Marcos

Kalinowski5, Roel Wieringa6, Dietmar Pfahl7, Tayana Conte8, Marie-Therese Christiansson9,

Desmond Greer10, Casper Lassenius11, Tomi Mčnnistö12, Maleknaz Nayebi13, Markku

Oivo14, Birgit Penzenstadler15, Rafael Prikladnicki16, Guenther Ruhe17, André

Schekelmann18, Sagar Sen19, Rodrigo Spínola20, Ahmed Tuzcu21, Jose Luis de la Vara22,

Dietmar Winkler23

Abstract: While researchers have been investigating the Requirements Engineering (RE) discipline
with a plethora of empirical studies, attempts to systematically derive an empirical theory in context of
the RE discipline have just recently been started. We aim at providing an empirical and externally valid
foundation for a theory of RE practice, which helps software engineers establish effective and efficient
RE processes in a problem-driven manner. We designed a survey instrument and an engineer-focused
theory that has been conducted in 10 countries. We have a theory in the form of a set of propositions
inferred from our experiences and available studies, as well as the results from our pilot study in
Germany. We evaluate the propositions with bootstrapped confidence intervals and derive potential
explanations for the propositions.

Keywords: Requirements Engineering; Survey; Theory

1 University of Stuttgart, Stuttgart, Germany, stefan.wagner@iste.uni-stuttgart.de
2 BTH, Karlskrona, Sweden, daniel.mendez@bth.se
3 University of Innsbruck, Innsbruck, Austria, michael.felderer@uibk.ac.at
4 Pollitecnico di Torino, Torino, Italy, antonio.vetro@polito.it
5 Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil, kalinowski@inf.puc-rio.br
6 University of Twente, Enschede, The Netherlands, r.j.wieringa@utwente.nl
7 University of Tartu, Tartu, Estonia, dietmar.pfahl@ut.ee
8 Universidade Federal do Amazonas, Manaus, Brazil, tayanaconte@gmail.com
9 Karlstad University, Karlstad, Sweden, marie-therese.christiansson@kau.se

10 Queen’s University Belfast, Belfast, UK, des.greer@qub.ac.uk
11 Aalto University, Espoo, Finland, casper.lassenius@aalto.fi
12 University of Helsinki, Helsinki, Finland, tomi.mannisto@helsinki.fi
13 York University, Toronto, Canada, mnayebi@yorku.ca
14 University of Oulu, Oulu, Finland, markku.oivo@oulu.fi
15 Chalmers University, Gothenburg, Sweden, birgitp@chalmers.se
16 Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil, rafael.prikladnicki@gmail.com
17 University of Calgary, Calgary, Canada, ruhe@ucalgary.ca
18 Niederrhein University of Applied Sciences, Krefeld, Germany, andre.schekelmann@hs-niederrhein.de
19 Simula, Fornebu, Norway, sagar@simula.no
20 Salvador University - UNIFACS, Salvador, Brazil, rodrigoospinola@gmail.com
21 zeb.rolfes.schierenbeck.associates GmbH, Munich, Germany, atuzcu@zeb.de
22 Carlos III University of Madrid, Madrid, Spain, jvara@inf.uc3m.es
23 Technische Universitčt Wien, Vienna, Austria, dietmar.winkler@tuwien.ac.at

cba doi:10.18420/SE2021_45

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 115

https://creativecommons.org/licenses/by-sa/4.0/
mailto:stefan.wagner@iste.uni-stuttgart.de
mailto:daniel.mendez@bth.se
mailto:michael.felderer@uibk.ac.at
mailto:antonio.vetro@polito.it
mailto:kalinowski@inf.puc-rio.br
mailto:r.j.wieringa@utwente.nl
mailto:dietmar.pfahl@ut.ee
mailto:tayanaconte@gmail.com
mailto:marie-therese.christiansson@kau.se
mailto:des.greer@qub.ac.uk
mailto:casper.lassenius@aalto.fi
mailto:tomi.mannisto@helsinki.fi
mailto:mnayebi@yorku.ca
mailto:markku.oivo@oulu.fi
mailto:birgitp@chalmers.se
mailto:rafael.prikladnicki@gmail.com
mailto:ruhe@ucalgary.ca
mailto:andre.schekelmann@hs-niederrhein.de
mailto:sagar@simula.no
mailto:rodrigoospinola@gmail.com
mailto:atuzcu@zeb.de
mailto:jvara@inf.uc3m.es
mailto:dietmar.winkler@tuwien.ac.at
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_45


1 Summary

This talk reports on the second run of the Naming the Pain in Requirements Engineering

(NaPiRE) initiative that has the goal to characterise requirements engineering practice

and problems and was published in the ACM Transactions on Software Engineering and

Methodology in 2019 [Wa19].

An empirical theory of requirements engineering (RE) is needed if we are to define and

motivate guidance in performing high quality RE research and practice. We aim at providing

an empirical and externally valid foundation for a theory of RE practice, which helps

software engineers establish effective and efficient RE processes in a problem-driven

manner. We designed a survey instrument and an engineer-focused theory that was first

piloted in Germany and, after making substantial modifications, has been replicated in 10

countries. We have a theory in the form of a set of propositions inferred from our experiences

and available studies, as well as the results from our pilot study in Germany. We evaluate

the propositions with bootstrapped confidence intervals and derive potential explanations

for the propositions.

In this article, we report on the design of the family of surveys, its underlying theory,

and the full results obtained from the replication studies conducted in 10 countries with

participants from 228 organisations. Our results represent a substantial step forward towards

developing an empirical theory of RE practice. The results reveal, for example, that there

are no strong differences between organisations in different countries and regions, that

interviews, facilitated meetings and prototyping are the most used elicitation techniques,

that requirements are often documented textually, that traces between requirements and

code or design documents are common, that requirements specifications themselves are

rarely changed and that requirements engineering (process) improvement endeavours are

mostly internally driven. Our study establishes a theory that can be used as starting point

for many further studies for more detailed investigations and complements the theory we

established on problems, their causes and effects in requirements engineering practice

[Mé17]. Practitioners can use the results as theory-supported guidance on selecting suitable

RE methods and techniques.

Bibliography

[Mé17] Méndez Fernăndez, Daniel; Wagner, Stefan; Kalinowski, Marcos; Felderer, Michael; Mafra,
Priscilla; Vetrò, Antonio; Conte, Tayana; Christiansson, Marie-Therese; Greer, Desmond;
Lassenius, Casper et al.ȷ Naming the pain in requirements engineering. Empirical Software
Engineering, 22(5)ȷ2298–2338, 2017.

[Wa19] Wagner, Stefan; Méndez Fernăndez, Daniel; Felderer, Michael; Vetrò, Antonio; Kalinowski,
Marcos; Wieringa, Roel; Pfahl, Dietmar; Conte, Tayana; Christiansson, Marie-Therese;
Greer, Desmond et al.ȷ Status quo in requirements engineeringȷ A theory and a global
family of surveys. ACM Transactions on Software Engineering and Methodology (TOSEM),
28(2)ȷ1–48, 2019.

116 Stefan Wagner, Daniel Méndez Fernández, Michael Felderer, Antonio Vetrò, Marcos

Kalinowski, Roel Wieringa, Dietmar Pfahl et al.



Programming in Natural Language with fuSE:

Synthesizing Methods from Spoken Utterances

Using Deep Natural Language Understanding

Sebastian Weigelt1, Vanessa Steurer2, Tobias Hey1, Walter F. Tichy1

Abstract: With fuSE laypeople can create simple programsȷ one can teach intelligent systems new
functions using plain English. fuSE uses deep learning to synthesize source codeȷ it creates method
signatures (for newly learned functions) and generates API calls (to form the body). In an evaluation
on an unseen dataset fuSE synthesized 84.6% of the signatures and 66.9% of the API calls correctly3 .

Keywords: Programming in Natural Language; End-User Programming; Deep Learning; AI; NLP

Introduction: Intelligent systems became rather smart lately. One easily arranges appoint-

ments by talking to a virtual assistant or controls a smart home through a conversational

interface. For the time being, users can only access built-in functionality. However, they

will soon expect to add new functionality themselves. For humans, the most natural way to

communicate is by natural language. Thus, future intelligent systems must be programmable

in everyday language. We propose to apply deep natural language understanding to the task

of synthesizing methods from spoken utterances. fuSE combines deep learning techniques

with information retrieval and knowledge-based methods to grasp the user’s intent.

Approach: fuSE is a system for programming in (spoken) natural languageȷ laypersons can

create method definitions by using natural language only. To investigate how laypersons

teach new functionality we ran a preliminary study in which subjects were supposed to teach

new skills to a humanoid robot. The study consists of four scenarios in which a humanoid

robot should be taught a new skillȷ greeting someone, preparing coffee, serving drinks, and

setting a table for two. We used the online micro-tasking platform Prolific4 and were able to

gather 3168 descriptions from 870 participants. Based on the findings of the preliminary

study we develop the following three-tiered approach (see Figure 1). First, fuSE classifies

teaching efforts, i.e. it determines whether an utterance comprises an explicitly stated

teaching intent or not. Second, it classifies the semantic structure, i.e. fuSE analyzes (and

labels) the semantic parts of a teaching sequence. Teaching sequences are composed of a

declarative and a specifying part as well as superfluous information. Third, fuSE synthesizes

methods, i.e. it builds a model that represents the structure of methods from syntactic

1 Karlsruhe Institute of Technology, Karlsruhe, Germany, {weigelt|hey|tichy}@kit.edu
2 inovex GmbH, Karlsruhe, Germany, vsteurer@inovex.de
3 This contribution is a short version of the paper originally published in the proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics (2020) [We20].
4Prolificȷ https://www.prolific.co/

cba doi:10.18420/SE2021_46

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 117

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{weigelt|hey|tichy}@kit.edu
mailto:vsteurer@inovex.de
https://www.prolific.co/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_46


Fig. 1ȷ Schematic overview of fuSE’s three-tiered approach.

information and classification results. Then, it maps the actions of the specifying part to API

calls, injects control structures to form the body and creates the method signature. The first

two stages are classification problems. For the first we compared classical machine learning

techniques, such as logistic regression and support vector machines, with neural network

approaches including the pre-trained language model BERT [De19]. For the second task we

narrow down to neural networks and BERT. However, for both tasks BERT-based models

performed bestȷ test set accuracy 97.7% (1st stage) resp. 97.3% (2nd stage). The third stage is

a combination of syntactic analysis, knowledge-based techniques and information retrieval.

We use semantic role labeling, coreference analysis, and a context model to build a semantic

model. Afterwards, we synthesize method signatures heuristically and map instructions

from the body to API calls using ontology search methods and datatype analysis. To cope

with spontaneous (spoken) language, our approach relies on shallow NLP techniques only.

Evaluation: To measure the performance of fuSE on unseen data, we set up a case study.

We created two new scenarios and used Prolific to collect 202 descriptions, of which we

randomly drew 100; 78 of these comprise a teaching intent. In sum, the descriptions require

the generation of 473 API calls. fuSE synthesized 73 method signatures; five were missed

due to an incorrect first-stage classification. Out of 73 signatures we assessed only seven to

be inappropriate. The generation of API calls (that form the method bodies) also performs

well (F1ȷ 66.9%). These results are promising; however, we plan to improve fuSE with a

dialog module to query the user in case of ambiguities.

Bibliography

[De19] Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristinaȷ BERTȷ Pre-training
of Deep Bidirectional Transformers for Language Understanding. Inȷ Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguisticsȷ Human Language Technologies, Volume 1 (Long and Short Papers). Association
for Computational Linguistics, Minneapolis, Minnesota, pp. 4171–4186, June 2019.

[We20] Weigelt, Sebastian; Steurer, Vanessa; Hey, Tobias; Tichy, Walter F.ȷ Programming in Natural
Language with fuSEȷ Synthesizing Methods from Spoken Utterances Using Deep Natural
Language Understanding. Inȷ Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, Online, pp.
4280–4295, July 2020.

118 Sebastian Weigelt, Vanessa Steurer, Tobias Hey, Walter F. Tichy



Data-driven Risk Management for Requirements

Engineering: An Automated Approach based on Bayesian

Networks

Florian Wiesweg 1, Andreas Vogelsang 2, Daniel Mendez 3

Abstract: This paper has been accepted at the 2020 IEEE Requirements Engineering Conference
(RE) [WVM20]. RE is a means to reduce the risk of delivering a product that does not fulfill the
stakeholders’ needs. Therefore, a major challenge in RE is to decide how much RE is needed and what
RE methods to apply. The quality of such decisions is strongly based on the RE expert’s experience
and expertise in carefully analyzing the context and current state of a project. Recent work, however,
shows that lack of experience and qualification are common causes for problems in RE. We trained a
series of Bayesian Networks on data from the NaPiRE survey to model relationships between RE
problems, their causes, and effects in projects with different contextual characteristics. These models
were used to conduct (1) a post-mortem (diagnostic) analysis, deriving probable causes of sub-optimal
RE performance, and (2) to conduct a preventive analysis, predicting probable issues a young project
might encounter. The method was subject to a rigorous cross-validation procedure for both use cases
before assessing its applicability to real-world scenarios with a case study.

Keywords: Requirements Engineering; Data-Driven RE; Risk Management

The purpose of Requirements Engineering (RE) is to elicit, document, analyze, and manage

requirements to minimize the risk of delivering a system that does not meet the stakeholders’

desires and needs. Over the last 30 years, a number of methods, processes, tools, and

best practices have been proposed to support this goal. However, there is no silver-bullet

method or process that fits every project. In fact, a large part of the job of a requirements

engineer in practice is to observe and analyze the context and current state of a project

carefully and decide how much and what kind of RE is beneficial. As already addressed in

the above-mentioned definition of RE, this decision is often a matter of controlling risks.

Conducting RE tasks always comes with costs that ideally pay off in the sense that they lower

a particular risk for a project [FV19]. Making such decisions demands social and technical

skills but also a lot of experience. Recent studies have shown that lack of experience and

lack of qualification of RE team members are the second and third most common causes for

problems in RE (lack of time being the top cause) [MF17]. As a result, a number of projects

fail either because of too little RE leading to stakeholder dissatisfaction or too much RE

leading to high costs and developer frustration.

1 Technische Universitčt Berlin, Berlin, Germany, florian.wiesweg@alumni.tu-berlin.de
2 University of Cologne, Software & Systems Engineering, Cologne, Germany vogelsang@cs.uni-koeln.de
3 Blekinge Institute of Technology and fortiss GmbH, Blekinge, Sweden and Munich, Germany, daniel.mendez@

bth.se

cba doi:10.18420/SE2021_47

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 119

https://creativecommons.org/licenses/by-sa/4.0/
mailto:florian.wiesweg@alumni.tu-berlin.de
mailto:vogelsang@cs.uni-koeln.de
mailto:daniel.mendez@bth.se
mailto:daniel.mendez@bth.se
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_47


In this paper, we propose a data-driven approach to risk management in RE. Our goal is

to predict RE problems, their causes, and effects for a given project. Bayesian Networks

can be used to characterize such dependencies quantitatively by conditional probabilities

and update the probability of certain phenomena when other phenomena are observed.

Therefore, we evaluated different versions of Bayesian Networks that model the relations

between causes, problems, and effects in RE. We trained the models on data that was

collected through two surveys with answers from 228 and 488 practitioners, respectively,

about problems, causes, and effects encountered in real projects. These surveys also provide

data on the context of the projects. We use the trained models for the following two use

casesȷ (1) Post-Mortem Analysis: Given a set of problems and effects observed in a failing

or failed project, the approach diagnoses the most likely causes leading to these issues. (2)

Preventive Analysis: Given a set of causes and effects observed in a new or running project,

the approach predicts the most likely problems to be faced.

We performed two types of evaluations for our approach. Firstly, we performed cross-

validation to compare the predictive power of different models. We achieved the best results

for both use cases with surprisingly simple models, which ignore the causal structure

implied by the original survey but include a set of context factors. For varying probability

thresholds 𝑡 ∈ {0.3, 0.5, 0.7}, the best diagnostic model achieves recalls of 0.6, 0.48, 0.44

and precisions of 0.76, 0.92, 0.99, respectively. The best predictive model achieves recalls

of 0.84, 0.69, 0.59 and precisions of 0.71, 0.89, 0.99. A ranking-based output of the top-5

predictions results in a recall of 0.81 and a precision of 0.38 for the best diagnostic model

and a recall of 0.73 and a precision of 0.71 for the best predictive model. Secondly, we

conducted a case study in industry to evaluate the external validity of the approach. We

compared and discussed the predictions of the tool with the expectations of an RE expert

for the diagnostic reasoning use case. Furthermore, we elicited feedback regarding the

importance of recall vs. precision for the problem and how the tool should be tailored in

detail to support practitioners best. In a nutshell, the case study showed that the method

achieves good congruence between its predictions and the results expected by the expert,

but requires additional tuning towards high precision. We conclude that such data-driven

approaches are very likely to be practical and advantageous, but that the remaining potentials

in the underlying data and the user interface should be realized first.

Bibliography

[FV19] Femmer, H.; Vogelsang, A.ȷ Requirements Quality Is Quality in Use. IEEE Software,
36(3)ȷ83–91, 2019.

[MF17] Méndez Fernăndez, Daniel et al.ȷ Naming the Pain in Requirements Engineering. Empirical
Software Engineering, 22(5)ȷ2298–2338, 2017.

[WVM20] Wiesweg, F.; Vogelsang, A.; Mendez, D.ȷ Data-driven Risk Management for Requirements
Engineeringȷ An Automated Approach based on Bayesian Networks. Inȷ 28th IEEE
International Requirements Engineering Conference (RE). 2020.

120 Florian Wiesweg, Andreas Vogelsang, Daniel Mendez



Explaining Pair Programming Session Dynamics

from Knowledge Gaps

Franz Zieris1, Lutz Prechelt2

This is an extended abstract of the paper with the same title [ZP20a] which was presented at

the 42nd International Conference on Software Engineering (2020).

Keywords: pair programming; qualitative analysis; grounded theory methodology

1 Background, Data, and Research Method

Pair programming (PP) has many purported benefits, including higher code quality, faster

progress, and knowledge transfer between developers. Despite a lot of research on the

effectiveness of PP, the question when it is useful or less useful remains unsettledȷ A

meta-analysis found mere tendencies and a lot of between-study variance [Ha09]; a large

controlled experiment could not determine consistent moderating effects of task complexity

and developer expertise [Ar07]. Even though the feasible experimental setups tend to be

highly unrealistic, there have been only few qualitative studies which looked at the actual

PP process in industrial contexts (e. g., [Pl15]).

We follow Straussian Grounded Theory Methodology [SC90] to understand how pair

programmers actually transfer knowledge. We analyze 26 recordings of industrial PP

sessions from 9 companies which we selected in the manner of theoretical sampling

from the PP-ind session repository [ZP20b]. For open coding, we build on our own prior

work [ZP14; ZP16] that identified various phenomena related to within-session knowledge

build-up and transfer. We validate our findings with practitioners from four companies.

2 Results

We identify two different types of required knowledge and explain how different constellations

of knowledge gaps in these two respects lead to different session dynamicsȷ

• Industrial pairs mostly deal with gaps in project-specific system understanding, or

S knowledge. They address any differences in their respective system understanding

first before building up new system understanding together.

1 Freie Universitčt Berlin, Institut für Informatik, Takustr. 9, 14195 Berlin, Deutschland zieris@inf.fu-berlin.de
2 Freie Universitčt Berlin, Institut für Informatik, Takustr. 9, 14195 Berlin, Deutschland prechelt@inf.fu-berlin.de

cba doi:10.18420/SE2021_48

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 121

https://creativecommons.org/licenses/by-sa/4.0/
mailto:zieris@inf.fu-berlin.de
mailto:prechelt@inf.fu-berlin.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_48


• Differences in general software development knowledge, or G knowledge, hardly

hamper the PP process. Rather, such a difference is an opportunity to transfer

knowledge—which pairs only do after they dealt with their S knowledge gaps.

• Building up lacking G knowledge together in a PP session appears to be difficult.

• Pair constellations with complementary knowledge allow both partners to contribute

S knowledge and G knowledge, respectively, which makes pair programming a

particularly effective practice.

• Software developers may use our findings when forming pairs (e. g., by choosing

a partner and/or amending the goal of the session such that differences in their

knowledge levels play out favorably) or as a means of reflecting after a session (e. g.,

whether the right knowledge gaps were addressed or which were newly identified).

References

[Ar07] Arisholm, E.; Gallis, H.; Dybå, T.; Sjůberg, D. I.ȷ Evaluating Pair Program-

ming with Respect to System Complexity and Programmer Expertise. IEEE

Transactions on Software Engineering 33/2, pp. 65–86, 2007.

[Ha09] Hannay, J. E.; Dybå, T.; Arisholm, E.; Sjůberg, D. I.ȷ The effectiveness of pair

programmingȷ A meta-analysis. Information and Software Technology 51/7,

pp. 1110–1122, 2009.

[Pl15] Plonka, L.; Sharp, H.; van der Linden, J.; Dittrich, Y.ȷ Knowledge transfer in pair

programmingȷ An in-depth analysis. International Journal of Human-Computer

Studies 73/, pp. 66–78, 2015.

[SC90] Strauss, A.; Corbin, J.ȷ Basics of Qualitative Research. Grounded Theory Proce-

dure and Techniques. Sage Publications, 1990, isbnȷ 978-0803932500.

[ZP14] Zieris, F.; Prechelt, L.ȷ On Knowledge Transfer Skill in Pair Programming.

Inȷ Proceedings of the 8th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement. ESEM ’14, ACM, 2014.

[ZP16] Zieris, F.; Prechelt, L.ȷ Observations on Knowledge Transfer of Professional

Software Developers During Pair Programming. Inȷ Proceedings of the 38th

International Conference on Software Engineering Companion. ICSE ’16 (SEIP),

ACM, pp. 242–250, 2016.

[ZP20a] Zieris, F.; Prechelt, L.ȷ Explaining Pair Programming Session Dynamics from

Knowledge Gaps. Inȷ Proceedings of the ACM/IEEE 42nd International Confer-

ence on Software Engineering. ICSE ’20, ACM, Seoul, South Korea, pp. 421–

432, 2020, isbnȷ 9781450371216.

[ZP20b] Zieris, F.; Prechelt, L.ȷ PP-indȷ A Repository of Industrial Pair Programming

Session Recordings, 2020, arXivȷ 2002.03121v3 [cs.SE].

122 Franz Zieris, Lutz Prechelt



Workshops





2nd Workshop on Requirement Management in Enterprise

Systems Projects (AESP’21)

Christoph Weiss1, Johannes Keckeis2

Abstract: ERP systems and other enterprise systems are the backbone of any company in a digitized
world. In almost every company Enterprise Systems are adapted to the needs of the customers within
the scope of parameterization, modifications (changes to existing functions and logics) or even
extensions (new developments of existing functions and logics). However, many of such Enterprise
Systems projects fail due to missing, incorrect, inadequate or incomplete requirements there are
ïncorrectëxpectations, divergents in definition and attitudes on requirements management between
customers and suppliers. These challenges will be highlighted, talked over and discussed during this
workshop.

Keywords: Enterprise systems; Enterprise resource planning; Requirements management

1 Motivation

ERP systems and other enterprise systems are the backbone of any company in a digitized

world. In almost every company Enterprise Systems are adapted to the needs of the customers

within the scope of parameterization, modifications (changes to existing functions and

logics) or even extensions (new developments of existing functions and logics). However,

many of such Enterprise Systems projects fail due to missing, incorrect, inadequate or

incomplete requirements there are “incorrect” expectations, divergents in definition and

attitudes on requirements management between customers and suppliers. These challenges

will be highlighted, talked over and discussed during this workshop.

2 Expected Results (Work Objectives) of the Workshop

Presentation of points of view, ways of thinking, processes and perceptions of Enterprise

Systems customers or prospective customers and providers in selection, implementation

and further development of Enterprise Systems in the context of requirement management.

Sketching of a new requirement management model in an Enterprise Systems project for

the further development of the existing system landscape.

1 AUB’s German-language interdisciplinary Ph.D. programme (Economics), Budapest, Hungary christoph.weiss@

andrassyuni.hu
2 Department of Strategic Management, Marketing and Tourism, University of Innsbruck, Innsbruck, Austria

johannes.keckeis@uibk.ac.at

cba doi:10.18420/SE2021_49

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 125

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_48
mailto:christoph.weiss@andrassyuni.hu
mailto:christoph.weiss@andrassyuni.hu
mailto:johannes.keckeis@uibk.ac.at
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_49


3 Workshop Agenda

• Introduction to the topic and keynote by the organizers of the workshop.

• Presentation of the submitted and accepted papers with subsequent discussion.

• Summary and resume by the organizers.

4 Program Committee

• Martin Adam, FH Kufstein Tirol

• Wolfgang Ahammer, VFI GmbH

• Christian Büll, FH Burgenland

• Fritz Fahringer, Standortagentur Tirol GmbH

• Gunther Glawar, EVVA Sicherheitstechnologie GmbH

• Felix Piazolo, Universitčt Innsbruck

• Kurt Promberger, Universitčt Innsbruck

• Ludwig Rupp, Rupp AG

• Anton Vorraber, KTM AG

5 Perspective

The results of the development of the new procedure model for requirement management in

an Enterprise Systems project for the further development of the existing system landscape

are processed in a paper and submitted to the next Software Engineering Conference 2022.

126 Christoph Weiss, Johannes Keckeis



18th Workshop on Automotive Software Engineering

(ASE’21)

Patrick Ebel1, Steffen Helke2, Ina Schaefer«, Andreas Vogelsang»

Abstract: Software-based systems play an increasingly important role and enable most of the
innovations in modern cars. This workshop deals with various topics related to the development of
automotive software and discusses suitable methods, techniques, and tools necessary to master the
most current challenges researchers and practitioners are facing.

Keywords: Automotive Software Engineering, Autonomous Driving, Driver Assistance Systems,

Software Development

The 18th Workshop on Automotive Software Engineering (ASE’21) addresses the challenges

of software development in the automotive sector as well as suitable methods, techniques,

and tools for this specific area. With the increasing amount of connected vehicles, modern

driver assistance systems, and the challenges of fully automated driving, automotive software

plays an important role today more than ever.

Furthermore, the distraction-free and intuitive operation of vehicle applications via multi-

modal interfaces play an increasingly important role. In addition, innovative technologies

like voice control, cloud computing, or 5G connectivity found their way into the car. These

technological advances have changed the experience of driving a carȷ In the near future

services such as WhatsApp, Skype or even Facebook will be integrated into the car and can

then be operated by users while driving.

The main objectives of the workshop are the exchange and discussion of how current

challenges in automotive software engineering can be mastered. The thematic orientation

offers many cross-references to the Software Engineering (SE) conference to which the

workshop is colocated. The workshop addresses researchers, developers, and users from the

automotive industry as well as scientists from research institutes and universities working in

the field of automotive software engineering. Traditionally, the focus is less on theory than

on applied research.

To ensure that only high-quality submissions are selected for publication and presentation,

two reviewers were selected for each of the contributions submitted to this year’s workshop.

1 Universitčt zu Köln, ebel@cs.uni-koeln.de
2 Fachhochschule Südwestfalen, helke.steffen@fh-swf.de
« Technische Universitčt Braunschweig, i.schaefer@tu-braunschweig.de
» Universitčt zu Köln, vogelsang@cs.uni-koeln.de

cba doi:10.18420/SE2021_50

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 127

https://creativecommons.org/licenses/by-sa/4.0/
mailto:ebel@cs.uni-koeln.de 
mailto:helke.steffen@fh-swf.de
mailto:i.schaefer@tu-braunschweig.de
mailto:vogelsang@cs.uni-koeln.de 
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_50


Many thanks to all the reviewers who contributed with great commitment to the review

process.

As in previous years, the workshop will be opened with a keynote speech. We would like to

thank Prof. Dr.-Ing. Markus Maurer (Director of the Department of Vehicle Electronics,

Technische Universitčt Braunschweig), who will a give a talk on ‘The Inherent Risk of

Autonomous Road Vehicles’.

Program Committee

Prof. Dr. Paula Herber Universitčt Münster

Dr. Verena Klös Technische Universitčt Berlin

Prof. Dr. Stefan Kugele Technische Hochschule Ingolstadt

Dr. Thomas Noack Datendeuter GmbH

Prof. Dr. Dirk Nowotka Universitčt Kiel

Prof. Dr. Jörn Schneider Hochschule Trier

Prof. Dr. Thomas Thüm Universitčt Ulm

Dr. Rebekka Wohlrab Carniege Mellon University

Organization

Patrick Ebel Universitčt zu Köln

Prof. Dr. Andreas Vogelsang Universitčt zu Köln

Prof. Dr. Ina Schaefer Technische Universitčt Braunschweig

Prof. Dr. Steffen Helke Fachhochschule Südwestfalen

For many years, this workshop has been organized by the GI interest group (Fachgruppe) on

“Automotive Software Engineering”5 . The steering committee was consequently involved in

the organization of this workshop as well.

5httpȷ//fg-ase.gi.de/

128 Patrick Ebel, Steffen Helke, Ina Schaefer, Andreas Vogelsang



3rd Workshop on Avionics Systems and Software Engineering

(AvioSE’21)

Björn Annighöfer1, Andreas Schweiger2, Marina Reich3

Abstract: Software development in the aerospace domain is driven by new application potentials,
increasing complexity, rising certification effort, and increasing cost pressure. In particular, future
applications such as e.g., autonomous air transport, aircrew workload reduction, commercial UAVs,
and further enhancement of existing functionality add to the system complexity. At the same time, there
are challenges in communication and navigation in airspace, certification for multi-core processors,
artificial intelligence as well as security for software, hardware, and connectivity. New software
development methodologies and techniques are required for dealing with these challenges.

Keywords: avionics; systems engineering; software engineering; formal method; model-based;

requirement; qualification; certification; simulation; process; tool

1 Introduction

Considerable advances for aerospace applications are expected in the course of introduction

of new technologies such as artificial intelligence (AI), multi-core processors, and new

communication technologies. However, the requirements in the domain do not allow the

application of these technologies straight away, but require for additional techniques and

mechanisms in order to meet the high quality needed for product certification. Many of the

existing techniques can be amended or extended towards fulfillment of these requirements.

These challenges are to be addressed in addition to the progress to be made in development

efficiency and quality assurance. The previous workshops AvioSE’194 and AvioSE’205 dealt

with general challenges and development tools. They demonstrated that many participants

were in favour of generic aspects, but also wanted a deeper dive in carefully selected areas

with significant future potential.

To this end, future capabilities driven by AI is selected for AvioSE’21 as the main topic.

Starting with the collection of capabilities that can be enabled or improved with AI, it shall

be figured out afterwards which areas of development require attention. For the virtual

1 University of Stuttgart, Institute of Aircraft Systems (ILS), Germany, bjoern.annighoefer@ils.uni-stuttgart.de
2 Airbus Defence and Space GmbH, Manching, Germany, andreas.schweiger@airbus.com
3 Airbus Defence and Space GmbH, University of Chemnitz, Manching, Germany, marina.reich@airbus.com
4 Annighoefer et al., 1st Workshop on Avionics Systems and Software Engineering (AvioSE’19), 2019. Annighoefer

et al., Challenges and Ways Forward for Avionics Platforms and their Development in 2019, in IEEE/AIAA 38th

Digital Avionics Systems Conference (DASC), 2019.
5 Annighoefer et al., 2nd Workshop on Avionics Systems and Software Engineering (AvioSE’20)

cba doi:10.18420/SE2021_51

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 129

https://creativecommons.org/licenses/by-sa/4.0/
mailto:bjoern.annighoefer@ils.uni-stuttgart.de
mailto:andreas.schweiger@airbus.com
mailto:marina.reich@airbus.com
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_51


discussion it is envisaged to cover fields such as the certification of AI, need and possibilities

of Design Assurance Level segregation or performance assurance.

2 Workshop Objectives

The main objective of the workshop is to accelerate the transfer of knowledge between

academia and industry. This workshop provides the enabling platform for the stakeholders

to discuss technical, but also process, and educational topics.

The objectives of AvioSE’21 are three-fold: (1) It provides a forum for researchers from both

academia and industry to present new methods, tools, and technologies from avionics systems

and software engineering, e.g. model-based development, requirements engineering, formal

methods, model-based methods, and virtual methods. Those contributions are presented in

a scientific format, but the small character of the workshop allows detailed discussion. (2)

Future capabilities driven by AI are selected to be the main topic of AvioSE’21. This

is addressed interactively by inviting all participants to discuss aspects of AI. This covers

connecting academics and professionals with invited experts. The panel discussion with

invited experts from academia, industry, and authorities supports the identification of most

important aspects in this area and propose ways how to address them. The proposals are

at the same time challenged and/or amended by workshop participants. The results are

collected on virtual desktops and are available to all participants. (3) The AvioSE’21 also

allows for a wild card topic that might show up during the workshop.

Acknowledgements

Many people contributed to the success of this workshop. First of all, we want to give thanks

to the authors and presenters of the accepted papers and especially our keynote speakers,

Andreas Bierig from DLR Braunschweig and Rolf Büse from Diehl Aerospace. Second,

we want to express our gratitude to the SE 2021 organizers for supporting and hosting our

workshop. Additionally, we are glad that these people (listed in alphabetic order) served as

members in the program committee, soliciting papers, and writing peer reviews: Jun.-Prof.

Björn Annighöfer (University of Stuttgart), Prof. Dr.-Ing. Steffen Becker (University of

Stuttgart), Umut Durak (DLR Braunschweig), Prof. Dr. Ralf God (Hamburg University

of Technology), Dr. Christian Heinzemann (Robert Bosch GmbH), Prof. Dr. Eric Knauss

(University of Gothenburg), Dr. Winfried Lohmiller (Airbus Defence and Space GmbH), Dr.

Christian Meißner (Volkswagen AG), Prof. Dr. Alexander Pretschner (Munich University of

Technology), Dr. Stephan Rudolph (Northrop Grumman LITEF GmbH), Prof. Dr. Bernhard

Rumpe (RWTH Aachen University), Dr. Andreas Schweiger (Airbus Defence and Space

GmbH), Katja Stecklina (Philotech Systementwicklung und Software GmbH), Prof. Dr.

Sebastian Voss (Aachen University of Applied Sciences). Finally, sincere thanks are given

to the organization committee members’ management for welcoming and supporting the

workshop.

130 Björn Annighöfer, Andreas Schweiger, Marina Reich



8th Collaborative Workshop on Evolution and Maintenance

of Long-Living Software Systems (EMLS’21)

Robert Heinrich1, Reiner Jung2, Marco Konersmann3, Eric Schmieders4

Abstract: Dieser Beitrag gibt eine Einführung in die EMLS-Workshopreihe. Die EMLS-
Workshopreihe bietet ein Forum zur Diskussion und zum Wissensaustasch rund um die Evolution und
Wartung langlebiger Software-intensiver Systeme.

Keywords: Software-intensive Systeme; Langlebige Systeme; Evolution; Wartung

Die Digitalisierung stellt neue Herausforderungen an die Entwicklung und den Betrieb von

Software. Die Unterstützung oder sogar erst die Ermöglichung sozialer, politischer, wissen-

schaftlicher und ökonomischer Prozesse durch digitale Lösungen führt zu gesellschaftlichen

Transformationen und verčndert die Umgebung, die Nutzung und die Entwicklung von

Softwaresystemen. Systeme müssen den wandelnden Bedürfnissen folgen aber dennoch den

Qualitčtsansprüchen der Nutzer genügen. Dies hat weitreichende Auswirkungen auf die

Entwicklung der Systeme, insbesondere bei datenintensiven Systemen, dem Architektur-

Management von betrieblicher und administrativer Software und der Entwicklung der

Werkzeuge für die Entwicklung der Systeme. Konkrete Herausforderungen umfassen daher

unter anderem die Verzahnung der Entwicklungsschritte und der verschiedenen Ebenen

der Entwicklung (Anwendungsebene, Werkzeugebene), die Erklčrbarkeit von Software

und den zugrundeliegenden Entscheidungen, neue Analyseansčtze und -methoden für ein

besseres Systemverstčndnis, Konsistenz der Artefakte, sowie die Evolution von Plattformen

und Frameworks. Diese sind zentrale Herausforderungen für langlebige softwareintensive

Systeme.

Ziel der EMLS-Workshopreihe ist es, diese Herausforderungen gemeinsam aus Sicht

der Wissenschaft und der Industrie zu beleuchten und unterschiedliche Sichtweisen zur

Evolution und Wartung langlebiger Systeme zusammenzubringen.

Die EMLS-Workshopreihe bietet dazu ein Forum zur Diskussion von Problemstellungen,

Lösungsansčtzen und Evaluationsstrategien. Beitrčge werden in Kleingruppen intensiv

besprochen. So soll ein Austausch an Wissen unterstützt und eine Grundlage für Kooperatio-

nen geschaffen werden, welche die Bildung von zukünftigen gemeinschaftlichen Vorhaben

sowohl zwischen Forschung und Industrie, als auch zwischen Forschenden fördert.

1 Karlsruher Institut für Technologie (KIT) robert.heinrich@kit.edu
2 Christian-Albrechts-Universitčt zu Kiel reiner.jung@email.uni-kiel.de
3 Universitčt Koblenz Landau konersmann@uni-koblenz.de
4 IT.NRW eric.schmieders@it.nrw.de

cba doi:10.18420/SE2021_52

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 131

https://creativecommons.org/licenses/by-sa/4.0/
mailto:robert.heinrich@kit.edu
mailto:reiner.jung@email.uni-kiel.de 
mailto:konersmann@uni-koblenz.de
mailto:eric.schmieders@it.nrw.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_52




Workshop on Software Engineering in Cyber-Physical

Production Systems (SECPPS’21)

Rick Rabiser1, Birgit Vogel-Heuser2, Manuel Wimmer3, Alois Zoitl1

Abstract: This workshop focuses on Software Engineering in Cyber-Physical Production Systems. It
is an interactive workshop opened by keynotes and statements by participants, followed by extensive
discussions in break-out groups. The output of the workshop is a research roadmap as well as concrete
networking activities to further establish a community in this interdisciplinary field.

Keywords: Software engineering; cyber-physical production systems; workshop

1 Motivation

Software is playing an increasingly important role in assuring effective and efficient operation

of industrial automation engineering systems. However, software engineering methods

applied in this field lag behind the conventional software engineering methods, where

tremendous progress has been made in the last years.

Particularly, we are currently facing a dramatically increasing complexity in the development

and operation of systems with the emergence of Cyber-Physical Production Systems (CPPS).

This demands for more comprehensive and systematic views on all aspects of systems (e.g.,

mechanics, electronics, software, and network) not only in the engineering process, but

in the operation process as well. Moreover, flexible approaches are needed to adapt the

systems’ behavior to ever-changing requirements and tasks, unexpected conditions, as well

as structural transformations [Mo14].

The aim of this workshop is to discuss new approaches and methods for the design of

software for use in the production systems domain, which follows the latest trends from

the software engineering domain. Additionally, the workshop addresses the challenges

(see [Vo15] as well as http://www.dfg-spp1593.de/ and https://www.sfb.tum.de/768/)

in adopting state-of-the-art software engineering tools and techniques to the automation

domain and discusses various approaches to tackle the issues.

1 Christian Doppler Lab VaSiCS, LIT CPS Lab, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz,

Austria, rick.rabiser@jku.at
2 AIS, TU Munich, Boltzmannstr. 15, 85748 Garching bei München, Germany vogel-heuser@tum.de
3 Christian Doppler Lab MINT, SE, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria,

manuel.wimmer@jku.at

cba doi:10.18420/SE2021_53

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 133

https://creativecommons.org/licenses/by-sa/4.0/
http://www.dfg-spp1593.de/
https://www.sfb.tum.de/768/
mailto:rick.rabiser@jku.at
mailto:vogel-heuser@tum.de
mailto:manuel.wimmer@jku.at
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_53


2 Program, Format, and Topics

The workshop has an interactive format to stimulate group discussions which potentially

lead to further activities such as joint publications, projects, and networks.

To reach this goal, two keynote speakers, one from the SE community as well as one from

the CPPS community, enlighten the audience with concrete experiences and thoughts from

both fields in order to set the stage. These keynotes are followed by statements by invited

participants. From each statement, questions, challenges, and provocative statements are

collected to be potentially discussed in break-out groups.

The collected statements from the morning sessions are clustered and the participants can

vote for topics to be discussed in break-out groups. The results of the break-out groups are

presented (by the break-out group leaders) and discussed in the large audience to come up

with a collaborative research roadmap and networks to identify potential collaborations.

For discussions we foresee the following initial list of topicsȷ

• Engineering Process (Requirements, Design, Implementation, Testing, ...)

• Operation and Evolution (Data-driven, Continuous Integration, DevOps, Agile, ...)

• Languages (DSLs, GPLs, Standards, ...)

• Modeling (MDD, MDE, Transformations, Interoperability, Code Generation ...)

• Teaching (How to train SE in other Disciplines, Open Courseware, ...)

• Management (Variability, Modularization, Configuration, ... )

• Usability and SE Tools (Adoption, User Interactions, ...)

• Emerging technologies (Cloud, AI, IoT, ...)

• Intelligent organization (Multi-Agent Systems, Flexible Architectures, ..)

• Interdisciplinary collaboration (Interfaces, Conflict Management, Optimization, ...)

The workshop is concluded with setting up a collaborative space to document the results

and help with future activities of the workshop.

3 Website and Further Information

See https://rickrabiser.github.io/secpps-ws/ for more information.

Bibliography

[Mo14] Monostori, Lăszlóȷ Cyber-physical production systemsȷ Roots, expectations and R&D
challenges. Procedia CIRP, 17ȷ9–13, 2014.

[Vo15] Vogel-Heuser, Birgit; Fay, Alexander; Schaefer, Ina; Tichy, Matthiasȷ Evolution of software
in automated production systemsȷ Challenges and research directions. J. Syst. Softw.,
110ȷ54–84, 2015.

134 Rick Rabiser, Birgit Vogel-Heuser, Manuel Wimmer, Alois Zoitl

https://rickrabiser.github.io/secpps-ws/


Workshop on Software Engineering for E-Learning Systems

(SEELS’21)

Sven Strickroth1, Michael Striewe2

Abstract: The workshop “Software Engineering for E-Learning Systems” (SEELS) is interested in the
software engineering question related to the design of e-learning systems, the realization of networked
e-learning landscapes at schools and universities, and the operation and maintenance of such systems.
The goal is to identify and discuss current research questions in that area. This may include topics such
as technical interfaces of e-learning systems, security issues in heterogeneous e-learning landscapes,
or management of domain-specific requirements in universal e-learning systems.

Keywords: E-Learning; Software Engineering; System Design; Distributed E-Learning Systems

1 Background and Goals

The development of e-learning systems and the composition of networked e-learning

landscapes with a large number of heterogeneous systems must take into account a wide

variety of different requirements. In parts, e-learning systems resemble classical information

systems, including the associated questions of scalability, expandability, maintainability

and secure communication between the distributed components. In the course of ubiquitous

learning, however, they also require extensive expertise in mobile software engineering, place

high demands on data protection due to the processing of personal data, even during the basic

design of the systems, and in innovative scenarios they borrow from games engineering

and the design of virtual reality. Even during the development of individual systems,

these conditions require a careful approach, while the trend towards creating networked

e-learning landscapes within an educational institution or even across several institutions

further increases the complexity of development and operation. Recent experiences with

online teaching on a large scale have also revealed further weaknesses where issues in the

software-technical design of e-learning systems limit their effective and efficient use.

While national and international e-learning conferences focus on (media-)didactical, subject-

specific and socio-technical questions (including usability) and therefore pursue the question,

1 Ludwig-Maximilians-Universitčt München, Oettingenstraße 67, D-805«8 München, Germany, sven.strickroth@

ifi.lmu.de
2 Universitčt Duisburg-Essen, paluno - The Ruhr Institute for Software Technology, Gerlingstraße 16, »5127

Essen, Germany, michael.striewe@paluno.uni-due.de

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution ».0

International (CC BY ».0).

cba doi:10.18420/SE2021_54

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 135

https://creativecommons.org/licenses/by-sa/4.0/
mailto:sven.strickroth@ifi.lmu.de
mailto:sven.strickroth@ifi.lmu.de
mailto:michael.striewe@paluno.uni-due.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_54


how to build good e-learning systems, this workshop will focus explicitly on software-

technical questions and therefore pursue the question, how to build e-learning systems

well.

The goal of the workshop is to make the special features of the domain visible and at the

same time to sharpen the view for software-technical questions within the community as well

as to offer a forum for relevant discussions. Concrete working topics can be, for example,

the question of universal interfaces for establishing e-learning landscapes, (data) security

in heterogeneous e-learning landscapes (including BYOD scenarios), the management

of subject-specific requirements in university-wide e-learning landscapes, or the use of

microservice architectures. Current research questions in these or similar areas are to be

identified in the workshop in order to provide the community with links to general software

engineering topics.

2 Working Mode

The workshop is conducted as a half-day workshop that offers space for research contributions

as well as for reports from the successful practical development of e-learning systems. In

addition, the workshop calls for position papers, which can be presented at the workshop in

short impulse talks and should lead to the identification of research questions beyond the

current state-of-the-art.

3 Committee

Organizers

• Sven Strickroth (Ludwig-Maximilians-Universitčt München)

• Michael Striewe (Universitčt Duisburg-Essen)

Program Committee

• Matthias Ehlenz (RWTH Aachen)

• Jörg Haake (FernUniversitčt Hagen)

• Johan Jeuring (Utrecht University)

• Stephan Krusche (Technische Universitčt München)

• Herbert Kuchen (Universitčt Münster)

• René Röpke (RWTH Aachen)

• Steffen Zschaler (King’s College London)

136 Sven Strickroth, Michael Striewe


	Titelseite
	Vorwort
	Sponsoren
	Tagungsleitung
	Programmkomitee
	Organisationsteam
	Inhaltsverzeichnis
	Keynotes
	Schönheit und Unzulänglichkeit von Software-Architektur – Ralf S. Engelschall

	Wissenschaftliches Hauptprogramm
	Heaps'n Leaks: How Heap Snapshots Improve Android Taint Analysis – Manuel Benz , Erik K. Kristensen , Linghui Luo , Nataniel Borges Jr. , Eric Bodden , Andreas Zeller
	What Kind of Questions Do Developers Ask on Stack Overflow? A Comparison of Automated Approaches to Classify Posts Into Question Categories – Stefanie Beyer , Christian Macho , Massimiliano Di Penta and Martin Pinzger
	ModGuard: Identifying Integrity & Confidentiality Violations in Java Modules – Andreas Dann , Ben Hermann , Eric Bodden
	Validierung von CPS-Spezifikationen – Marian Daun , Jennifer Brings , Thorsten Weyer
	#ifdef Directives and Program Comprehension: The Dilemma between Correctness and Preference – Wolfram Fenske , Jacob Krüger , Maria Kanyshkova , Sandro Schulze
	Specmate: Automated Creation of Test Cases from Acceptance Criteria – Jannik Fischbach , Andreas Vogelsang , Dominik Spies , Andreas Wehrle , Maximilian Junker , Dietmar Freudenstein
	Automated Reuse of Test Cases for Highly Configurable Software Systems – Stefan Fischer , Gabriela Karoline Michelon , Rudolf Ramler , Lukas Linsbauer , Alexander Egyed
	Robotics Software Engineering: A Perspective from the Service Robotics Domain – Sergio Garc237a , Daniel Strüber , Davide Brugali , Thorsten Berger , Patrizio Pelliccione
	Component-Based Refinement and Verification of Information-Flow Security Policies for Cyber-Physical Microservice Architectures – Christopher Gerking , David Schubert
	Claimed Advantages and Disadvantages of (dedicated) Model Transformation Languages: A Systematic Literature Review – Stefan Götz , Matthias Tichy , Raffaela Groner
	Learning Circumstances of Software Failures – Rahul Gopinath , Nikolas Havrikov , Alexander Kampmann , Ezekiel Soremekun , Andreas Zeller
	Mining Input Grammars – Rahul Gopinath , Björn Mathis , Andreas Zeller
	An Exploratory Study on Performance Engineering in Model Transformations – Raffaela Groner , Luis Beaucamp , Matthias Tichy , Steffen Becker
	On the Cost and Profit of Software Defect Prediction – Steffen Herbold
	On the Feasibility of Automated Prediction of Bug and Non-Bug Issues – Steffen Herbold , Alexander Trautsch , Fabian Trautsch
	A Systematic Mapping Study of Developer Social Network Research – Steffen Herbold , Aynur Amirfallah , Fabian Trautsch , Jens Grabowski
	Cutting through the Jungle: Disambiguating Model-based Traceability Terminology – Jörg Holtmann , Jan-Philipp Steghöfer , Michael Rath , David Schmelter
	Detecting Quality Problems in Research Data; A Model-Driven Approach – Arno Kesper , Viola Wenz , Gabriele Taentzer
	Isolating Faults in Failure-Inducing Inputs – Lukas Kirschner , Ezekiel Soremekun , Andreas Zeller
	Determining Context Factors for Hybrid Development Methods with Trained Models – Jil Klünder , Dzejlana Karajic , Paolo Tell , Oliver Karras , Christian Münkel , Jürgen Münch , Stephen G. MacDonell , Regina Hebig , Marco Kuhrmann
	Skill-Based Verification of Cyber-Physical Systems – Alexander Knüppel , Inga Jatzkowski , Marcus Nolte , Tobias Runge , Thomas Thüm , Ina Schaefer
	An Empirical Analysis of the Costs of Clone- and Platform-Oriented Software Reuse – Jacob Krüger , Thorsten Berger
	What Developers (Care to) Recall: An Interview Survey on Smaller System – Jacob Krüger , Regina Hebig
	Behavioral Interfaces for Executable DSLs – Dorian Leroy , Erwan Bousse , Manuel Wimmer , Tanja Mayerhofer , Benoit Combemale , Wieland Schwinger
	Feature-Modell-geführtes Online Reinforcement Learning – Andreas Metzger , Clément Quinton , Zoltán Mann , Luciano Baresi , Klaus Pohl
	Security Analysis with Jaint – Malte Mues , Till Schallau , Falk Howar
	Accurate Modeling of Performance Histories for Evolving Software Systems – Stefan Mühlbauer , Sven Apel , Norbert Siegmund
	MoFuzz: Fuzzing for MDSE Tools – Hoang Lam Nguyen , Nebras Nassar , Timo Kehrer , Lars Grunske
	Cooperative Android App Analysis with CoDiDroid – Felix Pauck , Heike Wehrheim
	Generating Tests that Cover Input Structure – Nataniel Pereira Borges Jr. , Nikolas Havrikov , Andreas Zeller
	Testing Procedures Based on Requirements Annotations – Florian Pudlitz , Florian Brokhausen , Andreas Vogelsang
	A Domain Analysis of Resource and Requirements Monitoring – Rick Rabiser , Klaus Schmid , Holger Eichelberger , Michael Vierhauser , Paul Grünbacher
	Tool Support for Correctness-by-Construction – Tobias Runge , Ina Schaefer , Loek Cleophas , Thomas Thüm , Derrick Kourie , Bruce W. Watson
	Trace Link Recovery Using Semantic Relation Graphs and Spreading Activation – Aaron Schlutter , Andreas Vogelsang
	Probabilistic Grammar-based Test Generation – Ezekiel Soremekun , Esteban Pavese , Nikolas Havrikov , Lars Grunske , Andreas Zeller
	Learning to Generate Fault-revealing Test Cases in Metamorphic Testing – Helge Spieker , Arnaud Gotlieb
	Automated Implementation of Windows-related Security-Configuration Guides – Patrick Stöckle , Bernd Grobauer , Alexander Pretschner
	Variability Representations in Class Models: An Empirical Assessment – Daniel Strüber , Anthony Anjorin , Thorsten Berger
	Using Key Performance Indicators to Compare Software-Development Processes – Cem Sürücü , Bianying Song , Jacob Krüger , Gunter Saake , Thomas Leich
	Static Analysis Warning Evolution and the Effects of PMD – Alexander Trautsch , Steffen Herbold , Jens Grabowski
	Are Unit and Integration Test Definitions Still Valid for Modern Java Projects? An Empirical Study on Open-Source Projects – Fabian Trautsch , Steffen Herboldh , Jens Grabowski
	Automated Large-scale Multi-language Dynamic Program Analysis in the Wild – Alex Villazón , Haiyang Sun , Andrea Rosà , Eduardo Rosales , Daniele Bonetta , Isabella Defilippis , Sergio Oporto , Walter Binder
	Views on Quality Requirements in Academia and Practice: Commonalities, Differences, and Context-Dependent Grey Areas – Andreas Vogelsang , Jonas Eckhardt , Daniel Mendez , Moritz Berger
	Status Quo in Requirements Engineering – Stefan Wagner , Daniel Méndez Fernández , Michael Felderer , Antonio Vetrò , Marcos Kalinowski , Roel Wieringa , Dietmar Pfahl et al.
	Programming in Natural Language with fuSE – Sebastian Weigelt , Vanessa Steurer , Tobias Hey , Walter F. Tichy
	Data-driven Risk Management for Requirements Engineering: An Automated Approach based on Bayesian Networks – Florian Wiesweg , Andreas Vogelsang , Daniel Mendez
	Explaining Pair Programming Session Dynamics from Knowledge Gaps – Franz Zieris , Lutz Prechelt

	Workshops
	2nd Workshop on Requirement Management in Enterprise Systems Projects (AESP'21) – Christoph Weiss , Johannes Keckeis
	18th Workshop on Automotive Software Engineering (ASE'21) – Patrick Ebel , Steffen Helke , Ina Schaefer , Andreas Vogelsang
	3rd Workshop on Avionics Systems and Software Engineering (AvioSE'21) – Björn Annighöfer , Andreas Schweiger , Marina Reich
	8th Collaborative Workshop on Evolution and Maintenance of Long-Living Software Systems (EMLS'21) – Robert Heinrich , Reiner Jung , Marco Konersmann , Eric Schmieders
	Workshop on Software Engineering in Cyber-Physical Production Systems (SECPPS'21) – Rick Rabiser , Birgit Vogel-Heuser , Manuel Wimmer , Alois Zoitl
	Workshop on Software Engineering for E-Learning Systems (SEELS'21) – Sven Strickroth, Michael Striewe



