4 research outputs found

    Intelligent and Energy-Efficient Data Prioritization in Green Smart Cities: Current Challenges and Future Directions

    Full text link
    [EN] The excessive use of digital devices such as cameras and smartphones in smart cities has produced huge data repositories that require automatic tools for efficient browsing, searching, and management. Data prioritization (DP) is a technique that produces a condensed form of the original data by analyzing its contents. Current DP studies are either concerned with data collected through stable capturing devices or focused on prioritization of data of a certain type such as surveillance, sports, or industry. This necessitates the need for DP tools that intelligently and cost-effectively prioritize a large variety of data for detecting abnormal events and hence effectively manage them, thereby making the current smart cities greener. In this article, we first carry out an in-depth investigation of the recent approaches and trends of DP for data of different natures, genres, and domains of two decades in green smart cities. Next, we propose an energy-efficient DP framework by intelligent integration of the Internet of Things, artificial intelligence, and big data analytics. Experimental evaluation on real-world surveillance data verifies the energy efficiency and applicability of this framework in green smart cities. Finally, this article highlights the key challenges of DP, its future requirements, and propositions for integration into green smart citiesThis work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. 2016R-1A2B4011712).Muhammad, K.; Lloret, J.; Baik, SW. (2019). Intelligent and Energy-Efficient Data Prioritization in Green Smart Cities: Current Challenges and Future Directions. IEEE Communications Magazine. 57(2):60-65. https://doi.org/10.1109/MCOM.2018.1800371S606557

    Summarizing Videos with Attention

    Full text link
    In this work we propose a novel method for supervised, keyshots based video summarization by applying a conceptually simple and computationally efficient soft, self-attention mechanism. Current state of the art methods leverage bi-directional recurrent networks such as BiLSTM combined with attention. These networks are complex to implement and computationally demanding compared to fully connected networks. To that end we propose a simple, self-attention based network for video summarization which performs the entire sequence to sequence transformation in a single feed forward pass and single backward pass during training. Our method sets a new state of the art results on two benchmarks TvSum and SumMe, commonly used in this domain.Comment: Presented at ACCV2018 AIU2018 worksho

    Effective video summarization approach based on visual attention

    Get PDF
    Video summarization is applied to reduce redundancy and develop a concise representation of key frames in the video, more recently, video summaries have been used through visual attention modeling. In these schemes, the frames that stand out visually are extracted as key frames based on human attention modeling theories. The schemes for modeling visual attention have proven to be effective for video summaries. Nevertheless, the high cost of computing in such techniques restricts their usability in everyday situations. In this context, we propose a method based on KFE (key frame extraction) technique, which is recommended based on an efficient and accurate visual attention model. The calculation effort is minimized by utilizing dynamic visual highlighting based on the temporal gradient instead of the traditional optical flow techniques. In addition, an efficient technique using a discrete cosine transformation is utilized for the static visual salience. The dynamic and static visual attention metrics are merged by means of a non-linear weighted fusion technique. Results of the systemare compared with some existing stateof- the-art techniques for the betterment of accuracy. The experimental results of our proposed model indicate the efficiency and high standard in terms of the key frames extraction as output.Qatar University - No. IRCC-2021-010

    Detection and Mosaicing through Deep Learning Models for Low-Quality Retinal Images

    Get PDF
    Glaucoma is a severe eye disease that is asymptomatic in the initial stages and can lead to blindness, due to its degenerative characteristic. There isn’t any available cure for it, and it is the second most common cause of blindness in the world. Most of the people affected by it only discovers the disease when it is already too late. Regular visits to the ophthalmologist are the best way to prevent or contain it, with a precise diagnosis performed with professional equipment. From another perspective, for some individuals or populations, this task can be difficult to accomplish, due to several restrictions, such as low incoming resources, geographical adversities, and travelling restrictions (distance, lack of means of transportation, etc.). Also, logistically, due to its dimensions, relocating the professional equipment can be expensive, thus becoming not viable to bring them to remote areas. In the market, low-cost products like the D-Eye lens offer an alternative to meet this need. The D-Eye lens can be attached to a smartphone to capture fundus images, but it presents a major drawback in terms of lower-quality imaging when compared to professional equipment. This work presents and evaluates methods for eye reading with D-Eye recordings. This involves exposing the retina in two steps: object detection and summarization via object mosaicing. Deep learning methods, such as the YOLO family architecture, were used for retina registration as an object detector. The summarization methods presented and inferred in this work mosaiced the best retina images together to produce a more detailed resultant image. After selecting the best workflow from these methods, a final inference was performed and visually evaluated, the results were not rich enough to serve as a pre-screening medical assessment, determining that improvements in the actual algorithm and technology are needed to retrieve better imaging
    corecore