163 research outputs found

    Memetic Differential Evolution with an Improved Contraction Criterion

    Get PDF
    Memetic algorithms with an appropriate trade-off between the exploration and exploitation can obtain very good results in continuous optimization. In this paper, we present an improved memetic differential evolution algorithm for solving global optimization problems. The proposed approach, called memetic DE (MDE), hybridizes differential evolution (DE) with a local search (LS) operator and periodic reinitialization to balance the exploration and exploitation. A new contraction criterion, which is based on the improved maximum distance in objective space, is proposed to decide when the local search starts. The proposed algorithm is compared with six well-known evolutionary algorithms on twenty-one benchmark functions, and the experimental results are analyzed with two kinds of nonparametric statistical tests. Moreover, sensitivity analyses for parameters in MDE are also made. Experimental results have demonstrated the competitive performance of the proposed method with respect to the six compared algorithms

    Mixed-Integer Constrained Optimization Based on Memetic Algorithm

    Get PDF
    Evolutionary algorithms (EAs) are population-based global search methods. They have been successfully applied tomany complex optimization problems. However, EAs are frequently incapable of finding a convergence solution indefault of local search mechanisms. Memetic Algorithms (MAs) are hybrid EAs that combine genetic operators withlocal search methods. With global exploration and local exploitation in search space, MAs are capable of obtainingmore high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE), as an EA-basedsearch algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, amemetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most ofreal-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order toeffectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solvethe mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on twobenchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithmcan find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposedmemetic algorithm is a good approach to mixed-integer optimization problems

    Quantum-Inspired Distributed Memetic Algorithm

    Get PDF
    This paper proposed a novel distributed memetic evolutionary model, where four modules distributed exploration, intensified exploitation, knowledge transfer, and evolutionary restart are coevolved to maximize their strengths and achieve superior global optimality. Distributed exploration evolves three independent populations by heterogenous operators. Intensified exploitation evolves an external elite archive in parallel with exploration to balance global and local searches. Knowledge transfer is based on a point-ring communication topology to share successful experiences among distinct search agents. Evolutionary restart adopts an adaptive perturbation strategy to control search diversity reasonably. Quantum computation is a newly emerging technique, which has powerful computing power and parallelized ability. Therefore, this paper further fuses quantum mechanisms into the proposed evolutionary model to build a new evolutionary algorithm, referred to as quantum-inspired distributed memetic algorithm (QDMA). In QDMA, individuals are represented by the quantum characteristics and evolved by the quantum-inspired evolutionary optimizers in the quantum hyperspace. The QDMA integrates the superiorities of distributed, memetic, and quantum evolution. Computational experiments are carried out to evaluate the superior performance of QDMA. The results demonstrate the effectiveness of special designs and show that QDMA has greater superiority compared to the compared state-of-the-art algorithms based on Wilcoxon’s rank-sum test. The superiority is attributed not only to good cooperative coevolution of distributed memetic evolutionary model, but also to superior designs of each special component

    Document clustering with optimized unsupervised feature selection and centroid allocation

    Get PDF
    An effective document clustering system can significantly improve the tasks of document analysis, grouping, and retrieval. The performance of a document clustering system mainly depends on document preparation and allocation of cluster positions. As achieving optimal document clustering is a combinatorial NP-hard optimization problem, it becomes essential to utilize non-traditional methods to look for optimal or near-optimal solutions. During the allocation of cluster positions or the centroids allocation process, the extra text features that represent keywords in each document have an effect on the clustering results. A large number of features need to be reduced using dimensionality reduction techniques. Feature selection is an important step that can be used to reduce the redundant and inconsistent features. Due to a large number of the potential feature combinations, text feature selection is considered a complicated process. The persistent drawbacks of the current text feature selection methods such as local optima and absence of class labels of features were addressed in this thesis. The supervised and unsupervised feature selection methods were investigated. To address the problems of optimizing the supervised feature selection methods so as to improve document clustering, memetic hybridization between filter and wrapper feature selection, known as Memetic Algorithm Feature Selection, was presented first. In order to deal with the unlabelled features, unsupervised feature selection method was also proposed. The proposed unsupervised feature selection method integrates Simulated Annealing to the global search using Differential Evolution. This combination also aims to combine the advantages of both the wrapper and filter methods in a memetic scheme but on an unsupervised basis. Two versions of this hybridization were proposed. The first was named Differential Evolution Simulated Annealing, which uses the standard mutation of Differential Evolution, and the second was named Dichotomous Differential Evolution Simulated Annealing, which used the dichotomous mutation of the differential evolution. After feature selection two centroid allocation methods were proposed; the first is the combination of Chaotic Logistic Search and Discrete Differential Evolution global search, which was named Differential Evolution Memetic Clustering (DEMC) and the second was based on using the Gradient search using the k-means as a local search with a modified Differential Harmony global Search. The resulting method was named Memetic Differential Harmony Search (MDHS). In order to intensify the exploitation aspect of MDHS, a binomial crossover was used with it. Finally, the improved method is named Crossover Memetic Differential Harmony Search (CMDHS). The test results using the F-measure, Average Distance of Document to Cluster (ADDC) and the nonparametric statistical tests showed the superiority of the CMDHS over the baseline methods, namely the HS, DHS, k-means and the MDHS. The tests also show that CMDHS is better than the DEMC proposed earlier. Finally the proposed CMDHS was compared with two current state-of-the-art methods, namely a Krill Herd (KH) based centroid allocation method and an Artifice Bee Colony (ABC) based method, and found to outperform these two methods in most cases

    Particle Swarm and Bacterial Foraging Inspired Hybrid Artificial Bee Colony Algorithm for Numerical Function Optimization

    Get PDF
    Artificial bee colony (ABC) algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC) algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality
    • 

    corecore