
Dissertation

submitted

to the

Combined Faculty for the Natural Sciences and for Mathematics

of

Heidelberg University, Germany

for the Degree of

Doctor of Natural Sciences

Put forward by

Mohammadreza Ghanavati (M.Sc.)

from Ramhormoz (Iran)

Oral examination:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/224819957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Automated Fault Localization

in Large Java Applications

Advisor: Prof. Dr. Artur Andrzejak

Abstract

Modern software systems evolve steadily. Software developers change the software

codebase every day to add new features, to improve the performance, or to fix bugs.

Despite extensive testing and code inspection processes before releasing a new

software version, the chance of introducing new bugs is still high. A code that

worked yesterday may not work today, or it can show a degraded performance

causing software regression. The laws of software evolution state that the

complexity increases as software evolves. Such increasing complexity makes software

maintenance harder and more costly. In a typical software organization, the cost of

debugging, testing, and verification can easily range from 50% to 75% of the total

development costs.

Given that human resources are the main cost factor in the software maintenance

and the software codebase evolves continuously, this dissertation tries to answer the

following question: How can we help developers to localize the software defects more

effectively during software development? We answer this question in three aspects.

First, we propose an approach to localize failure-inducing changes for crashing

bugs. Assume the source code of a buggy version, a failing test, the stack trace of the

crashing site, and a previous correct version of the application. We leverage program

analysis to contrast the behavior of the two software versions under the failing test.

The difference set is the code statements which contribute to the failure site with a

high probability.

Second, we extend the version comparison technique to detect the leak-inducing

defects caused by software changes. Assume two versions of a software codebase (one

previous non-leaky and the current leaky version) and the existing test suite of the

application. First, we compare the memory footprint of the code locations between

two versions. Then, we use a confidence score to rank the suspicious code statements,

i.e., those statements which can be the potential root causes of memory leaks. The

higher the score, the more likely the code statement is a potential leak.

Third, our observation on the related work about debugging and fault localization

reveals that there is no empirical study which characterizes the properties of the leak-

inducing defects and their repairs. Understanding the characteristics of the real defects

caused by resource and memory leaks can help both researchers and practitioners to

v

improve the current techniques for leak detection and repair. To fill this gap, we

conduct an empirical study on 491 reported resource and memory leak defects from

15 large Java applications. We use our findings to draw implications for leak avoidance,

detection, localization, and repair.

vi

Zussamenfassung

Moderne Softwaresysteme entwickeln sich ständig weiter. Softwareentwickler ändern

jeden Tag die Codebasis der Software, um neue Funktionen hinzuzufügen, die

Leistung zu verbessern oder Fehler zu beheben. Trotz umfangreicher Test- und

Code-Inspektionsprozesse vor der Veröffentlichung einer neuen Softwareversion ist

die Chance, neue Fehler einzuführen, immer noch hoch. Ein Code, der gestern

funktioniert hat, funktioniert heute möglicherweise nicht, oder er kann eine

verminderte Leistung aufweisen, die eine Software-Regression verursacht. Die

Gesetze der Softwareentwicklung besagen, dass die Komplexität mit der

Entwicklung der Software zunimmt. Diese zunehmende Komplexität macht die

Softwarepflege schwieriger und kostspieliger. In einem typischen

Softwareunternehmen können die Kosten für Debugging, Test und Verifikation leicht

zwischen 50% und 75% des gesamten Entwicklungskosten betragen.

Da die Personalressourcen der Hauptkostenfaktor in der Softwarepflege sind und

sich die Software-Codebasis kontinuierlich weiterentwickelt, versucht diese Arbeit,

die folgende Frage zu beantworten: Wie können wir Entwicklern helfen, die Fehler

während der Softwareentwicklung effektiver zu lokalisieren? Wir beantworten diese

Frage in drei Aspekten.

Zuerst schlagen wir einen Ansatz zur Lokalisierung von fehlerinduzierenden

Änderungen für abstürzende Fehler vor. Nehmen wir den Quellcode einer

fehlerhaften Version, einen fehlerhaften Test, den Stack-Trace der abstürzenden

Seite und eine vorherige korrekte Version der Anwendung an. Wir nutzen die

Programmanalyse, um das Verhalten der beiden Softwareversionen unter dem

Misserfolgstest gegenüberzustellen. Der Differenzsatz sind die Codeanweisungen, die

mit hoher Wahrscheinlichkeit zur Fehlerstelle beitragen.

Zweitens erweitern wir die Methode des Versionsvergleichs, um die

leckinduzierenden Fehler zu erkennen, die durch Softwareänderungen verursacht

werden. Annehmend zwei Versionen einer Software-Codebasis (eine vorhergehende

leckfreie und die aktuelle leckbehaftete Version) und die bestehende Testsuite der

Anwendung. Zuerst vergleichen wir den Speicherbedarf der Codepositionen

zwischen zwei Versionen. Dann verwenden wir einen Vertrauensscore, um die

verdächtigen Code-Anweisungen zu bewerten, d. h. diejenigen Anweisungen, die die

potenziellen Grundursachen für Speicherlecks sein können. Je höher der Wert, desto

wahrscheinlicher ist es, dass die Code-Anweisung ein potenzielles Leck ist.

Drittens zeigt unsere Beobachtung der damit verbundenen Arbeiten zum

Debugging und zur Fehlerlokalisierung, dass es keine empirische Studie gibt, die die

Eigenschaften der leckinduzierenden Defekte und ihrer Reparaturen

charakterisiert. Das Verständnis der Eigenschaften der realen Defekte, die durch

Ressourcen- und Speicherlecks verursacht werden, kann sowohl Forschern als auch

Praktikern helfen, die aktuellen Techniken zur Leckerkennung und -behebung zu

verbessern. Um diese Lücke zu schließen, führen wir eine empirische Studie über 491

gemeldete Ressourcen- und Speicherleckfehler aus 15 großen Java-Anwendungen

durch. Wir nutzen unsere Ergebnisse, um Implikationen für die Vermeidung,

Erkennung, Lokalisierung und Reparatur von Lecks zu ermitteln.

viii

Acknowledgements

First and foremost, I would like to thank my advisor, Prof. Dr. Artur Andrzejak, for

his great support and guidance during my Ph.D. study. I learned from him everything

I know of research in the field of software debugging. He has taught me how to think

about research problems and helped me make significant progress in skills that are

essential for a researcher. He has always been supportive of any enterprise I have

undertaken. His influence is present on every page of this thesis. I wish that I can

use the skills I learned from him in my future research career.

I would like to thank Prof. Dr. Ulrich Brüning, Prof. Dr. Holger Fröning, and

Dr. Christoph Garbe for agreeing to serve in my doctoral committee.

I would like to thank Prof. Dr. David Lo from Singapore Management University

for our collaborative work on the empirical study of resource and memory leaks that

appears in this dissertation. It was always my pleasure to work with David who was

willing to contribute generously.

I gratefully acknowledge the support that I received from the Faculty of

Mathematics and Computer Science at Heidelberg University and from the members

of the Parallel and Distributed Systems group. I thank my dear friends and lab

mates, Zhen Dong, Lutz Büch, Diego Costa, and Thomas Bach for the many

inspiring discussions on various research topics. I would like to especially thank

Diego for our collaborative work on the empirical study of resource and memory

leaks which appears in this dissertation.

I deeply thank Heidelberg Graduate School of Mathematical and Computational

Methods for the Sciences (HGS MathComp) for providing me the financial support

for traveling to Software Engineering conferences during my study.

I am also grateful to Anke Sopka for her support in the administrative work.

Finally, I would like to thank my family: my parents, my wife Nasrin, our two

sons, Amir and Amin, and my parents-in-law. They were sources of love in my life. I

like to especially thank my dear wife Nasrin, who was a great supporter of me during

every day of my study. She was taking care of everything in our daily life, providing a

relaxed environment for me to focus on my study. I also like to thank my dear parents

for their excellent support during my life and my education. Without them, I could

not reach this point. I honorably dedicate my thesis to my parents and my wife.

x

To my parents and my wife.

Contents

Abstract . v

Zussamenfassung . vii

Acknowledgements . ix

List of Tables . xvii

List of Figures . xxi

1 Introduction 1

1.1 Scalable Isolation of Failure-Inducing Changes 2

1.2 Automated Memory Leak Diagnosis via Version Comparison 3

1.3 Empirical Study on Resource and Memory Leaks 5

1.4 Contributions . 6

1.5 Papers Appeared . 7

1.6 Overview and Organization . 8

2 Background and Related Work 10

2.1 Fault Localization of Functional Bugs 10

2.1.1 Program Analysis . 11

2.1.2 Fault Localization Techniques 14

2.2 Resource and Memory Leak Detection in Java 18

2.2.1 Memory Management in Java 18

2.2.2 Resource and Memory Leaks 22

2.2.3 Debugging Leak-Inducing Defects 22

3 Scalable Isolation of Failure-Inducing Changes 27

3.1 Introduction . 27

3.1.1 Core Idea . 28

xiii

Contents

3.1.2 Contribution . 29

3.2 Version Comparison Approach . 30

3.2.1 Approach Overview . 31

3.2.2 Discussion . 32

3.3 Experimental Design . 33

3.4 Experimental Evaluation . 34

3.4.1 Case Studies . 35

3.4.2 Complexity of the Approach 40

3.4.3 Performance Evaluation . 41

3.5 Chapter Summary . 42

4 Automated Memory Leak Diagnosis via Version Comparison 43

4.1 Introduction . 44

4.1.1 Core Idea . 46

4.1.2 Contributions . 46

4.2 Leak Detection via Version Comparison 47

4.2.1 Approach Description . 48

4.2.2 Instrumentation and Data Collection 48

4.2.3 Types of Allocation Sites . 49

4.2.4 Leak Confidence Score . 52

4.2.5 Ranking . 54

4.2.6 Discussion . 54

4.3 Experimental Design . 55

4.3.1 Methodology . 55

4.3.2 Research Questions . 59

4.4 Experimental Evaluation . 60

4.4.1 Experiment I: Evaluation of Synthetic Defects 60

4.4.2 Answer to RQ2: Evaluation of Real-World Issues 62

4.4.3 Answer to RQ3: Analysis of Factors Contributing to LC . . . 70

4.4.4 Answer to RQ4: Evaluation of Runtime and Memory Efficiency 71

4.5 Discussion . 72

xiv

Contents

4.5.1 What is the Distribution of the Leak Confidence Value for

Various Software Projects? 72

4.5.2 Does Our Approach Help Developers to Detect Memory Leaks? 73

4.5.3 Can Our Approach Find the Root Cause of the Memory Leaks? 74

4.6 Threats to Validity . 75

4.7 Chapter Summary . 75

5 An Empirical Study on Leak-inducing Defects and Their Repairs 77

5.1 Introduction . 77

5.2 Background . 81

5.2.1 Issue Report . 81

5.3 Empirical Study Design . 82

5.3.1 Studied Projects . 82

5.3.2 Research Questions . 85

5.3.3 Data Extraction . 86

5.3.4 Tagging Leak-Related Defects 88

5.3.5 Uniqueness of Categories . 89

5.4 Empirical Study Results . 90

5.4.1 RQ1: What Is Distribution of Leak Types in Studied Projects? 90

5.4.2 RQ2: How Are Leak-Related Defects Detected? 92

5.4.3 RQ3: To What Extent Are the Leak-Inducing Defects Localized? 97

5.4.4 RQ4: What Are the Most Common Root Causes? 100

5.4.5 RQ5: What Are the Characteristics of the Repair Patches? . . 103

5.4.6 RQ6: How Complex Are Repairs of the Leak-Inducing Defects? 111

5.4.7 Other Findings . 115

5.5 Implications . 119

5.6 Threats to Validity . 121

5.7 Chapter Summary . 122

6 Conclusion and Outlook 123

6.1 Conclusion . 123

6.2 Outlook . 125

xv

Contents

Bibliography 127

xvi

List of Tables

3.1 Overview of the test cases used in this work 34

3.2 Code size (#LOC or #JVM-bytecode statements) in different phases

of our approach; Dif = difference set (in #LOC), BSlice = backward

slice, IS = intersection set, Cov= coverage profile, Report = final

report (in #LOC) . 40

3.3 Overheads of our approach compared to full instrumentation (Full

instr.) and instrumenting only the code in BSlice (BSlice instr.); in

“X/Y ”, X is the run-time slowdown (a factor) and Y size overhead of

instrumenting (a factor); p = passing version, f = failing version, “-”

= instrumentation not possible. 41

3.4 Running times of a failing test and times for various phases of our

approach (times in seconds); Total / Test is the ratio of total approach

time to test time . 42

4.1 Subject programs. Column “# Unit Tests” shows the number of unit

tests used in the evaluation. 56

4.2 Hadoop source code versions used in the evaluation of synthetic leaks.

Column “Development Revision” shows the used revisions. Column

“Changed Files” shows the differences between V0 and V1 in terms of

files, where “m” and “a” indicate the number of modified and added

files, respectively. Column “#Changed Lines” states the total number

of changed lines between both versions. 57

xvii

List of Tables

4.3 Evaluation results of synthetic memory leaks. Column “Leak ID”

indicates each synthetic leak. Section (a) reports the LC value for the

leaky AAS(Column “LC”) and also the difference between the LC

values of the first two entries of the ranked list (Column “LC diff”).

Section (b) shows the result of leak isolation: Column “rank” reports

the rank of leaky AAS in the ranked list and Column “#Candidates”

shows the number of allocation sites with LC > 0. 61

4.4 Information related to the real memory leaks. Column “#Trig.

UT(#Total UT)” shows the number of unit tests which trigger the

leak pattern. The number in parenthesis indicates the total number

of unit tests for that project. 63

4.5 Results of leak confidence analysis and leak isolation for real cases.

Section (a) shows the result of the leak isolation: rank of the leak-

inducing allocation site and the size of the ranked list of suspects with

LC > 0. Section (b) reports as LC the leak confidence score for the

leak-inducing allocation site and as LCmax the largest leak confidence

value among all sites in the ranked list. 64

4.6 The contribution of each factor in leak confidence analysis of real cases.

Section (a) shows the value of each factor for the leaky allocation site of

each of the cases. Section (b) reports the rank of each leaky allocation

site in the ranked list using each factor. 70

5.1 Overview of studied projects. Column “Since” lists the year of the

first commit and column “#Committers” presents the number of

committers in each projects based on Apache Committee

Information. The kLOC of each project shows the number of Java

code lines retrieved by OpenHub. 84

5.2 Studied projects with statistics on number of issues (explained in

Section 5.3.3). Columns “#MLeak”, “#RLeak”, and “Total” show the

numbers of memory and resource leak issues per application, and

their totals, respectively. 88

5.3 Cohen’s kappa measurement. 89

xviii

List of Tables

5.4 Distribution of detection methods for memory and resource leaks. . . 95

5.5 Taxonomy of root causes. Column “#Issues” states the total number

of issues per root cause. 102

5.6 Taxonomy of repair actions. Column “#Issues” states the total number

of issues per repair action. 105

5.7 Recurring code transformations and examples of code before and after

the transformations. 109

5.8 The evaluation of Infer static analyzer on a sample of resource leaks

from our dataset. Column “Det?” reports whether Infer could detect

the defect reported in the respective issue. “Code-based detection”

refers to source code-based detection. “Defect” type and “Repair” type

are explained in Section 5.4.4 and Section 5.4.5, respectively. 116

5.9 Comparison of common code transformations found in our study with

previous work. 27Repairs refers to [97]. 118

xix

List of Figures

2.1 The running example for dependence analysis. It prints the factorial 10. 11

2.2 The CFG of the running example. 12

2.3 The PDG of the running example. The solid lines and dashed lines

show the control-dependence and the data-dependence, respectively. . 13

2.4 Heap space memory in Java 7. 20

2.5 Garbage collection process. 21

3.1 The workflow. 30

3.2 Stack trace of the bug reported in Issue HDFS-3856. 33

3.3 Excerpt of code changes for issue Hadoop-8689 (simplified). 36

4.1 Overview of our approach. 47

4.2 Matching algorithm for drift computation of two software versions. . . 51

4.3 Pseudo code of the Artificial Allocation Site (AAS) used as a leak-

triggering defect. 58

4.4 The leak-inducing changes in the Snappy-Java. 68

4.5 Runtime and RSS overhead of subject programs. Overhead of 1 (y-

axis) means that the instrumented version has twice the runtime or

RSS of the non-instrumented version. 72

4.6 Distribution of leak confidence score LC for the allocation sites

reported in the ranked list for real leaks. 73

5.1 An issue report from JIRA. 82

5.2 Overview of the empirical study design. 83

5.3 Frequency of the leak types per project. 91

xxi

List of Figures

5.4 Frequency of the detection types per leak type. 94

5.5 Heatmap of the number of modified Java source code files per project. 98

5.6 Heatmap of defect types and leak types. 103

5.7 Heatmap of relationship between root causes and repair actions. . . . 108

5.8 Heatmap of recurring code transformations and single repair actions. 110

5.9 Distribution of code churn per repair action. 112

5.10 Distribution of number of added and removed lines over the studied

projects. 113

5.11 Distribution of change complexity over the repair patches. 114

5.12 Distribution of time to resolve per repair action. 115

5.13 TTR comparison of leak-related and other bugs in studied projects. . 117

xxii

Chapter 1

Introduction

Today’s software systems become more extensive and more complicated because of

growth in size and functionality. Lehman states in his laws of software evolution [67]

that the software complexity increases as it evolves. Such increasing complexity

confronts software maintenance (i.e., debugging, testing, and verification) with more

challenges. Fixing a bug or adding a new feature can introduce new bugs [135].

Debugging becomes harder and more expensive in cases of non-functional defects, i.e.,

those defects which do not violate the semantics of the functions such as memory leaks

or performance bugs. These bugs often skip the functional testing phase and only

become visible in the production environment. Hence, they can impose a significant

economic impact. For example, a memory leak in Amazon’s EC2 cloud service caused

a partial outage in October 2012, affecting operations of hundreds of EC2 customers1.

In a typical software organization, the cost of debugging, testing, and verification can

easily range from 50% to 75% of the total development cost [31, 47].

How can we help developers to localize the software defects more effectively during

software development? The statement of this dissertation is to answer this question

analytically and empirically in three aspects: 1) Scalable isolation of failure-inducing

changes; 2) Automated memory leak diagnosis via version comparison; 3) Empirical

study on resource and memory leaks. In the following, we describe these aspects in

more detail.

1https://aws.amazon.com/de/message/680342

1

1. Introduction

1.1 Scalable Isolation of Failure-Inducing Changes

Automated debugging techniques attempt to find the causes of a program failure

without or with minimal human interactions. Many previous works proposed different

approaches to solving this problem [125]. Most of them report a ranking list of the

suspicious code locations to the programmer. By examining them, the programmer

is likely to identify the root cause of the defect.

Despite indisputable advances [11, 27, 35, 58, 69, 102], automated debugging is

still facing significant challenges preventing its widespread adoption in practice [98].

Two reasons contribute to this situation. First, only pointing to the suspicious

statements does not help developers to understand the root cause of the defects. In

most of the cases, the root causes of the failure are in different code locations than

the failure site (even in different files). Lack of precision is the other weakness of the

automated debugging techniques. Even reporting only 1% of the code locations as

the search space for the root causes of the defects is not precise enough in case of

large applications. Such a level of specificity means that on a project with 100k lines

of code (LOC), a developer still needs to examine 1000 lines to find the cause of the

defect. That is beyond the average acceptance level of programmers. Most users

only inspect the first page of the debugging reports [98], reducing the efficiency of

such techniques for large-scale projects.

In this dissertation, we attempt to approach the latter problem. Our observation

of the current software development reveals that modern software evolves through

a series of minor changes resulting in many intermediate versions between the two

major releases of software. Developers test each minor version thoroughly using the

application’s test suite and perform code review processes before releasing a new

version. This is a typical approach in modern software development, for example in

the setup of continuous integration and deployment [141].

We revisit the version comparison technique to localize newly introduced defects

in the latest development version of the software. Version comparison contrasts the

behavior of two software versions under the execution of an existing test suite. We

leverage static and dynamic analysis and compare the sets of statements executed

in the latest (faulty) version against those executed in a previous (correct) version.

2

1.2. Automated Memory Leak Diagnosis via Version Comparison

Here, we assume that at least one test case fails using the new (faulty) version, while

the same test case passes using the previous version.

1.2 Automated Memory Leak Diagnosis via Version

Comparison

In memory-managed languages such as Java, C#, or Python, a component called

garbage collector (GC) is responsible for memory management. Garbage collector

allocates memory, finds the unused objects, and frees the heap memory. To find the

unused objects, GC approximates the object liveness by its reachability. It means

that the objects which are unused but still reachable from the root objects can skip

this process. In such cases, memory leaks might occur. A common case is forgotten

references from the collections [131]. For example, objects encapsulating requests to a

web server are often referenced from a collection (e.g., list or map) which implements

a processing queue. If the reference is not removed from the queue after the request

is processed, the garbage collector cannot dispose of the associated object resulting

in a memory leak.

Leaks are notoriously hard to detect, reproduce, and fix. First, there is a long

latency between triggering a leak and the manifestation of visible symptoms such as

memory bloat or performance degradation [49]. Second, the leaks are sensitivity to

inputs and execution environments [16]. Therefore, many of such defects escape in-

house quality assurance measures including unit, integration, and even performance

testing. If these bugs occur in a production environment, they can impose a significant

economic impact.

Leak diagnosis is an essential problem for both researchers and practitioners. An

empirical study [75] on the publications of the top-tier Software Engineering

conferences reveals that the detection and root cause analysis of memory leaks is

among the top 10 highly rated research ideas. Several tools [38, 49, 86] and research

techniques are developed and designed to help developers to detect and isolate

resource and memory leaks. Most of these approaches follow a “symptom to root

cause” method [130]. One strategy is to apply staleness (time since the last use of

3

1. Introduction

an object) analysis to identify “dead” objects - those objects which can not be

accessed for a long time [16, 50, 60, 93, 132]. Another group of work is based on

analyzing heap growth [23, 59, 111, 112]. The other direction is analysis of the

captured state [28, 86, 88, 129]. Most of these works assume that a leak has been

already observed and the test code triggering the leak is also available. These

approaches help developers with isolating the root causes of the leaks at the cost of

a proprietary execution environment (e.g., a modified JVM [16]) or significant

execution slowdown (e.g., 300-400% slowdown [132]). Recent approaches for

C/C++ focus on performance efficiency and promise slowdown of ≤ 3% [60].

However, none of these works address that new software projects: 1) evolve as a

series of relatively small code changes, and 2) often provide an extensive test suite.

In this work we exploit (1) for an anomaly detection-based approach for leak

diagnosis, and (2) for triggering memory leaks during in-house testing. Our

approach supports the automated diagnosis of memory leaks during software

development and helps to isolate the root cause if a leak is already detected. It

requires only minimal modification on the software testing framework with no

changes in the source code of tests and software. This property makes our approach

applicable to the existing projects. Since our method is an anomaly detection

technique, it is unnecessary to execute the tests until significant memory bloat

occurs (such memory bloat is a prerequisite for most existing techniques for leak

detection). Therefore, the diagnosis time remains proportional to the time for

executing the project’s test code.

Inspired by the delta debugging technique [138] for the isolation of “crashing”

errors, we use software version comparison to uncover memory-related anomalies of

the current (latest) software version. In this way, we can extract additional

information which is not available when investigating each software version by itself.

We use the heap growth as a symptom for leak detection. Assume two versions of a

software codebase (one previous non-leaky and the current leaky version) and the

existing test suite of the application. For each software version, we collect the

memory usage of the code statements exercised during the execution of the

application’s test suite. Afterward, we compare the memory profiles of the two

4

1.3. Empirical Study on Resource and Memory Leaks

versions. Finally, we assign a suspiciousness score to each exercised code statement.

The higher the score, the more likely the code statement be the root cause of a leak.

1.3 Empirical Study on Resource and Memory Leaks

Many academic studies, language features, and tool supports propose techniques for

detecting and localizing of leak-inducing defects. However, the impact of these efforts

depends on whether they target common or rare issue types, whether they can handle

complicated cases, and whether their assumptions are realistic enough to apply in

practice. Programming language enhancement (e.g., try-with-resources) or tools

(e.g., FindBugs, Infer) help us only to find the resource leaks. Many of the academic

works are motivated by anecdotal evidence or by empirical data collected only from

small sets of defects. For example, Xu and Rountev [131] propose a method for

detecting memory leaks caused by obsolete references from within object containers

but provide only limited evidence that this is a frequent cause of leak-related bugs

in real-world applications. As another example, Leakbot [88] introduces multiple

sophisticated object filtering methods based on observations derived from only five

large Java commercial applications.

A systematic empirical study of a large sample of leak-related defects from

real-world applications can help both researchers and practitioners to have a better

understanding of the current challenges on leak diagnosis. We believe such a study

can be beneficial in the following directions: 1) A representative study can

characterize the current approaches for leak diagnosis used in practice; 2) It helps

programmers to avoid mistakes made by the other programmers and shows some of

the best practices for leak diagnosis; 3) It can act as a verification for the

assumptions used in previous work.

To the best of our knowledge, the research body of empirical studies on resource

and memory leak-related defects is relatively thin in comparison with the vast body

of studies about other bug types (e.g., semantic or performance bugs). The existing

studies [78, 115] provide only a little information about the characteristics of detection

types, root causes, and repair actions of leak defects. To fill this gap, we conduct a

5

1. Introduction

detailed empirical study on 491 real-world memory, and resource leak defects gathered

from 15 large, open-source Java applications.

We manually study the collected issues and their properties: leak types, detection

types, common root causes, repair actions, and complexity of fix patches. Based on

our findings, we draw several implications on how to improve avoidance, detection,

localization, and repair of leak defects.

1.4 Contributions

This dissertation makes the following contributions:

• We propose and implement an approach for isolation of failure-inducing changes

with leveraging static and dynamic analysis (Chapter 3). Our approach requires

a failing test, a previous correct and current buggy version of the software, and

a failing test. Given these requirements, first, we collect all code locations

which affect the failure using backward slicing. Then, we intersect this subset

of code with the code changes between two software versions to show which

code locations should be instrumented. After instrumenting the intersection,

we execute the failing test with both correct and buggy versions to get the

coverage profile for each software version. Finally, we compare the coverage

profiles to identify the statements which are likely to be the root cause of the

defect.

• We propose an approach for memory leak detection based on version

comparison (Chapter 4). Similar to our approach in Chapter 3, we use the

changes between two consecutive versions to isolate the root causes of memory

leaks. In contrast to the approach for crashing bugs (Chapter 3), we use all

existing tests from the applications’ test suite for leak detection. We propose a

confidence measure which assigns a suspiciousness score to the code locations

which allocate memory. The higher the confidence score, the more likely that

the code location is a potential root cause of a memory leak. Contrary to

previous approaches on memory leak detection, our approach can be used

6

1.5. Papers Appeared

during the development phase and before visible memory bloat occurs, in a

time proportional to the execution of a test.

• We conduct an empirical study on 491 leak-related bugs from 15 mature, large

Java applications to understand the characteristics of memory and resource

leaks reported in bug trackers. To the best of our knowledge, this is the first

work which studies the leak-related bugs from real-world

applications comprehensively while using a large set of issues from diverse

open-source applications. We propose taxonomies for the leak types, for the

detection methods, for the root causes, and the repair actions (Chapter 5). We

draw a set of implications which can help both practitioners and researchers to

improve existing techniques for leak avoidance, detection, and diagnosis.

1.5 Papers Appeared

The content of this dissertation has appeared partially in the following papers

published (or submitted) in peer-reviewed conferences and journals:

• M. Ghanavati, D. Costa, J. Seboek, D. Lo, and A. Andrzejak. Memory and

Resource Leak Defects and their Repairs in Java Projects. Accepted to be

published in Springer Journal of Empirical Software Engineering, DOI:

10.1007/s10664-019-09731-8 (preprint: http://arxiv.org/abs/1810.00101).

• M. Ghanavati, D. Costa, J. Seboek, D. Lo, and A. Andrzejak. Memory and

Resource Leak Defects in Java Projects: An Empirical Study. In the Companion

Proceedings of ACM/IEEE International Conference on Software Engineering

(ICSE) 2018.

• M. Ghanavati and A. Andrzejak. Automated Memory Leak Diagnosis by

Regression Testing. In the Proceedings of Source Code Analysis and

Manipulation (SCAM) 2015.

• M. Ghanavati, A. Andrzejak, and Z. Dong. Scalable Isolation of

Failure-Inducing Changes via Version Comparison. In the Proceedings of

7

1. Introduction

International Workshop on Program Debugging at IEEE ISSRE 2013 (Best

Paper Award).

The following papers are also in the line of this dissertation (not included in the

dissertation):

• A. Andrzejak, F. Eichler, and M. Ghanavati. Detection of Memory Leaks in

C/C++ Code via Machine Learning. In the Proceedings of Workshop on

Software Aging and Rejuvenation (WoSAR) at ISSRE 2017.

• Z. Dong, M. Ghanavati, and A. Andrzejak. Automated Diagnosis of Software

Misconfigurations Based on Static Analysis. In the Proceedings of International

Workshop on Program Debugging (IWPD) at IEEE ISSRE 2013.

1.6 Overview and Organization

This dissertation is principally positioned in the domain of software testing,

debugging, and evolution.

In Chapter 2, we introduce terminologies, background, and related work. In

Section 2.1, we explain program analysis and survey the fault localization

techniques for crashing bugs. Section 2.2 describes resource and memory

management in Java, resource and memory leaks and the detection techniques.

In Chapter 3, we introduce a new technique to isolate the failure-inducing changes

for functional bugs. Given two versions of a codebase, a test (which passes with the

previous version and fails with the newer version), and a stack trace of the failure, we

leverage both static and dynamic analyses to localize the faulty code. We evaluate

our technique on four real cases. In three cases, our technique can precisely pinpoint

the faulty change or at least the method containing the faulty change.

In Chapter 4, we present a new technique to diagnose memory leaks in the presence

of software regression. Given two versions of a codebase and a test suite (provided

with the codebase), we instrument the codebase of the program to collect the memory-

related information during the execution of the tests. Then, we assign a suspiciousness

score to the code locations in the collected profiles. Top-ranked entries in the ranking

list are highly likely to be the potential memory leaks. We evaluate our approach on

8

1.6. Overview and Organization

seven real-world leak-inducing defects. Results show that our approach has sufficient

detection accuracy and is useful in isolating the leaky code statements.

In Chapter 5, we conduct an empirical study on real memory and resource leak

defects and their repairs collected from 491 real resource and memory leaks from 15

mature Java projects. We propose taxonomies for the leak types, for the defects

causing them, and for the repair actions. We use the results of our findings to draw

implications about leak detection, fault localization, and root-cause analysis.

We conclude this dissertation in Chapter 6 with a summary of the contributions

and discuss possible future work.

9

Chapter 2

Background and Related Work

Automated debugging and fault localization has attracted a great deal of interest

among researchers and practitioners. There is a large body of related work on

debugging and fault localization. Wong et al. [125] surveyed more than 400 papers

on fault localization techniques. This chapter introduces the required terminology,

background, and preliminaries for this dissertation. We also survey the existing

techniques for debugging and fault localization.

In the first section, we present the terms and techniques related to fault localization

of functional bugs. In the second section, we describe the terminologies and techniques

for resource and memory leak detection. We also describe how the mismanagement

of the memory and other finite system resources might cause resource and memory

leaks.

2.1 Fault Localization of Functional Bugs

This section provides an overview of the main techniques on debugging and fault

localization of crashing bugs. First, we introduce static and dynamic program

analyses. Then, we overview the related work on debugging techniques based on

program analyses. Note that we explain program slicing in detail with a running

example as it is the base for our proposed technique for fault localization of

failure-inducing changes presented in Chapter 3.

10

2.1. Fault Localization of Functional Bugs

� �
1 public class Factorial {
2 public static void main (String[] args){
3 int num = 10;
4 long factorial = 1;
5 int count = 1;
6 while(count <= num)
7 {
8 factorial = factorial ∗ count;
9 count++;
10 }
11 System.out.println(factorial) ;
12 }
13 }� �

Figure 2.1: The running example for dependence analysis. It prints the factorial 10.

2.1.1 Program Analysis

Program analysis is used to reason about the properties of the codebase of an

application. Based on the requirement of executing an application, the program

analysis can be static or dynamic. In the following, we explain each type in more

detail.

2.1.1.1 Static Program Analysis

Static program analysis reasons about the relationship between different code

statements of a codebase without running the application. It normally is done by

performing a dependence analysis. A graph representation named control flow graph

(CFG) is used to make the analysis much easier and faster. In the following, we

explain the dependence analysis. To illustrate the dependence analysis and related

terminologies, we use a sample program shown in Figure 2.1 as a running example.

This short program computes the factorial of a given integer (here 10) and prints

the final result.

11

2. Background and Related Work

Entry num = 10 fact = 1 i = 0 while i <= num print (fact)i = 0

i = 0fact = fact * i i = 0i ++

1 2 3 4 5 8

76

Figure 2.2: The CFG of the running example.

2.1.1.2 Program Dependence Analysis

Control flow graph (CFG) is a directed graph which shows the control-flow between

program statements. In a control flow graph, each node represents a code statement

and vertices show the control path between the nodes in the graph. Given two nodes,

n1 and n2, there is a vertex connecting n1 to n2 if n2 can immediately be executed

after n1. Figure 2.2 shows the CFG of the running example.

Vertices in a CFG show two dependency types between the nodes in the CFG.

Every two connected nodes can be data-dependence or control-dependence. Given

two code statements s1 and s2, s2 is data-depends on s1 if the data from s1 can be

potentially propagated to s2. As for control-dependence, s2 is control-depends on s1

if the execution of s2 is conditionally based on the execution of the s1. The

summary representation of the dependence analysis of a program is program

dependence graph (PDG). Nodes in PDG are statements, predicates (such as

conditions), or the special “entry” node. The entry node represents the entrance into

a procedure. Figure 2.3 shows the PDG of the running example. The solid arrows

show the control-dependence and the dashed lines present the data-dependence. For

example, nodes 6 and 7 are control-depends on node 5. Analogously, node 6 is

data-depends on nodes 3, 4, and 7 as theses nodes affect the value of node 6.

One limitation of PDG is that the PDG can only consider the dependence within

the procedure calls and cannot pass the boundaries of each procedure. To determine

the dependence analysis in a multi-procedural program, Horwitz et al. [52] introduced

system dependence graph (SDG). System dependence graph is the extended version

12

2.1. Fault Localization of Functional Bugs

3. int fact=1

6. fact = fact * i

4. int i=0

8. print (fact)

7. i ++

2. int num=10

5. while(i<=num)

ENTRY

Figure 2.3: The PDG of the running example. The solid lines and dashed lines show
the control-dependence and the data-dependence, respectively.

of PDG where the graph consists of the primary procedure and a set of subsidiary

procedures.

2.1.1.3 Dynamic Program Analysis

Although static analysis techniques can considerably help programmers to debug

the code, they often lack precision. Researchers mitigate this problem by leveraging

the dynamic program analysis. Dynamic analysis analyzes only a single run, unlike

the static analysis which practices all possible executions. Although the dynamic

analysis is expensive due to overhead, it includes fruitful information about the

behavior of the program during runtime. In some types of bugs such as concurrent

bugs or memory-related bugs, the runtime information is required to diagnose the

root cause of the defects. Among different dynamic analysis techniques, profiling is

the most common approach. Profiling is a dynamic analysis technique in which the

13

2. Background and Related Work

user monitors and collects the execution information during runtime. The tool

which performs the profiling is called profiler and collect different information such

as memory usage, the frequency of function calls, and others. Using profiling,

programmers can achieve precise runtime information. One of the main techniques

for profiling is code instrumentation. In this approach, some new code (instructions)

will be added to the source code or the program binary. Instrumentation allows

programmers to trace the code statements which are executed during runtime.

Instrumentation can be performed offline and online. In offline instrumentation,

instructions will be added to the bytecode of the program or a compiled executable.

In online instrumentation, the instructions will be added to the code directly before

code execution or the code will be modified during execution.

2.1.2 Fault Localization Techniques

In the following, we present the main techniques for fault localization. The main

directions are slicing-based approaches, program state-based approaches, spectrum-

based techniques, and statistical debugging.

2.1.2.1 Program Slicing-Based Approaches

Dependences can help us to focus on a specific part of the program being debugged.

Weiser in his pioneering work [124] leveraged the dependence graph to introduce

program slicing for debugging task. The core idea of the program slicing in the

debugging is to find a subset of code statements which contribute to the buggy

statement (i.e., the point of interest). The subset is called slice and the point of

interest is called slicing criterion or seed statement. The slicing criterion is often

the code statement in which the program has crashed and can be obtained, for

example from the stack trace at the failure site. With leveraging a program

dependence graph and the seed statement, slicing can identify a set of statements

which affect the value of seed statement. This slicing set called a backward slice.

A backward slice is defined as follows: For a given program P and a statement s

with a variable v at the program location l, a backward slice computed from s contains

all of the statements in P which can affect the value of v [124]. It is obvious that if

14

2.1. Fault Localization of Functional Bugs

l is the failure site, a backward slice includes all of the statements which might be

the root cause of the failure at the code location l or at least contains information

about the failure. Take our running example and consider the print call at line 11

as the slicing criterion (seed. In this case, all lines of the program are present in the

backward slice.

2.1.2.2 Extension of Program Slicing-Based Approaches

A traditional slicing often produces a too large slice, especially in real large

applications. However, not all of the statements in the slice are equally relevant to

the slice criterion from a programmer’s perspective. Different approaches extended

the slicing technique to reduce the size of the slice further to overcome the size of

static slices. Dicing, chopping, and thin slicing are some of these techniques.

Dicing [77] is a set difference of two static slices, one for the incorrect variable

and one for the correct variable. Chopping [56] is an intraprocedural slicing which

combines the intersections and unions of the forward and backward slices.

Sridharan et al. proposed thin slicing [113] to overcome the large size of the static

slices. Thin slicing is a slicing technique based on value-flow relevance. The idea

of thin slicing is to exclude the statements which contain less information about the

value of the seed statement.

A thin slice only includes those statements from the codebase which may “copy-

propagate” the value to the slicing criterion [113]. Based on this definition, the

statements in the traditional slice are divided into two types: the producer and the

explainer. Statement s is a producer statement if it flows a top-level value to the seed

statement. Explainer statements reason about the effects of a producer statement on

the seed statement. A thin slice only contains the producer statements.

Contrary to the traditional full slicing, the thin slice is not executable. However, it

can be used in combination with other tools and techniques in tasks such as debugging.

The size of the slice is considerably smaller than the traditional slice, and it identifies

the most relevant statements to the seed statement more effectively.

Static slicing contains all statements affecting the value of the seed statement. It

can also include statements with no correlation to the failure site. Dynamic slicing

is introduced to reduce the slice size by incorporating the runtime information [2,

15

2. Background and Related Work

63]. Many approaches used dynamic slicing as a standalone, improved version, or in

combination with the other techniques for the purpose of fault localization [1, 4, 33,

73, 114, 120, 126, 142–146].

2.1.2.3 Program State-Based Approaches

In modern software development, developers add, remove, or modify the code

elements to answer the need of the end-users or to improve the software quality. In

large projects, developers push thousands of commits to the codebase repositories

per year. For example, Eclipse IDE for JAVA shows a 12-month commit rate of

15546 in the time of writing this dissertation1. Although the goal of these changes is

to improve software quality, they can break some code functionalities as well. The

software may not work anymore after applying the changes even with similar input,

and environmental setup. Therefore, fault localization in such cases can become a

time-consuming and tedious effort.

Different approaches are introduced to localize the bugs induced by software

changes. Zeller et al. proposed delta debugging in work “Yesterday, my program

worked. Today, it does not. Why?” [139]. Assuming the presence of some changes

and a bug induced from these changes, delta debugging tries to find the

failure-inducing change. In principle, it uses the idea of divide-and-conquer

algorithm to find the faulty change by gradually narrowing down the search space.

Zeller later applied delta debugging to multiple program states to isolate the

variables and values that caused the failure [140]. Other approaches explored the

potential of delta debugging to improve the accuracy of fault localization further.

Gupta et al. [46] combined program slicing with delta debugging. Despite the power

of delta debugging in fault localization, it suffers several drawbacks, mainly high

false positives and the need for many test cases — these problems addressed by

other works [87, 137].

2.1.2.4 Spectrum-Based Approaches

Spectrum-based fault localization (SBFL) approaches are widely used for fault

localization. They collect the execution information of failing and passing test cases
1https://www.openhub.net/p/eclipse/commits/summary

16

2.1. Fault Localization of Functional Bugs

and compare them to find the root cause of the failure. Then, they assign a

suspiciousness score to the code elements using a formula. The higher the score, the

more likely the code element is to be faulty. Many approaches tried to introduce a

new SBFL formula. More than thirty formulae exist as shown by Wong [125].

Despite the huge research body on spectrum-based fault localization techniques,

their effectiveness is still in question. Yoo et al. [136] show that there is no single

SBFL formula which outperforms others. Pearson et al. [99] show that we cannot

predict the effectiveness of SBFL formulae on real faults by applying them to

artificial bugs.

2.1.2.5 Statistical-Based Approaches

Statistical debugging is introduced in pioneering work by Liblit et al. for bug isolation

[71]. It analyzes a large number of executions gathered from running the instrumented

application and rank the suspicious predicates which are highly relevant to the bug.

Correctly evaluated predicates only executed in the failing executions are likely to be

more suspicious. Liu et al. [72] introduced SOBER as another statistical debugging

approach in which a predicate can be evaluated multiple times as true in a single

execution.

Many approaches are developed based on the pioneering works on statistical

debugging [70, 71]. Some approaches adopted different types of

predicates [7, 10, 27, 44]. For instance, Holmes et al. [27] extended the statistical

debugging with incorporating the path profiles as predicates for bug isolation.

Statistical debugging is also used in other fields such as detection of performance

problems [110].

2.1.2.6 Other Approaches

There exist many other approaches for fault localization such as model-based [32, 80,

127], machine learning-based [18, 19, 36], data mining-based [22, 89], formula-based

techniques [13, 100]. In model-based techniques, a correct available version of the

application is required to be used as an oracle. The current program profile will

be contradicted to this oracle to find the potential bugs. Machine learning-based

approaches explore computer program algorithms such as classification to provide a

17

2. Background and Related Work

model based on a sample dataset. Data mining can also help to determine a healthy

model of a program from existing data of the program in question (e.g., from version

control systems such as GitHub or SVN). Banerjee et al. [13] generate an alternative

input (which differs from failing input in the control flow behavior) and then compare

the program executions with this input to find the root cause of the failure.

2.2 Resource and Memory Leak Detection in Java

Mismanagement of memory or other finite system resources such as threads or I/O

streams can result in a software failure. Depends on the programming language and

the type of the resource, the resource and memory management is different. In

unmanaged-languages such as C/C++, the programmer is responsible for resource

and memory management. However, in managed languages such as Java, resource

and memory management are treated differently. In Java, the management of finite

system resources such as threads, I/O streams, or database connections is of the

responsibilities of programmers while a specific component called garbage collector

mainly performs memory management. In this section, we first describe the memory

management in Java. Then, we define the terms resource and memory leaks.

Finally, we sketch the related work on detection, prevention, and repair of resource

and memory leaks.

2.2.1 Memory Management in Java

One of the tasks of memory management in Java is to find unused objects and freeing

the occupied space to make it available again for allocation by other objects. In some

programming languages such as C/C++, the programmer is responsible for releasing

the memory after the usage. The following code snippet shows an example of memory

allocation and deallocation in C/C++:� �
Allocating a char variable of size 10

p = (char∗)malloc(sizeof(char) ∗ 10)

Releasing the allocated memory

free (p)� �
18

2.2. Resource and Memory Leak Detection in Java

With the malloc keyword, a pointer of type char with a size of 10 is created

and allocated. The free keyword explicitly deallocate the used memory.

Contrary to the explicit memory management, in memory-managed languages

such as Java, Python, and C#, we benefit from automated memory management.

In Java, the objects are stored in a space called heap. The references to the objects

are held in another memory space called stack. Following code statement shows a

memory allocation for a String object in Java:� �
String str = new String ("Allocate Memory")� �
With the keyword new, we create an object of the type String in the heap space.

This object is referenced via the “str” variable stored in the stack.

Each Java application owns an instance of Java Virtual Machine (JVM). At the

startup of JVM, the heap memory will be created. The heap memory consists of two

main parts: the young and old generations. Figure 2.4 shows the different parts of

the heap. The Eden (or young generation) is the space where the memory is initially

allocated. If these objects remain in the JVM for a while, they will be moved to

another part called Tenured generation (or old generation). There is another memory

part in JVM called permanent generation2 which stores the application metadata

used by JVM to describe the classes, methods as well as threads. The heap memory

is shared among all threads running on the JVM process. During program execution,

the heap size varies based on object allocation and deallocation. The size of the

heap is configured and set before starting the JVM. If the process requires more

memory than the maximum heap size defined at configuration time, the JVM throws

an out-of-memory error.

To mitigate the out-of-memory error, a program called Garbage Collector (GC) is

responsible for automated memory management in Java. GC allocates memory, finds

the unused objects, and frees the heap memory for making space for the creation of

new objects. Figure 2.5 visualizes the process of the garbage collection in Java. Each

time a new object is initialized, garbage collector allocates the memory for that object

in the Eden space of the heap (Figure 2.5 (a)). The size of the objects depends on the

object initialization. The objects in the heap space can be referenced by other objects
2The permanent generation is deprecated after Java 7 and is replaced by another component

called Metaspace.

19

2. Background and Related Work

Eden Survivor Tenured PermGen

Heap Memory

Young Generation Old Generation

Figure 2.4: Heap space memory in Java 7.

inside and outside the heap. Objects outside the heap are called root objects and can

be running threads, local variables, JNI3 variables and others. When the Eden space

becomes full (Figure 2.5 (b)), GC performs a minor garbage collection. If an object

survives the garbage collection, GC moves them from Eden to the survivor space S0.

After second minor garbage collection, GC moves existing objects from Eden to the

S1 as well as those objects in S0 to S1. If an object survives several iterations of

garbage collection, GC assumes the object as a long-living object and moves it to

the old generation (tenured). When the heap becomes full, GC performs a so-called

major collection.

In the major collection, the garbage collector tries to find the objects which are not

used by the application (Figure 2.5 (c)). For this purpose, GC should reason about

the liveness of the object. An object is alive if it is still used by the JVM process,

otherwise, it is a dead (unused) object. Identifying the liveness of an object is not

easily feasible. Therefore, the GC approximates the object liveness via its reachability

from the root objects. An object is reachable if there is any path to the root objects.

In other words, an object will not be reclaimed if it is still reachable by a chain of

references from one of its roots. The roots of an object can be current call stack(s),

3Java Native Interface

20

2.2. Resource and Memory Leak Detection in Java

A B C D

A B C D E F G H I

Root set

Root set

Heap

Heap

A B C D E F G H I

Root set

Heap

A B C E F G I

Root set

Heap

empty space
for new

allocation

X X

(a) Object allocation

(b) Full heap

(c) Identify unused
objects

(d) De-allocate
objects

Figure 2.5: Garbage collection process.

21

2. Background and Related Work

references in registers, global variables, classloaders, live threads. The unreachable

objects are then garbage collected by the GC (Figure 2.5 (d)).

2.2.2 Resource and Memory Leaks

Leaks occur due to mismanagement of memory or finite systems resources. In the

following, we explain these two types.

Memory leaks. Contrary to the unmanaged languages such as C or C++ in which

programmer is responsible for freeing the memory, in memory-managed languages

such as Java or C#, the garbage collector reclaims the space. A programmer can rely

on the garbage collector to release references due to dangling pointers (references to

already freed objects) or lost pointers (lost references to unreleased objects). However,

if the references to the unused objects are present in the running process, they cannot

be garbage-collected. As a sequence, a memory leak might be triggered. In other

words, a memory leak in Java occurs when a process maintains unnecessary references

to some unused objects.

Resource leaks. In Java, finite system resources like connections, threads, or file

handles are wrapped in special handle objects. Programmer accesses such a resource

by normal object allocation. However, in contrast to memory management, the

developer should dispose of a system resource by making an explicit call to the

disposal method of the handle object (or by ensuring that a thread has stopped).

Besides this, all unnecessary references to such objects should be removed to

prevent the potential memory leak. Hence, a resource leak occurs when the

programmer forgets to call the corresponding close method for a finished handle

object. Similar to the memory leak, resource leaks gradually deplete system

resources which degrade performance and can lead to failure.

2.2.3 Debugging Leak-Inducing Defects

The problem of memory leak attracted a great deal of interest in the last years.

The body of research is broad, from leak avoidance and detection to the repairing of

leak-inducing defects. In this section, we discuss the main research directions in this

field.

22

2.2. Resource and Memory Leak Detection in Java

2.2.3.1 Software Rejuvenation

Software aging is progressive performance degradation due to resource depletion

which causes severe impacts on software quality. Controlling the effects of software

aging defects is one of the main approaches to reduce the impact of software aging.

Software rejuvenation [53] is a proactive approach to avoid software degradation via

scheduled restarts. Research here include case studies [8, 68, 108], modeling of

performance degradation [6, 21, 40, 117], and limiting the application downtime due

to the scheduled restarts [3, 20, 107].

Matias et al. [81] proposed a systematic approach to detecting software aging in

shorter test time and higher accuracy compared to traditional aging detection

techniques via stress testing and trend detection. The approach is based on a

comparative differential analysis where a software version under test is compared

against a previous robust version by observing the behavioral changes during system

tests of different resource metrics.

2.2.3.2 Leak Detection via Static Analysis

Static analysis has been used predominantly for languages with manual memory

management like C/C++. It can detect defects such as double or missing calls of

free(). Techniques include e.g., reachability analysis via a guarded value flow

graph [25], backward data-flow analysis [95], or detecting violations of constraints

on object ownership [51]. A major problem of static analysis is the lack of scalable

and precise reachability/liveness analysis for heap objects in managed languages like

Java. A recent approach named LeakChecker [133] attempts to overcome this

problem by focusing on loops specified by the developer.

Many approaches have proposed to detect resource leaks in Java and C [26, 34, 106,

116, 121]. They usually use static analysis techniques to find the unclosed resources

in different execution paths. There is also research on resource leak detection in

Android [12, 45]. The main goal in these approaches is to find any execution paths

from the opened resource in which the used resource is not closed.

Using code transformation and static approximation of resource lifetime, CLOSER

[34] determines the higher-level resources which contain references to other resources

23

2. Background and Related Work

in the source code of the application. Then it inserts disposal calls at appropriate

points in the source code of the application to release the resources with expired

lifetime.

2.2.3.3 Leak Detection via Dynamic Analysis

The static-based approaches often suffer from a lack of precision and introduce many

false positives. To mitigate this problem, researchers leveraged dynamic analysis

for memory leak detection, especially in memory-managed languages. The major

directions of dynamic leak detection are: staleness detection [14, 50, 61, 94], growth

analysis [37, 41, 59, 81, 111], analysis of captured state [29, 88, 129], and hybrid

approaches [101, 131].

Staleness (i.e., lack of recent read/write accesses) is the most accurate property

of leaked memory. It has been used firstly in a pioneering work by Hauswirth and

Chilimbli [50]. The key problem in dynamic analysis-based approaches is the overhead

of monitoring object accesses. Several approaches have been proposed: path-biased

sampling [50], page-level sampling [93], modifications of the JVM [16], or focusing on

a specific data structure [132]. A recent work Sniper [60] can reduce the total runtime

overhead for C/C++ to less than 3% by exploiting hardware units in modern CPUs.

For Java, the lowest overhead is still about 80% [132], despite that only containers

are monitored, and code annotation is used.

Memory leak also can be detected by looking at the memory usage. The growth

of memory usage during the application runtime can point to potential memory

leakage. Cork [59] finds the growth of heap data structures via a directed graph

where each object traces all references pointing to itself. FindLeaks [23] tracks

object creation and destruction and if more objects are created than destroyed per

class (i.e., number of residuals grow), a suspect is found (runtime overheads are not

reported). Previous work [111, 112] and some modified versions of the NetBeans

Profiler4 exploit the observation that for a perpetually leaking class many different

generations of its instances exist. Machine learning techniques help here for low

latency leak detection (with runtime overhead of about 40% [112]).

4https://profiler.netbeans.org/

24

2.2. Resource and Memory Leak Detection in Java

LeakBot [88] uses complex, multi-phase object ranking to find suspicious regions of

heap objects which grow over time (using multiple heap snapshots). LeakChaser [129]

exploits invariants among lifetimes of objects. It requires a developer to determine

regions or objects belonging to the same “transaction” in order to detect invariant

violations. LEAKPOINT [28] uses dynamic tainting to track heap memory pointers.

It is implemented on top of Valgrind [90] which results in a runtime overhead of

100–300 times. The Valgrind tool Omega [86] uses related approaches with similar

overheads. Xu and Rountev [131] target memory leaks caused by collections and try

to rank the suspicious code locations by assigning a leak confidence value based on

staleness and memory usage. Perfblower [37], a new domain-specific language (ISL)

is introduced to describe the memory-related performance problems which can be

observed during a heap history update. A new compiler will compile the generated

ISL. Then with running the instrumented version of the code, the target class will be

amplified during runtime when the symptom of the memory leak is observed.

Some work introduced approaches to tolerate the memory leaks by keeping the

program in a running state [15, 17, 101]. They achieve this by reducing performance

degradation (e.g., with predicting and reclaiming the leaky objects at runtime).

However, this is not the final repair and developers still need to fix the underneath

leak defect.

2.2.3.4 Leak Detection via Version Comparison

A few works utilized the idea of comparing different software versions to reason about

the existence of memory leaks. Langner and Andrzejak [64] and Matias et al. [82] use

cumulative memory consumption metrics (such as heap usage or residual set size) for

memory leak detection. Langner and Andrzejak [64] suggest a simple visual detection

technique. Matias et al. [82] evaluate a more sophisticated anomaly detection method,

in particular, control charts.

Langner and Andrzejak [65] compare the memory usage of the integration or unit

tests between two software versions to localize the memory leak. It provides a ranking

list based on the type of allocation sites and the number of residual objects. In this

approach, new allocation sites (i.e., those allocation sites which only exist in the newer

version of the software) have a higher rank than the existing allocation sites (i.e., those

25

2. Background and Related Work

allocation sites exist in both older and newer versions). For each type of allocation

sites, the higher ranks are given with comparing the number and cumulative size of

residual objects per allocation site.

2.2.3.5 Automated Leak Repair

Recently, automated program repair (APR) attracted the attention of researchers.

The goal of the APR is to suggest the patch candidates automatically which passes

the tests successfully. Pioneering work GenProg [123] introduces a patch generation

technique based on a genetic search algorithm. Kim et al. [62] propose an automated

program repair technique based on patterns learned from real patches. It generates

correct patches for 27 out of 119 bugs. All the provided fix patterns are one-line

statements. Prophet [76] learns the properties of successful patches to guide finding

the appropriate candidates. HDRepair [66] leverages information derived from the

history of the previous patches of hundreds of Java projects to select the correct

patch candidates. All the mentioned techniques differ in defining the search space

and the approach to find the correct patch. Semantic-based techniques [84, 91] have

also been explored. Angelix [84] extracts semantic constraints from the application

codebase and generates fixes using program synthesis.

Automated leak repair (i.e., providing fix candidates for leak-inducing defects) is

still new, and the body of the related work is thin [39, 74, 118, 134]. Footpatch [118]

generates fixes for resource leaks in C and Java as well as fixes for memory leaks in C.

However, it is not able to detect memory leaks in Java. Hybrid approaches [39, 134]

leverage static and dynamic analyses to fix memory leaks in C. They analyze the

execution paths of each allocation/deallocation and insert free when no release is

encountered. In work [74], two repair patterns (AddFree and MvFree) are used to

provide correct patches for 16 out of 41 memory leaks in C.

26

Chapter 3

Scalable Isolation of Failure-Inducing

Changes

Despite indisputable progress, automated debugging methods still face difficulties in

terms of scalability and runtime efficiency. To reach large-scale projects, we propose

an approach which reports small sets of suspicious code changes. Its strength is that

the size of these reports is proportional to the number of changes between code

commits, and not the total project size. In our method, we combine version

comparison and information on failed tests with static and dynamic analysis.

We evaluate our method on real bugs from Apache Hadoop, an open source project

with over 2 million lines of code1. In 2 out of 4 cases, the set of suspects produced

by our approach contains precisely the location of the defective code (and no false

positives). In another case, we can pinpoint the method containing the faulty change.

Moreover, the time overhead of our approach is moderate, namely three to four times

the duration of a failed software test.

3.1 Introduction

Debugging is an expensive and time-consuming task in the software development

process. According to studies, half of the programming time of the developers is

dedicated to investigating and correcting bugs. The total cost of testing and
1On September 14, 2013, Ohloh (http://www.ohloh.net/p/Hadoop) was reporting that Apache

Hadoop has 2,280,391 lines of code.

27

3. Scalable Isolation of Failure-Inducing Changes

debugging of the software development can easily range from 50 to 75 percent of the

total development cost [141]. For these reasons, automated debugging has attracted

a great deal of interest.

Techniques of automated debugging attempt to find the causes of a program

failure without or with only minimal human involvement. In practical terms, after

the analysis of data obtained from testing results and code instrumentation, a

programmer is supplied by a ranked list of suspicious code locations. By examining

these locations, she can identify the code fragment bearing the actual defect.

Despite of indisputable recent advances [11, 27, 35, 58, 69, 102], automated

debugging is still facing significant challenges preventing its widespread

adoption [98]. One of the essential ones is that while excelling at fault localization,

they usually do a poor job in facilitating fault understanding. However, even

knowing a (potential) fault location still requires the developer to find out what

could happen there - a cognitively demanding task.

The second weakness of automated debugging is its limited scalability in terms

of program size. Here even pinpointing the 1% of code which might contain the

defect is not precise enough. Such level of specificity means that on a project with

100k lines of code (LOC), a developer still needs to examine 1000 suspicious lines

to find the root cause of the defect. This is beyond the normal acceptance levels

of programmers (most users do not inspect search results after the first page [98]),

significantly reducing the utility of such techniques in large-scale projects.

We attempt to approach the second problem by narrowing our focus to scenarios

where software is developed through a series of minor changes, with each intermediate

version being tested thoroughly. This method is a typical approach in the development

of current software projects, for example in a setup of continuous integration and

deployment [141]. Consequently, this assumption is not a severe limitation, since our

technique targets large-size projects.

3.1.1 Core Idea

Our basic idea is to use version comparison to localize newly introduced defects in

the latest development version. Version comparison contrasts the behavior of two

software versions under the same unit and (or) integration tests. In more detail,

28

3.1. Introduction

using static and dynamic analysis, we compare the sets of statements executed in the

latest (faulty) version against those executed in a previous (base) version. We assume

here that the faulty new version has caused a unit/integration test to fail, while the

same test succeeded on the base version.

The key advantages of our approach are its precision and efficiency. Assuming

that only the recently changed code contains the defect (this is not always but

usually right), we can reduce the set of suspicious statements to a few lines of code

(Section 3.4). The size of this set depends primarily on the size of changes (i.e., the

number of differences between commits) and not on the total project size.

Therefore, our technique is likely to scale and present the developers a small set of

suspicious statements - even for large projects.

Secondly, we show in Section 3.4.3 that the overhead introduced by our approach

is moderate. The necessary additional execution cost comes from the requirement to

execute a (crashing) test on each of the instrumented base and the instrumented faulty

version. Due to very sparse instrumentation, the execution time of the instrumented

versions is almost identical to the original versions. As shown in Table 3.4, the total

time of executing our approach is about 2.5 to 3.5 times the duration of the failed

test.

3.1.2 Contribution

This chapter makes the following contributions:

• We propose and implement an approach to isolate failure-inducing changes by

comparing subsequent versions of the software under development. It

combines static analysis (backward slicing) and information on the changed

code to indicate which code locations should be instrumented. A subsequent

dynamic analysis (code coverage of a failing and passing version) reveals the

statements which are likely to contain the defects (Section 3.2).

• We evaluate our approach on real defects from a large-scale software project,

namely Apache Hadoop (Section 3.4). The results show that it can pinpoint

the defective statements with high precision.

29

3. Scalable Isolation of Failure-Inducing Changes
Artur Andrzejak

Overview of the Approach

9

Source
version i+1

Source
version i

Failure
stack trace

Stack
trace

analysis

Difference
set

Backward

slices In
te

rs
e

ct

Instrument
version i

Source
code

Suspect
Report

Instrument
version i+1

Execute
& get code
coverage

Execute
& get code
coverage

C
o

m
p

ar
e

 c
o

ve
ra

ge

&
 f

ilt
e

r
su

sp
e

ct
s

Figure 3.1: The workflow.

• We also compare the execution overhead of the images instrumented according

to our approach against alternative instrumentation schemes. Our results

show that the overhead of the dynamic analysis proposed by us is negligible

(Section 3.4.3).

3.2 Version Comparison Approach

This section describes the details of our approach. Figure 3.1 shows the framework of

the approach. As indicated in Section 3.1, we assume that software under development

evolves as a series of versions, each one checked by executing one or more test suites.

We trigger our automated debugging approach on the event that some test T has

failed while executing the latest software version. We denote this latest version as vf
and call it a failing version. From the repository, we also retrieve a previous software

version vp (called passing version) which passes T successfully. Usually, this is a

version directly preceding vf .

30

3.2. Version Comparison Approach

Algorithm 1: Approach algorithm.
Data: vp and vf
Result: SuspectSet
Step 1: Find the differences of versions vp and vf :

Dif = ∆ (vp, vf)

Step 2: Retrieve failure site fsite from the stack trace
Step 3: Compute backward slices for each version:

BSlicep = BackwardSlice (vp, fsite),

BSlicef = BackwardSlice (vf , fsite)

Step 4: Compute the intersections ISx = BSlicex ∩Dif and instrument
versions:

vp,inst = Instrument (vp, ISp),

vf,inst = Instrument (vf , ISf)

Step 5: Execute test T on each vp,inst and vf,inst to get code coverage profiles:

covp = Run (vp,inst),

covf = Run (vf,inst)

Step 6: Get list of suspects by applying filtering lemmas:

SuspectSet = FilteringLemmas(covp, covf)

3.2.1 Approach Overview

The steps of our approach are explained below and illustrated in Algorithm 1. First,

we retrieve the set of changes between vp and vf , i.e., Dif = ∆(vp, vf) and call it

a difference set. We used tools provided with software configuration management

systems like SVN, Git, CSV to find the difference between two software versions.

As a consequence of the failure of T on vf , the JVM (or operating system) provides

a stack trace which is analyzed by our approach. We call the code location referenced

by the top-level entry within this trace (yet not devoted to exception handling) a

failure manifestation site or just failure site fsite. We use fsite as the seed statement

31

3. Scalable Isolation of Failure-Inducing Changes

to compute (for each version vp, vf) the backward slice BSlicep, BSlicef [113, 124].

Essentially, it is the set of code statements which could have affected variable values

at the failure site.

Subsequently, we compute (for each version vp, vf) the intersection ISx of the

backward slice BSlicex and the difference set Dif as ISx = Dif ∩ BSlicex (x ∈
{p, f}). This intersection gives us statements and method names which are likely

to contain the defect. In the next step, we instrument the function calls within this

intersection ISx for both passing vp and failing vf version.

In the next step, we re-execute the test T on both instrumented versions of vp and

vf and record coverage information. The results are coverage profiles covp and covf ,

which report those code locations that has been executed in the respective version.

The last step involves comparison and filtering of the coverage profiles. The following

statements are included in the set of suspects:

1. All statements added to or changed in vf which are in the failing coverage profile

covf .

2. All statements deleted from vp which are in the passing coverage profile covp.

Finally, the resulting list of suspicious statements (suspects) together with their

locations is reported to the developer as the potential root causes of a test failure.

We exemplify our approach on a real defect from the Apache Hadoop project

(Section 3.4.1).

3.2.2 Discussion

In the following, we discuss some secondary aspects of our approach.

As mentioned in Section 3.2.1, we examine the stack trace of the test execution

on vf to retrieve the failure site. However, we cannot take the first entry of the

stack trace as this frequently points to logger code (or some exception-handling code).

Therefore, we use a heuristic and check the stack trace entries (from the topmost one)

if they point to the related codes to the failure, i.e., non-library and functional code.

Figure 3.2 shows an example of the stack trace for issue Hadoop-3856 (Section 3.4.1),

where the second topmost entry points to assumed failure site.

32

3.3. Experimental Design

� �
org.apache.hadoop.ipc.StandbyException: Operation category READ is not supported at

the BackupNode

at org ... $BNHAContext.checkOperation(BackupNode.java:443)

at org ... FSNamesystem.checkOperation(FSNamesystem.java:759)

at org ... system. getServerDefaults (FSNamesystem.java:1019)
...� �

Figure 3.2: Stack trace of the bug reported in Issue HDFS-3856.

The other aspect which requires explanation is slicing. For a given program P and

statement s with a variable v at the program location `, a backward slice computed

from s contains all of the statements in P which can affect the value of v [124]. It

is obvious that if ` is the failure site, a backward slice includes all of the statements

which might be the root cause of the failure at `.

However, traditional full slicing [124] generates a too large slice, especially in real

large-scale applications. To address this issue, we use thin slicing [113] which only

contains statements that directly affect the value of the seed statement.

3.3 Experimental Design

We implement our approach on the top of WALA [119] which is a static analyzer

developed by IBM. Slicing and instrumentation are the features of WALA which

makes it useful for our approach. We implement our approach in two parts: static

analysis and dynamic analysis. Finding version differences and computing backward

slice is performed in the static analysis section. Slicing is implemented using WALA.

For each application, we use WALA to build the corresponding call graph. Then, we

compute a backward slice using this call graph and the failure manifestation point

as the seed statement. For compatibility reasons, we modified some parts of WALA

source code.

Dynamic profiling in our approach is implemented by Shrike2 which is a third-

party library for instrumenting Java byte-code provided by WALA. We use Shrike to
2http://wala.sourceforge.net/wiki/index.php/Shrike_technical_overview

33

3. Scalable Isolation of Failure-Inducing Changes

Table 3.1: Overview of the test cases used in this work

Issue Broken by Issue Failing Test Case
HDFS-3856 HADOOP-8689 TestHDFSServerPorts
HDFS-4887 HDFS-4840 TestNNThroughputBenchmark
HDFS-4282 HADOOP-9103 TestEditLog.testFuzzSequences
Yarn-960 Yarn-701 TestBinaryTokens, TestMRCredentials

instruments the output statements from static analysis phase by using the predefined

instrumenting schema. Due to the flexibility of instrumentation, we can easily exclude

instrumenting of some parts of the code which is not necessary, e.g., Java libraries.

We execute all our experiments on a 2.9 GHz Intel Dual Core laptop with 8 GB

physical memory (4 GB for the JVM), running Linux.

3.4 Experimental Evaluation

Our evaluation tries to answer the following research questions:

RQ1. How accurate is our approach to locating failure-inducing changes?

Here we want to evaluate whether our approach can find the true defect location

(sensitivity), and how many false positives are reported in the final report (specificity).

We show in Section 3.4.1 the results for four test cases used in this study (Table 3.1).

They demonstrate that in two of our four test cases we could find the true root cause

of the failure without false positives. Analysis of another case indicates that by small

extensions of our method the defect location could be narrowed to 20 LOC. We also

discuss the real bug fixes of each issue as stated in the Hadoop bug log.

RQ2. Are there any alternatives to our approach which are simpler yet

have comparable accuracy?

This question targets the practicability of implementing our approach and tries to

answer whether a more simple variant of the method could yield similar results. The

brief analysis in Section 3.4.2 indicates that all of the steps shown in Algorithm 1 are

necessary to achieve this level of specificity.

34

3.4. Experimental Evaluation

RQ3. What is the time overhead of our approach, and how does it

compare to alternatives?

We have collected for each of the test cases execution times and code size in various

phases of our approach (Section 3.4.3). This data is used to evaluate the overhead

by two performance metrics, runtime slowdown and size overhead (Table 3.3) and to

compare them against alternative approaches. We also show the total time of our

method (Table 3.4).

3.4.1 Case Studies

In this section, we try to answer question RQ1. To this aim, we use the Apache

Hadoop as a real-world, complex and large-scale project. It deploys test cases and

frequent versioning which fits our requirements. We use real bugs from Hadoop issue

tracking3 system between 15th August 2012 and 27th July 2013. We select real defects

according to the following criteria:

1. The failure should be caused by a Hadoop component and manifest via a Hadoop

test case. In other words, we do not consider library issues or other artifacts.

2. The bug should be well documented, and it should be clear which update or

patch caused the test to fail. We require this information to validate the result

of our approach.

3. There should exist a passing version, i.e., a (previous) version which passed the

test which failed in a subsequent (failed) version.

Issue HDFS-3856

The first issue is an attempted solution to a new feature request HADOOP-8689. We

explain it in more detail as a showcase for the approach. Figure 3.3 shows a subset of

changes making up the (erroneous) solution. A part of this patch provides separate

trash cleanup intervals (fs.trash.interval) for client-side versus the server side.

However, this change causes the test TestHDFSServerPorts to fail due to new call
3http://hadoop.apache.org/issue_tracking.html

35

3. Scalable Isolation of Failure-Inducing Changes

� �
−−− org/apache/hadoop/hdfs/server/namenode/NameNode.java
+++ org/apache/hadoop/hdfs/server/namenode/NameNode.java
@@ −511,9 +511,7 @@ public class NameNode {
private void startTrashEmptier(Configuration conf) throws IOException {
− long trashInterval = conf.getLong(
− CommonConfigurationKeys.FS_TRASH_INTERVAL_KEY,
− CommonConfigurationKeys.FS_TRASH_INTERVAL_DEFAULT);
+ long trashInterval =namesystem.getServerDefaults(). getTrashInterval ()

if (trashInterval == 0) {
return;

} else if (trashInterval <0){� �
Figure 3.3: Excerpt of code changes for issue Hadoop-8689 (simplified).

getServerDefaults() in the startTrashEmptier() function4. The failure

of this test is reported in the bug report HDFS-3856.

In Step 1 of our approach, we retrieve a passing vp as well as a failing vf code

version (passing or failing for test TestHDFSServerPorts). As shown in Table 3.2,

the difference set Dif between vp and vf is very large, amounting to more than 109

kLOC.

Step 2 needs the failure stack trace of the test TestHDFSServerPorts to

identify the failure site. As shown in Figure 3.2, code location

FSNamesystem.java:759 is the assumed failure site.

In Steps 3 and 4 we obtain the respective backward slices for vp and vf (922

and 759 JVM-bytecode statements), instrument the intersections ISp and ISf of

Dif and backward slices (544 and 445 statements). In the subsequent Step 5 we

obtain the code coverage of executing TestHDFSServerPorts on each of the two

instrumented versions vp,inst and vf,inst (sizes 189 and 166 statements).

Finally, we can apply the filtering lemmas in Step 6 of Algorithm 1. It yields the

final report for issue HADOOP-3856:� �
Suspicious failure −inducing changes:

In class : org.apache.hadoop.hdfs. server .namenode.NameNode:514

long trashInterval = namesystem.getServerDefaults(). getTrashInterval () ;� �
4This explanation is taken from the comments on issue HDFS-3856 (Hadoop bug repository).

36

3.4. Experimental Evaluation

In the future, we will present to the developer not only this report but also the

differences in code coverage to support failure understanding.

We also compared our suspect against the fix of this problem, which is committed

in SVN revision 1377934. We found that indeed our hypothesis was correct. In the

fix, the previously added faulty change is replaced with a new statement (shown in

bold):� �
−−− org/apache/hadoop/hdfs/server/namenode/NameNode.java

+++ org/apache/hadoop/hdfs/server/namenode/NameNode.java

@@ −511,13 +511,13 @@ public class NameNode {

private void startTrashEmptier(Configuration conf) throws IOException {

− long trashInterval =namesystem.getServerDefaults(). getTrashInterval ()

+ long trashInterval = conf.getLong(FS_TRASH_INTERVAL_KEY,

+ FS_TRASH_INTERVAL_DEFAULT);

if (trashInterval == 0) {� �
Issue HDFS-4887

The following case shows a limitation of our method but simultaneously points the

way to extend it.

The considered issue is a failure in TestNNThroughputBenchmark test. The

bug report states that the bug fix for the issue HDFS-4840 is responsible for the

failure. The patch for fixing HDFS-4840 has introduced the following new (faulty)

code to the BlockManager class of the HDFS codebase. The defect here comes

from stopping the ReplicationMonitor while NameNode is still running.� �
if (!namesystem.isRunning()) {

LOG.info("Stopping ReplicationMonitor .");

if (!(t instanceof InterruptedException)) {

LOG.info("ReplicationMonitor received an exception"

+ " while shutting down.", t) ;

}

break;

}

LOG.fatal("ReplicationMonitor thread received Runtime exception.", t) ;

37

3. Scalable Isolation of Failure-Inducing Changes

terminate (1, t) ;� �
Our approach applied to this case gives (after the filtering lemmas) an empty

list of suspects, which shows a limitation of our method. The difficulty is caused by

the small size of the set of instrumented statements (nine statements per version).

Consequently, the coverage profiles have only two statements each (Table 3.2, middle

rows). Both coverage profiles Covp and Covf contain the same statements, namely

a while statement (line 3092 of BlockManager class) and thread.sleep()

statement (line 3096 of the same class).

However, after investigating additional information provided by instrumentation

(not used in this work) we discovered that the values of the conditional expression in

the while statement are different in vp,inst and vf,inst. It is a natural extension of the

current approach to consider such information. By extending the filtering lemmas,

we can then include in the final report the conditional statements with diverging

condition values.

Even assuming that the while statement would be included in the final report,

it is not the precise root cause of the failure. However, this statement is within the

method run() in the inner class of ReplicationMonitor in the BlockManager

class. The method run() (about 20 LOC) indeed contains the defect. Thus, we can

at least indicate the method containing the code for actual defect.

An investigation of the actual fix which is committed in SVN revision 1501841

shows that (because the defect is outside the changes), merely deleting the added

changes from the new version does not solve the problem. To fix this bug, a check

statement (shown in bold in following) was added to the conditional branch in the

code:� �
−−− org/apache/hadoop/hdfs/server/blockmanagement/BlockManager.java

+++ org/apache/hadoop/hdfs/server/blockmanagement/BlockManager.java

@@ −3129,6 +3138,9 @@

+ " while shutting down.", t) ;

}

break;

+ } else if (!checkNSRunning && t instanceof InterruptedException) {

+ LOG.info("Stopping ReplicationMonitor for testing .") ;

38

3.4. Experimental Evaluation

+ break;

}

LOG.fatal("ReplicationMonitor thread received Runtime exception.", t) ;

terminate (1, t) ;� �
Issue HDFS-4282

Bug issue HDFS-4282 reports the failing of TestEditLog.testFuzzSequence

test. Comments in the issue show that HADOOP-9103 breaks this test. Due to

errors in decoding Unicode characters, in HADOOP-9103 a patch is created which

has modified the code of UTF8 class in Hadoop Common project. However, this

patch caused a failure of TESTEditLog test.

After applying our approach to this test case, the results point that the changes

created in HADOOP-9103 are not faulty. However, the only difference in the

execution profiles of passing and failing runs is a call of the method toString()

in UTF8 class of the io package of Hadoop Common project. Also here Table 3.2

(bottom rows) give the sizes of code over all phases of our approach.

By investigating the execution profiles, we created a hypothesis that a solution to

this bug is to add methods related to the toString() function. The real fix to this

bug (committed in SVN revision 1418214) confirms our hypothesis. A new method

toStringChecked() (with IOException) is added to the UTF8 class which now

can throw an IOException for invalid UTF8 characters5.

Issue Yarn-960

Bug reported in issue Yarn-960 manifests in the failure of tests TestbinaryTokens

and TestMRCredentials. The reason for this test failure is the changes committed

to the bug report YARN-701. Unfortunately, when applying our approach to this bug,

we can not find the root cause of the error.

As we mentioned in the Section 3.2 (Step 2 in Algorithm 1), our approach needs

a failure manifestation site in the failing version. However, in the stack trace of

5https://issues.apache.org/jira/browse/HDFS-4282

39

3. Scalable Isolation of Failure-Inducing Changes

Table 3.2: Code size (#LOC or #JVM-bytecode statements) in different phases of
our approach; Dif = difference set (in #LOC), BSlice = backward slice, IS =
intersection set, Cov= coverage profile, Report = final report (in #LOC)

Issue Version
Size

Diff BSlice IS Cov Report
#LOC (#LOC)

HDFS-3856 passing 109207 922 544 189 1failing 759 445 166

HDFS-4887 passing 1030 9 2 2 0failing 9 2 2

HDFS-4282 passing 1325 795 367 88 1failing 800 372 89

the failing executions for this issue, we can find only code locations in the third-

party Java libraries and the JUnit framework. In our current experimental setting

we cannot analyze these libraries (see the scenario description and assumptions in

Section 3.4.1). However, our approach fails in this case, not due to a fundamental

limitation but due to a (current) technical constraint that third-party artifacts like

java libraries cannot be analyzed.

3.4.2 Complexity of the Approach

RQ2 can be partially answered by inspecting Table 3.2. It shows the size of

intermediate and final results in LOC (for Dif and Final Report) or JVM-bytecode

statements. Note that in Dif a replaced line is counted twice - as an added and a

removed line.

As an alternative to the Algorithm 1, we could have used the intermediate results

for producing the final report. Specifically, this report could be based only on the

code changes Dif , or only on the backward slice BSlice, or the intersection set IS,

or on the coverage profiles Cov. For issues HDFS-3856 and HDFS-4282 executing all

steps is the right way to achieve high specificity. Judging by these cases, our approach

cannot be simplified.

However, for issue HDFS-4887, using any of the BSlice, IS, or Cov is feasible

and could have led to pointing to the vicinity of the actual defect (Section 3.4.1).

This result indicates that we could consider a dynamic workflow, where a result of

40

3.4. Experimental Evaluation

Table 3.3: Overheads of our approach compared to full instrumentation (Full instr.)
and instrumenting only the code in BSlice (BSlice instr.); in “X/Y ”, X is the run-
time slowdown (a factor) and Y size overhead of instrumenting (a factor); p = passing
version, f = failing version, “-” = instrumentation not possible.

Issue Ver.
Original Version Full BSlice Our
Runtime Size instr. instr. approach

(s) (MB)

HDFS-3856 p 6 4.8 - / 4.60 1.20 / 1.04 1.00 / 1.00
f 6 4.1 - / 5.40 1.00 / 1.02 1.00 / 1.00

HDFS-4887 p 9 4.8 1.60 / 4.60 1.00 / 1.00 1.00 / 1.00
f 9 4.8 1.60 / 4.60 1.10 / 1.00 1.10 / 1.00

HDFS-4282 p 30 4.4 3.30 / 4.60 1.10 / 1.04 1.03 / 1.02
f 30 4.4 3.00 / 4.60 1.03 / 1.04 1.00 / 1.02

an intermediate step is used directly for the final report if its size is below a certain

threshold. Such workflow is subject to future work.

3.4.3 Performance Evaluation

To answer RQ3, we first evaluate Table 3.3. In a pair X / Y , X represents the run-

time slowdown, i.e., the ratio of time to execute the instrumented version divided by

time to execute the non-instrumented version. Furthermore, Y is the size overhead of

instrumenting, i.e., size of the instrumented version divided by the size of the original

version.

The time and size overheads of the fully instrumented code (Full instr.) are

significant. Code size increases by factor four to five, and execution time up to factor

3.3. Thus, full instrumentation is not efficient. However, instrumenting only the code

in the backward slice (BSlice instr.) produces acceptable overheads. Even so, our

approach beats the alternatives, having negligible overheads due to instrumentation.

Table 3.4 contrasts the running time of the failed test (Test time) against the total

time needed to execute our approach (Total). As shown in the column “Total / Test”,

the total time of our approach requires at most 3.3 times the duration of the failed

test, and the latter is only one of many tests executed within a test suite.

41

3. Scalable Isolation of Failure-Inducing Changes

Table 3.4: Running times of a failing test and times for various phases of our approach
(times in seconds); Total / Test is the ratio of total approach time to test time

Issue App. Time for Passing & Failing Version Test Total /
Slicing Instr. Run Total Time Test

HDFS-3856 4 4 12 20 6 3.3
HDFS-4887 2 2 18 22 9 2.4
HDFS-4282 4 4 64 72 30 2.4

3.5 Chapter Summary

In this chapter, we introduced a scalable technique to localize the failure-inducing

changes of functional bugs. Given a failing test and the source code of the previous

correct and current buggy versions, we leveraged program analysis techniques to find

the changes which were the root cause of the failure. However, we only evaluated

our approach in four real cases, and the results are promising. Our approach found

the exact failure-inducing change in two out of four cases. In one case, our approach

could pinpoint the method containing the faulty code. In another case, our approach

was unable to localize the faulty change as the stack trace of the crashing bug showed

no path to the codebase of the application.

Our proposed approach differs from previous techniques. While Gupta et al. [46]

focused on the changes in the input, our approach concentrates on the changes

between the source codes of the two versions of a program. The presented approach

also differs from delta debugging-based approaches [87, 137, 140]. Delta debugging

narrows down the search space gradually by applying changes to the application

iteratively. It requires a huge amount of test repetitions, causing a large time

overhead. In our approach, we only execute the failing test. Our approach differs

from SBFL techniques as we only use one test case. We also execute the program

once. Therefore, there is only one failing and one passing run. This is different from

SBFL approaches in which many failing and passing runs are used to rank the

suspicious code statements.

42

Chapter 4

Automated Memory Leak Diagnosis

via Version Comparison

Memory leaks are tedious to detect and require significant debugging effort to be

reproduced and localized. In particular, many such bugs escape traditional testing

processes used in software development. One of the reasons is that unit and

integration tests run too short for leaks to manifest via memory bloat or degraded

performance. Moreover, many of such defects are environment-sensitive and not

triggered by a test suite. Consequently, leaks are frequently discovered in the

production scenario causing high costs.

In this chapter, we propose an approach for the automated diagnosis of memory

leaks during the development phase. Our technique uses the differences between

software versions and existing test suites of the application. The key idea is to

compare object (de-)allocation statistics (collected during unit/integration test

executions) between a previous and the current software version. By grouping these

statistics according to object creation sites, we can detect anomalies and pinpoint

the potential root causes of memory leaks. Such diagnosis can be accomplished

before visible memory bloat occurs, and in time proportional to the execution of

test suite. We evaluate our approach using real leaks found in 7 Java applications.

Results show that our approach has sufficient detection accuracy and is useful in

isolating the leaky allocation site: exact defect locations rank relatively high in the

lists of suspicious code locations if the tests trigger the leak pattern. Our

43

4. Automated Memory Leak Diagnosis via Version Comparison

prototypical system imposes an acceptable instrumentation and execution overhead

for possible memory leak detection even in large software projects.

4.1 Introduction

Software systems are becoming more complex due to growth in size and functionality.

This increases the risk of latent defects which are difficult to be detected by the unit

and integration testing. Memory leaks are the most prominent type of latent defects.

They occur if objects remain in heap memory but are never reaccessed. However, also

other types of latent defects (e.g., unterminated threads, unreleased file descriptors or

pipes) finally lead to increased memory consumption and can be reduced to memory

management problems.

Although the garbage collector is responsible for the memory management in

memory-managed languages such as Java, C# or Python, they still suffer from

memory leaks. The reason for this is that garbage collectors of these languages

over-approximate object aliveness by its reachability [16]. Consequently, a reachable

object is not disposed of even if it will not be used again. The most common

scenario for such defects is forgotten references in collection data structures [132].

For example, objects encapsulating requests to a web server are frequently

referenced from a collection data structure (list or map) which implements a

processing queue. If the reference is not removed from the queue after the request is

processed, the garbage collector cannot dispose of the associated object, and a

memory depletion occurs.

Leaks are notoriously hard to detect, reproduce, and fix. One of the reasons

is long latency between leak triggering and the manifestation of visible symptoms

such as memory bloat or performance degradation [49]. A further problem is their

sensitivity to inputs and execution environments [16]. As a consequence, many of

such defects escape in-house quality assurance measures including unit, integration,

and even performance testing. If these bugs be discovered in customer usage, they

can have a significant economic impact. For example, a “latent memory leak bug”

has caused a partial outage of Amazon’s EC2 cloud service on 22 October 2012 [5],

affecting operations of hundreds of EC2 customers.

44

4.1. Introduction

Memory leak diagnosis is an important problem for both researchers and

practitioners. Based on an empirical study on the publications of the top tier

software engineering conferences, the detection, and root cause analysis of memory

leaks is among the top 10 highly rated research ideas [75]. Several tools [38, 49, 86]

and research techniques are developed and designed to help developers to detect and

isolate memory leaks. Most of these approaches for the diagnosis of memory leaks

follow a “symptom to root cause” algorithm to detect memory issues [130]. One

strategy is to apply staleness analysis to identify “dead” objects - those objects

which can not be accessed for a long time [16, 50, 60, 93, 132]. Another group of

works is based on analyzing heap growth [23, 59, 111, 112], or analysis of captured

state [28, 86, 88, 129]. Most of these works assume that a leak has been already

observed and test code triggering the leak is available. They help the developer with

isolating the root causes of a leak at the cost of a proprietary execution environment

(e.g., modified JVM [16]) or significant execution slowdown (e.g., 300-400% for

Java [132]). Recent approaches for C/C++ focus on performance efficiency and

promise a slowdown of ≤3% [60]. Such a low overhead makes them usable in a

production environment and allows leak detection at customer sites.

However, none of these works address the fact that virtually all non-trivial software

projects today (1) are developed as a series of relatively small code changes, and

(2) are accompanied by an extensive suite of software tests which check (primarily)

functional properties of the artifact. In this work we exploit (1) for an anomaly-

detection based approach for leak diagnosis, and (2) for triggering memory leaks

during in-house testing. Our approach supports the automated diagnosis of memory

leaks during the software development phase and helps to pinpoint the root causes if

a leak is captured. It requires only small modifications on software testing framework

and no changes in the source code of tests and software. This is an essential factor

for its acceptance and practicability in the context of existing projects. Since our

method is an anomaly detection technique, it is not necessary to execute the test

until significant memory bloat occurs (such bloat is a prerequisite for most existing

methods). In this way, diagnosis time remains proportional to the time for executing

the project’s test code.

45

4. Automated Memory Leak Diagnosis via Version Comparison

4.1.1 Core Idea

Inspired by the Delta Debugging [138] for isolation of “crashing” errors we use

software version comparison to uncover memory-related defects of the current

(latest) software version. In this way, we can extract additional information which is

not available when investigating each software version by itself an approach taken

by previous work. Figure 4.1 outlines the approach. Given an older and current

version of the software under development, we try to identify differences in memory

allocation and deallocation behavior for each allocation site between these two

versions. The workloads used here are unmodified (unit or integration) tests. We

assign each such allocation site an anomaly score (denoted as leak confidence LC,

Section 4.2.4) and rank the sites by this value. Unusually high LC values of

top-ranked sites might indicate a new memory leak. Detection can be performed by

manual evaluation of such top LC scores. For automated leak detection, the leak

confidence of top-ranked sites can be compared against a threshold. If an alert is

triggered, the ranking of sites supports debugging by indicating which allocation

sites should be checked first.

4.1.2 Contributions

This chapter presents the following contributions:

• We propose an approach for diagnosis of memory leaks (Section 4.2.1) based

on comparison of software versions under development. Contrary to other

approaches, such diagnosis can be made during the development phase and

before visible memory bloat occurs, in time proportional to the execution of a

project’s test code.

• We validate our approach using both synthetic and real-world cases. We inject

memory leaks at random places of different components of Apache Hadoop.

Moreover, we evaluate our approach in seven real-world cases found in five

medium to large-scale projects. We perform extensive empirical evaluations of

the accuracy and efficiency of our approach and provide estimations on

execution time and memory overheads (Section 4.4).

46

4.2. Leak Detection via Version Comparison

Artifact
version vnew

Artifact
version vold

Instrumented
version vnew

Instrumented
version vold

Test 1 Test k…

test executions

profilenew(t1) profilenew(tk)…

test executions

profileold(t1) profileold(tk)…

Test 1 Test k…

Intercepting object
allocation / deallocation

per allocation site

Allocation sites
ranked by leak

confidences

Leak detection

Leak isolation

Figure 4.1: Overview of our approach.

• The results show that if the test code (provided with the project) triggers the

execution of defect-related allocation sites, our approach can accurately

diagnose leak-inducing allocation site with a low rate of false positives

(Section 4.4). Furthermore, the overheads on our prototypical testbed indicate

that the approach is feasible for performing leak diagnosis during the

development phase and before the release time.

4.2 Leak Detection via Version Comparison

Our approach is based on comparing object allocation and deallocation behavior of

a previous version vold and a target (usually most recent) version vnew of a software

artifact under development (Figure 4.1). Our method attempts to diagnose leaks

which have been newly introduced by code evolution between vold and vnew. We do

not assume that vold is leak-free but leaks already present in vold are less likely to be

discovered. Thus, the choice of vold should consider its reliability, mainly whether

memory bloat has been observed during prolonged execution. Our approach works

with both C/C++ and managed languages, with the only difference being

technicalities of code instrumentation. The details of our prototypical

implementation in Java are outlined in Section 4.3.1.1.

47

4. Automated Memory Leak Diagnosis via Version Comparison

4.2.1 Approach Description

The first component of our method is monitoring all heap memory allocation and

deallocation events. These events are grouped by individual allocation sites, i.e., code

statements which triggered the allocation (for deallocation of memory/object, its

allocation site is still the grouping criterion). To this end, we use code instrumentation

via bytecode rewriting as described in Section 4.3.1.1. In the case of Java Virtual

Machine (JVM) used for our prototypical implementation, all memory allocations on

the heap are caused by object creation, and so we equal memory allocation and object

instantiation on the heap.

An essential element of our approach is the comparison of allocation behavior at

the granularity of individual allocation sites between different versions of the

software under development. For each allocation site, its allocation profile under

execution of multiple different tests is recorded. Metrics which exploit data from

these multiple runs (Section 4.2.4) and also data comparison between software

versions allow deciding about the potential presence of a leak. If yes, similar criteria

determine the rank of a particular allocation site in a list of suspicious leak-inducing

allocation sites (Section 4.2.5).

4.2.2 Instrumentation and Data Collection

Given software versions vold and vnew, we identify (by static analysis) in each version

all code locations which can allocate heap memory. In Java, such an allocation

is triggered by object instantiation; in C/C++ this can also be caused by calling

new() or related functions. We denote such a code location as an allocation site

as and identify it by a source file ID, line number and (in case of Java) the class

of the instantiated object. With such a specification, each allocation site uniquely

corresponds to a location in the application bytecode.

In the subsequent phase of the diagnosis, we execute a series of software tests on

instrumented versions of both vold and vnew and collect allocation-related data from

each test run. For clarity, we speak in the following about unit tests (symbol ut), but

in fact, any other type of test or terminating code can be used. In detail, for a given

48

4.2. Leak Detection via Version Comparison

unit test ut and software version v the following data is logged for each allocation site

as:

• number na of objects allocated at as during the whole execution of ut.

• among all objects created at as, the number nd of objects deallocated during

the execution of ut.

Of particular interest is the number of residual objects which have not been

deallocated upon termination (counted for a particular allocation site). Given an as,

we compute the residual objects for as by nr = na − nd. Based on this number, we

call as with nr > 0 as suspicious allocation site, otherwise as a safe allocation site.

The data obtained after running ut under artifact version v are the tuples (IDas,

na, nd) for all allocation sites, where IDas is data described above which uniquely

identifies an allocation site. We call this set of tuples (over all allocation sites) an

allocation profile and denote it by profileold(ut) or just profileold for vold and by

profilenew(ut) (or profilenew) for vnew. Note that test execution is not always

deterministic, and so the allocation profile might depend on a particular run.

The full results of the dynamic data collection are a set Dold of all allocation

profiles (i.e., overall unit tests) executed under vold, and an analogous set Dnew for

vnew.

4.2.3 Types of Allocation Sites

Some of the allocation sites present in profileold do not exist or have not been executed

in profilenew and vice versa. This gives rise to the following grouping of allocation

sites:

• Old allocation sites. These are allocation sites which are recorded only in the

allocation profile profileold. As we are interested in leak discovery in the newer

software version vnew, such allocation sites can be safely ignored.

• New allocation sites. These are allocation sites which are visible only in the

new allocation profile profilenew.

• Matching allocation sites. These are allocation sites which appear in both old

and new profiles.

49

4. Automated Memory Leak Diagnosis via Version Comparison

Line insertions or deletions due to changes between previous and new software

version change line numbering for all subsequent lines in the respective source file.

This issue creates a technical problem for pairing (matching) allocation sites between

versions. For example, if in source file F a new line after the line number k has been

added, each line with number j > k in the older version of F corresponds to line

with the number j + 1 in the newer version of F . Since line numbers are part of data

identifying an allocation site, the line numbers must be adjusted to identify all new

and matching sites correctly.

We solve this problem with an algorithm, called statement matching algorithm

which analyses the differences between source codes of vold and vnew and adjusts line

numbers in all profiles profilenew. The input of this algorithm are patches (*.diff

- files) expressing code differences between vold and vnew obtained by querying a

software repository for the project. However, also any other data comparison tool

which produces output in unified diff format can be used for preprocessing.

4.2.3.1 Statement Matching Algorithm

As illustrated in Figure 4.2, our algorithm locates first the drift candidates (lines 5-9),

i.e., the allocation sites which can be a matching site by adjusting the line number

of that allocation site. To do this, we define three sets: old, new, and matching. If

an allocation site is only in the older or newer version, we map it into the old or new

set, respectively. If an allocation site is in both versions with the same source line

number and class name, we map it to the matching set.

For older set entries, our approach attempts to compute drift amount pointing to

the new source line in the newer version (i.e., an entry in the new set). For each entry

in the drift candidates list, we check whether the source line of that entry has been

moved or removed after the changes in the newer version. If it is removed, we also

remove that entry from the drift candidates list (lines 13-17). Otherwise, we calculate

the drift (lines 18-28). The drift is yielded by the sum of the added lines reduced by

the sum of the removed lines if the addition or deletion of a line occurs before the

line number of the drift candidate in the same source file. Finally, after updating the

drift candidates from the old set (lines 30-31), we try to find an entry in the new set

for each of the remaining drift candidates. Each entry in the drift candidates which

50

4.2. Leak Detection via Version Comparison

Auxiliary functions:
- oldAS, newAS : allocation sites pairs for older and newer versions
- lineType(lineNum): returns type of the source line number of an allocation site in
the diff file, deleted for removed line and added for added line
- labeledOldAS, labeledNewAS : Two lists of allocation sites with match labels for each
allocation site in oldAS and newAS. For each allocation sites, matchLabel = 0 if it
exists in both oldAS and newAS, “-2” if it only exists in oldAS and “-1” if it only
belongs to newAS
Input: diffFile, labeledOldAS as a set of allocation sites only in oldAS
Output: amount of drifts for allocation sites in oldAS
function computeDrift(labeledOldAS, oldVersion, newVersion):
1: updatedOldAS, driftCandidates, chunkList ← new List[]
2: diffFile ← getDifferenceUsingDiff(oldVersion,newVersion)
3: chunkList ← parseDiffToChunksOfChanges(diffFile)
5: for allocation site in labeledOldAS do
6: if matchLabel(allocation site) ==−2 then
7: driftCandidates ← allocation site
8: end if
9: end do
10: for allocation site in driftCandidates do
11: srcFile,lineNum ← getSiteParam(allocation site):
12: for chunk in chunkList do
13: if(srcFile and lineNum) in chunk then
15: if lineType(lineNum) == deleted then
16: break
17: end if
18: initialize drift variable
19: chunkStartLineNum ← getChunkLineNum(chunk)
20: if lineNum > chunkStartLineNumthen
21: for statement in chunk do
22: if lineType(statement) == deleted then
23: drift ← drift − 1
24: else if lineType(statement) = added then
25: drift ← drift +1
26: end if
27: end do
28: end if
28: end if
29: end do
30: lineNum← lineNum + drift
31: updatedOldAS ← (srcFile:lineNum, class)
33: end do
34: return updatedOldAS

Figure 4.2: Matching algorithm for drift computation of two software versions.

51

4. Automated Memory Leak Diagnosis via Version Comparison

can be matched to an entry in the newer set using drift algorithm will be removed

from both older and newer sets and mapped to the matching set.

4.2.4 Leak Confidence Score

This section describes the computation of a scalar anomaly measure called leak

confidence score (LC) from the complete sets of allocation profiles Dold and Dnew.

This score maps each allocation site as encountered in vnew to a numerical value

LC(as) in [0, 1], with higher values indicating higher defect probability. The general

form of LC(as) is:

LC(as) = A(as) ∗B(as) ∗ C(as), (4.1)

with terms A(as), B(as), and C(as) described below. Their definitions are based on

our empirical observations and our prior research on memory leak detection [65].

To simplify the notation, we introduce for x 6= 0, y 6= 0 the normalized harmonic

mean of x and y H(x, y) defined by:

H[x, y] =
1

1/x + 1/y
.

We set H = 0 if x = 0 or y = 0.

4.2.4.1 Factor A(as)

This factor captures the overall strength of an allocation site as in terms of residual

objects. It only considers the version vnew. It exploits as a core idea the observation

that a leaky allocation site as is likely to deallocate only a few of its allocated objects.

This should hold for any unit test ut and will yield a high “relative” number of residual

objects nr(as, ut)/na(as, ut).

We can achieve a higher robustness if we consider the set UT (as) of all unit tests

which cover as. This motives the definition of the rate of residuals ResidR: it is

52

4.2. Leak Detection via Version Comparison

the fraction of allocated objects which are not deallocated during the execution of

relevant unit tests:

ResidR(as) =

∑
ut∈UT (as) nr(as, ut)∑
ut∈UT (as) na(as, ut)

. (4.2)

Our experiments have shown that leaky allocation sites have higher absolute

number of residual objects
∑

ut∈UT (as) nr(as, ut) (summed over all relevant unit

tests). The final formula for A(as) combines both expressions via the normalized

harmonic mean:

A(as) = H[ResidR(as, UT),
∑

ut∈UT

nr(as, ut)]. (4.3)

4.2.4.2 Factor B(as)

This factor captures how easily a memory leak is triggered at an allocation site as by

a unit test that exercises it. It only considers version vnew. If an allocation site as

becomes a leak cause, then it is likely to create residual objects under many different

execution patterns (represented by different unit tests). We define (”dirty”) test rate

TestR(as) as the fraction of unit tests ut (among unit tests in UT (as)) for which the

number of residual objects nr(as, ut) is greater than zero.

The metric TestR(as) can be inaccurate in case of small |UT (as)|, i.e., if allocation
site as executed only few times. To dampen the impact of such cases, we use harmonic

mean of TestR(as) and |UT (as)|:

B(as) = H[TestR(as), |UT (as)|]. (4.4)

4.2.4.3 Factor C(as)

This factor measures the “leakiness” of an allocation site as in the new version vnew

compared to the old version vold (and hence considers both versions). If an allocation

site as becomes a leak cause due to evolution between versions vold and vnew, the

number of its residual objects nr(as) is likely to increase in vnew. We define the

NresidChR(as) as the relative change in the number of residual objects of as in the

older version to the newer version:

53

4. Automated Memory Leak Diagnosis via Version Comparison

NresidChR(as) =
nr(as, vnew)− nr(as, vold)

nr(as, vnew)
.

Note that for new allocation sites, nr(as, vold) is equal to zero, and so we have

NresidChR(as) = 1 in such cases.

Allocation sites with larger value of numerator ∆(as) := nr(as, vnew)−nr(as, vold)

have higher probability to be a memory leak. Therefore we define C(as) as the

harmonic mean of NresidChR(as) and ∆(as):

C(as) = H[NresidChR(as), ∆(as)]. (4.5)

4.2.5 Ranking

The sets Dold and Dnew of all allocation profiles are used to compute the Leak

Confidence LC (Section 4.2.4) for each allocation site triggered in the current

software version vnew. In the next analysis step, the allocation sites in vnew are

ranked by their LC values in decreasing order. In this way, we obtain a ranked list

of suspects with most suspicious sites being top-ranked.

4.2.6 Discussion

Why unit testing? Software systems are becoming more complicated due to

growth in size and functionality. This growing complexity causes more bugs in

software. Fixing bugs during the development phase can save a lot of time and

costs. Unit testing is a simple and efficient way to find most of the bugs during the

development phase. Many of today’s software projects have included an extensive

tests suite. However, unit testing is usually used for testing the functional

properties. Due to the severity of memory leaks, it would be highly beneficial to

find such bugs before a software release. For this reason, in this work, we tried to

propose an approach which uses unit testing to pinpoint memory leaks in the

development phase.

Fixing memory leaks. Although the goal of our approach is to isolate the leak-

inducing allocation sites, it is the main and challenging step toward fixing the memory

54

4.3. Experimental Design

leak. During the search for real-world memory leaks in the bug repositories of Java

applications, we noticed that many reported leaks are not a real memory leak. Many

leak-related issues are labeled as “invalid” or “not a problem”. Limited knowledge

about the behavior of memory leaks or interpreting other problems such as race

condition as a memory leak are some of the reasons for having an incorrect report of

memory leak. This confirms that the proper isolation and detection of memory leaks

acts as the first and main step toward fixing and removing memory leaks.

4.3 Experimental Design

4.3.1 Methodology

To evaluate how our approach works in the diagnosis of memory leak, we used both

synthetic and real-world memory leaks. All of the experiments are conducted in a

virtual machine with 8 GB physical memory running on a 2.9 GHz Intel Dual Core

i7-3520M CPU with Ubuntu 12.04. We used Java 1.6.0_27 with 4 GB heap size.

Framework, data and evaluation results of our approach are available online1. Note

that all of the steps in order to compute the leak confidence analysis and to report

the ranked list of the suspicious allocation sites are fully automated.

4.3.1.1 Instrumentation

We use instrumentation to record the allocation profiles (Section 4.2.2). In Java, an

allocation site corresponds to a unique location in the bytecode. We specify it by the

name of the corresponding source file, the line number of this allocation site in the

source file, and the class of instantiated object. In this way, the developer can identify

(during leak isolation) the code location more quickly than via bytecode position.

Object allocation. To monitor and record object allocations we use the library

java-allocation-instrumenter [79]. It performs static code analysis and instruments

bytecode at each allocation site. This instrumentation calls our proprietary code hook

which inspects the current stack trace. We retrieve the code location of the caller (i.e.,

allocation site source file and line number) and save this information together with

1http://1drv.ms/1GU3Pfn

55

4. Automated Memory Leak Diagnosis via Version Comparison

Table 4.1: Subject programs. Column “# Unit Tests” shows the number of unit tests
used in the evaluation.

Subject Program # LOC # Unit Tests
Hadoop-Common 94k 234
Hadoop-Yarn 163k 85
Hadoop-HDFS 200k 315
Hadoop-MapReduce 157k 166
Snappy-Java 2.5k 6
Apache Thrift 6k 18
Apache Solr 38k 19
Apache Nutch 27k 31

the class of the instantiated object in a hash map. Our hook also checks whether the

allocation site is located in one of the source files of interest. Note that we exclude

code in the third-party libraries.

Object deallocation. The final function of the code hook is to prepare

notifications of object deallocations. To this end we link via phantom references

(using Java’s sun.misc.Cleaner.create() method) each newly allocated object with a

proprietary callback method. This method executes precisely once after the object

has been deallocated. It can identify the allocation site as for the object and

updates the deallocation count for it.

After a test is finished but the JVM is still alive, we enforce a garbage collection

and record the statistics na and nd for each monitored allocation site.

4.3.1.2 Experimental Setup

We evaluated the accuracy of our approach on two sets of known memory leaks:

(a) Eight synthetic defects causing controllable memory leaks injected in the source

code of the Apache Hadoop framework; (b) Seven real leaks found in different Java

applications/projects. The subject programs used in the evaluation are listed in

Table 4.1.

For experiments on the dataset (a) we injected defective code into the four

components of Apache Hadoop2, namely Common, Yarn, HDFS and MapReduce.

Apache Hadoop is a large-scale open source software project containing more than 1

2http://hadoop.apache.org

56

4.3. Experimental Design

Table 4.2: Hadoop source code versions used in the evaluation of synthetic leaks.
Column “Development Revision” shows the used revisions. Column “Changed Files”
shows the differences between V0 and V1 in terms of files, where “m” and “a” indicate
the number of modified and added files, respectively. Column “#Changed Lines”
states the total number of changed lines between both versions.

Version Development Changed #Changed
Revision Files Lines

V0 r1446308 42m + 1a 1401
V1 r1450807

million lines3 of Java code with many development revisions. Each component

includes a comprehensive test suite. These features make Apache Hadoop a suitable

environment for the evaluation of our approach for suitability for large-scale

software systems.

In the experiments using dataset (b), we collected seven real leaks from five large

open source applications. Three out of seven cases are from Apache Hadoop. The rest

is collected from four other applications: Snappy-Java, Apache Solr, Apache Nutch,

and Apache Thrift (Table 4.1). The first column of Table 4.5 shows the details of the

corresponding leaks.

Snappy-Java4 is a port of Snappy project used in many programs and

frameworks such as Apache Spark, Big Table, MapReduce for compression and

decompression. Apache Solr5 is an open source enterprise search platform mainly for

full-text searching. Apache Nutch6 is an open source, scalable, feature-rich web

search engine. Apache Thrift7 is a software framework for the development of

scalable and efficient cross-language services.

4.3.1.3 Implementation of Synthetic Defects

To simulate both matching and new allocation sites, we inject code triggering

synthetic memory leaks into each of the two consecutive Hadoop development

revisions V0 and V1 described in Table 4.2. For each of V0 and V1, the leak-triggering
3On February 18, 2016, Open hub (https://www.openhub.net/p/Hadoop) was reporting that

Apache Hadoop has 1,107,731 lines of Java code
4https://github.com/xerial/snappy-java
5http://lucene.apache.org/solr
6http://nutch.apache.org
7https://thrift.apache.org

57

4. Automated Memory Leak Diagnosis via Version Comparison

Auxiliary data structure: static array leakingObject
private final static java.util.Collection <byte[]> leakingObject =
new java.util.LinkedList <byte[]>();
function addLeak (allocationSiteIndex, AAStype, leakStrength) :
1: if AAStype 6= invisible then
2: leakSize = random integer from 1, . . . , leakStrength
3: byte[] allocatedMemory = new byte[leakSize];
4: if AAStype = leaky then
5: leakingObject.add(allocatedMemory);
6: end if
7: end if

Figure 4.3: Pseudo code of the Artificial Allocation Site (AAS) used as a leak-
triggering defect.

code is inserted at matching code locations. These consequent development

revisions were randomly selected from the Hadoop code repository. The eight code

locations for injections were also chosen randomly (yet we covered all four Hadoop

components).

Each leak-triggering patch is implemented as a piece of code which creates a

byte array and can add it to a static Java collection each time the code is executed.

Figure 4.3 shows the pseudo code of such an injection. We call the Java statement

creating a byte array an artificial allocation site (AAS).

We can control the settings of each AAS via parameter AAS type to enforce three

states: invisible, non-leaky and leaky. An AAS is invisible if no byte array is allocated

upon its execution. We use this state to simulate allocation sites of type new in V1:

this is achieved by setting AAS to invisible in V0 and its sibling in V1 to non-leaky or

leaky. If an AAS in V0 and its sibling in V1 are both either non-leaky or leaky, the

AAS in V1 is obviously of type matching.

Furthermore, we control another parameter called leak strength s (in bytes) which

bounds the maximum size of a created synthetic leak (i.e., allocated byte array). The

actual amount of memory allocated for each leak is picked randomly from interval

[1, . . . , s] using uniform distribution. Using this randomness property, we ensure that

our injected leak is non-deterministic and therefore it is more similar to the real-world

cases.

58

4.3. Experimental Design

However, large values of s cause to inflate the accuracy of our leak diagnosis

approach. Identifying a large memory leak in comparison with other allocation sites

with small or no residual objects can be “too easy” even with an imprecise leak

detector. Therefore we use as the leak strength the value s = 10 (bytes) for matching

sites, and leak strength s = 2 for simulated new allocation sites. These small values

are conservative and selected to evaluate whether our approach is accurate even in

case of small leaks.

4.3.2 Research Questions

To evaluate our approach, we designed experiments to answer the following research

questions:

RQ1:How accurate is our approach in diagnosing memory leaks caused

by synthetic defects (dataset a)?

To answer this question, we activate each of the 8 synthetic defects (one by one)

to cause memory leaks, in each case with allocation site types new and matching. In

each of the resulting 16 cases we apply our approach and report: 1) the leak confidence

score for the injected (artificial) allocation sites and 2) the the position of the injected

allocation site in the ranked list of the suspicious allocation sites (Section 4.4.1).

RQ2: What is the accuracy of our approach for diagnosis of real

memory leaks (dataset b)?

To answer this research question, we perform the leak confidence analysis for

each of the seven issues listed in Table 4.4 on two application variants: on a leaky

version (i.e., containing memory leak), and a non-leaky version (an application version

committed to the repository before the leaky version). We report: 1) the leak the

confidence score for the leaky allocation site, 2) the position of this allocation site in

the ranked list of the suspicious allocation sites, 3) the number of allocation sites with

the LC > 0, and the value of LCmax (Section 4.4.2). Also, we describe the details for

each of these seven issues.

RQ3: What is the impact of each factor of the leak confidence metric

LC on the accuracy of memory leak diagnosis?

In Section 4.2.4, we proposed three factors to compute the leak confidence metric.

This research question evaluates the impact of these factors on the performance of

59

4. Automated Memory Leak Diagnosis via Version Comparison

our approach on dataset b. To answer RQ3, we perform the leak confidence analysis

separately for each factor (over all of the subject programs), and then compare the

results with the results obtained by the last metric (Equation 4.1).

RQ4: What is the overhead of our approach in terms of runtime and

memory usage?

To answer RQ4, we evaluate our approach in terms of runtime and memory

overhead (Section 4.4.4). For each unit test we collect metrics Runtime and

Resident Set Size (RSS) after the execution of each unit test. Finally, we aggregate

the collected measures overall unit tests for the program in question and report the

overall results for each case.

4.4 Experimental Evaluation

In this section, we answer the research questions.

4.4.1 Experiment I: Evaluation of Synthetic Defects

In the first experiment, we try to answer RQ1 by evaluating the accuracy of our

approach using synthetic defects. To this end, we designed two scenarios: new site

analysis and matching site analysis (Section 4.2.3).

New site analysis. Memory leak is introduced in the newer version of the

software in question. Given an allocation site as and a consecutive version pair

< V0, V1 >, as only exists in the heap profile of version V1 with nr(as)v1 > 0. For

this scenario, we insert the synthetic leak (pseudo code shown in Figure 4.3) in the

random places of version V1 of Hadoop program shown in Table 4.2. Then we adjust

leak strength s = 2 for each leak (i.e., injected leak has a size of at most 2 bytes).

Matching site analysis. Leak-inducing allocation site already exists in the

older version, but it is inactive and is triggered by the committed changes in the

newer version. Scenario “b” means that as exists in the heap profile of both versions

with nr(as)v1 > nr(as)v0 . In this scenario, we insert the synthetic leak in the random

places of both versions of Hadoop shown in Table 4.2. Then we adjust leak strength

s = 0 for each leak (i.e., leaky allocation site is visible but with a very small size) in

60

4.4. Experimental Evaluation

Table 4.3: Evaluation results of synthetic memory leaks. Column “Leak ID” indicates
each synthetic leak. Section (a) reports the LC value for the leaky AAS(Column
“LC”) and also the difference between the LC values of the first two entries of the
ranked list (Column “LC diff”). Section (b) shows the result of leak isolation: Column
“rank” reports the rank of leaky AAS in the ranked list and Column “#Candidates”
shows the number of allocation sites with LC > 0.

Leak ID AAS
(a) LC Analysis (b) Leak Isolation

LC
LC Rank # Candidates
Diff LC > 0

common#1 new 0.99 0.10 1 86
common#2 matching 0.99 0.33 1 5161
yarn#1 new 0.95 0.08 1 121
yarn#2 matching 0.96 0.3 1 5572
yarn#3 new 0.96 0.09 1 97
yarn#4 matching 0.96 0.25 1 5838
yarn#5 new 0.96 0.09 1 178
yarn#6 matching 0.96 0.23 1 5218
hdfs#1 new 0.99 0.11 1 129
hdfs#2 matching 0.99 0.24 1 5265
hdfs#3 new 0.99 0.13 1 120
hdfs#4 matching 0.99 0.26 1 5265
mr#1 new 0.97 0.1 1 190
mr#2 matching 0.97 0.12 1 5732
mr#3 new 0.94 0.09 1 170
mr#4 matching 0.94 0.14 1 5492
no leak new 0.88 0.06 - 156
no leak matching 0.69 0 - 5974

the version V0 and leak strength s = 10 for each leak (i.e., injected leak has size of at

most 10 bytes) in the version V1.

To find the suspicious allocation site in each scenario, we execute all unit tests

over both old and newer versions and collect the heap profiles overall unit tests

(Section 4.2.2). Finally, we use our leak confidence analysis (Section 4.2.4) to

identify the most suspicious allocation sites and report these allocation sites as a

ranked list to the developer. All experimental data for synthetic defect evaluation of

the new and matching sites are reported in the Table 4.3. The results show that our

approach can diagnose the leak-inducing allocation sites accurately with a high leak

confidence score.

61

4. Automated Memory Leak Diagnosis via Version Comparison

Section (a) in the Table 4.3 reports the highest leak confidence value in each case

in addition to the difference between the leak confidence value of the first two entries

of the ranked list. Although the size of the injected leaks was small, our approach

could detect all of them with a high leak confidence. In all of these cases, the injected

leaks had the highest leak confidence among all of the other reported allocation sites

in the ranked list. This is an essential feature of our approach - it can report the

leak-inducing allocation site with a high leak confidence score. Also, the results show

that in most of the matching memory leaks, there is a relatively big difference between

the leak confidence value of the first two ranked allocation sites. It reveals that if a

leak pattern is triggered due to changes in the newer version of the code, then our

approach can detect it. However, for new memory leaks there exists a small gap

between the first two entries in the ranked list.

With further investigation of the experimental data, we found out that if an

allocation site is leaky, the number of residual objects in most of the unit tests

exercising this specific allocation site is greater than zero. Furthermore, if an

allocation site with residual objects greater than zero is triggered frequently, our

approach reports it with a high leak confidence value. This makes sense in the

real-world scenarios because some functions are more frequently executed and

memory issues due to the execution of these functions cause more effects in the

performance of the application (rather than a memory defect in a rarely executed

function).

Table 4.3(b) reports the results of leak isolation. There are a large number of

allocation sites with several residual objects greater than zero which can be observed

by monitoring the running unit tests. Having a ranked list on these allocation sites

to highlight the most-suspicious ones can accelerate finding the root cause of memory

leaks by developers. To this end, our approach reports a ranked list based on the leak

confidence analysis (Section 4.2.5) for new and matching sites. The results show that

all synthetic memory leaks are ranked first in both types of allocation sites.

4.4.2 Answer to RQ2: Evaluation of Real-World Issues

The second experiments evaluate the efficiency of our leak diagnosis approach in real-

world cases. We collected seven real cases from different Java projects listed in the

62

4.4. Experimental Evaluation

Table 4.4: Information related to the real memory leaks. Column “#Trig. UT(#Total
UT)” shows the number of unit tests which trigger the leak pattern. The number in
parenthesis indicates the total number of unit tests for that project.

Issue Status Leaky Non-Leaky #Trig. UT
Version Version (#Total UT)

hadoop-8632 fixed 2.0.0a 0.20.0 135(234)
hdfs-5671 fixed 2.2.0 2.0.6-alpha 2(315)
yarn-1382 fixed 2.2.0 0.23.11 23(46)
thrift-1468 fixed 0.5.0 0.4.0 0(18)
snappy-91 fixed 1.1.1.5 1.1.1.3 2(6)
solr-1042 fixed 1.3 1.2.1 11(19)
nutch-925 fixed 1.2 0.8 13(31)

Table 4.4. For each of these cases, the developers fixed the reported leak by applying

new patches to the leaky version. We used these patches to find the leak-inducing

allocation site and also to verify the accuracy and efficiency of our approach. Note

that to fix memory leaks, developers have changed multiple lines of code in different

files. However, in each case, we marked the leak-inducing allocation site as the root

cause of the memory leak.

For each real case, we reproduced the leaky version from the information provided

by the issue report in the bug repository. For non-leaky versions, we manually found

a non-leaky version prior to the leaky one by comparing the source codes. In this

way, we obtained seven pairs of software versions (one per issue): <non-leaky older

version, leaky newer version>. Although the manual finding a non-leaky version is

quite tedious, this step is needed only in the evaluation, and it is not a limitation of

our approach.

For experiments, we collect and analyze data before and after leak-inducing

changes in each of the seven cases. For each case, we executed all unit tests for both

non-leaky and leaky versions of the program in question. Then we applied the leak

confidence analysis to find the leak-inducing allocation site corresponding to a

memory leak.

Table 4.5 shows the result of leak isolation and leak confidence analysis for each

case. In 4 out of 7 cases, the allocation site contributing to memory leaks were

ranked in the top 10. In issue Snappy-91, we report the instantiation site of the leaky

63

4. Automated Memory Leak Diagnosis via Version Comparison

Table 4.5: Results of leak confidence analysis and leak isolation for real cases. Section
(a) shows the result of the leak isolation: rank of the leak-inducing allocation site and
the size of the ranked list of suspects with LC > 0. Section (b) reports as LC the
leak confidence score for the leak-inducing allocation site and as LCmax the largest
leak confidence value among all sites in the ranked list.

Issue (a) Leak Isolation (b) LC Analysis

Rank #Candidates (LC > 0) LC LCmax

hadoop-8632 2 3007 0.98 0.99
hdfs-5671 668 5524 0.54 0.99
yarn-1382 115 2368 0.79 0.96
thrift-1468 - 151 - 0.71
snappy-91 1 40 0.57 0.57
solr-1042 4 129 0.77 0.83
nutch-925 8 226 0.8 0.91

allocation site as rank one. The root cause of memory leaks in issues HADOOP-8632,

Solr-1042 and Nutch-925 were ranked 2, 4 and 8, respectively.

For issues HDFS-5671 and YARN-1382, our approach assigns low ranks to the

leak-inducing allocation sites. The reasons are discussed in Section 4.4.2.1. In case

of the issue Thrift-1468, our approach did not include the root cause of memory leak

in the list of suspects. This can be attributed to the fact that the unit tests at all

do not trigger the leak-activating allocation site. Consequently, this allocation site

did not appear in the list of known allocation sites. In the following, we provide a

detailed analysis of each real case.

4.4.2.1 Case Studies

Hadoop Common

Issue HADOOP-86328 reports that a newly introduced variable CACHE_CLASSES

in the configuration class caused a leak on the class loaders. This variable is a part of a

patch for solving a performance regression bug in issue HADOOP-6133. Therefore the

changes in the HADOOP-6133 could be the root cause of this memory leak. However,

the memory leak was reported three years after HADOOP-6133 was submitted in issue

8https://issues.apache.org/jira/browse/HADOOP-8632

64

4.4. Experimental Evaluation

HADOOP-8632. Consequently, a developer has modified the code with converting the

strong reference of the class to its ClassLoader to a weak reference:� �
−−− org/apache/hadoop/conf/Configuration.java

+++ org/apache/hadoop/conf/Configuration.java

@@ −219,8 +220,8 @@

− private static final Map<ClassLoader, Map<String,

− Class<?>>> CACHE_CLASSES = new

− WeakHashMap<ClassLoader, Map<String, Class<?>>>();

+ private static final Map<ClassLoader, Map<String,

+ WeakReference<Class<?>>>> CACHE_CLASSES = new

+ WeakHashMap<ClassLoader, Map<String, WeakReference<Class<?>>>>();� �
Although there is a large number of changes between the leaky and non-leaky

version, our leak confidence analysis could pinpoint the instantiation site of the

variable CACHE_CLASSES correctly with a high leak confidence score, placing it

at position two in the ranked list of suspects. The reason for such a high leak

confidence score is that the leak pattern, in this case, is exercised by many unit

tests. Also, the residual objects for the leak-inducing allocation site were greater

than zero in all unit tests executing this site.

Hadoop HDFS

Issue HDFS-56719 reports a leak in the getBlockReader method of the

DFSInputStream class. When a client requests a file’s block to DataNode, the

BlockReader will be called from DFSInputStream class. If the cache is missing, a

new pair for BlockReader will be created. However, if an IOException is thrown

during creation of a new BlockReader with the given pair, then the TCP socket used

by the regionserver will not be closed. This causes too many close-wait status

which is a socket (connection) leak and finally results in a huge memory footprint.

To solve this issue, developers changed DFSInputStream class and moved the

statement which creates a new BlockReader into a try block which closes the peer

when there is no new BlockReader.
9https://issues.apache.org/jira/browse/HDFS-5671

65

4. Automated Memory Leak Diagnosis via Version Comparison

� �
Peer peer = newTcpPeer(dnAddr);

− return BlockReaderFactory.newBlockReader(

− dfsClient .getConf(), file , block, blockToken,

− startOffset , len , verifyChecksum, clientName, peer,

− chosenNode, dsFactory, peerCache,

− fileInputStreamCache , false , curCachingStrategy);

+ try {

+ reader = BlockReaderFactory.newBlockReader(

+ dfsClient .getConf(), file ,block,blockToken, startOffset ,

+ ...

+ } finally {

+ if (reader == null) {

+ IOUtils . closeQuietly (peer) ;

+ }

+ }}� �

We applied our approach to pinpoint the site which calls the new BlockReader.

We used the version reported by the issue as the leaky version. However, for the

correct version, we chose a much earlier version before the leaky one because issue

HDFS-5671 was not reported as a regression error. We exercised this leak to check

the reaction of our approach to the enormous amount of changes between the two

software versions (i.e., leaky and non-leaky versions).

Our approach reported the suspicious statement, however with a low leak

confidence score and low ranking position. The main reason for this low accuracy is

the low number of unit tests which trigger a memory leak. The leak confidence

value is directly dependent on the number of unit tests which trigger a memory leak

pattern. The more triggering unit tests, the higher the value of the leak confidence.

However, in this case, in contrary to issue HADOOP-8632, only two unit tests (from

the total number of 315 unit tests) exercised memory leak pattern which

contributed to low accuracy.

66

4.4. Experimental Evaluation

Hadoop YARN

Issue YARN-138210 reports that NodeListManager class in Hadoop-YARN contains a

memory leak when a node in the unusable nodes set never comes back. This issue was

reported in the comments of another issue (YARN-1343). Based on the description

of the issue, although this is not a huge memory leak, it can be accumulated if the

NodeManager are configured with ephemeral ports which assumes that the nodes are

still new when they are released.

We applied our approach to check whether it can find the leak-inducing allocation

site for this memory leak. Our approach could pinpoint the leaky site with a high leak

confidence score. Also, developer fixed this issue mainly with removing this allocation

site (and also its corresponding code pieces) which is not used in the code anymore:� �
− private Set<RMNode> unusableRMNodesConcurrentSet = Collections

− .newSetFromMap(new ConcurrentHashMap<RMNode,Boolean>());� �
Despite the high LC value for the leak-inducing allocation site, its position is low

in the ranked list. The main reason for the low accuracy is a large number of changes

between the leaky and non-leaky versions. Our approach requires a pair of consecutive

versions of the application in order to categorize the allocation sites and to perform

the leak isolation using the leak confidence analysis. If these two versions have a huge

source code difference (i.e., many versions between the prior and current versions),

the total number of newly introduced allocation sites increases substantially. This

considerably affects the rank of the leak-inducing allocation site and also increases

the number of potential leak suspects.

Snappy-Java

Snappy-Java suffered from a severe memory leak after updating from version 1.1.1.3

to the version 1.1.1.4. This memory leak was reported in issue Snappy-9111. It had

negative effects on Apache Spark 1.2.0 which updated the Snappy-Java library to

the version 1.1.1.4. Due to memory leak introduced in the newer version of the

Snappy-Java, Spark developers roll-backed to the previous version of the

10https://issues.apache.org/jira/browse/YARN-1382
11https://github.com/xerial/snappy-java/issues/91

67

4. Automated Memory Leak Diagnosis via Version Comparison

� �
+ inputBuffer = inputBufferAllocator . allocate (inputSize) ;
+ outputBuffer = inputBufferAllocator . allocate (outputSize) ;� �

Figure 4.4: The leak-inducing changes in the Snappy-Java.

Snappy-Java. Figure 4.4 shows the code excerpt which contains the leak-inducing

changes in the SnappyOutputStream class. The outputBuffer is allocated from the

inputBufferAllocator, however it is released to the outputBufferAllocator.

After applying our approach to Snappy-Java, it could catch the instantiation site

of the inputBufferAllocator as a suspicious allocation site with a high leak confidence

score and also assigned it the highest rank in the list of suspects.

Solr

Issue Solr-104212 reports a memory leak in the DataImportHandler. If

SqlEntityProcessor executes DataImport many times, the instances of

TemplateString will be cached. This causes the memory footprint to grow steadily

until it reaches an OutOfMemory exception. The solution for this memory leak is to

use the TEMPLATE_STRING as a non-static variable. This is applied by the

developers to the next version of SOLR:� �
− private static final TemplateString TEMPLATE_STRING = new TemplateString();

+ private final TemplateString templateString = new TemplateString();� �
Our approach could pinpoint the instantiation site of the TEMPLATE_STRING

variable as the root cause of this memory leak by ranking it among the top four

potential root causes. The leak confidence score of the root cause was 0.77 - a small

difference to the site with the highest leak confidence score (0.83).

Nutch

Issue Nutch-92513 reports a severe memory leak in the plugin repository cache used

in the PluginRepository class of NUTCH. The plugins are stored in a WeakHashMap

<conf, plugins>. Each time plugins are needed, a new Class and ClassLoader will be

12https://issues.apache.org/jira/browse/SOLR-1042
13https://issues.apache.org/jira/browse/NUTCH-925

68

4.4. Experimental Evaluation

created. Since Class and ClassLoader are stored in the permanent heap space they

cannot be garbage collected. Therefore the OutOfMemory exception will be thrown

eventually. Following is the partial changes applied by the developers to fix this issue:� �
− private static final WeakHashMap<Configuration, PluginRepository> CACHE =

− new WeakHashMap<Configuration, PluginRepository>();

+ private static final WeakHashMap<String, PluginRepository> CACHE =

+ new WeakHashMap<String, PluginRepository>();� �
We applied our leak confidence analysis to this memory leak. Our approach could

isolate the leak root cause among the top eight entries of the ranked list with a

relatively high leak confidence score of 0.8.

Thrift

Issue Thrift-146814 reports a memory leak which is captured during the running of

Apache HCatalog. According to the description of this issue, if a HCatalog server runs

for a long time with continuous client requests, the memory footprint of themetastore-

server grows continuously until it reaches anOutOfMemory exception. The HCatalog-

server uses Apache Thrift. There is a WeakHashMap which maps TTransport objects

to their wrapped TSaslServerTransport instances in the class TSaslServerTransport

of the Apache Thrift. However, in the WeakHashMap the value has a hard reference

back to the key. Therefore the entry persists for all time, since the key can not be

garbage collected. This causes an increase in the memory usage when the HCatalog-

server is running. Following is a part of the patch that is applied by the developers

to fix this issue:� �
− private static Map<TTransport, TSaslServerTransport>

− transportMap = Collections .synchronizedMap(new WeakHashMap<TTransport,

− TSaslServerTransport>());

+ private static Map<TTransport, WeakReference<TSaslServerTransport>>

+ transportMap = Collections .synchronizedMap(new WeakHashMap<TTransport,

+ WeakReference<TSaslServerTransport>>());� �
14https://issues.apache.org/jira/browse/THRIFT-1468

69

4. Automated Memory Leak Diagnosis via Version Comparison

Table 4.6: The contribution of each factor in leak confidence analysis of real cases.
Section (a) shows the value of each factor for the leaky allocation site of each of the
cases. Section (b) reports the rank of each leaky allocation site in the ranked list
using each factor.

Issue (a) LC Value (b) Rank
A(as) B(as) C(as) LC(as) A(as) B(as) C(as) LC(as)

hadoop-8632 0.99 0.99 0.99 0.98 15 1 107 2
hdfs-5671 0.9 0.67 0.9 0.54 552 1777 2662 668
yarn-1382 0.82 0.97 0.99 0.79 761 319 51 115
snappy-91 0.92 0.67 0.92 0.57 1 13 1 1
solr-1042 0.92 0.92 0.92 0.77 5 1 11 4
nutch-925 0.93 0.93 0.93 0.8 14 5 25 8

However, our approach was not successful in the case of Apache Thrift. After

further investigations, we found that the correspondent function triggering this

memory leak was not exercised by the test suites provided with the Apache Thrift.

Naturally, our approach was unable to isolate the root cause.

This memory leak is highly environment-sensitive, and hence it can be only

triggered by exercising a specific pattern. Although this case shows a limitation of

our method, it simultaneously points possible extensions. We can use test

generation techniques with optimization objective to find patterns triggering

memory leaks. This is an important research direction which is also mentioned by

the previous work [96, 130].

4.4.3 Answer to RQ3: Analysis of Factors Contributing to LC

To understand the contribution of each factor in the equation 4.1 on the result of leak

detection, we perform the leak confidence analysis by incrementally applying of each

factor in the equation 4.1. Table 4.6 shows the result of this evaluation for real cases.

From the results, we can observe that all three factors can contribute to the

performance of leak confidence analysis. However, the contribution of each factor

to the LC value depends on the project. For example, the value of B(as) factor

is directly affected by the number of unit tests which their resulting heap profiles

contain the allocation site as. Therefore it is clear to see that the more unit tests are

executing allocation site as, the higher value for B(as) factor will be obtained. This

70

4.4. Experimental Evaluation

value is lowest for the leaky allocation site in HDFS-5671 and Snappy-91 because only

two unit tests exercised the leak path in these cases.

4.4.4 Answer to RQ4: Evaluation of Runtime and Memory

Efficiency

To answer RQ4, we measured the performance of our approach using POSIX-conform

operating system commands. Runtime and Resident Set Size (RSS) are the metrics

that we collected for each unit test.

To compute the overhead of our approach, we collected the runtime and RSS

after the execution of each unit test with and without instrumentation. Then for

each subject programs we aggregated the obtained results from execution of all of the

unit tests corresponded to the subject program. The overhead is then computed as

follows:

overhead =

∑
ut∈UT metricinst −

∑
ut∈UT metricw/o inst.∑

ut∈UT metricw/o inst.

where metric can be the runtime or RSS (metricinst is the value of instrumented

version, and metricw/o inst. without instrumentation) and UT is the set of unit tests

corresponding to each application.

Figure 4.5 shows the runtime and RSS overhead of our approach on the subject

programs. The result shows that our approach imposes a moderate overhead on both

runtime and RSS which makes it applicable for the development phase.

The overhead runtime of our approach is imposed by the instrumentation used

for collecting the heap profiles. It causes delays in both instantiation and deletion of

allocation objects which increases in the overall execution time of the unit tests. As

shown in Figure 4.5, the execution time of the unit tests with instrumentation is from

0.55 to 3.75 times more than the runtime of the unit tests without instrumentation.

One solution to decrease the runtime overhead is the selective instrumentation. For

example, we can instrument only the part of the code which is only relevant to the

recent code changes.

Resident set size (RSS) is also measured for each of the subject programs.

Figure 4.5 shows that the aggregate RSS for each subject programs with

71

4. Automated Memory Leak Diagnosis via Version Comparison

0

1

2

3

4

common hdfs yarn thrift snappy solr nutch

Runtime

RSS

Figure 4.5: Runtime and RSS overhead of subject programs. Overhead of 1 (y-
axis) means that the instrumented version has twice the runtime or RSS of the non-
instrumented version.

instrumentation is from 0.9 to 3.97 times more than aggregate RSS of that program

without instrumentation.

4.5 Discussion

4.5.1 What is the Distribution of the Leak Confidence Value

for Various Software Projects?

In this section, we analyze the distribution of the leak confidence value for various

software projects. In a scenario where an allocation site with a highest leak confidence

score is used to alert about the potential presence of leaks automatically, knowledge of

this distribution is essential to find a value of a threshold LCth which balances the rate

of false positives and false negatives. We assume here a simple alerting mechanism

where an alert is triggered if the highest leak confidence score is above a threshold

LCth. A low threshold value can introduce many false positives, while high threshold

values might lead to false negatives (i.e., missing leaky allocation sites).

For this, we plotted the probability density function of leak confidence value for the

allocation sites reported in the ranked list of suspects for each application. Figure 4.6

shows the results of this evaluation for real memory leaks. We can see that for most

72

4.5. Discussion

0.0 0.2 0.4 0.6 0.8 1.0
LC value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n
(p

df
)

hadoop8632
hdfs5671
nutch925
snappy91
solr1042
yarn1382

Figure 4.6: Distribution of leak confidence score LC for the allocation sites reported
in the ranked list for real leaks.

projects except snappy the distribution is similar: it peaks around LC value of 0.3,

and it is significantly tailed towards the larger LC values (between 0.8 and 1.0). For

snappy, the peak is at 0.18 and largest LC values are in the range 0.55 - 0.6.

In comparison with Table 4.5, we conclude that such value of the threshold LCth

in the interval 0.7 - 0.8 is reasonable for most but not all projects. Therefore a

“reasonably useful” automated detection of the presence of leaks based on a simple

threshold is possible, but only after a careful investigation of specifics of the targeted

software artifact.

4.5.2 Does Our Approach Help Developers to Detect Memory

Leaks?

Leak detection (i.e., alerting about the existence of any potential new leaks) can be

performed in two ways. The first option is manual inspection of the top-ranked

allocation sites in the ranked list. If the leak confidence value of the top entries is

substantially higher than previously observed values for this application, or if

previously unknown allocation sites surface to the top, a manual alert can be

triggered.

73

4. Automated Memory Leak Diagnosis via Version Comparison

The second option is to raise an alert automatically if the highest LC value in the

list is above a threshold, i.e., LC(as) > LCth. The optimal value of such a threshold

needs to be adjusted for each application separately. After the investigation on real-

world projects, we found that the threshold for LC value is project-based. It means

that we can not set the same threshold value for any arbitrary project. Section (b) of

Table 4.5 shows the actual leak confidence values of the leak-inducing allocation sites

(column LC). For comparison, we also included LCmax as the largest leak confidence

value among all sites in the ranked list. The values reported for LCmax clearly show

that the top values of the leak confidence scores vary between applications, ranging

between 0.54 (Snappy-91) and 0.99 (HADOOP-8632, HDFS-5671). This makes it

indeed necessary to use application-specific threshold values for automated (threshold-

based) leak detection.

As shown in the Section 4.5.1, it is possible to use our approach for memory leak

detection. However, much more sophisticated methods such as adaptive thresholds or

a combination of a threshold and “novelty” of top-ranked sites are needed to increase

the accuracy of the leak detection. The investigation of such schemata is beyond the

scope of this work.

4.5.3 Can Our Approach Find the Root Cause of the Memory

Leaks?

Leak isolation, finding the root cause of memory leak is performed analogously to

automated debugging: a developer is given a ranked list of suspects and investigates

the code and behavior of the top-ranked allocation sites in this list.

As discussed in Section 4.4, our method is acceptably accurate by placing the

leak-inducing allocation sites close to the top of the ranking list. After further

investigation of the real-world cases, we found out that in most of the cases, the

developers mainly modified the leak-inducing allocation sites (pinpointed by our

approach) to fix memory leaks. This is the case for issues HADOOP-8632,

YARN-1382, HDFS-5671, Solr-1042, and Nutch-925. In Snappy-91, the developers

fix the memory leak issue with changing source code lines different than the

reported top-ranked suspicious allocation sites in the ranked list. However, after

74

4.6. Threats to Validity

digging into the source code, we realized that the reported leaky allocation site is

the instantiation site of the modified line. Therefore our approach indirectly

pinpointed the root cause of the memory leak. In such cases, a possible solution for

finding the primary root cause is using common IDEs or some static analysis

approaches such as forward slicing (with instantiation site as seed statement).

4.6 Threats to Validity

Threats to external validity arise when the results of the experiments cannot be

generalized for any arbitrary program. We evaluated our approach on the limited

number of applications. Therefore we can not claim that our approach can isolate

memory leaks in all types of real-world applications. However, we are confident

that our approach can be applied to a variety of Java applications (and C/C++

applications with suitable code instrumentation). This can help developers in the

root cause analysis of memory leaks and also narrowing down the list of suspicious

allocation sites.

Threats to construct validity arise when our approach is unable to pinpoint the

leaky allocation site because of lack of the tests which trigger memory leak pattern.

It means that the accuracy of our approach is influenced by the ability of the tests

to trigger the leak-inducing defects. We can avoid this problem by having test suites

with better code coverage which is a common goal in the quality assurance of current

software projects.

Threats to internal validity arise when our approach instrument the source

code of the application in question. Delay in the instantiation and the destruction of

the allocated objects due to the code instrumentation might affect the run time of

the testing process. However, the overall overhead of our approach is moderate and

is comparable to the existing leak detection approaches.

4.7 Chapter Summary

In this chapter, we proposed a regression-based leak detection technique. We

leveraged dynamic analysis to generate the profile of the allocations and

75

4. Automated Memory Leak Diagnosis via Version Comparison

deallocations for each allocation site in the codebase of the application during

runtime. Then, we compared the resulted profiles between two previous (non-leaky)

and current (leaky) versions of the application to find the suspicious allocation sites.

Then, using a newly introduced confidence score, we rank the suspicious allocation

sites. The top-ranked allocation sites are highly likely potential root causes of the

memory leaks.

From the results of the experiments, we found out that our approach is generally

useful in the detection and isolation of memory leaks. By analyzing the result obtained

from the first experiment (i.e., experiments on synthetic leaks), we can conclude that

our approach can diagnose memory leaks if the (unit) tests exercise the execution

pattern triggering the leak. Therefore, we can assess for RQ1 that our approach is

precise in finding the synthetic leaky allocation sites.

In terms of effectiveness on the real-world cases, we examined our approach on

several mid to large real-world applications (also to verify the scalability of our

detection approach). From six out of seven cases, our approach included the leaky

allocation site in the list of suspects. In four cases, the root cause of memory leaks

was ranked in the top 10 of the ranking report. As such, for RQ2, we can assess

that our approach applies to large, real programs and it can diagnose defects if the

tests code covers the leak-inducing allocation site.

We also evaluated the contribution of the factors used in the leak confidence

metric. As such, for RQ3, we can assess that each of the three factors contribute to

the leak confidence metric. However, the effect of each factor on the leak confidence

value depends on the application.

Based on the measured data we can assess for RQ4 that our approach imposes

acceptable overhead in terms of runtime and memory consumption. This makes our

approach feasible for use in the testing process.

Our proposed approach also differs from previous related work [65]. Compared

to this work, we provided a more robust and accurate result using a leak confidence

analysis. In this chapter, we used a refined metric, mainly the (absolute) numbers

of allocated and deallocated objects measured for many different (unit) tests to find

the suspicious allocation sites statistically while in work [65] the authors only used a

single unit or integration test for finding the suspicious allocation sites.

76

Chapter 5

An Empirical Study on Leak-inducing

Defects and Their Repairs

Despite many software engineering efforts and programming language support,

resource and memory leaks remain a troublesome type of issues, even in managed

languages such as Java. Understanding the properties of leak-inducing defects, how

the leaks manifest and how they are repaired is an essential prerequisite for

designing better approaches for avoidance, diagnosis, and repair of leak-related bugs.

We conduct a detailed empirical study on 491 issues from 15 mature and large Java

projects. We propose taxonomies for the leak types, for the defects causing them,

and for the repair actions. We investigate, under several aspects, the distributions

within each taxonomy and the relations between them. Based on our findings we

draw a variety of implications how developers can avoid, detect, isolate and repair

leak-related bugs.

5.1 Introduction

Leaks are unreleased system resources or memory objects which are no longer used by

an application. In memory-managed languages such as Java, C#, or Go, a garbage

collector handles memory management. The garbage collector uses object reachability

to estimate object liveness. It disposes of any heap objects which are no longer

reachable by a chain of references from the root objects. However, if an unused

77

5. An Empirical Study on Leak-inducing Defects and Their Repairs

object is still reachable from other live objects, the garbage collector cannot reclaim

the space. Aside from memory, finite system resources such as file handles, threads,

or database connections require explicit management specified in the code. It is the

responsibility of the programmer to dispose of the acquired resource after using it;

otherwise, a resource leak is likely.

Leak-related bugs are severe [115] and can finally result in performance

degradation and program crash. Hence, they should be resolved at an early stage of

development. However, due to their non-functional characteristics, leaks are likely

to escape traditional testing processes and become first visible in a production

environment. The root cause of a memory leak can differ from the allocation which

exhausts the memory [59]. Some leaks can only be triggered if abnormal behavior

occurs such as an exception or a race condition. These factors make leak diagnosis

laborious and error-prone.

Defects induced by memory and resource leaks are among the important

problems for both researchers and practitioners. Microsoft engineers consider leak

detection and localization as one of the top ten most significant challenges for

software developers [75]. This problem is addressed by various researchers, tools,

and programming languages. Many previous works targeted memory and resource

leak diagnosis by leveraging static and dynamic analysis. Static analysis is used for

leak detection via finding unclosed resources on different execution

paths [26, 34, 106, 116, 121, 133]. The main challenge of static analysis is the lack of

scalability and high rate of false positives. To mitigate this issue, researchers apply

dynamic analysis techniques for leak diagnosis [14, 37, 50, 59, 88, 94, 131].

Programming languages provide support for programmers to prevent occurrences

of leak-inducing defects. For instance, Java 7 introduces a new language construct,

called try-with-resources1 to dispose of the objects that implement the autoclosable

interface. Various open-source or proprietary tools (e.g., FindBugs2, Infer3) also aim

to help programmers to find the potential leaks in the software codebase. For example,

1https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
2http://findbugs.sourceforge.net
3http://www.fbinfer.com

78

5.1. Introduction

FindBugs provides some rules4 to warn programmers about potential file descriptor

leaks.

Despite the above-mentioned academic works, language enhancements, and tool

supports, several challenges are still open. The impact of these efforts depends on

whether they target common or rare issue types, whether they can handle severe

cases, and whether their assumptions are realistic enough to be applicable in practice.

Programming language enhancements such as try-with-resources or tool support

such as FindBugs help to find only the resource leaks and no memory leaks. Many

of the academic works are motivated by anecdotal evidence or by empirical data

collected only from small sets of defects. For example, [131] propose a method for

detecting memory leaks caused by obsolete references from within object containers

but provide only limited evidence that this is a frequent cause of leak-related bugs

in real-world applications. As another example, Leakbot [88] introduces multiple

sophisticated object filtering methods based on observations derived from only five

large Java commercial applications.

A systematic empirical study of a large sample of leak-related defects from

real-world applications can help both researchers and practitioners to have a better

understanding of the current challenges on leak diagnosis. We believe such a study

can be beneficial in the following directions:

Benefit 1. A representative study can characterize the current approaches for leak

diagnosis used in practice. This can guide researchers to find limitations of leak

detection approaches and motivate further improvements. The results would provide

a comprehensive basis for the design and evaluation of new solutions.

Benefit 2. It helps programmers to avoid mistakes made by other programmers and

shows some of the best practices for leak diagnosis.

Benefit 3. It can be used as a verification for the assumptions used in previous

work. For example, it is interesting to verify whether there is a large number of leaks

caused by collection mismanagement in real-world applications. The definite answer

to this could confirm the assumption of [131] on memory leak detection.

To the best of our knowledge, the research body of empirical studies on resource

and memory leak-related defects is relatively thin in comparison with the vast body

4http://findbugs.sourceforge.net/bugDescriptions.html

79

5. An Empirical Study on Leak-inducing Defects and Their Repairs

of studies about other bug types (e.g., semantic or performance bugs). The existing

studies [78, 115] provide only limited information about characteristics of detection

types, root causes, and repair actions of leak defects. To fill this gap, we conduct a

detailed empirical study on 491 real-world memory, and resource leak defects gathered

from 15 large, open-source Java applications [42, 43].

We manually study the collected issues and their properties: leak types, detection

types, common root causes, repair actions, and complexity of fix patches. Based on

our findings, we draw several implications on how to improve avoidance, detection,

localization, and repair of leak defects. In particular, this study tries to answer the

following research questions:

. RQ1. What is distribution of leak types in studied projects?

. RQ2. How are leak-related defects detected?

. RQ3. To what extent are the leak-inducing defects localized?

. RQ4. What are the most common root causes?

. RQ5. What are the characteristics of the repair patches?

. RQ6. How complex are repairs of the leak-inducing defects?

This work provides the following contributions:

Characterization study. We conduct an empirical study on 491 bugs from 15

mature, large Java applications. To the best of our knowledge, this is the first work

which studies characteristics of leak-related bugs from real-world applications

comprehensively while using a broad set of issues from diverse open-source

applications.

Taxonomies. We propose taxonomies for leak types (Section 5.4.1), detection

types and methods (Section 5.4.2), root causes (Section 5.4.4), and repair

actions (Section 5.4.5).

Analysis. We investigate the distributions of leaks across the categories within each

taxonomy and the relation between the taxonomies. Our findings show that source

code analysis and resource monitoring are the main techniques to detect leaks. Our

analysis using a state-of-the-art resource leak detection tool (i.e., Infer) highlights that

80

5.2. Background

the static analysis tools require further improvement to detect different leak types in

practice. We find that 76% of the leaks are triggered during the error-free execution

paths. We identify 13 recurring code transformations in the repair patches. We also

show that developers resolved the studied issues in about six days on the median.

Implications. We use our findings to draw a variety of implications on the leak

prevention and diagnosis for both researchers and practitioners (Section 5.5).

Replicability. To make our study replicable and reusable for the community, we

make the dataset and the results available online5.

5.2 Background

5.2.1 Issue Report

Modern projects often use an Issue Tracking System (ITS) to collect the issues

reported by users, developers, or software quality teams. An issue typically

corresponds to a bug report or a feature request. Bugzilla6, JIRA7, and GitHub

issue tracker8 are examples of ITS systems. Each issue report in the bug tracker is

identified with a unique identifier. For example, in JIRA, this is a combination of

the project name and a number (e.g., SOLR-1042). In GitHub, an identifier is a

number with a preceding hashtag (e.g., issue #1865 in RxJava project). An issue

report in Jira contains a variety of information such as title, description, comments,

and links to the related fix patches. It also contains metadata information such as

type, status, priority, resolution, and associated timestamps (e.g., created or

resolved timestamps). Figure 5.1 shows a snippet of an issue report from Jira. All

the information provided in issue reports makes the issue tracker a rich environment

to get more insights on bugs and their corresponding repairs.

5https://github.com/heiqs/leak_study
6https://www.bugzilla.org/
7https://issues.apache.org/jira/projects/
8https://github.com/

81

5. An Empirical Study on Leak-inducing Defects and Their Repairs

1142_close_single_use_activations_draft.txt 10/Jul/06 21:172 kB

metadataloop.java 23/Mar/06 03:080.6 kB

When calling a DatabaseMetaData method that returns a ResultSet,
memory is leaked. A loop like this (using the embedded driver)

while (true)
{ ResultSet rs = dmd.getSchemas(); rs.close(); }

will eventually cause an OutOfMemoryError.

Metadata calls leak memory
Derby DERBY-1142

Details

Type: Bug Status: CLOSED

Priority: Minor Resolution: Fixed

Affects Version/s: 10.1.2.1, 10.2.1.6 Fix Version/s: 10.2.1.6

Component/s: JDBC

Labels: None

Description

Attachments

Activity

All Work Log History Activity TransitionsComments

 added a comment - 23/Mar/06 03:08

Attached repro. With Derby 10.1.2.1 and Sun JVM 1.4.2,
OutOfMemoryError was thrown after about 80000 calls to
DatabaseMetaData.getCatalogs().

 Knut Anders Hatlen

 added a comment - 23/Mar/06 21:30

The direct cause of the memory usage is in the org.apache.derby.impl.sql.conn.GenericLanguageConnectionContext
class, more specifically its member "acts", which is a Vector of Activation instances. It seems one Activation is added to
the vector for every dmd.getSchemas() execution, but they are never removed. I've drilled down to this using NetBeans'
memory profiler and debugger and IBMs HeapRoots utility in concert. While I can hunt through heap dumps I can't say
that I know enough about Derby internals yet to suggest how to fix this. I've tried explicitly closing the preparedstatement
in DatabaseMetaData before returning, but to no effect. I need some time to figure out how all these things (activations,
prepared statements, connections and connection contexts) fit together. =)

 Anders Morken

 added a comment - 23/Mar/06 23:52

Thanks for looking into this, Anders!

The activation is removed from acts when Activation.close() is
called. Normally, EmbedResultSet.close() calls theResults.finish()
(implemented in BasicNoPutResultSetImpl), which calls
activation.close(). From BasicNoPutResultSetImpl.finishAndRTS():

if (isTopResultSet && activation.isSingleExecution())
activation.close();

For the metadata query, isSingleExecution() returns false, hence
activation close() isn't called when the result set is closed It

 Knut Anders Hatlen

Figure 5.1: An issue report from JIRA.

5.3 Empirical Study Design

In this section, we describe the design of our empirical study. Figure 5.2 gives an

overview of our methodology. In the remainder of this section, we illustrate the

research questions, studied applications, and data collection process.

5.3.1 Studied Projects

We perform a study on 15 open-source Java projects hosted in two major

repositories, Apache and GitHub. We investigate the leak-related issues from a wide

82

5.3. Empirical Study Design

Selecting projects

Java
projects

in Apache

 Manually select
10 Java projects

Collecting data

Issues
summaries

Issues
descriptions

Issues
comments

Issues
patches

Timestamps
“created” and

“resolved”

Filtering issues

Dataset with
452 issues

Search
keyword “leak”

Filter issues
with type “Bug”

Filter issues with
resolution “Fixed”

Remove
false positives

Research Questions

RQ2RQ1 RQ3 RQ4 RQ5 RQ6

Collecting Timestamps

Collect timestamps
“created”

and “resolved” of
all issues

Figure 5.2: Overview of the empirical study design.

variety of software categories to ensure the diversity of the studied projects.

Table 5.1 lists the studied projects. AMQ9 is an open-source message broker with

the support of cross language clients and protocols. CASSANDRA10 is a distributed

database targeting high scalability and availability. CXF11 is an open source

framework for developing services using frontend programming APIs. DERBY12 is

an open-source relational database. HADOOP13 is a distributed computing

9http://activemq.apache.org
10http://cassandra.apache.org
11http://cxf.apache.or
12http://db.apache.org/derby
13http://hadoop.apache.org

83

5. An Empirical Study on Leak-inducing Defects and Their Repairs

Table 5.1: Overview of studied projects. Column “Since” lists the year of the first
commit and column “#Committers” presents the number of committers in each
projects based on Apache Committee Information. The kLOC of each project shows
the number of Java code lines retrieved by OpenHub.
Project Category Since #Committers #kLOC
AMQ Distributed messaging 2004 58 1158
CASSANDRA Distributed database 2009 45 313
CXF Web service 2007 38 674
DERBY Relational database 2004 44 689
HADOOP Distributed computing 2006 163 1260
HBASE Distributed database 2007 57 1115
HIVE Data warehouse 2009 63 1074
HTTPCOMP. Network client/server 2004 18 115
LUCENE Search framework 2004 67 557
SOLR Search framework 2008 67 416
Realm Java Mobile database 2012 14 116
Spring Boot Application framework 2012 180 311
Logstash Data Processing 2009 43 74.6
RxJava Reactive programming 2013 65 279
Selenium Browser driver 2006 115 703

platform including four main components: Ha Common, HDFS, MapReduce, and

YARN. HBASE14 is a distributed, scalable and big data store. HIVE15 is an

SQL-enabled data warehouse for large datasets. HTTPCOMPONENT16 with its

two components core and client is a toolset for working with the HTTP protocol.

LUCENE17 is a high performance, cross-platform text search engine. SOLR18 is an

open-source full-text enterprise search server based on LUCENE. Realm Java19 is

the Java implementation of the Realm project which is a mobile database. Spring

Boot20 is a framework for creating stand-alone Spring based applications.

Logstash21 is a server-side data processing pipeline which transports and processes

the logs, evenets, other types of data. RxJava22 is a Java implementation of the

14http://hbase.apache.org
15http://hive.apache.org
16http://hc.apache.org
17http://lucene.apache.org/core
18http://lucene.apache.org/solr
19https://github.com/realm/realm-java
20https://github.com/spring-projects/spring-boot
21https://github.com/elastic/logstash
22https://github.com/ReactiveX/RxJava

84

5.3. Empirical Study Design

Reactive Extensions which is an API for asynchronous programming. Selenium23

provides tools and libraries for the web browsing automation.

We study these projects for two reasons. First, they are large-scale and open-

source projects with a mature codebase with years of development. We believe that

by using such a well-established and well-developed applications, we can get results

representative for mature Java projects. Column #kLOC in Table 5.1 shows the size

of the Java source code of the studied projects ranging between 74 to over 1200 kLOC.

For the Github projects, the total number of stars is more than 100k.

Second, their issues are reported and tracked in a bug tracking system. Similar

to other bug trackers (e.g., Bugzilla), reports in JIRA or GitHub bug tracker are

well-described and provide sufficient information to answer the research questions

investigated in this study.

5.3.2 Research Questions

The following research questions guide our study:

RQ1. What is distribution of leak types in studied projects? In Section 5.4.1,

we analyze the dominant leak types in each project. We use this analysis in the next

research questions to distinguish the properties of different leak types.

RQ2. How are leak-related defects detected? Understanding different

detection types can help leak detection approaches to improve detection accuracy.

In Section 5.4.2, we investigate how developers or users report the leak-inducing

defects and how the leaks manifest at runtime. We analyze different detection and

manifestation types and study their relation to the leak types.

RQ3. To what extent are the leak-inducing defects localized? Bug

localization is the first step in bug diagnosis. The extent of the bug can highly affect

the number of files that need to be fixed to repair the bug. In this question, we

analyze the locality of leak-inducing defects (Section 5.4.3).

RQ4. What are the most common root causes? Section 5.4.4 describes the

common root causes of leak defects. We investigate the prevalence of each root cause

and their relation to the leak types.

23https://github.com/SeleniumHQ/selenium

85

5. An Empirical Study on Leak-inducing Defects and Their Repairs

RQ5. What are the characteristics of the repair patches? In Section 5.4.5,

we identify the repair actions applied by the developers to repair the leak-related

defects and investigate the frequency of each considering different leak types. We also

search to find recurring code transformations in the repair patches. We identify 13

common repair patterns from our dataset. In this question, we investigate whether

the automated program repair techniques (i.e., the process of providing the repair

patches automatically) such as template-driven patch generation are applicable for

fixing the leak-related defects.

RQ6. How complex are repairs of the leak-inducing defects?

In Section 5.4.6, we measure the code churn, change entropy, and diagnosis time to

assess the complexity of the changes needed to repair the leak-inducing defects.

This analysis provides insights about the difficulty of repairing the leak-related

defects and shows which type of leaks can be repaired with less effort in terms of

time and amount of code changes.

5.3.3 Data Extraction

For the Apache projects, we collected the leak-related issues from the bug tracker

reported until June 2016. For GitHub projects, we collected the issues reported until

January 2019.

To build a suitable dataset for our study, we apply a four-step filtering

methodology: (1) keyword search, (2) issue type filtering, (3) resolution filtering,

and (4) manual investigation. This four-step filtering method yields a dataset with

491 leak-related issues, each representing a unique leak bug report (i.e., none are

duplicates of another). We make the dataset available online24.

Keyword search. We use a simple heuristic and select issues that contain the

keyword “leak” in the issue title or issue description. The keyword search is a

popular method used by previous empirical studies [57, 92, 147] to filter the issues

of interest from the others. It is worth mentioning that we investigated other

leak-related keywords (unreleased, out-of-memory, OOM, closed, and others).

However, these keywords yield a dataset with a high number of false positives. For

example, the keyword “unreleased” is used in the title of the issue report
24https://github.com/heiqs/leak_study

86

5.3. Empirical Study Design

CXF-777625: “Download page should not link to the unreleased code.” It is evident

that this issue has no relation to this study. Pruning of such issues is

time-consuming and requires a considerable amount of manual effort.

On the other hand, it is possible that we skip some leak-related issues due to

our simple keyword search. For example, YARN-525726 refers to some unreleased

resources which are fixed. Although this is a leak-related issue, the term leak is not

mentioned in the issue title or description.

Despite the simplicity of keyword search, this heuristic proved to be highly precise

due to the high quality of issue reports and related data in the studied projects.

[128] highlight that even simple heuristics can yield the same precision and recall as

more sophisticated search techniques when applied to a well-maintained bug tracker.

Using the keyword search, we identify 1255 leak-related issues. Column “#Issues”

in Table 5.2 shows the number of filtered issues for each project.

Issue type filtering. Each issue in the bug tracker can be classified as “Bug”, “Task”,

“Test”, and so on. As we are only interested in leak-related bugs, we first filter issues

with type “Bug”. Among the 1255 issues filtered by keyword search, there are 838

issues labeled as a bug (column “#Bugs” in Table 5.2).

Issue resolution filtering. To analyze how developers repair a leak defect we need

to restrict our analysis to fixed bugs. For this, we filter issues with the resolution

label “Fixed” for Apache projects and “Closed” for GitHub projects. This reduces the

dataset to 591 issues (column “#Fixed” in Table 5.2).

Manual investigation. In the final step, we remove the false positives from our

dataset. We manually filter out the following issues:

• Non-leak-related bugs retrieved by our keyword search heuristic. For instance, in

issue CXF-339027, the term leak is used in “information leak” which is not related

to this study.

• Wrongly reported leaks. These issues should be tagged as “Invalid”, but are closed

in the bug tracker without correct labeling.

25https://issues.apache.org/jira/browse/CXF-7776
26https://issues.apache.org/jira/browse/YARN-5257
27https://issues.apache.org/jira/browse/CXF-3390

87

5. An Empirical Study on Leak-inducing Defects and Their Repairs

Table 5.2: Studied projects with statistics on number of issues (explained in
Section 5.3.3). Columns “#MLeak”, “#RLeak”, and “Total” show the numbers of
memory and resource leak issues per application, and their totals, respectively.
Project #Issues #Bugs #Fixed #MLeak #RLeak Total
AMQ 123 116 88 54 26 80
CASSANDRA 77 65 45 19 16 35
CXF 62 61 44 29 8 37
DERBY 50 36 23 12 4 16
HADOOP 236 201 132 43 76 119
HBASE 92 65 44 11 29 40
HIVE 78 69 47 19 25 44
HTTPCOMP. 31 28 24 8 12 20
LUCENE 77 65 42 13 21 34
SOLR 74 60 33 11 16 27
Realm Java 76 15 15 4 2 6
Spring Boot 94 17 16 2 10 12
Logstash 67 25 23 8 4 12
RxJava 100 14 14 5 3 8
Selenium 18 1 1 0 1 1
Total 1255 838 591 238 253 491

5.3.4 Tagging Leak-Related Defects

To analyze the properties of the leak-related defects, we need to classify the issues for

each dimension of interest (i.e., leak type, detection type, detection method, defect

type, and repair type). However, we only have qualitative information such as issue

description, developers discussions, and repair patches. There is no label provided in

the bug tracker for classification of the attributes that we are interested in reported

leaks. To derive properties for the bugs in our dataset, we need to quantify the

qualitative information. For this purpose, we perform an iterative process similar to

Open Coding [103, 104]. In our study, the input of the coding process for each issue

is issue summary, issue description, developers discussions, and repair patches.

Work [43] explains the process of the tagging in details. We first classify a sample

set of issues to determine the possible categories for each dimension. After identifying

the primary types for each category, we continue to label other issues based on the

preliminary categories.

The tagging process is iterative. Each time a new type is identified, the coders

(the first three authors in work [43]) verify it in a decision-making meeting. If a

88

5.3. Empirical Study Design

Table 5.3: Cohen’s kappa measurement.
Dimension Cohen’s Kappa

Leak Type (RQ1) 0.86
Detection Type (RQ2) 0.83
Detection Method (RQ3) 0.70
Defect Type (RQ4) 0.69
Repair Type (RQ5) 0.57

majority of the coders agree on the new type, they go through all the previously

tagged issues and check if the issues should be tagged with the new type. This also

minimizes the threat of human error during the labeling process. To further reduce

the error probability and in case of difficulty in classifying of the issues, all the coders

check and discuss the complex issues to find the appropriate categories. The conflicts

were resolved by discussing and coming to an agreement.

To validate the manual labeling process, we apply the following procedure. The

first two coders perform a classification of a statistically representative sample of the

dataset with a confidence level of 95% and a confidence interval of 10%. This results

in a sample set of 80 out of 491 issues. We calculate the inter-rater agreement with

Cohen’s kappa metric [9, 30]. Table 5.3 shows the result of our analysis. The lowest

Cohen’s kappa value is for the repair type, although it shows a moderate agreement

between the two coders. The reason for disagreements is that the categories in this

attribute are not mutually exclusive. Therefore, there is a probability that each coder

has a different interpretation of the same issue. After rating, the two raters discussed

their disagreements to reach consensus.

5.3.5 Uniqueness of Categories

During tagging task, we encounter the issues with the possibility of assigning them

to multiple categories. For example, in Hadoop-683328, a leak is reported due to the

forgotten call to the remove method of a collection. The developers repaired the bug

by adding the remove call in the exception path:� �
−−− src/java/org/apache/hadoop/ipc/Client.java

28https://issues.apache.org/jira/browse/HADOOP-6833

89

5. An Empirical Study on Leak-inducing Defects and Their Repairs

+++ src/java/org/apache/hadoop/ipc/Client.java

@@ −697,6 +697,7 @@ public class Client {

} else if (state == Status.ERROR.state) {

call . setException(new RemoteException(WritableUtils.readString(in) ,

WritableUtils . readString (in))) ;

+ calls .remove(id);

} else if (state == Status.FATAL.state) {

// Close the connection

markClosed(new RemoteException(WritableUtils.readString(in) ,� �
One could label this issue as collection mismanagement. However, if the exception

is thrown no leak is triggered. Therefore, we use the underlying cause as the main

root-cause category (here bad exception handling). For the repair action, we assign a

bug to the category used by the developer to repair the defect. In this example, we

label the repair action as remove element.

5.4 Empirical Study Results

In this section, we answer the research questions. For each research question, we

describe the motivation behind the question, the approach used in answering the

research question, and the findings derived from the analysis.

5.4.1 RQ1: What Is Distribution of Leak Types in Studied

Projects?

Motivation. In this research question, we want to find the primary leaked resource

for each issue. The leak type classification will be used in further research questions

to determine the existence of different patterns for different leak types. We also use

this investigation to assess the leak diversity on the studied projects. Understanding

the dominant leak type in each project can also help developers to focus on this leak

type for the current development phase.

Approach. For most of the studied issues, the reporters or developers explicitly

mentioned the leak type. For such cases, we assign the leak type as reported. In case

90

5.4. Empirical Study Results

0

10

20

30

40

50

iss

ue
s

LeakType = Memory

iss

ue
s

LeakType = Connection

AM
Q

CA
SS

AN
DR

A

CX
F

DE
RB

Y

HA
DO

OP

HB
AS

E

HI
VE

HT
TP

CO
M

P

LU
CE

NE

SO
LR

Se
le

ni
um

Re
al

m
 Ja

va

Lo
gs

ta
sh

Rx
Ja

va

Sp
rin

g
Bo

ot

Project

0

10

20

30

40

50

iss

ue
s

LeakType = Thread

AM
Q

CA
SS

AN
DR

A

CX
F

DE
RB

Y

HA
DO

OP

HB
AS

E

HI
VE

HT
TP

CO
M

P

LU
CE

NE

SO
LR

Se
le

ni
um

Re
al

m
 Ja

va

Lo
gs

ta
sh

Rx
Ja

va

Sp
rin

g
Bo

ot

Project

iss

ue
s

LeakType = File handle

Figure 5.3: Frequency of the leak types per project.

of no explicit mention of the leak type, we manually analyze the title, description,

and developers discussions to assign the correct leak type.

Taxonomy of leak types. Our analysis yields a taxonomy of leak types with the

following four categories:

Memory. We group in this category all issues reported due to unreleased references

to Java objects, such as mismanagement of collections or circular references.

File handle. We group in this category leaks related to file descriptors. These issues

are related to the mismanagement of Java file handlers such as I/O streams.

Connection. We group in this category leaks triggered by non-closed network or

database connections.

Thread. We group in this category leaks caused by unclosed, yet unused threads. A

thread leak occurs when a no-longer-needed thread is unnecessarily kept alive. This

thread then leaks its internal resources, which cannot be released by the JVM. This

is a particular case of a resource leak which always leaks memory as a consequence,

91

5. An Empirical Study on Leak-inducing Defects and Their Repairs

as each thread carries several local variables that can not be disposed of by the GC,

while the thread is alive.

Results. Figure 5.3 shows the distribution of the leak types for each project. We use

this data to find the dominant leak types for each project and the project categories.

Finding 1. The three leak types corresponding to the resource leaks (i.e., file

handle, connection, and thread) is the most common leak types in six out of the ten

projects. Resource leaks (with 253 issues) are slightly more reported than memory

leaks (with 238 issues).

Finding 2. Each project shows a distinct distribution of the leak types.

LUCENE and HADOOP have a higher frequency of the file handle leak type with

this leak type corresponding to 55.9% and 42.9% of the issues, respectively. Projects

AMQ (67.5%), CASSANDRA (54.3%), CXF (78.4%), and DERBY (75.5%) contain

more memory leak issues. Connection leaks are more frequently reported in HBASE

(37.5%), HTTPCOMP (30%), and Hive (27.3%). 10 out of 12 issues in Spring Boot

are of type thread leak. This analysis shows the diversity of the leak types in the

studied projects. Even projects within the same category show different

distributions of the leak types.

Summary. Resource leaks (253 out of 491 issues) are slightly more often

reported than memory leaks (238 issues). Leak type distribution is different

across the projects.

5.4.2 RQ2: How Are Leak-Related Defects Detected?

Motivation. Each issue report provides information about leak symptoms,

environmental setup, and methods used to detect a leak. Understanding how leaks

are detected can provide valuable insights on leak diagnosis. It also shows in which

direction the researchers and tool builders should help programmers in leak

detection. In this question, we want to find whether the leaks are detected during

runtime and whether the static analysis is used for leak detection.

Approach. To find detection type for each issue, we use three data sources: issue

title, issue description, and developers discussions. Using this data, we analyze the

92

5.4. Empirical Study Results

frequency of the detection types, distribution of detection methods, and their relation

to different leak types.

Taxonomy of leak detection. Leak-inducing defects can be discovered with and

without runtime failures or performance degradation. They can be detected via

manual analysis of the source code, an unexpected runtime failure (in particular, an

out-of-memory error), or abnormal usage of resources. We classify detection types

into two major categories: source code-based detection and runtime detection. In

the following, we explain these two detection types in more detail.

Source code-based detection. In this category, we classify issues such that the leak

detection is performed before execution of the program and there is no reported

runtime information in the issue report, nor reports on leak-related failures. We

observe that issue reporters describe these issues with phrases such as “can potentially

cause a leak” or “can lead to a leak”. The main techniques to detect leaks before the

runtime are manual code inspection and static analysis tools.

Manual inspection of the source code (or code review) is a process in which

developers inspect a set of program elements (e.g., methods, classes) in order to

improve the quality of software [54, 83, 109]. It is one of the most common static

detection methods used by developers in practice. This detection type requires the

knowledge of how a leak can be introduced as well as an understanding of the

application’s behavior. For instance, in AMQ-574529, manual inspection revealed

cases where bad exception handling could yield resource leaks on the AMQ

codebase.

Static analysis tools can be used to identify potential leak defects during the

development process without the need for runtime information. Such tools use the

source-code or byte-code to reason about programs. There are many free and

proprietary static analyzers which can detect specific leak types (e.g., FindBugs,

Infer). For example, FindBugs includes two rules to detect resource leaks related to

unclosed I/O streams.

Runtime analysis. Some leak-related failures are observed and reported when a

user/developer encounters a performance degradation in a production environment,

an out-of-memory error is raised, or a test is failed. Issue reporters often use phrases

29https://issues.apache.org/jira/browse/AMQ-5745

93

5. An Empirical Study on Leak-inducing Defects and Their Repairs

Memory Resource
0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f i
ss

ue
s

155 (70.8 %)

126 (54.1 %)

64 (29.2 %)

107 (45.9 %)

Runtime detection
Source code-based detection

Figure 5.4: Frequency of the detection types per leak type.

such as “consistently observing memory growth” or “meet memory leak in a

production environment”. In these issues, the bug reporter often provides additional

material such as heap profile, memory dump, a log file, or a stack trace. This

additional data can help developers on localizing the root cause of the leak defect

more efficiently. Leaks usually manifest in the runtime with a symptom. From our

observation, we identify three symptoms reported in the issue reports: failing tests,

out-of-memory errors, and warning messages.

The output of a failing test case may expose a leak. The test can be a system test,

a unit test or any other application-provided test. For example, in LUCENE-325130,

a failing unit test exposed a file-handle leak. The user provided the stack trace of the

failing test in the issue report:� �
Testsuite : org.apache.lucene . index .TestAddIndexes

Testcase : testAddIndexesWithRollback(org.apache.lucene . index .TestAddIndexes):

Caused an ERROR

MockDirectoryWrapper: cannot close: there are still open files : {_co.cfs=1}

java . lang .RuntimeException: MockDirectoryWrapper: cannot close: there are still

open files : {_co.cfs=1}

at org.apache.lucene . store .MockDirectoryWrapper.close(MockDirectoryWrapper.

java:483)� �
30https://issues.apache.org/jira/browse/LUCENE-3251

94

5.4. Empirical Study Results

Table 5.4: Distribution of detection methods for memory and resource leaks.
Mem. Leaks Res. Leaks

Detection Type Detection Method

Source code-based Manual code inspection 68 (28.6%) 113 (44.7%)
detection Static analyzer 0 (0.0%) 1 (0.4%)

Failed test 17 (7.1%) 40 (15.8%)
Runtime detection Out-of-memory error 43 (18.1%) 12 (4.7%)

Warning message 8 (3.4%) 11 (4.3%)
Runtime (exclude above) 102 (42.9%) 76 (30.0%)

In some cases, the growth of memory usage leads to an out-of-memory (OOM)

error during runtime. This is a severe symptom as the underlying system often

crashes when an OOM error occurs. For example, DERBY-573031 reported a severe

memory leak which might lead to a system crash due to an out-of-memory error.

In this issue, the reporter mentioned that after removing the suspicious call, the

test program was successfully executed with a much lower heap size. We should

mention that we only consider those out-of-memory errors triggered via a resource

or memory leak and not because of misconfigured heap size (which is a configuration

error). The out-of-memory error due to a leak occurs at some point regardless of the

heap size, while the OOM error due to a misconfiguration will not occur with correct

configuration of the heap value. Logstash#517932 is an example of an OOM error

due to a misconfiguration of the heap size for running a specific task which is fixed

by setting the correct value for the heap size.

Developers also implement algorithms for the detection of specific leak defects.

They usually warn the user about the potential presence of a leak with a message

during the program’s execution. For example, in CXF-570733, a message warned the

user for a potential leak during the performance test of the netty-http-server module:

“SEVERE: LEAK: ByteBuf.release() was not called before it’s

garbage-collected. Enable advanced leak reporting to find out where

the leak occurred.”

31https://issues.apache.org/jira/browse/DERBY-5730
32https://github.com/elastic/logstash/issues/5179
33https://issues.apache.org/jira/browse/CXF-5707

95

5. An Empirical Study on Leak-inducing Defects and Their Repairs

Results. Figure 5.4 shows the distribution of detection types in relation to the

leak types. Table 5.4 illustrates the relationship between detection types, detection

methods, and leak types.

Finding 1. More resource leaks (114 issues) are detected via source code-based

detection than memory leaks (68 issues). Runtime detection is the dominant

detection type for detecting memory leaks with 170 out of 238 issues (71.4% of the

issues). The reason why more resource leaks are detected with source code-based

detection techniques comes from the difference in memory and resource

management. In Java, a programmer should explicitly dispose of the resources after

usage. Due to explicit management, potential resource leaks can more often be

captured through the code review or using static analyzers. Contrary to this, the

JAVA Virtual Machine (JVM) manages the heap space and releases the unused

objects when they become unreachable. Detecting unused references with code

inspection is a hard task, as the programmer needs to have a profound

understanding of the program’s workflow.

Finding 2. 309 (about 63%) issues are detected or manifest during the runtime.

In these issues, users often use a third-party memory analyzer (e.g., jmap, MAT 34,

yourkit35), or OS-specific commands (e.g., lsof) to verify the presence of the leaks.

The information collected from these tools and commands can considerably help the

developers to reproduce and diagnose the leak defects.

Finding 3. Users detected leaks in 19 issues (3.9%) via warning messages.

From our dataset, we observe that in three applications, developers implemented

leak detection mechanisms. This result shows that it is a good practice for

developers to provide integrated leak detection mechanisms to accelerate the

diagnosis of leak-related defects.

Finding 4. Out-of-memory errors are observed more than three times in memory

leak-related issues. OOM error is one of the most severe leak symptoms and should

be particularly prevented in a production environment.

Finding 5. In 57 (11.6%) issues, users detected the leaks via a test case. We

also observe that for some issues, developers added a test case to the repair patches

34https://www.eclipse.org/mat/
35https://www.yourkit.com/

96

5.4. Empirical Study Results

for future leak detection. This result shows the possibility of software tests as a

lightweight tool for leak detection. Previous work [37, 41] confirm the effectiveness

of software tests for leak detection. The utility of a test case is twofold. First, it can

be used as an oracle for automated leak detection and bug isolation. Second, it can

be an oracle for automated leak repair techniques as they need test cases to verify

the correctness of their proposed fix patches. As leaks are highly sensitive to the

environment (and input), the automated test input generation should provide inputs

which can trigger the leaks in different execution paths.

Finding 6. Only in one issue (CASSANDRA-770936), the leak is detected and

reported by a static analyzer. As we only consider the reported issues, we cannot

generalize that the static analysis tools are not used. It is possible that static analyzers

have been employed earlier in the development process, and all leaks detected were

fixed. Still, our finding highlights potentials to improve the existing static analyzers

further as there is still room for improvement. It is essential to know why these tools

are not used for other reported issues with similar characteristics to the detected issue

(we further analyze this in Section 5.4.7). One reason might be that there are still

obstacles in the extensive use of such debugging tools. Such obstacles can be high

false positives, complicated usage procedure, or lack of knowledge about these tools.

Researchers or tool builders should improve current debugging tools to detect not-yet

covered bugs, simplify the tool usage, and spread them widely in the community.

Summary. Source code-based detection is more common in resource leak

detection (45.1%). Runtime detection is the dominant detection type for

memory leaks (71.4%). Out-of-memory errors are observed about three times

more frequently in conjunction with the memory leaks than with the resource

leaks.

5.4.3 RQ3: To What Extent Are the Leak-Inducing Defects

Localized?

Motivation. Fault localization is the first step of bug diagnosis. The locality of a

fault can be defined in different granularity such as statement, method, and file. In the
36https://issues.apache.org/jira/browse/CASSANDRA-7709

97

5. An Empirical Study on Leak-inducing Defects and Their Repairs

0 1 2 3 4 5 6 7 8 9 10 12 13 15 18 20 21
Number of modified Java source code files

AMQ
CASSANDRA

CXF
DERBY

HADOOP
HBASE

HIVE
HTTPCOMP

LUCENE
SOLR

17 40 8 7 2 1 1 1 1 1 1

1 22 7 1 1 1 2

2 22 3 4 2 1 1 1 1

10 1 4 1

14 65 18 13 6 1 1 1

8 19 8 2 1 1 1

3 23 8 3 3 2 1 1

12 4 1 2 1

5 13 6 4 2 1 2 1

1 18 3 1 2 1 1

Figure 5.5: Heatmap of the number of modified Java source code files per project.

case of leak-related defects, they can affect a region (e.g., multiple modules, classes) in

the codebase of an application [88]. Accurate defect localization is vital in providing

the correct repair patch. Otherwise, the patch will not fix the bug completely and

even introduces a new bug [135]. In this research question, we investigate the locality

of leak-inducing defects. In particular, we want to find out: (1) how many source

code files are changed to repair a defect, and (2) which types of files are changed in

each repair patch.

Approach. To assess the locality of leak defects, we analyze the distribution of

modified source code files. For each issue, we collect the files changed in the repair

patches. We also investigate the file type of modified source files by collecting the file

extensions. We ignore test files in the repair patches if the tests added or modified

for future leak detection and not for repairing purposes.

Results. Figure 5.5 shows the heatmap representation of the amount of modified

Java source files for each project.

Finding 1. In 57% of the issues, developers changed only one source code file

to repair the defect. In about 81% of the issues, three source code files are modified

at most. This result implies the high locality of leak-inducing defects considering

file-level granularity.

98

5.4. Empirical Study Results

Finding 2. In 15 issues, developers repaired the defect via adding or deleting

at least one Java source code file. It is interesting to know the reasoning behind

such changes. However, the information for such decisions is not always provided

in the issue reports and reasoning require a deep knowledge about the design and

architecture of the project. Our further analysis shows that the decision of adding

or deleting a class is simply a design decision and it is very particular to the issue

being fixed. Here, we provide three examples of such cases. In CASSANDRA-55237

developer created a new interface (in a new file) which makes an iterator object to

be closable. In HADOOP-63938 developers redesigned the code with unifying two

existing functionalities. In LUCENE-138339 developers implemented a closable Java

ThreadLocal as a wrapper for Java ThreadLocal which wraps the values inside

a WeakReference with keeping a strong reference to the value. In this way, the

garbage collector does not reclaim the value until the close method is called. In

general, we could not generalize any specific rule about adding or deleting files in the

repair patches of the studied issues.

Albeit occurring only in about 3% of the studied issues, such cases require more

sophisticated repair strategies. Most of the current automated program repair

approaches [62, 66, 123] can only provide simple repair patches with only one line.

Hence, it is still not feasible for existing automated program repair techniques to

provide complex repair patches such as adding a class.

Finding 3. In 17 issues, no Java source code file is changed. In eight issues, source

code files written in C are modified. In three cases, developers modified the XML files

to use a non-leaky third-party library as a dependency for that project. Six issues

are repaired by changing source code files written in Scala and Ruby. The reason for

changing different file types is that in some of the studied projects, specific modules

are implemented in different programming languages than Java. For example, bzip2

(a compression method) implementation in HADOOP is written in C.

Test cases might also contain a leak in their code. For example, YARN-2662

reports an issue where the tests do not close a file after reading from it. We observe

15 issues in our dataset that the repair patches contain only changes in the test files.

37https://jira.apache.org/jira/browse/CASSANDRA-552
38https://jira.apache.org/jira/browse/HADOOP-639
39https://jira.apache.org/jira/browse/LUCENE-1383

99

5. An Empirical Study on Leak-inducing Defects and Their Repairs

A bug report is labeled as duplicated if it has already been reported in the bug

tracker. However, it can be the case that a reporter reports a bug and this bug is

already repaired in one of the previous releases of the software, or the root cause of

the leak is located in a third-party library. In such cases, developers close the issue

as fixed with referring to the software release containing the bug fix or the non-leaky

third-party library. In our study, we find 29 issues of such cases, i.e., the issues are

closed without including a repair patch. It is worth mentioning that these issues

cannot be considered as duplicated because they are not previously been reported in

the bug tracker (i.e., there is no link to another issue in the bug tracker).

Although only a few defects are repaired by modifying files written in other

programming languages, developers require knowledge of different programming

languages to repair all leak-related defects.

Summary. About 54% of the leak defects are repaired by changing only one

source code file. Only in 12% of the reported leaks, more than three source files

were modified. In about 6% of the issues, files from other languages, such as

C, Scala, and Ruby are modified to fix the leak-related defect.

5.4.4 RQ4: What Are the Most Common Root Causes?

Motivation. In this research question, we want to find out which root causes are

dominant, and whether there are significant differences in the common root causes

for different leak types.

Approach. To find the root cause, we use three data sources for each issue: issue

title, issue description, and developers discussions. The categories for root cause

are not mutually exclusive. For issues with the possibility of assignment to multiple

categories, we select the most specific category as explained in Section 5.3.5.

Taxonomy of defect types. Table 5.5 lists the taxonomy of the defect types. We

describe the most common root causes here.

Non-closed resource. The programmer should close any system resources such as file

handles, connections, and threads when they are no longer needed. Otherwise, a

100

5.4. Empirical Study Results

resource leak is likely. For example, in HBASE-1283740, zookeeper connections

created in the constructor of ReplicationAdmin left unclosed.

Bad exception handling. According to Java documentation 41, an exception is an event

which disrupts the normal flow of the program’s instructions. When an exception is

thrown, any resources accessed during the normal execution of the program remain

open. If a programmer does not properly handle the exceptions, a leak is prone to

happen, as shown in the following quote from an issue report:

“Programmer should handle the exception properly instead of

swallowing it.”

For instance, in LUCENE-314442, FreqProxTermsWriter leaks open file

handle if an exception is thrown during flush().

Collection mismanagement. The mismanagement of elements in a collection can result

in a memory leak. Such leak occurs when a programmer assumes that the garbage

collector collects all unused objects, even if they are still referenced. Leaks due

to collection mismanagement can lead to severe memory waste, in particular when

the collection is used as a static member. The reason is that the static fields are

never garbage-collected. Issue YARN-535343 reports a severe memory leak due to

keeping the tokens in the appToken map of the ResourceManager even after

task completion.

Concurrency defect. A leak can be caused by a race condition preventing the disposal

of a resource or releasing references to unused objects. Issue LUCENE-649944 reports

a file handle leak if files are concurrently opened and deleted.

Results. We investigate the frequency of the root causes across the leak

types. Table 5.5 and Figure 5.6 summarize the results. Table 5.5 lists the common

root causes and their corresponding number of issues. Figure 5.6 visualizes the

heatmap of the defect and leak types.

Finding 1. The majority of the defects (about 76% of the cases) manifest when

a normal execution path is exercised. The most common root cause is also the non-

40https://issues.apache.org/jira/browse/HBASE-12837
41https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
42https://issues.apache.org/jira/browse/LUCENE-3144
43https://issues.apache.org/jira/browse/YARN-5353
44https://issues.apache.org/jira/browse/LUCENE-6499

101

5. An Empirical Study on Leak-inducing Defects and Their Repairs

Table 5.5: Taxonomy of root causes. Column “#Issues” states the total number of
issues per root cause.

Description (Short) #Issues

Non-closed resource at error-free execution (nonClosedRes)149 (32.96%)

Object not disposed of if exception is thrown (exception)98 (21.68%)

Dead objects referenced by a collection (collection) 93 (20.58%)

Unreleased reference at error-free execution (unreleasedRef)59 (13.05%)

A race condition defect (concurrency) 18 (3.98%)

Wrong call schedule of disposal method (callSchedule) 16 (3.54%)

Over-sized cache or buffer (cache) 14 (3.10%)

Incorrect API usage (wrongAPI) 10 (2.21%)

Unreleased reference due to thread-local variable (threadLocal)10 (2.21%)

Classloader keeps a bi-directional reference to a class (classloader)10 (2.21%)

Leaks related to Java native interface (jni) 8 (1.77%)

Leak inside a third-party library (leakyLib) 7 (1.55%)

closed resource in a regular (error-free) execution path (nonClosedRes) with about

30% of the cases. This finding is interesting. The error-free execution paths are more

often executed and checked. Therefore, it should be less likely for defects to manifest

in normal execution paths [122]. However, our analysis shows that this is not the

case for leak-related defects. Our analysis shows the value of software tools and tests

which check whether resources are disposed of at the end of the typical execution

paths.

Finding 2. Bad exception handling (exception) is the second-most frequent root

cause with 20% of the issues (93 issues). This even increases to about 32% of the issues

if we only consider resource leaks. We also observe that this root cause is about five

times more common for resource leaks than for memory leaks. One reason for such

observation is that - by definition - exception paths happen in exceptional situations,

being less frequently tested than normal execution paths. Even correctly-behaved

programs in normal execution path can manifest error in exceptional paths [121, 122].

This observation implies that the proper exception handling plays an important role

in preventing leaks especially resource leaks.

102

5.4. Empirical Study Results

Connection File handle Memory Thread
Leak types

cache

callSchedule

classloader

collection

concurrency

exception

jni

leakyLib

nonClosedRes

threadLocal

unreleasedRef

wrongAPI

Ro
ot

 c
au

se
s

0 0 14 0

1 4 7 4

0 0 8 2

0 0 93 0

3 1 13 1

18 51 16 13

0 1 7 0

0 2 6 0

28 69 0 50

1 0 9 0

0 0 57 2

0 1 8 1
0

15

30

45

60

Figure 5.6: Heatmap of defect types and leak types.

Finding 3. Collection mismanagement (collection) is the most common root

cause for memory leaks (39% of the cases). This finding verifies the applicability

of existing automated approaches for detecting memory leaks caused by collection

mismanagement (e.g., [131]).

Summary. Four types of defects cause most leaks. Collection mismanagement

(39% of the issues) and non-closed resources (58% of the issues) are the

dominant root causes for memory and resource leaks, respectively. The majority

of the leaks (76% of the cases) manifest in the normal execution paths.

5.4.5 RQ5: What Are the Characteristics of the Repair

Patches?

Motivation. One approach for automated program repair is to search for common

repairs from previous fix patches and provide repair candidates to fix bugs [62, 66,

103

5. An Empirical Study on Leak-inducing Defects and Their Repairs

74, 105, 110]. Align with this direction we investigate the repair patches to check

whether there are common patterns for fixing the leak-inducing defects.

Approach. For each issue in our dataset, we manually check the issue summary,

the issue description, the developer discussions, and the repair patches to understand

the design philosophy of a fix and find the repair action and corresponding code

transformation for each defect. A repair action corresponds to an abstract description

of a fix, while a code transformation is a concrete instantiation of the repair action.

The same abstract fix can be implemented via different code transformations. For

example, to fix a leak due to a non-closed resource (a defect type), the developer

needs to dispose of the resource (a repair action). Disposing of a resource can be

implemented using a try-finally construct (a possible code transformation) or a

try-with-resources construct (another possible code transformation).

When analyzing the patches, we apply the following considerations. First, we

are only interested in the defects within the codebase of the application. Hence, we

ignore modifications of the test files in the repair patches. Second, in 29 issues, the

defects are already repaired by developers in another version of the application but

were not tagged as “duplicate” in the bug tracker. We ignore these issues for searching

for common code transformation. Every label is attributed to a specific repair action

whenever possible. We categorize the fix patch to a general category only when no

specific repair action would fit the repair description.

To identify the common code transformations that may be applied for fixing

multiple issues, we use the open coding methodology. First, we label each repair

patch with all code transformations associated with that patch. Then, we identify

those common transformations that repeatedly occur (more than once) within our

dataset.

Taxonomy of repair actions. Table 5.6 lists the repair actions. Note that the

repair actions are mutually exclusive. For issues with the possibility of assignment to

multiple categories, we select the most specific category as explained in Section 5.3.5.

We describe the common actions here.

Dispose of resource on a regular path (disposeReg). Resource leak defects introduced

in regular execution paths can be resolved via directly calling the disposal method

after the resource usage. In Java, this is achieved by calling the close dispose

104

5.4. Empirical Study Results

Table 5.6: Taxonomy of repair actions. Column “#Issues” states the total number of
issues per repair action.

Description(Short) #Issues

R1: Dispose of resource in regular execution paths (disposeReg)111 (24.56%)

R2: Dispose of objects in exceptional path (disposeExcep)97 (21.46%)

R3: Remove the elements from a collection (removeElm)104 (23.01%)

R4: Release the reference (releaseRef) 69 (15.27%)

R5: Shutdown thread after finishing the task (threadDown)45 (9.96%)

R6: Improve thread safety by avoiding race condition (threadSafe)23 (5.09%)

R7: Use an efficient API to improve memory usage (correctAPI)12 (2.65%)

R8: Modify strong reference to a weak reference (weakRef)9 (1.99%)

R9: Use a non-leaky Library (nonLeakyLib) 4 (0.88%)

R10: Bugs not belonging to the above categories (others)17 (3.76%)

method. For example, in HADOOP-709045, the developer refers to closing the I/O

streams in a finally block as a good practice. Following is a partial patch for this

issue:� �
−−− org/apache/hadoop/io/BloomMapFile.java

+++ org/apache/hadoop/io/BloomMapFile.java

@@ −186,10 +186,17 @@

@Override

public synchronized void close() throws IOException {

super.close () ;

− DataOutputStream out = fs.create(new Path(dir, BLOOM_FILE_NAME), true);

− bloomFilter . write (out) ;

− out. flush () ;

− out. close () ;

+ DataOutputStream out =null;

+ try {

+ out = fs. create (new Path(dir, BLOOM_FILE_NAME), true);

+ bloomFilter . write (out) ;

45https://issues.apache.org/jira/browse/HADOOP-7090

105

5. An Empirical Study on Leak-inducing Defects and Their Repairs

+ out. flush () ;

+ out. close () ;

+ out = null ;

+ } finally {

+ IOUtils .closeStream(out) ;

+ }� �
Release reference. Any unused object in Java should be reclaimed by GC. If this

object is still reachable by a live object, GC will not release its memory footprint.

In such cases, the responsibility lies on the programmer to release the references

preventing the object for being garbage collected (e.g., by nullifying the references

to the unused objects). For example, HBASE-514146 reports a memory leak due to

keeping references, even the corresponding task is finished. The fix patch nullifies the

no-longer-needed objects. Following is the partial patch:� �
−−− org/apache/hadoop/hbase/monitoring/MonitoredRPCHandlerImpl.java

+++ org/apache/hadoop/hbase/monitoring/MonitoredRPCHandlerImpl.java

@@ −217,6 +217,13 @@

...

+ @Override

+ public void markComplete(String status) {

+ super.markComplete(status);

+ this .params = null;

+ this .packet = null ;

+ }

+� �
Proper exception handling (disposeExcp). Programmer should dispose of the objects

or resources in all exceptional execution paths. Otherwise, a leak is likely to happen

when an exception is thrown. Issue AMQ-305247 reports a memory leak in

securityContexts. It occurs when the addConnection() fails after a

successful authentication check. The developer fixed the bug via adding a

try-catch block and calling disposal method in the catch block:

46https://issues.apache.org/jira/browse/HBASE-5141
47https://issues.apache.org/jira/browse/AMQ-3052

106

5.4. Empirical Study Results

� �
−−− org/apache/activemq/security/SimpleAuthenticationBroker.java

+++ org/apache/activemq/security/SimpleAuthenticationBroker.java

@@ −92,7 +92,13 @@

...

− super.addConnection(context, info) ;

+ try {

+ super.addConnection(context, info) ;

+ } catch (Exception e) {

+ securityContexts .remove(s);

+ context . setSecurityContext (null) ;

+ throw e;

+ }� �
Remove an element from a collection (removeElm). No longer needed members of

a collection should be removed by the programmer, allowing the garbage collector

to reclaim the memory. A typical repair action is the call of remove() method of a

collection to clear useless elements from being referenced by the collection object. For

example, in issue YARN-347248, already expired and removed tokens are not removed

from allTokensmap resulting in a potential memory leak. Developer fixed the issue

by adding a call to remove method which removed the expired token from the map.� �
−−− /hadoop/yarn/server/resourcemanager/security/DelegationTokenRenewer.java

+++ /hadoop/yarn/server/resourcemanager/security/DelegationTokenRenewer.java

@@ −577,6 +577,7 @@ private void requestNewHdfsDelegationTokenIfNeeded(

...

if (t .token.getKind(). equals(new Text(‘‘HDFS_DELEGATION_TOKEN’’))) {

iter .remove();

+ allTokens .remove(t.token);

...� �
Shutdown finished thread (threadDown). A live thread of the application should be

destroyed by the programmer when the thread task is finished. Adding a call to

the shutdown method or adding a disposal method are the common repair actions

48https://issues.apache.org/jira/browse/YARN-3472

107

5. An Empirical Study on Leak-inducing Defects and Their Repairs

ca
ch

e

ca
llS

ch
ed

ul
e

cla
ss

lo
ad

er

co
lle

ct
io

n

co
nc

ur
re

nc
y

ex
ce

pt
io

n jn
i

le
ak

yL
ib

no
nC

lo
se

dR
es

th
re

ad
Lo

ca
l

un
re

le
as

ed
Re

f

wr
on

gA
PI

Root causes

correctAPI
disposeExcep

disposeReg
others

releaseRef
removeElm

threadDown
threadSafe

weakRef

Re
pa

ir
ac

tio
ns

1 9
1 88 2 1

5 1 1 95 1 1
3 1 1 2 3
1 5 6 1 4 7 43
8 1 87 2 1 1

3 2 33 1
1 16 1 3 1

8

Figure 5.7: Heatmap of relationship between root causes and repair actions.

for fixing the leaks caused by threads. HDFS-900349 reports a thread leak when a

standby NameNode initializes the quota. Here, the thread pool is not shut down. To

fix this bug, the developers added a call to the shutdown method.� �
−−− org/apache/hadoop/hdfs/server/namenode/FSImage.java

+++ org/apache/hadoop/hdfs/server/namenode/FSImage.java

@@ −880,6 +880,7 @@ static void updateCountForQuota(BlockStoragePolicySuite bsps,

root , counts) ;

p.execute(task) ;

task . join () ;

+ p.shutdown();� �
Results. In following, we show the results of our analysis on the repair patches in

three sub-questions. First, we study the frequency of the repair actions. Second,

49https://issues.apache.org/jira/browse/HDFS-9003

108

5.4. Empirical Study Results

Table 5.7: Recurring code transformations and examples of code before and after the
transformations.
Code transformation 1: Conditional disposal of resource.
Example: dispose(obj)→ If (obj != null) obj.dispose()
Code transformation 2: Add disposal method call.
Example: None → obj.dispose()
Code transformation 3: Add disposal method.
Example:None → void dispose()
Code transformation 4: Set obsolete reference to null.
Example: None → obj=null
Code transformation 5: Add catch/try-catch block.
Example: Type obj = new Type() →
try {Type obj = new Type()} exception {dispose(obj)}
Code transformation 6: Add finally/try-finally block
Example: Type obj = new Type() →
try {Type obj = new Type()} finally {dispose(obj)}
Code transformation 7: Add try-with-resources statement.
Example: Type obj = new Type() → try {Type obj = new Type()}
Code transformation 8: Change condition expression.
Example: If (cond1) obj.dispose() → If (cond1 and cond2) obj.dispose()
Code transformation 9: Change method call parameters.
Example: obj.method(x, y) → obj.method(x, z)
Code transformation 10: Change static object to a non-static.
Example: static Type obj = new Type() → Type obj = new Type()
Code transformation 11: Change to weak reference.
Example: new HashMap<key, value>() →
new HashMap<key,WeakReference(value)>()
Code transformation 12: Replace method call.
Example: obj.method1() → obj.method2()
Code transformation 13: Change collection.
Example: obj = new <collection1>() → obj = new <collection2>()

we analyze the mapping between the root causes and the repair actions to find the

relationship between these two taxonomies. Finally, we report the common code

transformations found in the fix patches.

Finding 1. Table 5.6 lists the common repair actions along with the number of

issues corresponding to them. About 93% of the resource leaks are repaired with

three major actions: disposeReg, disposeExcep, and threadDown, while about 73% of

the memory leaks are fixed with two repair actions releaseRef and removeElm.

109

5. An Empirical Study on Leak-inducing Defects and Their Repairs

di
sp

os
eE

xc
ep

di
sp

os
eR

eg

ot
he

rs

re
le

as
eR

ef

re
m

ov
eE

lm

th
re

ad
Do

wn

th
re

ad
Sa

fe

we
ak

Re
f

Repair actions

Add catch/try-catch
Add dispose of method

Add finally/try-finally
Add try-with-resources

Call disposal method
Change collection

Change condition expression
Change method parameter

Conditional disposal
Replace method call

others

Co
de

 tr
an

sf
or

m
at

io
ns

5 1
2 1

7 6 1 3 1
1 3
2 5 4 11 5

2 1
1 1

1 1 1
5 2 1
1 1
3 1 1 1 1

Figure 5.8: Heatmap of recurring code transformations and single repair actions.

Finding 2. Figure 5.7 reveals an almost one-to-one mapping between some root

causes and repair actions (e.g., exception → disposeExcep, collection → removeElm,

concurrency → threadSafe, concurrency → threadSafe). Leak defects with the root

cause type nonClosedRes are repaired with repair actions threadDown and disposeReg.

Leak defects with the root cause type unreleaseRef are repaired with repair actions

releaseRef and weakRef.

Finding 3. We find 13 recurring patterns in the repair patches. Table 5.7 lists

the recurring code transformations and the code examples before and after the

transformations. Our analysis shows that 88 (out of 491) issues are repaired with a

single code transformation. For these issues, we further analyze the quantitative

relationship between the repair actions and the most common code

transformations. Figure 5.8 shows the heatmap of the quantitative analysis. For this

heatmap, we only consider repair patches with a single code transformation. Code

transformation Add finally/try-finally is often used in the repair actions disposeReg

110

5.4. Empirical Study Results

or disposeExcep. Code transformation Add catch/try-catch is the most used code

transformation for repair action disposeExcep. We also observe a direct relationship

between the repair action RemoveElm and the code transformation Call disposal

method.

This result can encourage the researchers to implement patches for leak-related

defects based on template-driven patch generation techniques in the direction of

previous work [62, 85, 97].

Summary. Overall, five repair actions are used by developers to repair over

86% of the issues in our dataset. We found 13 recurring code transformations.

88 of the issues are repaired with a single code transformation.

5.4.6 RQ6: How Complex Are Repairs of the Leak-Inducing

Defects?

Motivation. This research question addresses the complexity of changes applied to

repair the leak-inducing defects. Besides this, we analyze the time to resolve (TTR)

for different repair actions. We also compare TTR between leak-related and non-leak-

related defects. In this question, we want to find how complex are the repair patches.

The results can provide more insights on how complex are the repair patches and how

long does it take to repair a leak-inducing defect.

Approach. To assess the complexity of changes, we compute the code churn and

change entropy [48].

Code churn is the sum of added and deleted lines in a repair patch. We only

consider changes in the code statements and ignore comments or empty lines when

calculating the code churn metric.

We use change entropy to find scatteredness of the changes. Derived from Shannon

entropy in information theory, the change entropy measures the complexity of the

changes. To measure the change entropy, we use the normalized Shannon entropy [24,

48]. It is defined as:

H =
−
∑n

i=1 p(filei) · logep(filei)

loge(n)
,

111

5. An Empirical Study on Leak-inducing Defects and Their Repairs

disposeReg

disposeExcep

removeElm

releaseRef

threadDown

threadSafe

correctAPI
weakRef

others

Repair actions

200
150
100

50
0

50
100
150
200

Co
de

 c
hu

rn

Figure 5.9: Distribution of code churn per repair action.

where n is the total number of files in a repair patch and p(filei) is defined as the

number of lines changed in filei over the total number of lines changed in every file

of that repair patch. Change entropy achieves its maximum value when all the files

in a repair patch have the same number of modified lines.

In contrast, we can achieve a minimum of entropy when only one file has the total

number of modified lines. Using the entropy, we can find how complex are the repair

patches. The higher the entropy, the more complex the repair patch.

To asses the time to resolve (TTR) of an issue report, we adopted the methodology

used in previous studies [57, 92, 110]. We collect two timestamps from each issue

report: the time it was created (recorded in the issue tracker), and the time it was

resolved (labeled as resolved). For GitHub projects, we use the closed timestamp

as the resolved timestamp as it is the only available timestamp in the issue report.

For issues with multiple patches, the resolved timestamp is the time of the latest

patch being applied to repair the bug. The TTR is the difference between created

and resolved timestamps. The reason for using TTR is that the bug trackers used in

this study (i.e., Jira and GitHub bug tracker) record no information about the exact

amount of coding time needed for fixing a bug.

112

5.4. Empirical Study Results

AMQ CASSANDRA CXF DERBY HADOOP HBASE HIVE HTTPCOMP LUCENE SOLR
100

50

0

50

100

150

200

Nu
m

be
r o

f l
in

es

added
removed

Figure 5.10: Distribution of number of added and removed lines over the studied
projects.

Results. In the following, we show the results of our analysis of the complexity of

the repair patches.

Distribution of code churn.. Figure 5.9 shows the box plot of code churn for different

repair actions. The line within each box points to the median value of the code churn

for that repair action.

Finding 1. In about all repair actions, the median of code churn is less than 20

lines of code while the repair action disposeExcp shows the highest median value.

Finding 2. Figure 5.10 shows the distribution of added and removed lines over

studied projects. In all the projects, the median of added lines (29.5 lines) shows a

higher value than the removed lines (16.5 lines). Hence, the fault repairing changes

often increase the codebase of the applications.

Finding 3. Figure 5.11 shows the distribution of change complexity over the

repair patches. The distribution appears to be bimodal with the main peak around

zero and a lower one around one. The change complexity analysis shows that the

changes applied for repairing leak-inducing defects are more concentrated in fewer

files and are less scattered. This result can be a useful finding for automated fault

localization as it shows the high localization in leak-inducing defects.

113

5. An Empirical Study on Leak-inducing Defects and Their Repairs

0.25 0.00 0.25 0.50 0.75 1.00 1.25
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 KDE

Figure 5.11: Distribution of change complexity over the repair patches.

Time to resolve (TTR). Figure 5.12 shows distribution of TTR across repair

actions. Figure 5.13 shows the distribution of the TTR for the leak-related and

other defects in the studied projects. To calculate the TTR for other defects, we

collect the created and resolved timestamps of all bugs with the resolution “FIXED”

(except the leak-related defects) from the studied projects in the same time frame

that we collected the leak defects.

Finding 4. On a median, about 5.88 days is needed for developers to fix a

leak-inducing defect. This time is slightly lower than the TTR for repairing non-leak

defects (about 6.04 days). One reason could be that leak-related defects are important

for users and developers. The data in our dataset also confirms this. The issue priority

in about 84% of the issues in projects from Apache are labeled as Blocker, Critical, or

Major (which are the highest priority levels in the Jira bug tracker). This corroborates

with the assumption that leak-inducing defects impose a high negative impact on the

performance of the applications, and are highly prioritized by development teams.

Summary. The change entropy shows that the changes are more concentrated

in fewer files and therefore less scattered. The median TTR of the leak-inducing

defects is about 5.88 days.

114

5.4. Empirical Study Results

disposeReg

disposeExcep

removeElm

releaseRef

threadDown

threadSafe

correctAPI
weakRef

others

Repair actions

400

200

0

200

400

Du
ra

tio
n

(d
ay

s)

Figure 5.12: Distribution of time to resolve per repair action.

5.4.7 Other Findings

In this section, we provide other findings found by our study.

Efficiency of static analysis tools. In RQ2 (Section 5.4.2), we showed that only

in one issue (i.e., CASSANDRA-7709), the resource leak was reported using a static

analyzer. There are many static analysis tools for leak detection. They are mostly

used for resource leak detection (e.g., FindBugs, Coverity, and Infer). Static analyzers

can also be used to detect memory leaks. However, static memory leak detection

is imprecise and not scalable for large programs [130, 132]. This inefficiency can

be attributed mainly to the presence of the garbage collector and lack of runtime

information. However, one could ask why these tools are not mentioned in the studied

issue reports. One reason might be that static analyzers have been employed earlier

in the development process, and all leaks detected were fixed.

In our study, we showed that more than half of the studied leaks are resource leaks.

It is interesting to study whether static analyzers can detect the studied leak issues.

For this purpose, we evaluate our dataset. We randomly select 30 issues reporting

resource leaks from our dataset. As a static analysis tool, we choose Infer which is

115

5. An Empirical Study on Leak-inducing Defects and Their Repairs

Table 5.8: The evaluation of Infer static analyzer on a sample of resource leaks from
our dataset. Column “Det?” reports whether Infer could detect the defect reported
in the respective issue. “Code-based detection” refers to source code-based detection.
“Defect” type and “Repair” type are explained in Section 5.4.4 and Section 5.4.5,
respectively.
Issue Det? Detection Defect Repair

AMQ-5745 3 Code-based nonClosedRes disposeReg
AMQ-6051 No Runtime exception disposeExcep
CASSANDRA-7709 No Runtime exception disposeExcep
CASSANDRA-9134 No Runtime nonClosedRes disposeReg
DERBY-5480 3 Runtime nonClosedRes disposeReg
HADOOP-10203 No Runtime nonClosedRes disposeReg
HADOOP-10490 3 Runtime nonClosedRes disposeReg
HADOOP-11014 No Code-based exception disposeExcep
HADOOP-11056 No Code-based exception disposeExcep
HADOOP-11349 No Code-based exception disposeExcep
HADOOP-11368 No Runtime nonClosedRes threadDown
HADOOP-11414 No Code-based exception disposeExcep
HADOOP-9681 3 Runtime nonClosedRes disposeReg
HBASE-10461 No Code-based exception disposeExcep
HBASE-10995 3 Code-based nonClosedRes disposeReg
HBASE-13601 No Runtime exception disposeExcep
HBASE-13797 3 Code-based nonClosedRes disposeReg
HDFS-1118 No Code-based exception disposeExcep
HDFS-1753 No Code-based exception disposeExcep
HDFS-5099 No Runtime nonClosedRes disposeReg
HDFS-5671 No Runtime exception disposeExcep
HDFS-6208 No Code-based nonClosedRes disposeReg
HDFS-6238 3 Runtime nonClosedRes disposeReg
HIVE-12250 No Runtime nonClosedRes disposeReg
HIVE-12790 No Runtime nonClosedRes disposeReg
HIVE-13405 No Code-based exception disposeExcep
MAPREDUCE-6528 No Runtime exception disposeExcep
YARN-2484 No Code-based exception disposeExcep
YARN-2988 3 Code-based nonClosedRes disposeReg
YARN-4581 No Runtime exception disposeExcep

116

5.4. Empirical Study Results

AM
Q

CA
SS

AN
DR

A

CX
F

HA
DO

OP

HB
AS

E

DE
RB

Y

HI
VE

HT
TP

CO
M

P

SO
LR

LU
CE

NE

Rx
Ja

va

Lo
gs

ta
sh

Re
al

m
 Ja

va

Sp
rin

g
Bo

ot

Se
le

ni
um

0

100

200

300

400

Du
ra

tio
n

(d
ay

s)

Type
Non-leak
Leak

Figure 5.13: TTR comparison of leak-related and other bugs in studied projects.

used by large software organizations50. We selected Infer because it is an open source

tool and can detect resource leaks in Java. The applicability of Infer for resource leak

detection is also confirmed in the previous work [118].

Table 5.8 shows the result of our evaluation. From 30 issues, Infer was able to

detect the leak defects reported in eight issues. To apply Infer, we first have to build

the buggy version of the application in question which contains the leak. After a

successful build, Infer produces a file reporting all potential resource leaks. Finally,

we investigate whether the file contains the reported leak. We further investigate the

eight issues detected by Infer to find the shared characteristics among those issues.

In all cases, the leaks occurred in normal execution paths. The analysis shows that

Infer was not able to detect leaks triggered in exceptional paths in the sample set.

We also observe that developers repaired the leak defects by disposing of the unclosed

resources in a try-finally block. This result can encourage the researcher and

tool developers to improve current static analysis tools for leak detection.

50http://www.fbinfer.com

117

5. An Empirical Study on Leak-inducing Defects and Their Repairs

Table 5.9: Comparison of common code transformations found in our study with
previous work. 27Repairs refers to [97].

Our study PAR R2FIX 27Repairs

Conditional disposal of resource 3 3 3

Add disposal method call 5 3 5

Add disposal method 5 5 3

Set obsolete reference to null 5 5 5

Add catch/try-catch block 5 5 3

Add finally/try-finally block 5 5 5

Add try-with-resources statement 5 5 5

Change condition expression 3 5 5

Change method call parameters 3 5 3

Change static object to a no-static 5 5 5

Change to weak reference 5 5 5

Replace method call 3 5 3

Change collection 5 5 5

In some cases, the project could not be quickly built. Hence some issues could not

be detected. Note that if there is a build error, we report that issue as build error as

our focus is about the applicability of Infer.

Comparison of common code transformations. In RQ5 (Section 5.4.5), we

showed 13 common code transformation found in the studied fix patches. Previous

work also reported common repair patterns [62, 74, 97]. PAR [62] found 10 manual

repair patterns for Java. [74] used 8 patterns (2 of them for repairing memory leaks)

to provide patches for bugs in C. [97] introduced 27 automatically extractable repair

patterns.

We compare our 13 patterns with previous work to find which patterns are not

reported before. Table 5.9 shows the result of our evaluation. The result shows that

six code transformations were not reported before. We can also observe that

“conditional disposal of resource” was also used in all studied previous work. The

reason why previous work did not report some of the code transformations found by

our study may be because they focused on functional bugs, while our study targets

leak-related defects. We found that some of the fixes are specific for leak-related

defects. For example, try-with-resources is only introduced to avoid potential

resource leaks caused by not disposing of closable resources.

118

5.5. Implications

5.5 Implications

Based on the findings of our empirical results, we discuss the implications of our study

for both researchers and practitioners.

Prevalence of leak types. Understanding which types of leaks are prevalent in a

project can help to avoid and detect leak defects efficiently. The results of Section 5.4.1

show that each studied project has a particular dominant leak type. This knowledge

can be exploited by prioritizing the most effective detection methods for the dominant

leak types. As shown in Section 5.4.2, memory leaks and resource leaks have distinct

best practice detection methods which can be used in a software development process.

Manual code inspection is the dominant detection method for resource leaks. Projects

with a large number of resource leaks can benefit from this detection method. One can

further improve this by using techniques like code self-review based on the Personal

Software Process (PSP) [55] with checklist items adapted for detection of resource

leaks. For memory leaks, about 63% of the issues are detected or observed using the

runtime information. Projects with a large number of memory leaks should consider

the regular usage of the profiling tools. Profiling measures different metrics such

as memory or time complexity of a program during its runtime. With this data,

programmers can continuously check the resource usage of the program and react

faster to the abnormal behavior.

In practical terms, the knowledge of the dominant leak types can be gained via

(1) mining distribution of the leak types (or at least the dominant ones) from the

bug trackers and repositories, and (2) improving the bug trackers with a labeled

classification of the leaked resource.

Good practices. Good practices can considerably reduce the probability of

introducing a leak defect. Such practices can be obtained for example from Java

documentation or from existing research work. Here we describe two good practices.

Use try-with-resources on AutoCloseable resources. Introduced in Java 7, try-with-

resources statement is an efficient method for better management of the closeable

resources. It ensures that each resource is closed at the end of the try statement. Our

empirical study shows that about 32.4% of the resource leaks are caused by shallow

119

5. An Empirical Study on Leak-inducing Defects and Their Repairs

exception handling. The try-with-resources statement can help to avoid such defects

as many current Java applications support Java 7 or higher.

Prevent having a strong reference from the value object to its key in a HashMap. As

opposed to regular references, weak references do not protect the objects from being

disposed of by the garbage collector. This property makes them suitable for

implementing cache mechanisms through WeakHashMap, where the entry will be

disposed of as soon as the key becomes unreachable. If the value objects of a

HashMap refers to its key, the programmer should wrap the value as WeakReference

before putting the value into the map as recommended by the Java

documentation51. Otherwise, the key cannot be discarded.

Software testing for leak detection. Software tests can be used as a lightweight

leak detection tool. They are beneficial for decreasing the cost of leak defects by

triggering the leaks before the production phase. Our study shows that over 11%

of the leak defects are detected as the result of a failing test (Table 5.4). Works

like [37, 41] corroborate with our results by showing the effectiveness of leak detection

via testing.

Fault localization. Fault localization is the first step in automated program repair.

Defects with high locality can be repaired with low code churn. Our results showed

that leak defects are highly localized. First, in 57% of the issues, only one file was

modified. This value increases to 73% for repairs with changing two files at most.

Second, in about 90% of the issues, only Java files are changed. These findings can

encourage researchers to improve and develop techniques for the automated repair of

leak defects.

Template-driven patch generation. Previous works proposed patch-generation

techniques based on the templates derived from existing human-written patches [62,

66]. Work [105] showed the existence of common patterns for performance problems in

JavaScript. We evaluated the potential of providing template-driven repairs for leak

defects through studying repair patches. We found 13 common code transformations

used by developers. About 57% of the issues from patch analysis dataset are repaired

by a combination of one or more of these code transformations. These results show the

51https://docs.oracle.com/javase/7/docs/api/java/util/WeakHashMap.html

120

5.6. Threats to Validity

potential of template-driven patch generation techniques for repairing leak-inducing

defects.

5.6 Threats to Validity

In this section, we discuss the threats to the validity of our study.

Construct validity. The quality of dataset used in our study is a threat to

construct validity. First, we used Jira and GitHub bug tracker to collect leak-related

defects. This set of defects does not necessarily include all leak defects in the studied

applications. Conversely, some investigated defects might never be manifested at

runtime. This might be especially the case for issues found by source-code-based

detection. Second, to answer research questions, we relied on the information provided

in the bug reports as they are the only source of information available. Although

the bug reports in the studied projects are often high-quality reports with useful

information, it is possible that the reporter provided insufficient information in the

report or misdescribed the issue. However, since we investigate a large number of

defects and focus on distributions and their relations, we expect that our findings

describe the characteristics of the whole defect population in general.

Second, We used a simple keyword search to find leak-related bugs. Issues that

do not contain the keyword “leak” can be incorrectly omitted from our data collection

process. We searched for other leak-related keywords, but our query yield many false

positives. To minimize such threats related to insufficient or skewed sampling of the

leak defect population, we used a broad set of leak-related bugs (491 issues) from

15 large-scale projects from a variety of application categories and different software

repositories.

Third, we only found one leak-related defect in our dataset in which a static

analyzer detected the leak. One reason might be that the most leak-related issues

are reported on a released version of an application and not during the development

phase. It might be the case that the developers already used static analyzers in the

development phase to remove the potential leak-related defects in the production

environment.

121

5. An Empirical Study on Leak-inducing Defects and Their Repairs

Internal validity. Experimenter bias and errors are threats to internal validity.

In this study, we heavily used manual analysis for categorization. When generating

taxonomies defined in our study, we manually extracted the contents of the issues

and used our knowledge to assign a bug to a category. To lower the risk of error in

the process of manual categorization, we applied the open coding methodology. We

have spent many hours studying all data related to each defect such as issue title and

description, developer discussions, and repair patches.

External validity. Threats to external validity are related to the generalizability

of our findings and implications. We collect our dataset from different categories

of open source projects. The projects may not be representative for closed source

projects. Our results are derived from 15 projects, and some findings may not apply

to projects written in other languages. However, other managed languages share

similarities with Java in terms of memory management and may benefit from some

of our findings. For instance, the open with statement is available in Python for

resource management similar to the try-with-resources statement in Java.

5.7 Chapter Summary

In this chapter, we conducted a comprehensive empirical study on 491 reported

resource and memory leaks from 15 large open-source Java applications. We found

that the resource leaks are slightly more often reported than memory leaks. About

45% of the resource leaks were detected using source-code analysis while more than

70% of the memory leaks were detected during runtime. We also showed that about

54% of the leak-inducing defects were repaired by modification of only one source

file which implies a high localization of the repairs. Our analysis revealed that

collection mismanagement and non-closed resources are the main root causes of the

leak defects. We also investigated the repair patches and found 13 common code

transformations for repairing the leak-inducing defects. Finally, we derived some

implications from our findings which can help both researchers and practitioners for

a better understanding of the characteristics of the resource and memory leaks and

their repairs.

122

Chapter 6

Conclusion and Outlook

In this dissertation, we proposed approaches for automated debugging of crashing

bugs and memory leak detection. We also conducted an empirical study on leak-

inducing defects and their repairs to provide further insight into the properties of

such defects. This section summarizes our findings and draws some directions for

future work on automated debugging.

6.1 Conclusion

Recently software development is changed radically. With new development

concepts such as agile development, each developer commits new codes to the

codebase repository more than before. Therefore, the codebase of software grows in

a non-linear fashion. In such a complex environment, the rate of creating new bugs

after the code changes are relatively high. Therefore, the need for automated

debugging and repair techniques and tools is higher than at any time.

In this thesis, we incorporated the following observations: 1) Today’s software

consists of many intermediate versions where two following versions differ only in

a minimal subset of the code locations. 2) Each software is supported by a large

number of tests to assure the software quality. Based on these observations, we tried

to propose new approaches for automated debugging of functional and non-functional

bugs. We highly focused on leak-inducing defects as they could profoundly affect the

software quality. In addition to the newly proposed technique for leak detection

123

6. Conclusion and Outlook

based on version comparison, we conducted an empirical study to acquire a better

understanding of the properties of such defects. We believe that such a study could

be beneficial for both practitioners and researchers to improve the existing techniques

on leak detection and diagnosis.

Automated debugging of crashing bugs. We have presented a scalable

approach in Chapter 3 for isolation of failure-inducing changes which exploits

version differences together with static and dynamic analysis. Our method had two

essential strengths. First, the size of the set of suspicious statements is proportional

to the size of recent code changes, making it potentially applicable to large projects.

Secondly, the additional runtime overhead is on the order of executing a test

triggering bug search. This allows for integrating our approach in a traditional

testing process in order to enhance test outcomes with locations of potential defects.

Our preliminary evaluation of a large-scale project (Apache Hadoop) showed that

results are promising, and the approach could locate some defects with high accuracy.

Automated leak detection via regression testing. Although only one

percent of all defects in large open-source projects are memory-related issues [78],

they can substantially increase the cost of ownership of large-scale software systems.

Unfortunately, their inherent characteristics (namely long latency before

manifestation and a weak link between defects and symptoms) substantially hamper

their detection and isolation via traditional unit and integration tests.

We presented an approach for memory leak diagnosis which exploits existing tests

(Chapter 4). It is based on version comparison approach in combination with data

analysis. Our technique can alert about suspected presence of memory leaks and

provides a ranked list of suspicious allocation sites.

Our approach showed multiple advantages. First, the effort of setup and

integration into existing testing processes is low because no test modification is

required and existing test processes and frameworks can be used. Therefore, this

method can be integrated into the regression testing phase. In this phase,

developers can apply our approach to find potential memory leaks. Secondly, the

diagnosis is sufficiently accurate which can substantially shorten the repair time.

Finally, the execution overhead (even in our prototypical system) is acceptable and

makes it applicable in the development environment.

124

6.2. Outlook

Empirical study on resource and memory leaks. Diagnosis of leak-inducing

defects is one of the main challenges for both researchers and practitioners in software

development and maintenance. Understanding the characteristics of resource and

memory leaks can provide useful information to improve leak diagnosis techniques

further. For this purpose, we conducted a detailed empirical study on a large dataset

(491 issues from 15 mature projects) to understand how leaks are detected, which

defects create them, and which types of repairs exist. Our findings and implications

showed that even by simple changes in the quality assurance processes (e.g., code

review, testing), the avoidance and diagnosis of leaks could be significantly improved.

6.2 Outlook

Despite the extensive research on automated debugging, we are not there yet to debug

and repair all bugs automatically. Here, we suggest some directions for future research

based on the results of this thesis.

The proposed approach on automated debugging of failure-inducing changes

(Chapter 3) showed some limitations. First, we only used static analysis.

Incorporating dynamic analysis for collecting runtime information such as the value

of conditional expressions might improve the effectiveness of our approach. Second,

our approach could not pinpoint the root cause of the bugs. Contrasting runtime

data collected during the passing and failing run might help programmers to

understand the causes of the failure.

Our approach for memory leak detection presented in chapter 4 can be improved

in the following directions. First, we can set a threshold on the confidence score for

automated detection of potential memory leaks. We found that such a threshold is

project-specific, i.e., we need to adjust the threshold value for each project separately.

We need to perform a detailed study on the impact of different threshold values on

a variety of applications to find the optimal threshold value. Secondly, our approach

introduced a relatively high runtime overhead. Although our approach is designed

for the development and not production, we can still optimize the performance of our

approach in order to reduce the runtime and memory overheads. For example, we

can instrument only the part of the code which is relevant to the recent code changes.

125

6. Conclusion and Outlook

We can also execute the unit tests which only correspond to the changed code. With

such optimization, one can run our approach after each commit in the development

cycle. Thirdly, as our approach is highly based on the code coverage, in some cases,

it resulted in a low rank for the actual leaky allocation site. A promising approach

is to modify unit tests to achieve higher coverage of the modified code regions. The

other direction is to generate new unit tests for triggering all possible allocation sites.

Our study in Chapter 5 provided some fruitful information about resource and

memory leaks. For example, the results of our study showed that the manual runtime

analysis is still the primary weapon of the practitioners for leak detection. It also

showed that state-of-the-art tools (such as Infer) are not yet powerful to detect all

types of resource and memory leaks. Therefore, one can ask why existing automated

leak detection tools and techniques are rarely used in practice, why current tools are

not helpful for the detection of all leak defects. The result of such an evaluation can

pave the way for further improvement of existing leak detection tools.

From our observation, we found that there exist repair patterns for fixing leak-

inducing defects. For example, we found 13 recurring code transformation. One

could work on new techniques or combined the existing automated repair techniques

for fixing the leak-inducing defects. One direction can be template-driven patch

generation as used in previous work [62, 66].

When a new technique is proposed, it should be evaluated. One common approach

is to evaluate the new technique against benchmarks. However, to our knowledge,

there are no such benchmarks for leak-inducing defects. Most previous works used a

limited number of leaks to evaluate their approaches. Therefore, one can implement

a fault injector which simulates the distribution of the leak types and the defect types

in real applications. It can serve as a practical benchmarking tool for the evaluation

of methods and tools for leak diagnosis.

126

Bibliography

[1] Hiralal Agrawal, Richard A. Demillo, and Eugene H. Spafford. Debugging with
dynamic slicing and backtracking. Softw. Pract. Exper., 23(6):589–616, June
1993.

[2] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In
Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation, PLDI ’90, pages 246–256, New York, NY, USA,
1990. ACM.

[3] Javier Alonso, Luis Moura Silva, Artur Andrzejak, and Jordi Torres. High-
available grid services through the use of virtualized clustering. In IEEE-GRID,
Austin, USA, September 2007.

[4] Elton Alves, Milos Gligoric, Vilas Jagannath, and Marcelo d’Amorim. Fault-
localization using dynamic slicing and change impact analysis. In Proceedings
of the 2011 26th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’11, pages 520–523, Washington, DC, USA, 2011. IEEE
Computer Society.

[5] Amazon AWS. Summary of the October 22,2012 AWS Service Event in the US-
East Region. https://aws.amazon.com/de/message/680342, 2012.

[6] Artur Andrzejak and Luis Silva. Deterministic models of software aging and
optimal rejuvenation schedules. In 10th IFIP/IEEE Symposium on Integrated
Management (IM 2007), Munich, Germany, May 2007.

[7] David Andrzejewski, Anne Mulhern, Ben Liblit, and Xiaojin Zhu. Statistical
debugging using latent topic models. In Proceedings of the 18th European
Conference on Machine Learning, ECML ’07, pages 6–17, Berlin, Heidelberg,
2007. Springer-Verlag.

[8] J. Araujo, R. Matos, P. Maciel, and R. Matias. Software aging issues on the
eucalyptus cloud computing infrastructure. In Proc. IEEE Int Systems, Man,
and Cybernetics (SMC) Conf, pages 1411–1416, 2011.

[9] Ron Artstein and Massimo Poesio. Inter-coder agreement for computational
linguistics. Comput. Linguist., 34(4):555–596, December 2008.

127

https://aws.amazon.com/de/message/680342

Bibliography

[10] Piramanayagam Arumuga Nainar, Ting Chen, Jake Rosin, and Ben Liblit.
Statistical debugging using compound boolean predicates. In Proceedings of
the 2007 International Symposium on Software Testing and Analysis, ISSTA
’07, pages 5–15, New York, NY, USA, 2007. ACM.

[11] Piramanayagam Arumuga Nainar and Ben Liblit. Adaptive bug isolation. In
ICSE, 2010.

[12] A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoudhury. Energypatch:
Repairing resource leaks to improve energy-efficiency of android apps. IEEE
Transactions on Software Engineering, 44(5):470–490, May 2018.

[13] Ansuman Banerjee, Abhik Roychoudhury, Johannes A. Harlie, and Zhenkai
Liang. Golden implementation driven software debugging. In FSE, pages 177–
186, 2010.

[14] Michael D. Bond and Kathryn S. McKinley. Bell: Bit-encoding online
memory leak detection. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XII, pages 61–72, 2006.

[15] Michael D. Bond and Kathryn S. McKinley. Tolerating memory leaks.
In Proceedings of the 23rd ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications, OOPSLA ’08, pages 109–
126, 2008.

[16] Michael D. Bond and Kathryn S. McKinley. Leak Pruning. In ACM Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 277–288, 2009.

[17] Michael D. Bond and Kathryn S. McKinley. Leak pruning. In ACM Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), ASPLOS XIV, pages 277–288, 2009.

[18] Lionel C. Briand, Yvan Labiche, and Xuetao Liu. Using machine learning
to support debugging with tarantula. In Proceedings of the The 18th IEEE
International Symposium on Software Reliability, ISSRE ’07, pages 137–146,
Washington, DC, USA, 2007. IEEE Computer Society.

[19] Yuriy Brun and Michael D. Ernst. Finding latent code errors via machine
learning over program executions. In Proceedings of the 26th International
Conference on Software Engineering, ICSE ’04, pages 480–490, Washington,
DC, USA, 2004. IEEE Computer Society.

[20] George Candea and Armando Fox. Recursive restartability: Turning the reboot
sledgehammer into a scalpel. In HotOS, pages 125–130. IEEE Computer Society,
2001.

128

Bibliography

[21] V. Castelli, R. Harper, P. Heidelberg, S. Hunter, K. Trivedi, K. Vaidyanathan,
and W. Zeggert. Proactive management of software aging. IBM Journal
Research & Development, 45(2), March 2001.

[22] Peggy Cellier, Mireille Ducassé, Sébastien Ferré, and Olivier Ridoux. Formal
concept analysis enhances fault localization in software. In Proceedings of the
6th International Conference on Formal Concept Analysis, ICFCA’08, pages
273–288, 2008.

[23] Kung Chen and Ju-Bing Chen. Aspect-Based Instrumentation for Locating
Memory Leaks in Java Programs. In IEEE International Conference on
Computers, Software & Applications (COMPSAC), pages 23–28, 2007.

[24] Tse-Hsun Chen, Weiyi Shang, Jinqiu Yang, Ahmed E. Hassan, Michael W.
Godfrey, Mohamed Nasser, and Parminder Flora. An empirical study on
the practice of maintaining object-relational mapping code in java systems.
In Proceedings of the 13th International Conference on Mining Software
Repositories, MSR ’16, pages 165–176, 2016.

[25] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. Practical Memory
Leak Detection Using Guarded Value-flow Analysis. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
pages 480–491, 2007.

[26] Sigmund Cherem and Radu Rugina. Region analysis and transformation for
java programs. In Proceedings of the 4th International Symposium on Memory
Management, ISMM ’04, pages 85–96, 2004.

[27] Trishul M. Chilimbi, Ben Liblit, Krishna Mehra, Aditya V. Nori, and Kapil
Vaswani. Holmes: Effective statistical debugging via efficient path profiling. In
ICSE, pages 34–44, 2009.

[28] James Clause and Alessandro Orso. LEAKPOINT: Pinpointing the Causes of
Memory Leaks. In International Conference on Software Engineering (ICSE),
pages 515–524, 2010.

[29] James Clause and Alessandro Orso. Leakpoint: Pinpointing the causes of
memory leaks. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, pages 515–524, 2010.

[30] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20(1):37–46, 1960.

[31] James S. Collofello and Scott N. Woodfield. Evaluating the effectiveness of
reliability-assurance techniques. J. Syst. Softw., 9(3):191–195, March 1989.

[32] Richard Demillo, Hsin Pan, and Eugene Spafford. Failure and fault analysis for
software debugging. In Proceedings - IEEE Computer Society’s International
Computer Software and Applications Conference, pages 515 – 521, 09 1997.

129

Bibliography

[33] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. Critical slicing
for software fault localization. In Proceedings of the 1996 ACM SIGSOFT
international symposium on Software testing and analysis, ISSTA ’96, pages
121–134, 1996.

[34] Isil Dillig, Thomas Dillig, Eran Yahav, and Satish Chandra. The closer:
Automating resource management in java. In ACM International Symposium
on Memory Management (ISMM), pages 1–10, 2008.

[35] W. Eric Wong, Vidroha Debroy, and Byoungju Choi. A family of code coverage-
based heuristics for effective fault localization. J. Syst. Softw., 83(2):188–208,
February 2010.

[36] W. Eric Wong and Yu Qi. Bp neural network-based effective fault localization.
International Journal of Software Engineering and Knowledge Engineering, 19,
11 2011.

[37] Lu Fang, Liang Dou, and Guoqing (Harry) Xu. Perfblower: Quickly detecting
memory-related performance problems via amplification. In 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015,
Prague, Czech Republic, pages 296–320, 2015.

[38] The Eclipse Foundation. The Eclipse Memory Analyzer (MAT). Version 1.2.

[39] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou,
Bing Xie, and Hong Mei. Safe memory-leak fixing for c programs. In Proceedings
of the 37th International Conference on Software Engineering - Volume 1, ICSE
’15, pages 459–470, 2015.

[40] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi. A methodology
for detection and estimation of software aging. In Proceedings of the 9th Int’l
Symposium on Software Reliability Engineering, pages 282–292, 1998.

[41] Mohammadreza Ghanavati and Artur Andrzejak. Automated memory leak
diagnosis by regression testing. In 15th IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM, pages 191–200, 2015.

[42] Mohammadreza Ghanavati, Diego Costa, Artur Andrzejak, and Janos Seboek.
Memory and resource leak defects in java projects: An empirical study. In
Proceedings of the 38th International Conference on Software Engineering
Companion, ICSE ’18 Companion, pages 410–411, 2018.

[43] Mohammadreza Ghanavati, Diego Costa, Janos Seboek, David Lo, and Artur
Andrzejak. Memory and resource leak defects and their repairs in java projects.
CoRR, abs/1810.00101, 2018.

[44] Ross Gore, Paul F. Reynolds, and David Kamensky. Statistical debugging with
elastic predicates. In Proceedings of the 2011 26th IEEE/ACM International

130

Bibliography

Conference on Automated Software Engineering, ASE ’11, pages 492–495,
Washington, DC, USA, 2011. IEEE Computer Society.

[45] Chaorong Guo, Jian Zhang, Jun Yan, Zhiqiang Zhang, and Yanli Zhang.
Characterizing and detecting resource leaks in android applications. In
Proceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE’13, pages 389–398, 2013.

[46] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating faulty
code using failure-inducing chops. In ASE, pages 263–272, 2005.

[47] Brent Hailpern and Padmanabhan Santhanam. Software debugging, testing,
and verification. IBM Systems Journal, 41(1):4–12, 2002.

[48] Ahmed E. Hassan. Predicting faults using the complexity of code changes.
In Proceedings of the 31st International Conference on Software Engineering,
ICSE ’09, pages 78–88. IEEE Computer Society, 2009.

[49] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and
access errors. In USENIX, pages 125–138, 1991.

[50] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory leak
detection using adaptive statistical profiling. In Proceedings of the 11th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XI, pages 156–164, 2004.

[51] David L. Heine and Monica S. Lam. Static Detection of Leaks in Polymorphic
Containers. In International Conference on Software Engineering (ICSE), pages
252–261, 2006.

[52] Susan. Horwitz, Thomas. Reps, and David. Binkley. Interprocedural slicing
using dependence graphs. In PLDI, 1988.

[53] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software rejuvenation:
Analysis, module and applications. In Proceedings of Fault-Tolerant Computing
Symposium FTCS-25, June 1995.

[54] Dorota Huizinga and Adam Kolawa. Automated defect prevention: best practices
in software management. John Wiley & Sons, USA, 2007.

[55] Watts Humphrey. The personal software process (psp). Technical Report
CMU/SEI-2000-TR-022, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2000.

[56] Daniel Jackson and Eugene J. Rollins. A new model of program dependences
for reverse engineering. In Proceedings of the 2Nd ACM SIGSOFT Symposium
on Foundations of Software Engineering, SIGSOFT ’94, pages 2–10, 1994.

131

Bibliography

[57] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu.
Understanding and detecting real-world performance bugs. In Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, pages 77–88, 2012.

[58] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In ASE, pages 273–282, 2005.

[59] Maria Jump and Kathryn S. McKinley. Cork: Dynamic memory leak detection
for garbage-collected languages. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 31–38, 2007.

[60] Changhee Jung, Sangho Lee, Easwaran Raman, and Santosh Pande. Automated
Memory Leak Detection for Production Use. In International Conference on
Software Engineering (ICSE), pages 825–836, 2014.

[61] Changhee Jung, Sangho Lee, Easwaran Raman, and Santosh Pande. Automated
memory leak detection for production use. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages 825–836,
2014.

[62] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic
patch generation learned from human-written patches. In Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13, pages 802–
811, 2013.

[63] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–
163, October 1988.

[64] Felix Langner and Artur Andrzejak. Detecting software aging in a cloud
computing framework by comparing development versions. In IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), pages 896–
899, 2013.

[65] Felix Langner and Artur Andrzejak. Detection and root cause analysis
of memory-related software aging defects by automated tests. In IEEE
International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 365–369, 2013.

[66] Xuan-Bach D Le, David Lo, and Claire Le Goues. History driven program
repair. In IEEE 23rd International Conference on Software Analysis, Evolution
and Reengineering, SANER ’16. IEEE, 2016.

[67] Meir M. Lehman. Programs, life cycles, and laws of software evolution. Proc.
IEEE, 68(9):1060–1076, September 1980.

[68] L. Li, K. Vaidyanathan, and K. Trivedi. An approach for estimation of software
aging in a web-server. In ISESE’02, pages 91–102, 2002.

132

Bibliography

[69] Ben Liblit. Cooperative Bug Isolation: Winning Thesis of the 2005 ACM
Doctoral Dissertation Competition, volume 4440 of Lecture Notes in Computer
Science. Springer, 2007.

[70] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation
via remote program sampling. In PLDI, 2003.

[71] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan.
Scalable statistical bug isolation. In PLDI, 2005.

[72] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel P. Midkiff. Statistical
debugging: A hypothesis testing-based approach. IEEE Trans. Softw. Eng.,
32(10):831–848, October 2006.

[73] Chao Liu, Xiangyu Zhang, Yu Zhang, Jiawei Han, and Bharat K. Bhargava.
Indexing noncrashing failures: A dynamic program slicing-based approach. In
International Conference Software Maintenance (ICSM), pages 455–464. IEEE,
2007.

[74] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. R2fix: Automatically
generating bug fixes from bug reports. In Proceedings of the 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation,
ICST ’13, pages 282–291, 2013.

[75] David Lo, Nachiappan Nagappan, and Thomas Zimmermann. How
practitioners perceive the relevance of software engineering research. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 415–425, 2015.

[76] Fan Long and Martin Rinard. Automatic patch generation by learning correct
code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’16, pages 298–312, 2016.

[77] J. R. Lyle and M. Weiser. Automatic program bug location by program slicing.
In International Conference on Computers and Applications, pages 877–882,
1987.

[78] Fumio Machida, Jianwen Xiang, Kumiko Tadano, and Yoshiharu Maeno. Aging-
related bugs in cloud computing software. In Proceedings of the 2012 IEEE
23rd International Symposium on Software Reliability Engineering Workshops,
ISSREW ’12, pages 287–292, 2012.

[79] Jeremy Manson. java-allocation-instrumenter: A Java agent that rewrites
bytecode to instrument allocation sites. https://code.google.com/p/
java-allocation-instrumenter/, February 2012.

[80] Cristinel Mateis, Markus Stumptner, and Franz Wotawa. Modeling java
programs for diagnosis. In Proceedings of the 14th European Conference on

133

https://code.google.com/p/java-allocation-instrumenter/
https://code.google.com/p/java-allocation-instrumenter/

Bibliography

Artificial Intelligence, ECAI’00, pages 171–175, Amsterdam, The Netherlands,
The Netherlands, 2000. IOS Press.

[81] R. Matias, A. Andrzejak, F. Machida, D. Elias, and K. Trivedi. A systematic
differential analysis for fast and robust detection of software aging. In 2014
IEEE 33rd International Symposium on Reliable Distributed Systems, pages
311–320, Oct 2014.

[82] Rivalino Matias, Artur Andrzejak, Fumio Machida, Diego Elias, and Kishor
Trivedi. A systematic approach for low-latency and robust detection of software
aging. In IEEE International Symposium on Reliable Distributed Systems
(SRDS), 2014.

[83] Steve McConnell. Code complete: a practical handbook of software construction.
Microsoft Press, USA, 1993.

[84] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th International Conference on Software Engineering, ICSE ’16, pages 691–
701, 2016.

[85] Na Meng, Miryung Kim, and Kathryn S. McKinley. Lase: Locating and
applying systematic edits by learning from examples. In Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13, pages 502–
511, Piscataway, NJ, USA, 2013. IEEE Press.

[86] Bryan Meredith. Omega - An Instant Leak Detection Tool for Valgrind, 2008.
Version 1.2.

[87] Ghassan Misherghi and Zhendong Su. Hdd: hierarchical delta debugging. In
ICSE, pages 142–151, 2006.

[88] Nick Mitchell and Gary Sevitsky. LeakBot: An Automated and Lightweight
Tool for Diagnosing Memory Leaks in Large Java Applications. In European
Conference on Object-Oriented Programming (ECOOP), pages 351–377, 2003.

[89] Syeda Nessa, Muhammad Abedin, W. Eric Wong, Latifur Khan, and Yu Qi.
Software fault localization using n-gram analysis. In Proceedings of the Third
International Conference on Wireless Algorithms, Systems, and Applications,
WASA ’08, pages 548–559, 2008.

[90] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 89–100,
2007.

[91] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish
Chandra. Semfix: Program repair via semantic analysis. In Proceedings of

134

Bibliography

the 2013 International Conference on Software Engineering, ICSE ’13, pages
772–781, 2013.

[92] Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting, and fixing
performance bugs. In Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR ’13, pages 237–246, 2013.

[93] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Efficiently and
Precisely Locating Memory Leaks and Bloat. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 397–407,
2009.

[94] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Efficiently and precisely
locating memory leaks and bloat. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’09,
pages 397–407, 2009.

[95] Maksim Orlovich and Radu Rugina. Memory Leak Analysis by Contradiction.
In International Static Analysis Symposium (SAS), pages 405–424, 2006.

[96] Alessandro Orso and Gregg Rothermel. Software testing: A research travelogue
(2000–2014). In Conference on Future of Software Engineering (FOSE), pages
117–132, 2014.

[97] Kai Pan, Sunghun Kim, and E. James Whitehead, Jr. Toward an understanding
of bug fix patterns. Empirical Softw. Engg., 14(3):286–315, June 2009.

[98] Chris Parnin and Alessandro Orso. Are automated debugging techniques
actually helping programmers? In ISSTA, 2011.

[99] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu,
Michael D. Ernst, Deric Pang, and Benjamin Keller. Evaluating and improving
fault localization. In Proceedings of the 39th International Conference on
Software Engineering, ICSE ’17, pages 609–620, Piscataway, NJ, USA, 2017.
IEEE Press.

[100] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. Darwin:
an approach for debugging evolving programs. In ESEC/FSE, pages 33–42,
2009.

[101] Derek Rayside and Lucy Mendel. Object ownership profiling: A technique
for finding and fixing memory leaks. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineering,
ASE ’07, pages 194–203, 2007.

[102] Jeremias Roessler, Gordon Fraser, Andreas Zeller, and Alessandro Orso.
Isolating failure causes through test case generation. In ISSTA, pages 309–319,
2012.

135

Bibliography

[103] Carolyn B. Seaman. Qualitative methods in empirical studies of software
engineering. IEEE Trans. Softw. Eng., 25(4):557–572, July 1999.

[104] Carolyn B. Seaman, Forrest Shull, Myrna Regardie, Denis Elbert, Raimund L.
Feldmann, Yuepu Guo, and Sally Godfrey. Defect categorization: Making use
of a decade of widely varying historical data. In Proceedings of the Second
ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM ’08, pages 149–157, 2008.

[105] Marija Selakovic and Michael Pradel. Performance issues and optimizations
in javascript: An empirical study. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 61–72, 2016.

[106] Ran Shaham, Eran Yahav, Elliot K. Kolodner, and Mooly Sagiv. Establishing
local temporal heap safety properties with applications to compile-time memory
management. In Proceedings of the 10th International Conference on Static
Analysis, SAS’03, pages 483–503, 2003.

[107] Luis Moura Silva, Javier Alonso, Paulo Silva, Jordi Torres, and Artur
Andrzejak. Using virtualization to improve software rejuvenation. In IEEE
International Symposium on Network Computing and Applications (IEEE-
NCA), Cambridge, MA, USA, July 2007.

[108] Luis Moura Silva, Henrique Madeira, and João Gabriel Silva. Software aging
and rejuvenation in a SOAP-based server. In IEEE International Symposium on
Network Computing and Applications (IEEE-NCA), pages 56–65, Los Alamitos,
CA, USA, 2006. IEEE Computer Society.

[109] Ian Sommerville. Software Engineering. Addison-Wesley Publishing Company,
USA, 9th edition, 2010.

[110] Linhai Song and Shan Lu. Statistical debugging for real-world performance
problems. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages
561–578, 2014.

[111] V. Sor, P. Oü, T. Treier, and S. N. Srirama. Improving statistical approach
for memory leak detection using machine learning. In 2013 IEEE International
Conference on Software Maintenance, pages 544–547, Sept 2013.

[112] Vladimir Šor. Statistical approach for memory leak detection in Java
applications. PhD thesis, University of Tartu, Estonia, Tartu, Estonia, 2014.

[113] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. Thin slicing. In PLDI,
pages 112–122, 2007.

[114] Chad D. Sterling and Ronald A. Olsson. Automated bug isolation via program
chipping. Software: Practice and Experience, 37(10):1061–1086, 2007.

136

Bibliography

[115] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and
Chengxiang Zhai. Bug characteristics in open source software. Empirical Softw.
Engg., 19(6):1665–1705, December 2014.

[116] Emina Torlak and Satish Chandra. Effective interprocedural resource leak
detection. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, pages 535–544, 2010.

[117] K. Vaidyanathan and K. S. Trivedi. A measurement-based model for estimation
of resource exhaustion in operational software systems. In Proceedings of
10th IEEE Int’l Symposium on Software Reliability Engineering, pages 84–93,
November 1999.

[118] Rijnard van Tonder and Claire Le Goues. Static automated program repair
for heap properties. In Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18, pages 151–162, 2018.

[119] WALA. http://sourceforge.net/projects/wala/.

[120] Yan Wang, Harish Patil, Cristiano Pereira, Gregory Lueck, Rajiv Gupta,
and Iulian Neamtiu. Drdebug: Deterministic replay based cyclic debugging
with dynamic slicing. In Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’14, pages 98:98–
98:108, 2014.

[121] Westley Weimer and George C. Necula. Finding and preventing run-
time error handling mistakes. In Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications, pages 419–431, 2004.

[122] Westley Weimer and George C. Necula. Mining temporal specifications for
error detection. In Proceedings of the 11th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 461–476,
2005.

[123] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
Automatically finding patches using genetic programming. In Proceedings of
the 31st International Conference on Software Engineering, ICSE ’09, pages
364–374, 2009.

[124] Mark Weiser. Program slicing. IEEE Trans. Softw. Eng., 10(4):352–357, 1984.

[125] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey
on software fault localization. IEEE Trans. Softw. Eng., 42(8):707–740, August
2016.

[126] Franz Wotawa. On the relationship between model-based debugging and
program slicing. Artif. Intell., 135(1-2):125–143, February 2002.

137

http://sourceforge.net/projects/wala/

Bibliography

[127] Franz Wotawa, Markus Stumptner, and Wolfgang Mayer. Model-based
debugging or how to diagnose programs automatically. In Proceedings of the
15th International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems: Developments in Applied Artificial
Intelligence, pages 746–757, 2002.

[128] Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. Relink:
Recovering links between bugs and changes. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 15–25, 2011.

[129] Guoqing Xu, Michael D. Bond, Feng Qin, and Atanas Rountev. Leakchaser:
Helping programmers narrow down causes of memory leaks. In Proceedings of
the 32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, pages 270–282, 2011.

[130] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and Gary
Sevitsky. Software bloat analysis: Finding, removing, and preventing
performance problems in modern large-scale object-oriented applications. In
FSE/SDP Workshop on Future of Software Engineering Research (FoSER),
pages 421–426, 2010.

[131] Guoqing Xu and Atanas Rountev. Precise memory leak detection for java
software using container profiling. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, pages 151–160, 2008.

[132] Guoqing Xu and Atanas Rountev. Precise Memory Leak Detection for
Java Software Using Container Profiling. ACM Transactions on Software
Engineering and Methodology, 22(3):17:1–17:28, July 2013.

[133] Dacong Yan, Guoqing Xu, Shengqian Yang, and Atanas Rountev. Leakchecker:
Practical static memory leak detection for managed languages. In Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’14, pages 87:87–87:97, 2014.

[134] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. Automated memory leak
fixing on value-flow slices for c programs. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing, SAC ’16, pages 1386–1393, 2016.

[135] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi
Bairavasundaram. How do fixes become bugs? In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 26–36, 2011.

[136] S Yoo, X Xie, Fei-Ching Kuo, T.Y Chen, and Mark Harman. No pot of gold at
the end of program spectrum rainbow: Greatest risk evaluation formula does
not exist. Technical Report RN/14/14, 01 2014.

138

Bibliography

[137] Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. Practical isolation of
failure-inducing changes for debugging regression faults. In ASE, ASE 2012,
pages 20–29, 2012.

[138] Andreas Zeller. Yesterday, My Program Worked. Today, It Does Not. Why?
In Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 253–267, 1999.

[139] Andreas Zeller. Yesterday, my program worked. today, it does not. why?
SIGSOFT Softw. Eng. Notes, 24(6):253–267, 1999.

[140] Andreas Zeller. Isolating cause-effect chains from computer programs. In FSE,
pages 1–10, 2002.

[141] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[142] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Pruning dynamic slices with
confidence. In PLDI, pages 169–180, 2006.

[143] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faulty code by
multiple points slicing. Software: Practice and Experience, 37(9):935–961, 2007.

[144] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. A study of effectiveness of
dynamic slicing in locating real faults. Empirical Softw. Engg., 12(2):143–160,
April 2007.

[145] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise dynamic slicing
algorithms. In ICSE, pages 319–329, 2003.

[146] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Efficient forward
computation of dynamic slices using reduced ordered binary decision diagrams.
In Proceedings of the 26th International Conference on Software Engineering,
ICSE ’04, pages 502–511, Washington, DC, USA, 2004. IEEE Computer Society.

[147] Hao Zhong and Zhendong Su. An empirical study on real bug fixes. In
Proceedings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ’15, pages 913–923, 2015.

139

	Abstract
	Zussamenfassung
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Scalable Isolation of Failure-Inducing Changes
	1.2 Automated Memory Leak Diagnosis via Version Comparison
	1.3 Empirical Study on Resource and Memory Leaks
	1.4 Contributions
	1.5 Papers Appeared
	1.6 Overview and Organization

	2 Background and Related Work
	2.1 Fault Localization of Functional Bugs
	2.1.1 Program Analysis
	2.1.2 Fault Localization Techniques

	2.2 Resource and Memory Leak Detection in Java
	2.2.1 Memory Management in Java
	2.2.2 Resource and Memory Leaks
	2.2.3 Debugging Leak-Inducing Defects

	3 Scalable Isolation of Failure-Inducing Changes
	3.1 Introduction
	3.1.1 Core Idea
	3.1.2 Contribution

	3.2 Version Comparison Approach
	3.2.1 Approach Overview
	3.2.2 Discussion

	3.3 Experimental Design
	3.4 Experimental Evaluation
	3.4.1 Case Studies
	3.4.2 Complexity of the Approach
	3.4.3 Performance Evaluation

	3.5 Chapter Summary

	4 Automated Memory Leak Diagnosis via Version Comparison
	4.1 Introduction
	4.1.1 Core Idea
	4.1.2 Contributions

	4.2 Leak Detection via Version Comparison
	4.2.1 Approach Description
	4.2.2 Instrumentation and Data Collection
	4.2.3 Types of Allocation Sites
	4.2.4 Leak Confidence Score
	4.2.5 Ranking
	4.2.6 Discussion

	4.3 Experimental Design
	4.3.1 Methodology
	4.3.2 Research Questions

	4.4 Experimental Evaluation
	4.4.1 Experiment I: Evaluation of Synthetic Defects
	4.4.2 Answer to RQ2: Evaluation of Real-World Issues
	4.4.3 Answer to RQ3: Analysis of Factors Contributing to LC
	4.4.4 Answer to RQ4: Evaluation of Runtime and Memory Efficiency

	4.5 Discussion
	4.5.1 What is the Distribution of the Leak Confidence Value for Various Software Projects?
	4.5.2 Does Our Approach Help Developers to Detect Memory Leaks?
	4.5.3 Can Our Approach Find the Root Cause of the Memory Leaks?

	4.6 Threats to Validity
	4.7 Chapter Summary

	5 An Empirical Study on Leak-inducing Defects and Their Repairs
	5.1 Introduction
	5.2 Background
	5.2.1 Issue Report

	5.3 Empirical Study Design
	5.3.1 Studied Projects
	5.3.2 Research Questions
	5.3.3 Data Extraction
	5.3.4 Tagging Leak-Related Defects
	5.3.5 Uniqueness of Categories

	5.4 Empirical Study Results
	5.4.1 RQ1: What Is Distribution of Leak Types in Studied Projects?
	5.4.2 RQ2: How Are Leak-Related Defects Detected?
	5.4.3 RQ3: To What Extent Are the Leak-Inducing Defects Localized?
	5.4.4 RQ4: What Are the Most Common Root Causes?
	5.4.5 RQ5: What Are the Characteristics of the Repair Patches?
	5.4.6 RQ6: How Complex Are Repairs of the Leak-Inducing Defects?
	5.4.7 Other Findings

	5.5 Implications
	5.6 Threats to Validity
	5.7 Chapter Summary

	6 Conclusion and Outlook
	6.1 Conclusion
	6.2 Outlook

	Bibliography

