648 research outputs found

    3D high definition video coding on a GPU-based heterogeneous system

    Get PDF
    H.264/MVC is a standard for supporting the sensation of 3D, based on coding from 2 (stereo) to N views. H.264/MVC adopts many coding options inherited from single view H.264/AVC, and thus its complexity is even higher, mainly because the number of processing views is higher. In this manuscript, we aim at an efficient parallelization of the most computationally intensive video encoding module for stereo sequences. In particular, inter prediction and its collaborative execution on a heterogeneous platform. The proposal is based on an efficient dynamic load balancing algorithm and on breaking encoding dependencies. Experimental results demonstrate the proposed algorithm's ability to reduce the encoding time for different stereo high definition sequences. Speed-up values of up to 90× were obtained when compared with the reference encoder on the same platform. Moreover, the proposed algorithm also provides a more energy-efficient approach and hence requires less energy than the sequential reference algorith

    On the impact of the GOP size in a temporal H.264/AVC-to-SVC transcoder in baseline and main profile

    Get PDF
    Scalable video coding is a recent extension of the advanced video coding H.264/AVC standard developed jointly by ISO/IEC and ITU-T, which allows adapting the bitstream easily by dropping parts of it named layers. This adaptation makes it possible for a single bitstream to meet the requirements for reliable delivery of video to diverse clients over heterogeneous networks using temporal, spatial or quality scalability, combined or separately. Since the scalable video coding design requires scalability to be provided at the encoder side, existing content cannot benefit from it. Efficient techniques for converting contents without scalability to a scalable format are desirable. In this paper, an approach for temporal scalability transcoding from H.264/AVC to scalable video coding in baseline and main profile is presented and the impact of the GOP size is analyzed. Independently of the GOP size chosen, time savings of around 63 % for baseline profile and 60 % for main profile are achieved while maintaining the coding efficiency

    Reducing the complexity of a multiview H.264/AVC and HEVC hybrid architecture

    Get PDF
    With the advent of 3D displays, an efficient encoder is required to compress the video information needed by them. Moreover, for gradual market acceptance of this new technology, it is advisable to offer backward compatibility with existing devices. Thus, a multiview H.264/Advance Video Coding (AVC) and High Efficiency Video Coding (HEVC) hybrid architecture was proposed in the standardization process of HEVC. However, it requires long encoding times due to the use of HEVC. With the aim of tackling this problem, this paper presents an algorithm that reduces the complexity of this hybrid architecture by reducing the encoding complexity of the HEVC views. By using Na < ve-Bayes classifiers, the proposed technique exploits the information gathered in the encoding of the H.264/AVC view to make decisions on the splitting of coding units in HEVC side views. Given the novelty of the proposal, the only similar work found in the literature is an unoptimized version of the algorithm presented here. Experimental results show that the proposed algorithm can achieve a good tradeoff between coding efficiency and complexity

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Minimum Distortion Variance Concatenated Block Codes for Embedded Source Transmission

    Full text link
    Some state-of-art multimedia source encoders produce embedded source bit streams that upon the reliable reception of only a fraction of the total bit stream, the decoder is able reconstruct the source up to a basic quality. Reliable reception of later source bits gradually improve the reconstruction quality. Examples include scalable extensions of H.264/AVC and progressive image coders such as JPEG2000. To provide an efficient protection for embedded source bit streams, a concatenated block coding scheme using a minimum mean distortion criterion was considered in the past. Although, the original design was shown to achieve better mean distortion characteristics than previous studies, the proposed coding structure was leading to dramatic quality fluctuations. In this paper, a modification of the original design is first presented and then the second order statistics of the distortion is taken into account in the optimization. More specifically, an extension scheme is proposed using a minimum distortion variance optimization criterion. This robust system design is tested for an image transmission scenario. Numerical results show that the proposed extension achieves significantly lower variance than the original design, while showing similar mean distortion performance using both convolutional codes and low density parity check codes.Comment: 6 pages, 4 figures, In Proc. of International Conference on Computing, Networking and Communications, ICNC 2014, Hawaii, US

    A parallel H.264/SVC encoder for high definition video conferencing

    Get PDF
    In this paper we present a video encoder specially developed and configured for high definition (HD) video conferencing. This video encoder brings together the following three requirements: H.264/Scalable Video Coding (SVC), parallel encoding on multicore platforms, and parallel-friendly rate control. With the first requirement, a minimum quality of service to every end-user receiver over Internet Protocol networks is guaranteed. With the second one, real-time execution is accomplished and, for this purpose, slice-level parallelism, for the main encoding loop, and block-level parallelism, for the upsampling and interpolation filtering processes, are combined. With the third one, a proper HD video content delivery under certain bit rate and end-to-end delay constraints is ensured. The experimental results prove that the proposed H.264/SVC video encoder is able to operate in real time over a wide range of target bit rates at the expense of reasonable losses in rate-distortion efficiency due to the frame partitioning into slices
    corecore