9 research outputs found

    Scalable genetic programming by gene-pool optimal mixing and input-space entropy-based building-block learning

    Get PDF
    The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a recently introduced model-based EA that has been shown to be capable of outperforming state-of-the-art alternative EAs in terms of scalability when solving discrete optimization problems. One of the key aspects of GOMEA's success is a variation operator that is designed to extensively exploit linkage models by effectively combining partial solutions. Here, we bring the strengths of GOMEA to Genetic Programming (GP), introducing GP-GOMEA. Under the hypothesis of having little problem-specific knowledge, and in an effort to design easy-to-use EAs, GP-GOMEA requires no parameter specification. On a set of well-known benchmark problems we find that GP-GOMEA outperforms standard GP while being on par with more recently introduced, state-of-the-art EAs. We furthermore introduce Input-space Entropy-based Building-block Learning (IEBL), a novel approach to identifying and encapsulating relevant building blocks (subroutines) into new terminals and functions. On problems with an inherent degree of modularity, IEBL can contribute to compact solution representations, providing a large potential for knock-on effects in performance. On the difficult, but highly modular Even Parity problem, GP-GOMEA+IEBL obtains excellent scalability, solving the 14-bit instance in less than 1 hour

    Comparison of semantic-based local search methods for multiobjective genetic programming

    Get PDF
    We report a series of experiments that use semantic-based local search within a multiobjective genetic programming (GP) framework. We compare various ways of selecting target subtrees for local search as well as different methods for performing that search; we have also made comparison with the random desired operator of Pawlak et al. using statistical hypothesis testing. We find that a standard steady state or generational GP followed by a carefully-designed single-objective GP implementing semantic-based local search produces models that are mode accurate and with statistically smaller (or equal) tree size than those generated by the corresponding baseline GP algorithms. The depth fair selection strategy of Ito et al. is found to perform best compared with other subtree selection methods in the model refinement

    Nonlinear Dynamic System Identification and Model Predictive Control Using Genetic Programming

    Get PDF
    During the last century, a lot of developments have been made in research of complex nonlinear process control. As a powerful control methodology, model predictive control (MPC) has been extensively applied to chemical industrial applications. Core to MPC is a predictive model of the dynamics of the system being controlled. Most practical systems exhibit complex nonlinear dynamics, which imposes big challenges in system modelling. Being able to automatically evolve both model structure and numeric parameters, Genetic Programming (GP) shows great potential in identifying nonlinear dynamic systems. This thesis is devoted to GP based system identification and model-based control of nonlinear systems. To improve the generalization ability of GP models, a series of experiments that use semantic-based local search within a multiobjective GP framework are reported. The influence of various ways of selecting target subtrees for local search as well as different methods for performing that search were investigated; a comparison with the Random Desired Operator (RDO) of Pawlak et al. was made by statistical hypothesis testing. Compared with the corresponding baseline GP algorithms, models produced by a standard steady state or generational GP followed by a carefully-designed single-objective GP implementing semantic-based local search are statistically more accurate and with smaller (or equal) tree size, compared with the RDO-based GP algorithms. Considering the practical application, how to correctly and efficiently apply an evolved GP model to other larger systems is a critical research concern. Currently, the replication of GP models is normally done by repeating other’s work given the necessary algorithm parameters. However, due to the empirical and stochastic nature of GP, it is difficult to completely reproduce research findings. An XML-based standard file format, named Genetic Programming Markup Language (GPML), is proposed for the interchange of GP trees. A formal definition of this standard and details of implementation are described. GPML provides convenience and modularity for further applications based on GP models. The large-scale adoption of MPC in buildings is not economically viable due to the time and cost involved in designing and adjusting predictive models by expert control engineers. A GP-based control framework is proposed for automatically evolving dynamic nonlinear models for the MPC of buildings. An open-loop system identification was conducted using the data generated by a building simulator, and the obtained GP model was then employed to construct the predictive model for the MPC. The experimental result shows GP is able to produce models that allow the MPC of building to achieve the desired temperature band in a single zone space

    Mining Explicit and Implicit Relationships in Data Using Symbolic Regression

    Full text link
    Identification of implicit and explicit relations within observed data is a generic problem commonly encountered in several domains including science, engineering, finance, and more. It forms the core component of data analytics, a process of discovering useful information from data sets that are potentially huge and otherwise incomprehensible. In industries, such information is often instrumental for profitable decision making, whereas in science and engineering it is used to build empirical models, propose new or verify existing theories and explain natural phenomena. In recent times, digital and internet based technologies have proliferated, making it viable to generate and collect large amount of data at low cost. This inturn has resulted in an ever growing need for methods to analyse and draw interpretations from such data quickly and reliably. With this overarching goal, this thesis attempts to make contributions towards developing accurate and efficient methods for discovering such relations through evolutionary search, a method commonly referred to as Symbolic Regression (SR). A data set of input variables x and a corresponding observed response y is given. The aim is to find an explicit function y = f (x) or an implicit function f (x, y) = 0, which represents the data set. While seemingly simple, the problem is challenging for several reasons. Some of the conventional regression methods try to “guess” a functional form such as linear/quadratic/polynomial, and attempt to do a curve-fitting of the data to the equation, which may limit the possibility of discovering more complex relations, if they exist. On the other hand, there are meta-modelling techniques such as response surface method, Kriging, etc., that model the given data accurately, but provide a “black-box” predictor instead of an expression. Such approximations convey little or no insights about how the variables and responses are dependent on each other, or their relative contribution to the output. SR attempts to alleviate the above two extremes by providing a structure which evolves mathematical expressions instead of assuming them. Thus, it is flexible enough to represent the data, but at the same time provides useful insights instead of a black-box predictor. SR can be categorized as part of Explainable Artificial Intelligence and can contribute to Trustworthy Artificial Intelligence. The works proposed in this thesis aims to integrate the concept of “semantics” deeper into Genetic Programming (GP) and Evolutionary Feature Synthesis, which are the two algorithms usually employed for conducting SR. The semantics will be integrated into well-known components of the algorithms such as compactness, diversity, recombination, constant optimization, etc. The main contribution of this thesis is the proposal of two novel operators to generate expressions based on Linear Programming and Mixed Integer Programming with the aim of controlling the length of the discovered expressions without compromising on the accuracy. In the experiments, these operators are proven to be able to discover expressions with better accuracy and interpretability on many explicit and implicit benchmarks. Moreover, some applications of SR on real-world data sets are shown to demonstrate the practicality of the proposed approaches. Besides, in related to practical problems, how GP can be applied to effectively solve the Resource Constrained Scheduling Problems is also presented

    Memetic Semantic Genetic Programming

    Get PDF
    Best Paper Award in the GP track - see http://www.sigevo.org/gecco-2015/papers.htmlInternational audienceSemantic Backpropagation (SB) was introduced in GP so as to take into account the semantics of a GP tree at all intermediate states of the program execution, i.e., at each node of the tree. The idea is to compute the optimal " should-be " values each subtree should return, whilst assuming that the rest of the tree is unchanged, so as to minimize the fitness of the tree. To this end, the Random Desired Output (RDO) mutation operator, proposed in [17], uses SB in choosing, from a given library, a tree whose semantics are preferred to the semantics of a randomly selected subtree from the parent tree. Pushing this idea one step further, this paper introduces the Local Tree Improvement (LTI) operator, which selects from the parent tree the overall best subtree for applying RDO, using a small randomly drawn static library. Used within a simple Iterated Local Search framework, LTI can find the exact solution of many popular Boolean benchmarks in reasonable time whilst keeping solution trees small, thus paving the road for truly memetic GP algorithms

    Memetic Semantic Genetic Programming for Symbolic Regression

    No full text
    International audienceThis paper describes a new memetic semantic algorithm for symbolic regression (SR). While memetic computation offers a way to encode domain knowledge into a population-based process, semantic-based algorithms allow one to improve them locally to achieve a desired output. Hence, combining memetic and semantic enables us to (a) enhance the exploration and exploitation features of genetic programming (GP) and (b) discover short symbolic expressions that are easy to understand and interpret without losing the expressivity characteristics of symbolic regression. Experimental results show that our proposed memetic semantic algorithm can outperform traditional evolutionary and non-evolutionary methods on several real-world symbolic regression problems, paving a new direction to handle both the bloating and generalization endeavors of genetic programming
    corecore