
Improve Self-Adaptive Control

Parameters in Differential Evolution

Algorithm for Complex Numerical

Optimization Problems

A DISSERTATION SUBMITTED TO

GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF

SHIBAURA INSTITUTE OF TECHNOLOGY

by

BUI NGOC TAM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF ENGINEERING

SEPTEMBER 2015

HTTP://WWW.SHIBAURA-IT.AC.JP
HTTP://WWW.SHIBAURA-IT.AC.JP
MAILTO:NB12509@SHIBAURA-IT.AC.JP

Acknowledgments

This dissertation is a result of research that has been performed at

the Hasegawa laboratory, College of Systems Engineering and Science,

Shibaura Institute of Technology, Japan, under the supervision of

Prof. Hiroshi Hasegawa. Completion of this doctoral dissertation was

possible with the support of several people. I would like to express

my sincere gratitude to all of them.

First of all, I am heartily thankful to my supervisor, Prof.Hiroshi

Hasegawa, whose encouragement, guidance and support from the ini-

tial to the final level enabled me to develop an understanding of the

subject. I am sure it would have not been possible without his help.

I would like to acknowledge the financial, academic and technical sup-

port, gradate school section and Student Affairs Section especially

Ms.Yabe in Omiya campus of the Shibaura Institute of Technology.

I would like to thank all other members of Hasegawa laboratory for

their contributions to all kinds of discussions on various topics, and

their support with respect. The group has been a source of friendships

as well as good advice and collaboration

I would like to thank to my wife Nguyen Thi Hien for her personal

support and great patience and my family at all times. My parents,

brother and sister have given me their unequivocal support through-

out, as always, for which my mere expression of thanks likewise does

not suffice.

Japan, September 2015

BUI NGOC TAM

Abstract

Memetic Algorithms (MA) is effective algorithms to obtain reliable

and accurate solutions for complex continuous optimization problems.

Nowadays, high dimensional optimization problems are an interest-

ing field of research. To solve complex numerical optimization prob-

lems, researchers have been looking into nature both as model and

as metaphor for inspiration. A keen observation of the underlying

relation between optimization and biological evolution led to the de-

velopment of an important paradigm of computational intelligence for

performing very complex search and optimization.

Evolutionary Computation uses iterative process, such as growth or

development in a population that is then selected in a guided random

search using parallel processing to achieve the desired end. Nowadays,

the field of nature-inspired metaheuristics is mostly continued by the

Evolution Algorithms (EAs) (e.g., Genetic Algorithms (GAs), Evolu-

tion Strategies (ESs), and Differential Evolution (DE) etc.) as well

as the Swarm Intelligence algorithms (e.g., Ant Colony Optimization

(ACO), Particle Swarm Optimization (PSO), Artificial Bee Colony

(ABC), etc.). Also the field extends in a broader sense to include self-

organizing systems, artificial life, memetic and cultural algorithms,

harmony search, artificial immune systems, and learnable evolution

model.

In this thesis, we propose the improvement self-adaptive for control-

ling parameters in differential evolution (ISADE) and investigate the

hybridization of a local search algorithm with an evolution algorithm

(H-MNS ISADE), which are the Nelder-Mead simplex method (MNS)

and differential evolution (DE), for Complex numerical optimization

problems. This approach hybrid integrate differential evolution with

Nelder-Mead simplex method technique is a component based on

where the DE algorithm is integrated with the principle of Nelder-

Mead simplex method to improve the neighborhood search of the

each particle in H-MNS ISADE. By using local information of MNS

and global information obtained from DE population, the exploration

and exploitation abilities of H-MNS ISADE algorithm are balanced.

All the algorithms applied to the some benchmark functions and com-

pared based on some different metrics.

This dissertation includes three main points - firstly, we propose the

improvement self-adaptive for controlling parameters in differential

evolution (ISADE) to solve large scale optimization problems, to re-

duce calculation cost, and to improve stability of convergence towards

the optimal solution; secondly, new algorithms (ISADE) is applied to

several numerical benchmark tests, constrained real parameter opti-

mization and trained artificial neural network to evaluate its perfor-

mancem, and finally, we introduce the hybridization of a local search

algorithm with an evolution algorithm (H-MNS ISADE), which are

the Nelder-Mead simplex method (MNS) and differential evolution

(DE);

Contents

Abstract iii

List of Figures x

List of Tables xi

List of Algorithm xii

1 Introduction 1

1.1 Optimal Systems Design . 1

1.2 Optimal Design of Complex Mechanical Systems 2

1.3 Constraints and Challenges . 8

1.3.1 Method of Lagrange Multipliers 8

1.3.2 Penalty Method . 12

1.3.3 Step Size in Random Walks 13

1.4 Motivation and Objects . 14

1.5 Contributions . 18

1.6 Outline . 18

2 Metaheuristic Algorithms for Global Optimization 20

2.1 Introduction bimimetic . 20

2.2 A brief introduction of Evolutionary Algorithm 22

2.2.1 What is an Evolutionary Algorithm (EA) 22

2.2.2 Components of Evolutionary Algorithms 22

2.3 Simulated Annealing (SA) . 24

2.3.1 Annealing and Boltzmann Distribution 25

v

CONTENTS

2.3.2 SA Algorithm . 26

2.4 Genetic Algorithms (GA) . 27

2.5 Differential Evolution (DE) Algorithm 29

2.6 Artificial Bee Colony Algorithm (ABC) 32

2.7 Particle Swarm Optimization (PSO) 35

2.7.1 PSO Algorithm . 36

2.7.2 Improved PSO algorithm 37

3 Improve Seft-Adaptive Control Parameters in Differential Evo-

lution Algorithm 40

3.1 Introduction . 41

3.2 Review of DE and related work 41

3.2.1 Formulation of Optimization Problem 41

3.2.2 Review of Differential Evolution Algorithm 42

3.2.2.1 Initialization in DE 42

3.2.2.2 Mutation operation 43

3.2.2.3 Crossover operation 44

3.2.2.4 Selection operation 44

3.2.3 Related work of Differential Evolution Algorithm 44

3.3 Improvement of Self-Adapting Control Parameters in Differential

Evolution . 47

3.3.1 Adaptive selection learning strategies in the mutation op-

erator . 47

3.3.2 Adaptive scaling factor F 48

3.3.3 Adaptive crossover control parameter CR 52

3.3.4 ISADE algorithm pseudo-code 54

3.4 Numerical Experiments . 54

3.4.1 Benchmark Tests . 54

3.4.2 Test to get best value of α in ISADE 56

3.4.3 Test to robust of Algorithm 57

3.4.3.1 ISADE and some approaches are compared in this

test with same accurate ε = 10−6 57

vi

CONTENTS

3.4.3.2 Test with maximum iteration compares the mean

of global minimum and (Std) standard deviation 58

3.4.4 Solve some real constrained engineering design optimiza-

tion problems . 58

3.4.4.1 E01: Welded beam design optimization problem . 60

3.4.4.2 E02: Pressure vessel design optimization problem 61

3.4.4.3 E03: Speed reducer design optimization problem 62

3.4.4.4 E04: Tension/compression spring design optimiza-

tion problem . 64

3.4.4.5 Result of applying ISADE for constrained engi-

neering optimization 65

3.5 Conclusion . 66

4 Training Artificial Feed-forward Neural Network using Modifi-

cation of Differential Evolution Algorithm 68

4.1 Introduction . 69

4.2 Training Feed-Forward Artificial Neural Network 70

4.2.1 Introduction Neural Network 70

4.2.1.1 Types of Neural Network 71

4.2.1.2 Neural Network Process 71

4.2.1.3 Training Feed-Forward Artificial Neural Network 72

4.2.2 Numerical Experiments . 74

4.2.2.1 The Exclusive-OR Problem 75

4.2.2.2 The 3-Bit Parity Problem 75

4.2.2.3 The 4-Bit Encoder-Decoder Problem 75

4.2.3 Result of experiment . 76

4.3 CONCLUSIONS . 77

5 Hybrid Improved Self-Adaptive Differential Evolution and Nelder-

Mead Simplex Method 79

5.1 Introduction . 80

5.2 What is a hybrid algorithm? . 81

5.3 Hybrid Improved Self-adaptive Differential Evolution and Nelder-

Mead Simplex Method . 83

vii

CONTENTS

5.3.1 Nelder-Mead Simplex Method 83

5.3.2 Improve Self-adapting Control Parameters in Differential

Evolution . 86

5.3.2.1 Exploration of the Search Domain by Improving

Self-adaptive Differential Evolution 86

5.3.2.2 Exploitation Search Domain by Nelder-Mead Sim-

plex Method . 88

5.4 Experiments . 88

5.5 Result of applying HISADE-NMS for constrained engineering op-

timization . 88

5.6 Conclusion . 91

6 Conclusion 92

6.1 Contributions of This Dissertation 92

6.2 Future Work . 93

Appendix 95

.1 Sphere Functions . 95

.2 Rosenbrock Functions . 95

.3 Schwefels Problem 1.2 (Ridge Functions) 97

.4 Griewank Functions . 97

.5 Rastrigin Functions . 98

.6 Ackley Functions . 99

.7 Levy Functions . 100

.8 Schawefel’s problem 2.22 . 102

.9 Alpine Functions . 102

List of Publications 104

References 112

viii

List of Figures

1.1 Sketch of a shaft design.[51] . 4

2.1 The general scheme of Evolutionary Algorithm. 24

2.2 Flow-chart of Evolutionary Algorithm. 24

2.3 Simulated annealing algorithm. 27

2.4 GA crossover operation. 29

2.5 Main stages of DE algorithm. 30

2.6 Illustrating a simple DE mutation scheme in 2-D parametric space.[61] 31

2.7 Illustration of the crossover process with D = 7.[61] 31

2.8 Behavior of honeybees foraging for nectar.[38] 33

2.9 Image of PSO algorithm.[40] . 37

3.1 Example of individual situations. 49

3.2 Suggested to calculate F value. 50

3.3 The scale factor depend on generation. 52

3.4 Suggested to calculate CR values. 53

3.5 Result of test to get good value of α. 56

3.6 Welded Beam. 61

3.7 Pressure Vessel. 62

3.8 Speed Reducer. 63

3.9 Tension/Compression Spring. 64

4.1 Hierarchical Neural Networks. 71

4.2 Neural Networks Interconnection. 72

4.3 Processing unit of an ANN (neuron). 73

4.4 Multilayer feed-forward neural network (MLP). 74

ix

LIST OF FIGURES

5.1 Classification of Hybrid Metaheuristic. 81

5.2 Simplex original in two dimensions. 83

5.3 Simplex Reflection in two dimensions. 84

5.4 Simplex Expansion in two dimensions. 84

5.5 Simplex Outside contraction in two dimensions. 84

5.6 Simplex Inside contraction in two dimensions. 84

5.7 Simplex procedure shrink in two dimensions. 86

5.8 HISADE-NMS Procedure. 87

6.1 Optimal Topology Design. 94

2 Sphere Functions in 2D. 96

3 Rosenbrock Functions in 2D. 97

4 Ridge Functions in 2D. 98

5 Griewank Functions in 2D. 99

6 Rastrigin Functions in 2D. 100

7 Ackley Functions in 2D. 101

8 Levy Functions in 2D. 101

9 Schawefel’s problem 2.22 in 2D. 102

10 Alpine Functions in 2D. 103

x

List of Tables

3.1 Characteristics of Benchmark Functions. 56

3.2 Average of generation and the success ratio 57

3.3 (Mean) Average of global minimum and (std) the standard deviation 59

3.4 Result of applying ISADE for E01 (Welded beam) problem. . . . 65

3.5 Result of applying ISADE for E02 (Pressure vessel) problem. . . . 65

3.6 Result of applying ISADE for E03(Speed reducer) problem. 66

3.7 Result of applying ISADE for E04 (Tension/Compression spring). 66

4.1 Binary XOR problem. 75

4.2 3-Bit parity problem. 76

4.3 4-Bit Encoder-Decoder Problem. 76

4.4 Mean and standard deviation of MSE for algorithm and problems 77

5.1 Result of applying HISADE-NMS for E01 (Welded beam) problem. 89

5.2 Result of applying HISADE-NMS for E02 (Pressure vessel) problem. 89

5.3 Result of applying HISADE-NMS for E03(Speed reducer) problem. 90

5.4 Result of applying HISADE-NMS for E04 (Tension/Compression

spring). 90

5.5 Compare functional evaluation (FE) of HISADE-NMS and ISADE. 90

xi

List of Algorithms

1 The DE pseudo-code . 45

2 The ISADE pseudo-code . 54

3 Nelder Mead algorithm . 85

xii

Chapter 1

Introduction

1.1 Optimal Systems Design

It is no exaggeration to say that optimization is everywhere, from engineering de-

sign to business planning and from the routing of the Internet to holiday planning.

we are trying to achieve certain objectives or to optimize something such as profit,

quality and time. As resources, time and money are always limited in real-world

applications, we have to find solutions to optimally use these valuable resources

under various constraints. For several decades, global optimization has received

a wide attraction from researchers, mathematicians as well as professionals in the

field of Operations Research (OR) and Computer Science (CS). However, global

optimization problems, in almost all fields of research and real-world applica-

tions, have many different challenging features such as high non-linearity, non-

convexity, non-continuity, non-differentiability, and/or multimodality. Therefore,

classical nonlinear optimization techniques have difficulties or have always failed

in dealing with complex high dimensional global optimization problems. As a

result, the challenges mentioned above have motivated researchers to design and

improve many kinds of efficient, effective and robust algorithms that can reach a

high quality solution with low computational cost and high convergence perfor-

mance.

1

1. INTRODUCTION

1.2 Optimal Design of Complex Mechanical Sys-

tems

As follow [51]. The concept of design was born the first time an individual created

an object to serve human needs. Today design is still the ultimate expression of

the art and science of engineering. From the early days of engineering, the goal

has been to improve the design so as to achieve the best way of satisfying the

original need, within the available means.

The design process can be described in many ways, but we can see immedi-

ately that there are certain elements in the process that any description must

contain: a recognition of need, an act of creation, and a selection of alternatives.

Traditionally, the selection of the “best” alternative is the phase of design op-

timization. In a traditional description of the design phases, recognition of the

original need is followed by a technical statement of the problem (problem defi-

nition), the creation of one or more physical configurations (synthesis), the study

of the configuration’s performance using engineering science (analysis), and the

selection of “best” alternative (optimization). The process concludes with testing

of the prototype against the original need.

Such sequential description, though perhaps useful for educational purposes,

cannot describe reality adequately since the question of how a “best” design is

selected within the available means is pervasive, influencing all phases where

decisions are made.

So what is design optimization?

We defined it loosely as the selection of the “best” design within the available

means. This may be intuitively satisfying; however, both to avoid ambiguity and

to have an operationally useful definition we ought to make our understanding

rigorous and, ideally, quantifiable. We may recognize that a rigorous definition

of “design optimization” can be reached if we answer the questions:

1. How do we describe different designs?

2. What is our criterion for “best” design?

3. What are the “available means”?

2

1.2 Optimal Design of Complex Mechanical Systems

The first question was addressed in the previous discussion on design models,

where a design was described as a system defined by design variables, parameters,

and constants. The second question was also addressed in the previous section

in the discussion on decision-making models where the idea of “best” design was

introduced and the criterion for an optimal design was called an objective. The

objective function is sometimes called a “cost” function since minimum cost often

is taken to characterize the ”best” design. In general, the criterion for selection

of the optimal design is a function of the design variables in the model.

We are left with the last question on the “available means.” Living, working,

and designing in a finite world obviously imposes limitations on what we may

achieve. Brushing aside philosophical arguments, we recognize that any design

decision will be subjected to limitations imposed by the natural laws, availability

of material properties, and geometric compatibility. On a more practical level,

the usual engineering specifications imposed by the clients or the codes must

be observed. Thus, by “available means” we signify a set of requirements that

must be satisfied by any acceptable design. Once again we may observe that

these design requirements may not be uniquely defined but are under the same

limitations as the choice of problem objective and variables. In addition, the

choices of design requirements that must be satisfied are very intimately related

to the choice of objective function and design variables.

As an example, consider again the shaft design (shown in Figure. 1.1) . If we

choose minimum weight as objective and diameter d as the design variable, then

possible specifications are the use of a particular material, the fixed length, and

the transmitted loads and revolutions. The design requirements we may impose

are that the maximum stress should not exceed the material strength and perhaps

that the maximum deflection should not surpass a limit imposed by the need for

proper meshing of mounted gears. Depending on the kind of bearings used, a

design requirement for the slope of the shaft deflection curve at the supporting

ends may be necessary. Alternatively, we might choose to maximize rigidity,

seeking to minimize the maximum deflection as an objective. Now the design

requirements might change to include a limitation in the space D available for

mounting, or even the maximum weight that we can tolerate in a “lightweight”

3

1. INTRODUCTION

construction. We resolve this issue by agreeing that the design requirements to be

used are relative to the overall problem definition and might be changed with the

problem formulation. The design requirements pertaining to the current problem

definition we will call design constraints. We should note that design constraints

include all relations among the design variables that must be satisfied for proper

functioning of the design.

Figure 1.1: Sketch of a shaft design.[51]

So what is design optimization?

Informally, but rigorously, we can say that design optimization involves:

1. The selection of a set of variables to describe the design alternatives.

2. The selection of an objective (criterion), expressed in terms of the design

variables, which we seek to minimize or maximize.

3. The determination of a set of constraints, expressed in terms of the design

variables, which must be satisfied by any acceptable design.

4. The determination of a set of values for the design variables, which minimize

(or maximize) the objective, while satisfying all the constraints.

Formulation of the optimization problem

Mathematically speaking, it is possible to write most optimization problems in the

generic form The optimization problem is formulated in this section. The design

4

1.2 Optimal Design of Complex Mechanical Systems

variable, objective function and constraint condition are defined as follows:

Objective function: fl(x)→Minimize, (l = 1, . . . , L) (1.1)

Equality constraint functions: hj(x) = 0, (j = 1, . . . , J) (1.2)

Inequality constraint functions: gk(x) ≤ 0, (k = 1, . . . , K) (1.3)

Range of design variables: xlbi ≤ xi ≤ xubi (1.4)

Here the components xi of x are called design or decision variables, and they can

be real continuous, discrete or the mixed of these two.

The functions fl(x) where (l = 1, . . . , L) are called the objective function or

simply cost functions, and in the case of L = 1, there is only a single objec-

tive. xlb = [xlb1 , . . . , x
lb
D], xub = [xub1 , . . . , x

ub
D], and D denote the lower boundary

condition vectors, upper boundary condition vectors, and number of design vari-

able vectors, respectively. J and K are the number of equality and inequality

constraints respectively. hj and gk are linear or nonlinear real-value functions

respectively.

In a rare but extreme case where there is no objective at all, there are only

constraints. Such a problem is called a feasibility problem because any feasible

solution is an optimal solution.

If we try to classify optimization problems according to the number of objec-

tives, then there are two categories: single objective L = 1 and multiobjective

L > 1. Multiobjective optimization is also referred to as multicriteria or even

multi-attributes optimization in the literature. In real-world problems, most op-

timization tasks are multiobjective. Though the algorithms we will discuss in

this book are equally applicable to multiobjective optimization with some modi-

cations, we will mainly place the emphasis on single objective optimization prob-

lems.

5

1. INTRODUCTION

Similarly, we can also classify optimization in terms of number of constraints

J+K. If there is no constraint at all J = K = 0, then it is called an unconstrained

optimization problem. If K = 0 and J ≥ 1, it is called an equality-constrained

problem, while J = 0 and K ≥ 1 becomes an inequality-constrained problem. It

is worth pointing out that in some formulations in the optimization literature,

equalities are not explicitly included, and only inequalities are included. This is

because an equality can be written as two inequalities. For example h(x) = 0 is

equivalent to h(x) ≤ 0 and h(x) ≥ 0.

We can also use the actual function forms for classication. The objective

functions can be either linear or nonlinear. If the constraints hj and gk are all

linear, then it becomes a linearly constrained problem. If both the constraints and

the objective functions are all linear, it becomes a linear programming problem.

Here programming has nothing to do with computing programming, it means

planning and/or optimization. However, generally speaking, all fl , hj and gk are

nonlinear, we have to deal with a nonlinear optimization problem.

Thus we talk about equality and inequality constraints given in the form of

equal to zero and less than or equal to zero. For example, in our previous shaft

design, suppose we used a hollow shaft with outer diameter do , inner diameter di,

and thickness t. These quantities could be viewed as design variables satisfying

the equality constraint

do = di + 2t , (1.5)

which can be rewritten as

do − di − 2t = 0 , (1.6)

so that the constraint function is

h(do, di, t) = do − di − 2t , (1.7)

We could also have an inequality constraint specifying that the maximum stress

does not exceed the strength of the material, for example,

σmax ≤ S , (1.8)

6

1.2 Optimal Design of Complex Mechanical Systems

where S is some properly defined strength (i.e., maximum allowable stress). How-

ever, σmax should be expressed in terms of for simplicity, we can write

σmax = τmax = Mt(do/2)/J , (1.9)

where Mt is the torsional moment and J is the polar moment of inertia,

J = (π/32)
(
d4
o − d4

i

)
, (1.10)

At this point we may view eq. (1.9) and eq. (1.10) as additional equality con-

straints with σmax and J being additional design variables. Note that Mt would

be a design parameter. Thus, we can rewrite them as follows:

σmax − S ≤ 0 , (1.11)

σmax −Mt(do/2J) = 0 , (1.12)

J − (π/32)
(
d4
o − d4

i

)
= 0 , (1.13)

so that we have one inequality and two equality constraints corresponding to eq.

(1.8). We could also eliminate σmax and J and get

16Mtdo/π
(
d4
o − d4

i

)
− S ≤ 0 , (1.14)

that is, just one inequality constraint. This implies that σmax and J were consid-

ered intermediate variables that with the formulation eq. (1.14) will disappear

from the model statement. The above operation from eq. (1.11) to eq. (1.14) is

a model transformation and it must be always performed judiciously so that the

problem resulting from the transformation is equivalent to the original one and

usually easier to solve. A strict definition of equivalence is difficult. Normally, we

simply mean that the solution set of the transformed model is the same as that

of the original model.

7

1. INTRODUCTION

1.3 Constraints and Challenges

As mentioned in section.1.2. A natural and important question is how to incorpo-

rate the constraints (both inequality and equality constraints). There are mainly

three ways to deal with constraints: direct approach, Lagrange multipliers, and

penalty method.

Direct approach intends to find the feasible regions enclosed by the constraints.

This is often difficult, except for a few special cases. Numerically, we can gen-

erate a potential solution, and check if all the constraints are satisfied. If all

the constraints are met, then it is a feasible solution, and the evaluation of the

objective function can be carried out. If one or more constraints are not satisfied,

this potential solution is discarded, and a new solution should be generated. We

then proceed in a similar manner. As we can expect, this process is slow and

inefficient. A better approach is to incorporate the constraints so as to formulate

the problem as an unconstrained one. The method of Lagrange multiplier has

rigorous mathematical basis, while the penalty method is simple to implement in

practice.

1.3.1 Method of Lagrange Multipliers

The method of Lagrange multipliers converts a constrained problem to an uncon-

strained one [23, 52]. For example, if we want to minimize a function:

minimize: f(x), x = (x1, . . . , xD)T ⊂ <D (1.15)

subject to multiple nonlinear equality constraints

gj(x) = 0, (j = 1, . . . ,M) (1.16)

We can use M Lagrange multipliers λj(j = 1, . . . ,M) to reformulate the above

problem as the minimization of the following function

L(x, λj) = f(x) +
M∑

j=1

λjgj(x) (1.17)

8

1.3 Constraints and Challenges

The optimality requires that the following stationary conditions hold

∂L

∂xi
=
∂f

∂xi
+

M∑

j=1

λj
∂gj
∂xi

, (i = 1, . . . , D) (1.18)

and

∂L

∂λi
= gj = 0, (j = 1, . . . ,M) (1.19)

TheseM+D equations will determine theD components of x andM Lagrange

multipliers. As
∂L

∂gi
= λj , we can consider λj as the rate of the change of the

quantity L(x, λj) as a functional of gj .

Now let us look at a simple example

maximize : f = u2/3v1/3 (1.20)

subject to

3u+ v = 9 (1.21)

First, we write it as an unconstrained problem using a Lagrange multiplier λ,

and we have

L = u2/3v1/3 + λ(3u+ v − 9) (1.22)

The conditions to reach optimality are

∂L

∂u
=

2

3
u−1/3v1/3 + 3λ = 0,

∂L

∂v
=

1

3
u2/3v−2/3 + λ = 0 (1.23)

and

∂L

∂λ
= 3u+ v − 9 = 0 (1.24)

9

1. INTRODUCTION

The first two conditions give 2v = 3u, whose combination with the third

condition leads to

u = 2, v = 3.

Thus, the maximum of f∗ is 121/3

Here we only discussed the equality constraints. For inequality con- straints,

things become more complicated. We need the so-called Karush- Kuhn-Tucker

conditions.

Let us consider the following, generic, nonlinear optimization problem

minimize: f(x), x = (x1, . . . , xD)T ⊂ <D (1.25)

subject to multiple nonlinear constraints

φi(x) = 0, (i = 1, . . . ,M) (1.26)

ψj(x) 6 0, (j = 1, . . . , N) (1.27)

If all the functions are continuously differentiable, at a local minimum x∗ , there

exist constants λ1, . . . , λM and µ0, µ1, ..., µN such that the following KKT opti-

mality conditions hold

µ0∇f(x∗) +
M∑

i=1

λi∇φi(x∗) +
N∑

j=1

µj∇ψj(x∗) = 0 (1.28)

and

ψj(x∗) 6 0, µjψj(x∗) = 0, (j = 1, . . . , N) (1.29)

where

µj ≥ 0, (j = 1, . . . , N) (1.30)

The last non-negativity conditions hold for all µj, though there is no constraint

on the sign of λi.

10

1.3 Constraints and Challenges

The constants satisfy the following condition

N∑

j=1

µj +
M∑

i=1

|λi| ≥ 0 (1.31)

This is essentially a generalized method of Lagrange multipliers. However,

there is a possibility of degeneracy when µ0 = 0 under certain conditions. There

are two possibilities:

1) There exist vectors λ = (λ∗1, . . . , λ
∗
M)T such that above equations hold, or

2) All the vectors ∇φ1(x∗),∇φ1(x∗), . . . ,∇φN(x∗) are linearly independent, and

in this case, the stationary conditions
∂L

∂x∗
do not necessarily hold. As the second

case is a special case, we will not discuss this further.

The condition µjψi(x∗) = 0 in eq.(1.29) is often called the complementar-

ity condition or complementary slackness condition. It either means µj = 0 or

ψj(x∗) = 0. The later case ψj(x∗) = 0 for any particular j means the inequality

becomes tight, and thus becoming an equality. For the former case µj = 0, the

inequality for a particular j holds and is not tight; however, µj = 0 means that

this corresponding inequality can be ignored. There- fore, those inequalities that

are not tight are ignored, while inequalities which are tight become equalities;

consequently, the constrained problem with equality and inequality constraints

now essentially becomes a modified constrained problem with selected equality

constraints. This is the beauty of the KKT conditions. The main issue remains

to identify which inequality becomes tight, and this depends on the individual

optimization problem.

The KKT conditions form the basis for mathematical analysis of non- linear

optimization problems, but the numerical implementation of these conditions is

not easy, and often inefficient. From the numerical point of view, the penalty

method is more straightforward to implement.

11

1. INTRODUCTION

1.3.2 Penalty Method

The first is the now classical penalty approach developed by Fiacco and Mc-

Cormick [17]. For a nonlinear optimization problem with equality and inequality

constraints, a common method of incorporating constraints is the penalty method.

For the optimization problem

minimize: f(x), x = (x1, . . . , xD)T ⊂ <D (1.32)

subject to multiple nonlinear constraints

φi(x) = 0, (i = 1, . . . ,M) (1.33)

ψj(x) 6 0, (j = 1, . . . , N) (1.34)

the idea is to dene a penalty function so that the constrained problem is

transformed into an unconstrained problem. Now we define

Π(x, µ, ν) = f(x) +
M∑

i=1

µiφ
2
i (x) +

N∑

j=1

νjψ
2
j (x) (1.35)

where µi � 1 and νj > 0 which should be large enough, depending on the

solution quality needed.

As we can see, when an equality constraint it met, its effect or contribution

to is zero. However, when it is violated, it is penalized heavily as it increases

significantly. Similarly, it is true when inequality constraints become tight or

exact. For the ease of numerical implementation, we should use index functions

H to rewrite above penalty function as

Π(x, µ, ν) = f(x) +
M∑

i=1

µiHi[φi(x)]φ2
i (x) +

N∑

j=1

νjHj[ψj(x)]ψ2
j (x) (1.36)

Here Hi[φi(x)] and Hj[ψj(x)] are index functions.

12

1.3 Constraints and Challenges

More specically, Hi[φi(x)] = 1 if φi(x) 6= 0, and Hi = 0 if φi(x) = 0. Similarly,

Hj[ψj(x)] = 0 if ψj(x) ≤ 0 is true, while Hj = 1 if ψj(x) > 0. In principle,

the numerical accuracy depends on the values of µi and νj which should be

reasonably large. But how large is large enough? As most computers have a

machine precision of ε = 2522.2× 1016, µi and νj should be close to the order of

1015 . Obviously, it could cause numerical problems if they are too large.

In addition, for simplicity of implementation, we can use µ = µi for all i and

ν = νj for all j. That is, we can use a simplified

Π(x, µ, ν) = f(x) + µ
M∑

i=1

Hi[φi(x)]φ2
i (x) + ν

N∑

j=1

Hj[ψj(x)]ψ2
j (x) (1.37)

In general, for most applications, µ and ν can be taken as 1010 to 1015 . We

will use these values in our implementation.

Sometimes, it might be easier to change an equality constraint to two inequal-

ity constraints, so that we only have to deal with inequalities in the implementa-

tion. This is because g(x) = 0 is always equivalent to g(x) ≤ 0 and g(x) ≥ 0 (or

g(x) ≤ 0).

1.3.3 Step Size in Random Walks

As random walks are widely used for randomization and local search, a proper

step size is very important [70]. In the generic equation:

xt+1 = xt + sεt (1.38)

εt is drawn from a standard normal distribution with zero mean and unity

standard deviation. Here the step size s determines how far a random walker (e.g.,

an agent or particle in metaheuristics) can go for a fixed number of iterations.

If s is too large, then the new solution xt+1 generated will be too far away

from the old solution (or more often the current best). Then, such a move is

13

1. INTRODUCTION

unlikely to be accepted. If s is too small, the change is too small to be significant,

and consequently such search is not efficient. So a proper step size is important

to maintain the search as efficient as possible.

From the theory of simple isotropic random walks, we know that the average

distance r traveled in the d-dimension space is

r2 = 2dDt (1.39)

where D = s2/2τ is the effective diffusion coefficient. Here s is the step size

or distance traveled at each jump, and τ is the time taken for each jump. The

above equation implies that

s2 =
τ

r

2

td (1.40)

For a typical length scale L of a dimension of interest, the local search is

typically limited in a region of L/10. That is, r = L/10. As the iterations are

discrete, we can take τ = 1. Typically in metaheuristics, we can expect that the

number of generations is usually t = 100 to 1000, which means that

s ≈
r√
td

=
L/10

td
(1.41)

For d = 1 and t = 100, we have s = 0.01L, while s = 0.001L for d = 10 and

t = 1000. As step sizes could differ from variable to variable, a step size ratio s/L

is more generic. Therefore, we can use s/L = 0.001 to 0.01 for most problems.

1.4 Motivation and Objects

Evolutionary Algorithms (EAs) have been widely applied to solve complex nu-

merical optimization problems, especially the multi-peak problems with multi-

dimensions. The most popular EA, Genetic Algorithm (GA) [18, 26, 27, 28] has

been applied to various multi-peak optimization problems, and its validity has

14

1.4 Motivation and Objects

been reported by many researchers. Digalakis and Margaritis presented a re-

view and experimental results on major benchmark functions which are used for

performance and control of GA [9].

In 1992, Marco Dorigo finished his PhD thesis on optimization and natural

algorithms, in which he described his innovative work on ant colony optimization

(ACO). This search technique was inspired by the swarm intelligence of social

ants using pheromone as a chemical messenger. Then, in 1992, John R. Koza

of Stanford University published a treatise on genetic programming which laid

the foundation of a whole new area of machine learning, revolutionizing com-

puter programming. As early as in 1988, Koza applied his first patent on genetic

programming. The basic idea is to use the genetic principle to breed computer

programs so as to gradually produce the best programs for a given type of prob-

lem.

Slightly later in 1995, another significant progress is the development of the

particle swarm optimization (PSO) by American social psychologist James Kennedy,

and engineer Russell C. Eberhart. Loosely speaking, PSO is an optimization al-

gorithm inspired by swarm intelligence of fish and birds and by even human

behavior. The multiple agents, called particles, swarm around the search space

starting from some initial random guess. The swarm communicates the current

best and shares the global best so as to focus on the quality solutions. Since

its development, there have been about 20 different variants of particle swarm

optimization techniques, and have been applied to almost all areas of tough op-

timization problems. There is some strong evidence that PSO is better than

traditional search algorithms and even better than genetic algorithms for many

types of problems, though this is far from conclusive.

In around 1995 and later in 1997, R. Storn and K. Price developed their vector-

based evolutionary algorithm, called differential evolution (DE) [61, 62], and this

algorithm proves more efficient than genetic algorithms in many applications.

At the turn of the 21st century, things became even more exciting. First,

Zong Woo Geem et al in 2001 developed the harmony search (HS) algorithm,

which has been widely applied in solving various optimization problems such as

15

1. INTRODUCTION

water distribution, transport modeling and scheduling. In 2004, S. Nakrani and

C. Tovey proposed the honey bee algorithm and its application for optimizing

Internet hosting centers, which followed by the development of a novel bee al-

gorithm by D. T. Pham et al in 2005 and the artificial bee colony (ABC) by

D.Karaboga in 2005 [38]. In 2008, Xin-She Yang developed the firey algorithm

(FA) [68] . Quite a few research articles on the firey algorithm then followed, and

this algorithm has attracted a wide range of interests. In 2009, Xin-She Yang

at Cambridge University, UK, and Suash Deb at Raman College of Engineer-

ing, India, introduced an efficient cuckoo search (CS) algorithm [72], and it has

been demonstrated that CS is far more effective than most existing metaheuristic

algorithms including particle swarm optimization. In 2010, the author Xin-She

Yang developed a bat-inspired algorithm [71] for continuous optimization, and its

efficiency is quite promising.

To reduce the cost, to improve stability and get more accurate, a strategy that

combines global and local search methods becomes necessary. As for this strategy,

current researchers have proposed various methods. One of the popular approach

is a combination of global search ability of GAs with local search ability of Simu-

lated Annealing (SA) [54]. As a pioneering research, Mahfoud and Goldberg have

proposed Parallel Recombinative Simulated Annealing (PRSA) that applied SA

to a selection of GA [45]. Later, Uehara et al. have introduced metropolis loop

process of SA to an elite strategy in GA process [66, 67]. Hiroyasu et al. have

proposed Parallel SA using Genetic crossover (PSA/ANGA) [24, 46]. These hy-

brid methods have been applied to major benchmark functions and have been

reported to be valid. They are believed to be both locally and globally efficient.

However, the major multi-peak benchmark functions for multi-dimensions, i.e.,

20 dimensional or more Rastrigin (RA) and Griewank (GR) functions, require

about 106 function calls for arriving at an optimal solution. Moreover, when the

optimal problem exhibits a dependence on design variable vectors (DVs) and the

steepness of the objective function is small in the feasible space of DVs, it is

difficult to obtain an optimal solution [22].

Various optimization methodologies are proposed to overcome these difficulties

[4, 19, 20, 21, 22, 48, 49, 50, 64]. In Memetic Algorithms (MAs) [4, 19, 48, 49,

16

1.4 Motivation and Objects

50, 64], for instance, Ong and Keane has proposed meta-Lamarckian learning [50]

that improves the search ability for multi-peak functions with multi-dimensions

by introducing a human expert judgment, where local search methods are used.

Additionally, fast Adaptive Memetic Algorithm (FAMA) has been proposed in [4].

In the FAMA, coordination and choosing of local search method are dynamically

controlled by means of a measurement of fitness diversity over the individuals

of the population. On the other hand, Hasegawa et al. have proposed a hybrid

meta-heuristic method (HMH) by reflecting recognition of dependence relations

among design variables automatically, and have reported the effectiveness of this

method [21, 22]. The HMH needs to switch from the SA to the intuitive method,

direct search using the learning result of the dependency of a DV, just before

convergence to improve the local search ability of the optimal solution environs.

These methodologies need to choose suitably a best local search method from

various local search methods for combining with a global search method within

the optimization process. Furthermore, since genetic operators are employed for a

global search method within these algorithms, DVs which are renewed via a local

search are encoded into its genes many times at its GA process. These certainly

have the potential to break its improved chromosomes via gene manipulation by

GA operators, even if these approaches choose a proper survival strategy.

To solve these problems and maintain the stability of the convergence to-

wards an optimal solution for multi-modal optimization problems with multiple

dimensions. In this dissertation, we focus to some motivation as below:

Firstly, automatic control parameter in differential evolution algorithm by

proposed a new improvement of self-adaptive strategy for controlling parame-

ters in differential evolution algorithm (ISADE). The differential evolution (DE)

algorithm has been used in many practical cases and has demonstrated good

convergence properties. It has only a few control parameters as number of par-

ticles (NP), scaling factor (F) and crossover control (CR), which are kept fixed

throughout the entire evolutionary process. However, these control parameters

are very sensitive to the setting of the control parameters based on their exper-

iments. The value of control parameters depend on the characteristics of each

17

1. INTRODUCTION

objective function, so we have to tune their value in each problem that mean it

will take too long time to perform.

Secondly, new algorithms (ISADE) is applied to several numerical benchmark

problems, constrained real parameter optimization and Training Artificial Feed-

forward Neural Network to evaluate its performance.

Finally, improve local search ability of differential evolution algorithm by pro-

posed propose Hybrid Improved Self-adaptive Differential Evolution and Nelder-

Mead Simplex Method for Solving Constrained Real-Parameters.

1.5 Contributions

The overall objectives of these methodologies proposed in this dissertation are

to solve large scale optimization problems, to reduce calculation cost, and to

improve stability of convergence towards the optimal solution. Therefore, the

approach that can lead to statistically significantly superior to other techniques

is especially considered in this dissertation. The contributions of this dissertation

are as follows

Firstly, we present a new version of the DE algorithm for obtaining self-

adaptive control parameter settings that show good performance on numerical

benchmark problems

Secondly, we proposed a new method of Training Artificial Feed-forward Neu-

ral Network.

Finally, integrated local search ability to DE algorithm.

1.6 Outline

The dissertation begins with the introduction the optimal systems design for

complex numerical optimization problems. Then, the specific challenges and

constraints for optimization techniques are discussed.

18

1.6 Outline

Chapter 2 describes a brief introduction to a metaheuristic algorithm for global

optimization, Evolutionary Computing, such as GAs, DE, ABC , PSO, ACO, etc.

Chapter 3 proposes Improve Self-Adaptive Control Parameters in Differential

Evolution to solve large scale optimization problems.

Chapter 4 proposes Hybrid Improved Self-adaptive Differential Evolution and

Nelder-Mead Simplex Method for Solving Constrained Real-Parameters.

In Chapter 5, we introduce the method of Training Artificial Feed-forward

Neural Network using Modification of Differential Evolution Algorithm.

Finally, the dissertation ends with conclusion, discussion, and future work in

Chapter 6.

19

Chapter 2

Metaheuristic Algorithms for

Global Optimization

Computational Intelligence (CI) is a set of nature-inspired computational method-

ologies and approaches to address complex real-world problems to which tradi-

tional approaches, i.e., first principles modeling or explicit statistical modeling,

are ineffective or infeasible. Evolutionary computation (EC) is a subfield of artifi-

cial intelligence (AI) (more particularly CI) that involves continuous optimization

and combinatorial optimization problems. Its algorithms can be considered global

optimization methods with a metaheuristic or stochastic optimization character

and are mostly applied for black box problems, often in the context of expensive

optimization.

2.1 Introduction bimimetic

Bio-mimetic is the science of studying functional systems in nature and imple-

menting or borrowing these features for human technology. Bio-mimetic can aid

in the solving of new design problems or in the optimization of current technolo-

gies. Since natural systems are highly optimized for their purposes/functionality

due to the constraint of survivability, it makes sense for human engineers to seek

design hints from preexisting natural solutions.

20

2.1 Introduction bimimetic

Bio-mimetic is the intentional imitation of natural design. In some cases,

human engineers have made inventions independently of nature, and only in ret-

rospect we realized the similarities in design solutions. A well-cited example of

this phenomenon is the similarity between certain bacterial flagellum and the

outboard rotary motor. Both systems use very similar techniques for achiev-

ing the same functional effect, but this is coincidental and not an example of

Bio-mimetic. Designing a molecular motor to deal with molecular dynamics by

copying the bacterial flagellum, however, would be an example of Bio-mimetic.

Examples of Bio-mimetic include:

1. Identifying and implementing the technology that a leaf uses to harness

energy

2. Making stronger, more elastic materials like the web of a spider

3. Designing miniaturized flying devices as found in millions of insects

4. Barbs on weed seeds as the inspiration for Velcro

5. Looking to the Rhinoceros horn to develop self-healing material that is

both compressively and laterally strong

6. Implementing computer systems after the neural networks in our brains

In the optimization field, there are many applications of bio-mimetic for solv-

ing optimal problems. We can list some typically examples of bio-mimetic as:

Genetic algorithms (GAs) [28], proposed John Holland in the early 1975s, are

search algorithms based on the mechanics of selection and nature genetics. Dif-

ferential evolution (DE) was proposed by Storn and Price [61]. Artificial Bee

Colony (ABC), first introduced by Karaboga in 2005 [38], is a novel swarm intel-

ligence (SI) algorithm that was inspired by the foraging behavior of honeybees.

Particle Swarm Optimization (PSO) [39] was proposed by Kennedy and Eberhart

in 1995 and so on

21

2. METAHEURISTIC ALGORITHMS FOR GLOBAL OPTIMIZATION

2.2 A brief introduction of Evolutionary Algo-

rithm

2.2.1 What is an Evolutionary Algorithm (EA)

Evolutionary Algorithms (EAs) are stochastic optimization techniques based on

the principles of natural evolution. The standpoint of EAs is essentially practical:

using ideas from natural evolution in order to solve a certain problem. Let us

focus on optimization and see how this goal can be achieved. Evolutionary al-

gorithms operate on a population of potential solutions applying the principle of

survival of the fittest to produce better and better approximations to a solution.

At each generation, the process of selecting individuals according to their level of

fitness in the problem domain and breeding them together using operators bor-

rowed from natural genetics creates a new set of approximations. This process

leads to the evolution of populations of individuals that are better suited to their

environment than the individuals that they were created from, just as in natural

adaptation. Evolutionary algorithms model natural processes, such as selection,

recombination, mutation, migration, locality and neighborhood. Evolutionary

algorithms work on populations of individuals instead of single solutions. In this

way, the search is performed in a parallel manner.

2.2.2 Components of Evolutionary Algorithms

In this section Evolutionary Algorithms are showed in detail. EAs have a number

of components, procedures or operators that must be specified in order to define

a particular EA. The most important components are:

• Representation (definition of individuals)

• Evaluation function (or fitness function)

• Population

• Parent selection mechanism

22

2.2 A brief introduction of Evolutionary Algorithm

• Variation operators, recombination (crossover) and mutation

• Survival selection mechanism (replacement)

Furthermore, to obtain a running algorithm the initialization procedure and

a termination condition must be defined.

The combined application of variation and selection generally leads to im-

proving fitness values in consecutive populations. It is easy to view such an

evolutionary process as optimization by iteratively generating solutions with in-

creasingly better values. Alternatively, evolution it is often seen as a process of

adaptation. From this perspective, the fitness is not seen as an objective function

to be optimized, but as an expression of environmental requirements. Matching

these requirements more closely implies an increased viability, reflected in a higher

number of offspring. The evolutionary process makes the population increasingly

better at being adapted to the environment.

The general scheme of an evolutionary algorithm is shown in Fig. 2.1 in a

pseudocode fashion. It is important to note that many components of evolution-

ary algorithms are stochastic. During selection, fitter individuals have a higher

chance to be selected than less fit ones, but typically even the weak individuals

have a chance to become a parent or to survive. For recombination of individuals

the choice of which pieces will be recombined is random. Similarly for mutation,

the pieces that will be mutated within a candidate solution, and the new pieces

replacing them, are chosen randomly. Fig. 2.2 shows a diagram.

It is easy to see that this scheme falls in the category of generate and test

algorithms. The evaluation (fitness) function represents a heuristic estimation of

solution quality and the search process is driven by the variation and the selection

operators. Evolutionary Algorithms (EAs) posses a number of features that can

help to position them within in the family of generate and test methods:

• EAs are population based, i.e., they process a whole collection of candidate

solutions simultaneously,

23

2. METAHEURISTIC ALGORITHMS FOR GLOBAL OPTIMIZATION

• EAs mostly use recombination to mix information of more candidate solu-

tions into a new one,

• EAs are stochastic.

BEGIN

 INITIALISE population with random candidate solutions;

 EVALUATE each candidate

 REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

 SELECT parents;

 RECOMBINE pairs of parents;

 MUTATE the resulting offspring;

 EVALUATE new candidates;

 SELECT individuals for the next generation;

 END DO

END

Figure 2.1: The general scheme of Evolutionary Algorithm.

Population

Parents

Offspring
Survival selection

Parent selection
Initialization

Termination

Recombination

Mutation

Figure 2.2: Flow-chart of Evolutionary Algorithm.

2.3 Simulated Annealing (SA)

One of the earliest and yet most popular metaheuristic algorithms is simulated

annealing (SA) [41], which is a trajectory-based, random search technique for

global optimization. It mimics the annealing process in material processing when

a metal cools and freezes into a crystalline state with the minimum energy and

larger crystal size so as to reduce the defects in metallic structures. The annealing

process involves the careful control of temperature and its cooling rate, often

called annealing schedule.

24

2.3 Simulated Annealing (SA)

2.3.1 Annealing and Boltzmann Distribution

Since the first development of simulated annealing by Kirkpatrick, Gelatt and

Vecchi in 1983 [41], SA has been applied in almost every area of optimization.

Unlike the gradient-based methods and other deterministic search methods which

have the disadvantage of being trapped into local minima, the main advantage of

simulated annealing is its ability to avoid being trapped in local minima. In fact,

it has been proved that simulated annealing will converge to its global optimality

if enough randomness is used in combination with very slow cooling. Essentially,

simulated annealing is a search algorithm via a Markov chain, which converges

under appropriate conditions.

Metaphorically speaking, this is equivalent to dropping some bouncing balls

over a landscape, and as the balls bounce and lose energy, they settle down

to some local minima. If the balls are allowed to bounce enough times and lose

energy slowly enough, some of the balls will eventually fall into the globally lowest

locations, hence the global minimum will be reached.

The basic idea of the simulated annealing algorithm is to use random search

in terms of a Markov chain, which not only accepts changes that improve the

objective function, but also keeps some changes that are not ideal. In a mini-

mization problem, for example, any better moves or changes that decrease the

value of the objective function f will be accepted; however, some changes that

increase f will also be accepted with a probability p. This probability p, also

called the transition probability, is determined by

p = e
−

∆E

kBT , (2.1)

where kB is the Boltzmanns constant, and for simplicity, we can use k to denote

kB because k = 1 is often used. T is the temperature for controlling the annealing

process. ∆E is the change of the energy level. This transition probability is based

on the Boltzmann distribution in statistical mechanics.

25

2. METAHEURISTIC ALGORITHMS FOR GLOBAL OPTIMIZATION

The simplest way to link ∆E with the change of the objective function ∆f is

to use

∆E = γ∆f , (2.2)

where γ is a real constant. For simplicity without losing generality, we can use

kB = 1 and γ = 1. Thus, the probability p simply becomes

p(∆f, T) = e−∆f/T , (2.3)

Whether or not we accept a change, we usually use a random number r as a

threshold. Thus, if p > r, or

p = e−∆f/T > r , (2.4)

the move is accepted.

2.3.2 SA Algorithm

The simulated annealing algorithm can be summarized as the pseudo code shown

in Fig. 2.3

In order to find a suitable starting temperature T0 , we can use any information

about the objective function. If we know the maximum change max(4f) of the

objective function, we can use this to estimate an initial temperature T0 for a

given probability p0 . That is

T0 ≈ −
max(5f)

lnp0

, (2.5)

if we do not know the possible maximum change of the objective function, we can

use a heuristic approach. We can start evaluations from a very high temperature

(so that almost all changes are accepted) and reduce the temperature quickly until

about 50% or 60% of the worse moves are accepted, and then use this temperature

as the new initial temperature T0 for proper and relatively slow cooling.

26

2.4 Genetic Algorithms (GA)

N
at
u r
e-
In
sp

ire
d M
etaheuristic A

lgorithm
s

S e c o n d E d it ion (
2 0

10
)

Xin-She Yang

c©Luniver Press

24 CHAPTER 3. SIMULATED ANNEALING

Simulated Annealing Algorithm

Objective function f(x), x = (x1, ..., xp)
T

Initialize initial temperature T0 and initial guess x(0)

Set final temperature Tf and max number of iterations N
Define cooling schedule T 7→ αT , (0 < α < 1)
while (T > Tf and n < N)

Move randomly to new locations: xn+1 = xn + ε (random walk)
Calculate ∆f = fn+1(xn+1) − fn(xn)
Accept the new solution if better
if not improved

Generate a random number r
Accept if p = exp[−∆f/T] > r

end if
Update the best x∗ and f∗
n = n + 1

end while

Figure 3.1: Simulated annealing algorithm.

high temperature (so that almost all changes are accepted) and reduce
the temperature quickly until about 50% or 60% of the worse moves are
accepted, and then use this temperature as the new initial temperature T0

for proper and relatively slow cooling.
For the final temperature, it should be zero in theory so that no worse

move can be accepted. However, if Tf → 0, more unnecessary evaluations
are needed. In practice, we simply choose a very small value, say, Tf =
10−10 ∼ 10−5, depending on the required quality of the solutions and time
constraints.

3.4 UNCONSTRAINED OPTIMIZATION

Based on the guidelines of choosing the important parameters such as the
cooling rate, initial and final temperatures, and the balanced number of
iterations, we can implement the simulated annealing using both Matlab
and Octave.

For Rosenbrock’s banana function

f(x, y) = (1 − x)2 + 100(y − x2)2,

we know that its global minimum f∗ = 0 occurs at (1, 1) (see Fig. 3.2). This
is a standard test function and quite tough for most algorithms. However,
by modifying the program given later in the next chapter, we can find this

Figure 2.3: Simulated annealing algorithm.

For the final temperature, it should be zero in theory so that no worse move

can be accepted. However, if Tf0, more unnecessary evaluations are needed. In

practice, we simply choose a very small value, say, Tf = 10−10 ∼ 10−5 , depending

on the required quality of the solutions and time constraints.

2.4 Genetic Algorithms (GA)

Genetic Algorithm (GA) [18, 26, 27, 28] is one of the most popular evolutionary

algorithms. The most common type of genetic algorithm works like this: a pop-

ulation is created with a group of individuals created randomly. The individuals

in the population are then evaluated. The evaluation function is provided by the

programmer and gives the individuals a score based on how well they perform

at the given task. Two individuals are then selected based on their fitness, the

higher the fitness, the higher the chance of being selected. These individuals then

“reproduce” to create one or more offspring, after which the offspring are mutated

27

2. METAHEURISTIC ALGORITHMS FOR GLOBAL OPTIMIZATION

randomly. This continues until a suitable solution has been found or a certain

number of generations have passed, depending on the needs of the programmer.

1. Initialization

Initially many individual solutions are randomly generated to form an initial

population. The population size depends on the nature of the problem,

but typically contains several hundreds or thousands of possible solutions.

Traditionally, the population is generated randomly, covering the entire

range of possible solutions (the search space). Occasionally, the solutions

may be “seeded” in areas where optimal solutions are likely to be found.

2. Selection

Selection is the stage of a GA in which individual genomes are chosen from

a population for later breeding (recombination or crossover).

The most common type - fitness proportionate selection (also known as

roulette-wheel selection), individuals are given a probability of being se-

lected that is directly proportionate to their fitness. Two individuals are

then chosen randomly based on these probabilities and produce offspring.

3. Crossover

Crossover is a genetic operator used to vary the programming of a chromo-

some or chromosomes from one generation to the next.

4. Mutation

Mutation is a genetic operator used to maintain genetic diversity from one

generation of a population of chromosomes to the next.

The purpose of mutation in GAs is to allow the algorithm to avoid local

minima by preventing the population of chromosomes from becoming too

similar to each other, thus slowing or even stopping evolution.

5. Termination

This generational process is repeated until a termination condition has been

reached.

28

2.5 Differential Evolution (DE) Algorithm

 One-point crossover

 Two-point crossover

 "Cut and splice"

Figure 2.4: GA crossover operation.

Simple generational GA pseudocode

• Choose the initial population of individuals

• Evaluate the fitness of each individual in that population

• Repeat on this generation until termination:

- Select the best-fit individuals for reproduction

- Breed new individuals through crossover and mutation operations to give

birth to offspring

- Evaluate the individual fitness of new individuals

- Replace least-fit population with new individuals

2.5 Differential Evolution (DE) Algorithm

Differential evolution algorithm was first proposed by R.Storn and K.Price [61].

DE is similar to other EAs particularly GA in the sense that it uses the same

evolutionary operators such as selection, recombination, and mutation (a simple

cycle of stages presented in Fig. 2.5). However the significant difference is that DE

uses distance and direction information from the current population to guide the

29

2. METAHEURISTIC ALGORITHMS FOR GLOBAL OPTIMIZATION

search process. The performance of DE depends on the manipulation of target

vector and difference vector in order to obtain a trial vector.6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

Fig. 1. Main stages of the DE algorithm.

solving constrained, multiobjective, dynamic, and large-scale
optimization problems as well as applications of DE variants
to practical optimization problems. The rest of this paper is
arranged as follows. In Section II, the basic concepts related to
classical DE are explained along with the original formulation
of the algorithm in the real number space. Section III discusses
the parameter adaptation and control schemes for DE. Section
IV provides an overview of several prominent variants of the
DE algorithm. Section V provides an extensive survey on the
applications of DE to the discrete, constrained, multiobjective,
and dynamic optimization problems. The theoretical analysis
of DE has been reviewed in Section VI. Section VII provides
an overview of the most significant engineering applications
of DE. The drawbacks of DE are pointed out in Section VIII.
Section IX highlights a number of future research issues
related to DE. Finally, the paper is concluded in Section X.

II. Differential Evolutions: Basic Concepts and

Formulation in Continuous Real Space

Scientists and engineers from all disciplines often have to
deal with the classical problem of search and optimization.
Optimization means the action of finding the best-suited
solution of a problem within the given constraints and flex-
ibilities. While optimizing performance of a system, we aim
at finding out such a set of values of the system parameters
for which the overall performance of the system will be the
best under some given conditions. Usually, the parameters
governing the system performance are represented in a vector
like �X = [x1, x2, x3, ..., xD]T . For real parameter optimization,
as the name implies, each parameter xi is a real number. To
measure how far the “best” performance we have achieved,
an objective function (or fitness function) is designed for the
system. The task of optimization is basically a search for such
the parameter vector �X∗, which minimizes such an objective
function f (�X)(f : � ⊆ �D → �), i.e., f (�X∗) < f (�X) for
all �X ∈ �, where � is a non-empty large finite set serving
as the domain of the search. For unconstrained optimization
problems � = �D. Since max

{
f (�X)

}
= − min

{−f (�X)
}

,
the restriction to minimization is without loss of generality.
In general, the optimization task is complicated by the ex-
istence of non-linear objective functions with multiple local
minima. A local minimum f� = f (�X�) may be defined as
∃ε > 0 ∀ �X ∈ � :

∥∥ �X − �X�

∥∥ < ε ⇒ f� ≤ f (�X), where ‖.‖
indicates any p-norm distance measure.

DE is a simple real parameter optimization algorithm. It
works through a simple cycle of stages, presented in Fig. 1.
We explain each stage separately in Sections II-A–II-D.

A. Initialization of the Parameter Vectors

DE searches for a global optimum point in a D-dimensional
real parameter space �D. It begins with a randomly initiated

population of NP D dimensional real-valued parameter vec-
tors. Each vector, also known as genome/chromosome, forms
a candidate solution to the multidimensional optimization
problem. We shall denote subsequent generations in DE by
G = 0, 1..., Gmax. Since the parameter vectors are likely
to be changed over different generations, we may adopt
the following notation for representing the ith vector of the
population at the current generation:

�Xi,G = [x1,i,G, x2,i,G, x3,i,G,, xD,i,G]. (1)

For each parameter of the problem, there may be a certain
range within which the value of the parameter should be
restricted, often because parameters are related to physical
components or measures that have natural bounds (for example
if one parameter is a length or mass, it cannot be negative).
The initial population (at G = 0) should cover this range as
much as possible by uniformly randomizing individuals within
the search space constrained by the prescribed minimum
and maximum bounds: �Xmin = {x1,min, x2,min, ..., xD,min} and
�Xmax = {x1,max, x2,max, ..., xD,max}. Hence we may initialize the
jth component of the ith vector as

xj,i,0 = xj,min + randi,j[0, 1] · (xj,max − xj,min) (2)

where randi,j[0, 1] is a uniformly distributed random number
lying between 0 and 1 (actually 0 ≤ randi,j[0, 1] ≤ 1) and
is instantiated independently for each component of the i-th
vector.

B. Mutation with Difference Vectors

Biologically, “mutation” means a sudden change in the
gene characteristics of a chromosome. In the context of the
evolutionary computing paradigm, however, mutation is also
seen as a change or perturbation with a random element. In
DE-literature, a parent vector from the current generation is
called target vector, a mutant vector obtained through the
differential mutation operation is known as donor vector and
finally an offspring formed by recombining the donor with
the target vector is called trial vector. In one of the simplest
forms of DE-mutation, to create the donor vector for each ith
target vector from the current population, three other distinct
parameter vectors, say �Xri

1
, �Xri

2
, and �Xri

3
are sampled randomly

from the current population. The indices ri
1, ri

2, and ri
3 are

mutually exclusive integers randomly chosen from the range
[1, NP], which are also different from the base vector index
i. These indices are randomly generated once for each mutant
vector. Now the difference of any two of these three vectors is
scaled by a scalar number F (that typically lies in the interval
[0.4, 1]) and the scaled difference is added to the third one
whence we obtain the donor vector �Vi,G. We can express the
process as

�Vi,G = �Xri
1,G

+ F · (�Xri
2,G

− �Xri
3,G

). (3)

The process is illustrated on a 2-D parameter space (show-
ing constant cost contours of an arbitrary objective function)
in Fig. 2.

Figure 2.5: Main stages of DE algorithm.

1. Mutation

The main scheme in DE becomes mutation operator. For each target vector

Xi,G in a D-dimensional search space, the process to obtain a mutant vector

as follow:

DE/rand/1

Vi,G = Xr1,G + F · (Xr2,G −Xr3,G) , (2.6)

where r1, r2, r3 ∈ [1, 2, . . . , NP] are mutually exclusive randomly chosen

integers with a initiated population of NP , and all are different from the

base index i. G denotes subsequent generations, and F > 0 is a scaling

factor which controls the amplification of differential evolution.

The process is illustrated on a 2-D parameter space (showing constant cost

contours of an arbitrary objective function) in Fig. 2.6.

2. Crossover

To enhance the potential diversity of the population, a crossover operation

is introduced shown in Fig. 2.7. The donor vector exchanges its components

with the target vector to form the trial vector:

Uij,G+1 =

{
Vij,G+1, (randj ≤ CR) or (j = jrand)
Xij,G+1, (randj ≥ CR) and (j 6= jrand)

, (2.7)

where j = [1, 2, . . . , D]; randj ∈ [0.0, 1.0]; CR is the crossover probability

takes value in the range [0.0,1.0], and jrand ∈ [1, 2, . . . , D] is the randomly

chosen index.

30

2.5 Differential Evolution (DE) Algorithm

DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 7

Fig. 2. Illustrating a simple DE mutation scheme in 2-D parametric space.

C. Crossover

To enhance the potential diversity of the population, a
crossover operation comes into play after generating the donor
vector through mutation. The donor vector exchanges its
components with the target vector �Xi,G under this operation
to form the trial vector �Ui,G = [u1,i,G, u2,i,G, u3,i,G, ..., uD,i,G].
The DE family of algorithms can use two kinds of crossover
methods—exponential (or two-point modulo) and binomial (or
uniform) [74]. In exponential crossover, we first choose an
integer n randomly among the numbers [1, D]. This integer
acts as a starting point in the target vector, from where the
crossover or exchange of components with the donor vector
starts. We also choose another integer L from the interval
[1, D]. L denotes the number of components the donor vector
actually contributes to the target vector. After choosing n and
L the trial vector is obtained as

uj,i,G = vj,i,G for j = 〈n〉D 〈n + 1〉D , ..., 〈n + L − 1〉D
xj,i,G for all other j ∈ [1, D] (4)

where the angular brackets 〈〉D denote a modulo function with
modulus D. The integer L is drawn from [1, D] according to
the following pseudo-code:
L = 0; DO

{
L = L + 1;
} WHILE ((rand(0, 1) ≤ Cr) AND (L ≤ D)).
“Cr” is called the crossover rate and appears as a control

parameter of DE just like F. Hence in effect, probability (L =
υ) = (Cr)υ − 1 for any positive integer v lying in the interval
[1, D]. For each donor vector, a new set of n and L must be
chosen randomly as shown above.

On the other hand, binomial crossover is performed on each
of the D variables whenever a randomly generated number
between 0 and 1 is less than or equal to the Cr value. In this
case, the number of parameters inherited from the donor has
a (nearly) binomial distribution. The scheme may be outlined
as

uj,i,G =

{
vj,i,G if (randi,j[0, 1] ≤ Cr or j = jrand)
xj,i,G otherwise

(5)

Fig. 3. Different possible trial vectors formed due to uniform/binomial
crossover between the target and the mutant vectors in 2-D search space.

where, as before, randi,j[0, 1] is a uniformly distributed ran-
dom number, which is called anew for each jth component of
the ith parameter vector. jrand ∈ [1, 2,, D] is a randomly
chosen index, which ensures that �Ui,G gets at least one
component from �Vi,G. It is instantiated once for each vector
per generation. We note that for this additional demand, Cr
is only approximating the true probability pCr of the event
that a component of the trial vector will be inherited from
the donor. Also, one may observe that in a 2-D search space,
three possible trial vectors may result from uniformly crossing
a mutant/donor vector �Vi,G with the target vector �Xi,G. These
trial vectors are as follows.

1) �Ui,G = �Vi,G such that both the components of �Ui,G are
inherited from �Vi,G.

2) �U/
i,G, in which the first component (j = 1) comes from

�Vi,G and the second one (j = 2) from �Xi,G.
3) �U//

i,G, in which the first component (j = 1) comes from
�Xi,G and the second one (j = 2) from �Vi,G.

The possible trial vectors due to uniform crossover are
illustrated in Fig. 3.

D. Selection

To keep the population size constant over subsequent gen-
erations, the next step of the algorithm calls for selection to
determine whether the target or the trial vector survives to the
next generation, i.e., at G = G + 1. The selection operation is
described as

�Xi,G+1 = �Ui,G iff (�Ui,G) ≤ f (�Xi,G)

= �Xi,G iff (�Ui,G) > f (�Xi,G) (6)

where f (�X) is the objective function to be minimized. There-
fore, if the new trial vector yields an equal or lower value
of the objective function, it replaces the corresponding target
vector in the next generation; otherwise the target is retained
in the population. Hence, the population either gets better
(with respect to the minimization of the objective function)
or remains the same in fitness status, but never deteriorates.
Note that in (6) the target vector is replaced by the trial
vector even if both yields the same value of the objective
function—a feature that enables DE-vectors to move over

Figure 2.6: Illustrating a simple DE mutation scheme in 2-D parametric space.[61]

In the above equations, r1, r2, r3, r4, and r5 are distinct
integers, which have been selected randomly from the
range [1,2, ...,NP] and they are also different from i.
The parameter F is called the scaling factor, which
amplifies the difference vectors. xG

best is the best indi-
vidual in the current population.

Figure 2: Example of a two-dimensional cost function
showing its contour lines and the process of generating mu-
tations of DE/rand/1.

After mutation, DE performs a binomial crossover
operator on xG

i and vG
i to generate a trial vector

uG
i = (uG

i,1,u
G
i,2, ...,u

G
i,D)

uG
i, j =

{
vG

i, j if rand j(0,1) ≤ CR or j = jrand

xG
i, j otherwise

(14)
where i = 1,2, ...,NP, j = 1,2, ...,D, jrand is a ran-
domly chosen integer from [1,D], rand j(0, 1) is a
uniformly distributed random number between 0 and
1 that is generated for each j, and CR ∈ [0,1] is the
crossover control parameter. Because of the use of
jrand , the trial vector uG

i differs from its target vector
xG

i .

Figure 3: Illustration of the crossover process with D = 7.

A selection operation is performed to choose whether
the target vector xG

i or the trial vector uG
i should enter

the next generation.

xG+1
i =

{
uG

i if f (uG
i) ≤ f (xG

i)

xG
i otherwise

(15)

The DE control parameters comprise the population
size NP, the scaling factor F , and the crossover
control parameter CR. Storn and Price (R.Storn
and K.Price, 1995) argued that it is not difficult to
set these three control parameters to obtain good
performance. They suggested that NP should lie
between 5D and 10D; a good initial choice for F is
0.5, whereas a value of F lower than 0.4 or higher
than 1.0 will lead to performance degradation, and
CR can be set to 0.1 or 0.9.

(J.Ronkkonen et al., 2005) suggested that NP
should lie between 2D and 4D; F should be selected
from the range [0.4, 0.95], with F = 0.9 being
a good trade-off between convergence speed and
robustness; and CR should lie between 0.0 and 0.2
for separable functions, and between 0.9 and 1.0 for
multimodal and non-separable functions. Clearly,
these researchers agreed that F should be in the range
of [0.4, 1.0], and that CR should be close to 1.0 or
0.0, depending on the characteristics of problems.
Algorithm 2: DE Algorithm
Requirements: Max Cycles, number of particles NP,
crossover constant CR, and scaling factor F .
Begin
1: Initialize the population

xG=0
i j = lb j + rand j ∗ (ub j − lb j) (16)

where rand j a random number in [0,1].
2: Evaluate the population
3: Cycle = 1
4: while (Cycle ≤ Max cycle) for each individual xG

i
do
5: Mutation: DE creates a mutation vector vG

i us-
ing equations (9) to (13), depending on the mutation
scheme
6: Crossover: DE creates a trial vector uG

i using equa-
tion (14)
7: Greedy selection: To decide whether it should be-
come a member of generation G + 1 (next generation),
the trial vector uG

i is compared to the target vector xG
i

(15)
8: Memorize the best solution found thus far
9: Cycle = Cycle+1

Figure 2.7: Illustration of the crossover process with D = 7.[61]

31

2. METAHEURISTIC ALGORITHMS FOR GLOBAL OPTIMIZATION

3. Selection

To determine whether the target vector or the trial vector survives to the

next generation, selection is performed. The selection operation is described

as:

Xi,G+1 =

{
Ui,G, f (Ui,G) ≤ f (Xi,G)
Xi,G, f (Ui,G) > f (Xi,G)

. (2.8)

2.6 Artificial Bee Colony Algorithm (ABC)

ABC is a novel swarm intelligence (SI) algorithm, which was inspired by the for-

aging behavior of honeybees. ABC was first introduced by Karaboga in 2005 [38].

ABC is simple in concept, easy to implement, and it uses few control param-

eters, and hence, it has attracted the attention of researchers and has been used

widely for solving many numerical [12], [11] and practical engineering optimiza-

tion problems [10], [1].

There are two types of artificial bees:

- First, the employed bees that are currently exploiting a food source.

- Second, the unemployed bees that are continually looking for a food source.

Unemployed bees are divided into scout bees that search around the nest and

onlooker bees that wait at the nest and establish communication with employee

bees.

The tasks of each type of bee are as follows:

- Employed Bee: A bee that continues to forage a food source that it visited

previously is known as an employed bee.

- Onlooker Bee: A bee that waits in the dance area to make a decision about

a food source is known as an onlooker bee.

- Scout Bee: When a nectar food source is abandoned by bees, it is replaced

with new a food source found by scout bees. If a position cannot be improved

further after a predetermined number of cycles, the food source is assumed to

be abandoned. The predetermined number of cycles is an important control

parameter for ABC, which is known as the “limit” before abandonment.

32

2.6 Artificial Bee Colony Algorithm (ABC)

2 REVIEW OF STANDARD ABC
AND DE

2.1 Formulation of the optimization
problem

The optimization problem is formulated in this sec-
tion. The design variable, objective function, and con-
straint condition are defined as follows:

Design variable: x = [x1, ...,xD] (1)

Objective function: f (x) → Minimum (2)

Constrain condition: xlb ≤ x ≤ xub (3)

where xlb = [xlb
1 , ...,xlb

D], xub = [xub
1 , ...,xub

D], and D
denote the lower boundary condition vectors, upper
boundary condition vectors, and number of design
variable vectors, respectively.

2.2 Artificial Bee Colony Algorithm
(ABC)

ABC is a novel swarm intelligence (SI) algorithm,
which was inspired by the foraging behavior of hon-
eybees. ABC was first introduced by Karaboga in
2005 (D.Karaboga, 2005).

ABC is simple in concept, easy to implement,
and it uses few control parameters, and hence, it has
attracted the attention of researchers and has been
used widely for solving many numerical (D.Karaboga
and B.Basturk, 2007), (D.Karaboga and B.Basturk,
2006) and practical engineering optimization prob-
lems (D.Karaboga et al., 2007), (A.Baykasoglu and
L.Ozbakr, 2007).

There are two types of artificial bees:
- First, the employed bees that are currently exploit-
ing a food source.
- Second, the unemployed bees that are continually
looking for a food source.

Unemployed bees are divided into scout bees that
search around the nest and onlooker bees that wait at
the nest and establish communication with employee
bees.

The tasks of each type of bee are as follows:
- Employed Bee: A bee that continues to forage a
food source that it visited previously is known as an
employed bee.
- Onlooker Bee: A bee that waits in the dance area to
make a decision about a food source is known as an
onlooker bee.

- Scout Bee: When a nectar food source is abandoned
by bees, it is replaced with new a food source found
by scout bees. If a position cannot be improved fur-
ther after a predetermined number of cycles, the food
source is assumed to be abandoned. The predeter-
mined number of cycles is an important control pa-
rameter for ABC, which is known as the ”limit” be-
fore abandonment.

Figure 1: Behavior of honeybees foraging for nectar.

To better understand the basic behavioral charac-
teristics of foragers, Karaboga (D.Karaboga, 2005)
used figure 1. In this example, we have two discov-
ered food sources: A and B. At the start, a potential
forager is an unemployed forager. This bee will have
no knowledge of the food sources around the nest.
There are the following two possible options for this
bee.
- The bee can become a scout and start searching
around the nest spontaneously for a food source ow-
ing to some internal motivation or possible external
clues (S in Figure 1).
- It can become a recruit after observing waggle
dances and start exploiting a food source (R in Fig-
ure 1).

After locating the food source, the bee memo-
rizes the location and immediately starts exploiting it.
Thus, the bee will become an employed forager. The
foraging bee collects a load of nectar from the source
and returns to the hive, before unloading the nectar in
a food store. After unloading the food, the bee has the

Figure 2.8: Behavior of honeybees foraging for nectar.[38]

To better understand the basic behavioral characteristics of foragers, Karaboga

[38] used figure 2.8. In this example, we have two discovered food sources: A and

B. At the start, a potential forager is an unemployed forager. This bee will have

no knowledge of the food sources around the nest. There are the following two

possible options for this bee.

- The bee can become a scout and start searching around the nest spontaneously

for a food source owing to some internal motivation or possible external clues (S

in Figure 2.8).

- It can become a recruit after observing waggle dances and start exploiting a

food source (R in Fig. 2.8).

After locating the food source, the bee memorizes the location and immedi-

ately starts exploiting it. Thus, the bee will become an employed forager. The

foraging bee collects a load of nectar from the source and returns to the hive,

before unloading the nectar in a food store. After unloading the food, the bee

has the following three options:

33

2. METAHEURISTIC ALGORITHMS FOR GLOBAL OPTIMIZATION

- It becomes a non-committed follower after abandoning the food source (UF).

- It dances and recruits nest mates before returning to the same food source

(EF1).

- It continues to forage at the food source without recruiting other bees (EF2).

It is important to note that not all bees begin foraging simultaneously. Ex-

periments have confirmed that new bees begin foraging at a rate proportional to

the difference between the eventual total number of bees and the number that

are currently foraging.

In the ABC algorithm, half of the colony consists of employed artificial bees

while the other half consists of onlookers. For every food source, there is only

one employed bee. In other words, the number of employed bees is equal to the

number of food sources around the hive. An employed bee that exhausts its food

source becomes a scout.

ABC algorithm simulation for optimization: In the ABC algorithm, the po-

sition of a food source i at generation G represents a possible solution to the

optimization problem xGi , while the nectar amount in a food source corresponds

to the quality (fitness fitGi) of the associated solution.

Algorithm 1: ABC Algorithm

Requirements: Max Cycles, Colony Size, Limit

Begin

1: Initialize the food sources

xG=0
i,j = lbj + randj ∗ (ubj − lbj) (2.9)

where randj a random number in [0,1].

2: Evaluate the food sources

3: Cycle = 1

4: while (Cycle ≤Max cycle) do

5: Produce new solutions using employed bees

vi,j = xi,j + ϕi,j ∗ (xi,j − xk,j) (2.10)

where k ∈ {1, 2, .., SN} and j ∈ {1, 2, .., D} are randomly selected indices. Al-

though k is determined randomly, it has to be different from i. ϕij is a random

34

2.7 Particle Swarm Optimization (PSO)

number between [−1, 1]. vi,j is the neighborhood of xi,j in dimension j.

6: Evaluate the new solutions and apply a greedy selection process

7: Calculate the probability values using the fitness values

pi =
fitGi

SN∑

n=1

fitGn

(2.11)

where fitGi is the fitness of food source i at generation G.

8: Produce new solutions using onlooker bees

vi,j = xi,j + ϕi,j ∗ (xi,j − xk,j) (2.12)

9: Apply a greedy selection process for onlooker bees

10: Determine the abandoned solutions and generate new solutions randomly

using scouts

xG=0
ij = lbj + randj ∗ (ubj − lbj) (2.13)

where randj a random number in [0, 1].

11: Memorize the best solution found so far

12: Cycle = Cycle+ 1

13: end while

14: return best solution

End

2.7 Particle Swarm Optimization (PSO)

Among the modern meta-heuristic algorithms, a well-known branch is Particle

Swarm Optimization (PSO) [5, 40]. PSO is a robust stochastic optimization

algorithm which is defined by the behavior of a swarm of particles in a multi-

dimensional search space looking for the best solution. It has been developed

through simulation of a simplified social system, and has been found to be ro-

bust in solving optimization problems. PSO is the method using simple iterative

calculations, thus it is easy to create the program source. Therefore, PSO is ap-

plicable to wide-ranging optimization problems. Nevertheless, the performance of

35

2. METAHEURISTIC ALGORITHMS FOR GLOBAL OPTIMIZATION

the PSO greatly depends on its parameters and it often suffers from the problem

of being trapped in the local optimum. It might be difficult to find the global

optimal solution when it comes to complex objective functions which have a lot

of local optimal solutions. The main problem of PSO is that it prematurely

converges to stable point which is not necessary optimum. To resolve this prob-

lem, various improvement algorithms are proposed to be a successful in solving a

variety of optimal problems [6, 14, 57].

2.7.1 PSO Algorithm

We concerned here with conventional basic model of PSO [40]. In this model, each

particle which make up a swarm has information of its position xi and velocity

vi (where i is the index of the particle) at the present in the search space. Each

particle aims at the global optimal solution by updating next velocity making use

of the position at the present, based on its best solution has been achieved so far

Lbestij and the best solution of all particles Gbestj (where j = [1, 2, . . . , D], D is

the dimension of the solution vector), as following equation:

vij,k+1 = wvij,k + c1r1 (Lbestij,k − xij,k) + c2r2 (Gbestj,k − xij,k) , (2.14)

xij,k+1 = xij,k + vij,k+1 , (2.15)

where w is inertia weight; c1 and c2 are cognitive acceleration and social acceler-

ation, respectively; r1 and r2 are random numbers uniformly distributed in the

range [0.0,1.0].

The position of each particle is updated with (2.15) by the velocity updated

in (2.14) as shown in Figure 2.9. After a number of iterations, PSO is going to

get the global optimal solution as conclusive gbest.

36

2.7 Particle Swarm Optimization (PSO)

Lbest

Gbest

Lbest

kv1

1

1

kv

1

2

kv

kv2

kx1

1

1

kx

1

1

kx

1

2

kx

kx2

1

2

kx

Lbest

Gbest

Lbest

kv1

1

1

kv

1

2

kv

kv2

kx1

1

1

kx

1

1

kx

1

2

kx

kx2

1

2

kx

Figure 2.9: Image of PSO algorithm.[40]

2.7.2 Improved PSO algorithm

Given its simple concept and effectiveness, the PSO has become a popular opti-

mizer and has widely been applied in practical problem solving. Meanwhile, much

research on performance improvements has been reported including parameter

studies, combination with auxiliary operations, and topological structures.

1. Time-varying Inertia Weight

The concept of time-varying has been adapted for improvement of PSO

[58]. The inertia weight w in (2.14) linearly decreasing with the iterative

generation as below:

w = (wmax − wmin)

(
itermax − iter

itermax

)
+ wmin , (2.16)

where iter is the current iteration number while itermax is the maximum

number of iterations, the maximal and minimal weights wmax and wmin are

respectively set 0.9, 0.4 known from experience.

The concept of diversification and intensification is quite important in PSO

algorithm, because it decides the characteristic of the swarm and the search

performance. By using (2.16), the particles can be transformed from diver-

sification to intensification by decreasing the inertia weight linearly as the

search proceeds.

37

2. METAHEURISTIC ALGORITHMS FOR GLOBAL OPTIMIZATION

2. Time-varying Acceleration Coefficients

The acceleration coefficients c1 and c2 are also important parameters in

PSO. Both acceleration coefficients are essential to the success of PSO. The

idea behind time-varying acceleration coefficients is to enhance the global

search in early part of the optimization and to encourage the particles to

converge towards the global optima at the end of the search proceeds. With

a large cognitive component and small social component at the beginning,

particles are allowed to move around the search space instead of moving

toward the population best during early stages. On the other hand, a small

cognitive component and a large social component allow the particles to

converge to the global optima in the latter part of the optimization process.

The acceleration coefficients are expressed as:

c1 = (c1f − c1i)

(
itermax − iter

itermax

)
+ c1i , (2.17)

c2 = (c2f − c2i)

(
itermax − iter

itermax

)
+ c2i , (2.18)

where c1i, c1f , c2i and c2f are initial and final values of the acceleration

coefficient factors respectively. The most effective values are set 2.5 for c1i

and c2f and 0.5 for c1f and c2i as in [13].

3. Constriction Factor

The constriction factor [7] is used to improve the convergence of PSO algo-

rithm and is given by:

K =
2∣∣∣2− ϕ−
√
ϕ2 − 4ϕ

∣∣∣
; ϕ = c1 + c2; ϕ ≥ 4 . (2.19)

Another active research trend in PSO is hybrid PSO, which combines PSO

with other evolutionary paradigms such as Particle Swarm Inspired Evolutionary

Algorithm (PS-EA) [60], Hybrid Genetic Algorithm and Particle Swarm Opti-

mization (GA-PSO) [37], and Particle Swarm Ant Colony Optimization (PSACO)

38

2.7 Particle Swarm Optimization (PSO)

[56] etc. All techniques have also been hybridized with traditional PSO to en-

hance performance and to prevent the swarm from crowding too closely and to

locate as many optimal solutions as possible.

39

Chapter 3

Improve Seft-Adaptive Control

Parameters in Differential

Evolution Algorithm

In the chapter 2 we review some metaheuristic algorithm for global optimization.

In this chapter, to improve the global search ability and stability of metaheuristic

algorithms, we proposed a new improvement of self-adaptive strategy for con-

trolling parameters in differential evolution algorithm (ISADE). The differential

evolution (DE) algorithm has been used in many practical cases and has demon-

strated good convergence properties. It has only a few control parameters as

number of particles (NP), scaling factor (F) and crossover control (CR), which

are kept fixed throughout the entire evolutionary process. However, these control

parameters are very sensitive to the setting of the control parameters based on

their experiments. The value of control parameters depend on the characteristics

of each objective function, so we have to tune their value in each problem that

mean it will take too long time to perform. We present a new version of the DE

algorithm for obtaining self-adaptive control parameter settings that show good

performance on numerical benchmark problems and constrained engineering op-

timization problems.

40

3.1 Introduction

3.1 Introduction

Differential evolution is an optimization technique originally proposed by R.Storn

and K.Price [61]. In DE, new individuals are generated by mutation and crossover

operator, which uses the variance within the population to guide the choice of

new search points. Although DE is very powerful, it may sometime fall into local

optimum and has a slow convergence speed in the last period of iterations. The

aim of this work is to improve self-adaptive differential evolution, to do this the

three DE’s mutation scheme operators are selected as candidates due to their good

performance on problems with different characteristics. These three mutation

scheme operators are chosen to be applied to individuals in the current population

with the same probability. The scaling factor F is calculated by ranking the

population and applying formula of sigmoid function depend on the rank number

of population size and the crossover control CR is also adaptively changed instead

of taking fixed values to deal with different classes of problems. Another critical

parameter of DE, the population size NP remains a user-specified variable to

tackle problems with different complexity. The results from experiment show that

our algorithm with improve self-adaptive control parameter settings is better than

or at least comparable to the standard DE algorithm and evolutionary algorithms

(EAs) from literature when considering the quality of the solutions obtained and

calculation cost. All the algorithms are applied to the some benchmark functions

and compared based on some different metrics.

3.2 Review of DE and related work

3.2.1 Formulation of Optimization Problem

The optimization problem is formulated in this section. Design variable vectors

(DVs), objective function and range of DVs are defined as follow:

Design variable:

x = [x1, ..., xD] (3.1)

41

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

Objective function:

f(x)→Minimize (3.2)

Modified objective function:

f ∗(x) = f(x) + γP (x)→Minimize (3.3)

Inequality constraint functions:

gj(x) ≤ 0, j = 1, . . . ,m (3.4)

Equality constraint functions:

hk(x) = 0, k = 1, . . . , n (3.5)

Range of design variables:

xlbi ≤ xi ≤ xubi (3.6)

where f(x), γ and f ∗(x) denote objective function, penalty coefficient and mod-

ified objective function, respectively. xlb = [xlb1 , . . . , x
lb
D], xub = [xub1 , . . . , x

ub
D],

and D denote the lower boundary condition vectors, upper boundary condition

vectors, and number of design variable vectors, respectively. m and n are the

number of inequality and equality constraints respectively. gj and hk are linear

or nonlinear real-value functions respectively.

3.2.2 Review of Differential Evolution Algorithm

Differential evolution (DE), proposed by R.Storn and K.Price [61], is a very pop-

ular EA. Like other EAs, DE is a population-based stochastic search technique.

It uses mutation, crossover and selection operators at each generation to move

its population toward the global optimum minimum.

3.2.2.1 Initialization in DE

The initial population was generated uniformly at random in the range lower

boundary (LB) and upper boundary (UB).

XG=0
ij = lbj+randj(0, 1)∗(ubj−lbj) randj(0, 1) a random number in [0,1].

(3.7)

42

3.2 Review of DE and related work

3.2.2.2 Mutation operation

In this process, DE creates a mutant vector V G
i = (V G

i,1, · · · , V G
i,D) for each individ-

ual at each generation G, XG
i (called a target vector) in the current population.

There are several variants of DE, according to [61, 62] we have some mutation

schemes as follow:

DE/rand/1:

V G
i,j = XG

r1,j
+ F ∗ (XG

r2,j
−XG

r3,j
) (3.8)

DE/best/1:

V G
i,j = XG

best,j + F ∗ (XG
r1,j
−XG

r2,j
) (3.9)

DE/current to best/1:

V G
i,j = XG

i,j + F ∗ (Xbest,j −XG
i,j) + F ∗ (XG

r1,j
−XG

r2,j
) (3.10)

DE/rand/2:

V G
i,j = XG

r1,j
+ F ∗ (XG

r2,j
−XG

r3,j
) + F ∗ (XG

r4,j
−XG

r5,j
) (3.11)

DE/best/2:

V G
i,j = XG

best,j + F ∗ (XG
r1,j
−XG

r2,j
) + F ∗ (XG

r3,j
−XG

r4,j
) (3.12)

DE/rand to best/1:

V G
i,j = XG

r1,j
+ F ∗ (Xbest,j −XG

r1,j
) + F ∗ (XG

r2,j
−XG

r3,j
) (3.13)

where r1, r2,r3, r4 and r5 are distinct integers that randomly selected from the

range [1, NP] and are also different from i. The parameter F is called the scaling

factor that amplifies the difference vectors. Xbest is the best individual in the

current population.

43

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

3.2.2.3 Crossover operation

After mutation process, DE performs a binomial crossover operator on XG
i and

V G
i to generate a trial vector UG

i = (UG
i,1, · · · , UG

i,D) for each particle i as shown

in (Eq.3.14).

UG
i =

{
V G
i,j if randj(0, 1) ≤ CR or j = jrand
XG

i,j otherwise.
(3.14)

where i = 1, · · · , NP , j = 1, · · · , D , jrand is a randomly chosen integer in [1, D],

randj(0, 1) is a uniformly distributed random number between 0 and 1 generated

for each j and CR ∈ [0, 1] is called the crossover control parameter. Due to the

use of jrand, the trial vector UG
i differs from target vector XG

i .

3.2.2.4 Selection operation

The selection operator is performed to select the better one between the target

vector XG
i and the trial vector UG

i to enter the next generation.

XG+1
i =

{
UG
i if f(UG

i) ≤ f(XG
i)

XG
i otherwise.

(3.15)

where i = 1, · · · , NP , XG+1
i is target vector in the next population.

3.2.3 Related work of Differential Evolution Algorithm

This section reviews some papers that compared the different extension of DE

with the original DE. After that, we concentrate on papers that deal with pa-

rameter control in DE.

There have been many research works on controlling search parameters of DE

that are NP , F and CR.

R.Storn and K.Price [61] argued that these three control parameters are not

difficult to set for obtaining good performance. They suggested that NP should

be between 5D and 10D, F should be 0.5 as a good initial choice and the value

44

3.2 Review of DE and related work

Algorithm 1 The DE pseudo-code

1: Require: NP , CR and F Parameters.

2: INITIALIZE DE randomly creates population in (Eq.3.7);

3: EVALUATE Calculate fitness of each individuals ;

4: while (TERMINATION CONDITION) do

5: Mutation DE creates a mutation vector V in (Eq.3.8 to Eq.3.13);

6: Crossover DE creates a trial vector U in (Eq.3.14) ;

7: Evaluation Calculate fitness value of offspring;

8: Selection select the better one between the XG
i and the UG

i for next

generation in (Eq.3.15);

9: Memorize Best solution found so far;

10: end while

of F smaller than 0.4 or larger than 1.0 will lead to performance degradation and

CR can be set to 0.1 or 0.9.

Omar S.Soliman and Lam T.Bui at [59], the author introduced a self-adaptive

approach to DE parameters using a variable step length generated by a Gaus-

sian distribution; also, the mutation amplification and crossover parameter were

introduced. These parameters are evolved during the optimization process.

A.K.Qin and P.N.Suganthan [3] proposed the new choice of learning strategy

SaDE and the two control parameters F and CR do not require predetermining.

During evolution, suitable learning strategy and parameter are applied. Here, au-

thor proposed learning strategy adaptation is to probabilistically select one out

of several available learning strategies and apply to the current population. The

reason for author’s choice is that these two strategies have been commonly used

in many DE literature and reported to perform well on problems with distinct

characteristics. Among them, “rand/1/bin” strategy usually demonstrates good

diversity while the “current to best/2/bin” strategy shows good convergence prop-

erty, two candidate strategies, assuming that the probability of applying strategy

“rand/l/bin” to each individual in the current population is p1 , the probability

of applying another strategy should be P2 = 1 − p1. After specified number of

generations called the “learning period”.Then, the probability of p1 is updated.

The author considered allowing F to take different random values in the range

45

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

(0, 2] with normal distributions of mean 0.5 and standard deviation 0.3 for differ-

ent individuals in the current population. For CR author assumed CR normally

distributed in a range of normal distribution of CR (CRm) and standard devi-

ation 0.1. The CR values associated with trial vectors successfully entering the

next generation are recorded. After a specified number of generations CR has

been changed for several times under the same normal distribution with center

CRm and standard deviation 0.1, and author recalculated the CRm according

to all the recorded CR values corresponding to successful trial vectors during this

period.

J.Liu and J.Lampinen [44] present an algorithm based on the Fuzzy Logic

Control (FLC) in which the step-length was controlled using a single FLC. Its

two inputs were: linearly depressed parameter vector change and function value

change over the whole population members between the current generation and

the last generation.

J.Teo [35] proposed an attempt to dynamic self-adaptive populations in differ-

ential evolution, in addition to self-adapting crossover and mutation rates, they

showed that DE with self-adaptive populations produced highly competitive re-

sults compared to a conventional DE algorithm with static populations.

J.Brest [29] presented another variant of DE algorithms jDE, which uses differ-

ent self-adaptive mechanisms applied on the control parameters: The step length

F and crossover rate CR are produce factors F and CR in a new parent vector.

FG+1
i =

{
Fl + rand1 ∗ Fu if rand2 ≤ τ1

FG
i otherwise.

(3.16)

CRG+1
i =

{
rand3 if rand4 ≤ τ2

CRG
i otherwise.

(3.17)

where rand1, rand2, rand3, rand4 are uniform random values ∈ [0, 1]. τ1 and

τ2 represent probabilities to adjust factors F and CR, respectively. Author set

τ1 = τ2 = 0.1. Because Fl = 0.1 and Fu = 0.9, the new takes a value form

[0.1, 0.9] in a random manner. The new CR takes a value from [0, 1]. FG+1
i and

CRG+1
i are obtained before the mutation process.

46

3.3 Improvement of Self-Adapting Control Parameters in Differential
Evolution

Through reviewing related work, we understood that it is difficult to select

DE learning strategies in the mutation operator and DE control parameters. To

overcome this drawback we proposed the Improvement of Self-Adapting control

parameters in Differential Evolution (ISADE) - a new version of DE in this re-

search. The detail of ISADE is presented in the next section.

3.3 Improvement of Self-Adapting Control Pa-

rameters in Differential Evolution

From literature review of DE, the DE algorithm can work outstanding in compar-

ison others evolutionary algorithm. How ever to achieve good performance on a

specific problem by using the original DE algorithm, we need to try all available

(usually 6 mutation schemes mentioned in section 3.2.2.2) learning strategies in

the mutation operator and fine-tune the corresponding critical control parameters

CR, F and NP . Through reviewing related work, we know that the performance

of the original DE algorithm is highly dependent on the strategies and parameter

settings. Although we may find the most suitable strategy and the corresponding

control parameters for a specific problem, it may require a huge amount of com-

putation time. Also, during different evolution stages, different strategies and

corresponding parameter settings with different global and local search capabil-

ity might be preferred. Therefore, to overcome this drawback, we attempt to

develop a new version of DE algorithm that can automatically adapt the learning

strategies and the parameters settings during evolution. The main ideas of the

ISADE algorithm are summarized below.

3.3.1 Adaptive selection learning strategies in the muta-

tion operator

ISADE probabilistically selects one out of several available learning strategies

in the mutation operator for each individual in the current population. Hence,

we should have several candidate learning strategies available to be chosen and

47

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

also we need to develop a procedure to determine the probability of applying each

learning strategy. In this research, we select three learning strategies in the muta-

tion operator as candidates: “DE/best/1/bin”, “DE/best/2/bin” and “DE/rand

to best/1/bin”. The reason for author’s choice is that these three strategies

have been commonly used in many DE literature and reported to perform well

on problems with distinct characteristics [61, 62]. Among them, “DE/rand to

best/1” strategy usually demonstrates good diversity (explore ability) while the

“DE/best/1” and “DE/best/2” strategy shows good convergence property (ex-

ploitation ability, which we also observe in our trial experiments. Since here we

have three candidate strategies, the probability of applying strategy to each par-

ticle in the current population is pi which are same value p1 = p2 = p3 = 1/3.

With this learning strategies in the mutation operator, the procedure can gradu-

ally evolve the most suitable learning strategy at different learning stages for the

problem under consideration. After specified number of generations called the

“learning period”

DE/rand to best/1:

V G
i,j = XG

r1,j
+ F ∗ (Xbest,j −XG

r1,j
) + F ∗ (XG

r2,j
−XG

r3,j
) (3.18)

DE/best/1:

V G
i,j = XG

best,j + F ∗ (XG
r1,j
−XG

r2,j
) (3.19)

DE/best/2:

V G
i,j = XG

best,j + F ∗ (XG
r1,j
−XG

r2,j
) + F ∗ (XG

r3,j
−XG

r4,j
) (3.20)

3.3.2 Adaptive scaling factor F

As mentioned in section 3.3 before applying original DE algorithm for optimiza-

tion problem we have to tune scaling factor F . The scaling factor F is sensitive

and depend on each of problem, for each of optimization problem we have tune

it’s value that mean it require huge amount of computation time. Therefore, to

overcome of this drawback we try to automatically get scaling factor F value. to

do this matter let consider the situation in the Fig. 3.1. In the multi-point search

48

3.3 Improvement of Self-Adapting Control Parameters in Differential
Evolution

of the DE, we have many particles move from their current points to new search

points in the design space of design variables. For example , as shown in Fig. 3.1,

we have three particles, the first particle A has hight fitness value and near the

global minimize pint and it requires a slight change to the values of the design

variables to obtain the global optimum solution. On the other hand, particle

B cannot reach a global optimum solution without a significant change, and in

addition, particle C has landed in a local optimum solution. Such a situation, in

which the good individual and the low individual are intermingled, can generally

occur at any time in this search process. Therefore, we have to recognize each

individual’s situation and propose a suitable design variables generation process

for each individual’s situation in the design space.

Figure 3.1: Example of individual situations.

From the above analysis we give the following conclusions:

1. In the multi-point search of population, the point which has high fitness value

will near global point and requires a slight change to the values of the design

variables to obtain the global optimum solution.

2. On the other hand, the point which low fitness value will far from global point

and cannot reach a global optimum solution without a significant change.

In the DE algorithm, the distance for a search point can be changed by control-

ling the F factor for determining the neighborhood range. To do this, S.Tooyama

49

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

and H.Hasegawa [65] proposed APGA/VNC approach in which author used sig-

moid function to control neighborhood parameter shown as in 3.2. The formula

for F by sigmoid function as follows.

Fi =
1

1 + exp

(
α ∗ i−NP

2

NP

) (3.21)

where α, i denote the gain of the sigmoid function, particle of ith in NP , respec-

tively.

0

0.2

0.4

0.6

0.8

1

1.2

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

21
8

22
5

23
2

23
9

St
ep

 v
al

ue

Scale factor F

alpha<0

alpha>0

Rank number

Figure 3.2: Suggested to calculate F value.

The gait of F chart depends on the sign and gain of α Fig. 3.2. When particle

at good fitness (high fitness) same as particle A in Fig. 3.1 will have small step size

of F factor and otherwise in the case of α < 0 (the continuous line in Fig. 3.1).

From this view, the ISADE method automatically adapts F factor to obtain

design variable generation accuracy for each individual’s situation and particle’s

fitness. As a result, we believe that it will steadily provide a global optimum

solution and reduce the calculation cost.

In this paper, before caculate the scale factor Fi in Eq.3.21. we will rank all

the particles by estimating their fitness. A ranked particle is labeled with this

rank number and assigned F that corresponds with this number.

50

3.3 Improvement of Self-Adapting Control Parameters in Differential
Evolution

For better performance of ISADE it is need that the scale factor F should

be high in the beginning to have much exploration and after certain generation

F is need to be small for proper exploitation. To implement this, we have new

approach to calculate the the scale factor F as follow:

Fmean
iter = Fmin + (Fmax − Fmin)

(
itermax − iter

itermax

)niter

(3.22)

where Fmax, Fmin, iter, itermax and niter denote the lower boundary condition of

the F , and the upper boundary condition of the F , maximum generation, current

generation and nonlinear modulation index, respectively. From our experiment

we assign Fmin = 0.15 , and Fmax = 1.55.

To control the Fmean
iter , we have varied the nonlinear modulation index niter

with generation as follows:

niter = nmin + (nmax − nmin)

(
iter

itermax

)
(3.23)

where nmax and nmin are typically chosen in the range (0, 15]. After a number of

experiments on the values of nmax and nmin, we have found that the best choice

for them is 0.2 and 6.0. The gait of Fmean
iter chart depends on the iteration number

and the nonlinear modulation index niter is shown in Fig. 3.3.

We introduced a novel approach of scale factor Fi of the each particles with

their fitness values in (Eq.3.21). Therefore in one generation the value of F iter
i

(i = 1, · · · , NP) are not the same for all particles in the population rather it is

made to vary for all particles in each generation. Consider Fmean
iter of (Eq.3.22) as

an average value that we assign to each generation and the final value of scale

factor for each particle in each generation is calculated as follow:

F i
iter =

Fi + Fmean
iter

2
(3.24)

where iter = 1, . . . , itermax and i = 1, . . . , NP

51

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 46 91 13
6

18
1

22
6

27
1

31
6

36
1

40
6

45
1

49
6

54
1

58
6

63
1

67
6

72
1

76
6

81
1

85
6

90
1

94
6

99
1

10
3 6

10
81

11
26

11
71

12
1 6

12
61

13
0 6

13
51

13
9 6

14
41

14
8 6

sc
al

e
fa

ct
or

Scale factor depend on generation

varying n_i
n_min=0.2
n_max=6.0

generation

Highly suggested

Highly suggested

CR=0 CR=1

CRmax CRmediumCRmin

Not recommended

Not recommended

Independent Problems

Dependent Problems

Figure 3.3: The scale factor depend on generation.

3.3.3 Adaptive crossover control parameter CR

In the crossover operation of DE section 3.2.2.3 the crossover control parameter

CR decide the mutant vector V G
ij become a trial vector UG

ij otherwise target vector

XG
ij . same as the scaling factor F before running DE algorithm we have to tune

it’s value. In this section we will try to automatically get it’s value.

There are many research focus to this problem [3, 29, 53, 59, 61]. base on

G.Reynoso-Meza [53] suggested to have a success if a child substitutes its parent

in the next generation.The minimum, maximum and medium value on such set

of success is used for this purpose.

- Be able to detect a separable problem or independent problem, choosing a

crossover control parameter with low values for CR. Fig. 3.4

- Be able to detect non-separable problem or dependent problem, choosing a

crossover control parameter with high values for CR. Fig. 3.4

In this way, the algorithm will be able to detect if high values of CR are useful

and furthermore, if a rotationally invariant crossover is required. A minimum

base for CR around its median value is incorporated to avoid stagnation around

a single value, Fig. 3.4 shows this principle, so we propose the ideas behind this

adaptive mechanism for the crossover:

52

3.3 Improvement of Self-Adapting Control Parameters in Differential
Evolution

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 46 91 13
6

18
1

22
6

27
1

31
6

36
1

40
6

45
1

49
6

54
1

58
6

63
1

67
6

72
1

76
6

81
1

85
6

90
1

94
6

99
1

10
3 6

10
81

11
26

11
71

12
1 6

12
61

13
0 6

13
51

13
9 6

14
41

14
8 6

sc
al

e
fa

ct
or

Scale factor depend on generation

varying n_i
n_min=0.2
n_max=6.0

generation

Highly suggested

Highly suggested

CR=0 CR=1

CRmax CRmediumCRmin

Not recommended

Not recommended

Independent Problems

Dependent Problems

Figure 3.4: Suggested to calculate CR values.

The control parameter CR is adapted as follows:

CRG+1
i =

{
rand2 if rand1 ≤ τ
CRG

i otherwise.
(3.25)

where: rand1 and rand2 are uniform random values ∈ [0, 1], τ represents proba-

bilities to adjust CR, same as [30] we assign τ = 0.10.

After that we adjust CR as follows:

CRG+1
i =

{
CRmin if CRmin ≤ CRG+1

i ≤ CRmedium

CRmax if CRmedium ≤ CRG+1
i ≤ CRmax .

(3.26)

where: CRmin, CRmedium and CRmax denote the low value, median value and

high value of crossover parameter respectively. From our experiment in many

trials, we assign CRmin = 0.05, CRmedium = 0.50 and CRmax = 0.95.

The purpose of our approach is that user does not need to tune the good

values for F and CR, which are problem dependent. The rules for improve self-

adapting control parameters are quite simple, therefore the new version of the

DE algorithm does not increase the time complexity in comparison to the original

DE algorithm.

53

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

3.3.4 ISADE algorithm pseudo-code

Algorithm 2 The ISADE pseudo-code

1: Require only NP parameter;

2: INITIALIZE DE randomly creates population in (Eq.3.7);

3: EVALUATE Calculate fitness of each individuals and rank population in ther

decent fitness ;

4: while (TERMINATION CONDITION) do

5: Adaptive scaling factor F in (Eq.3.21) to (Eq.3.24);

6: Adaptive Crossover factor CR in (Eq.3.25) to (Eq.3.26);

7: Mutation DE creates a mutation vector V in (Eq.3.8 to Eq.3.13);

8: Crossover DE creates a trial vector U in (Eq.3.14) ;

9: EVALUATE Calculate fitness of each individuals and rank population

in ther decent fitness ;

10: Selection select the better one between the XG
i and the UG

i for next

generation in (Eq.3.15);

11: Memorize Best solution found so far;

12: end while

3.4 Numerical Experiments

In this section, the first experiment is to be test for turning the α parameter

ISADE, after that we will test the robustness of the ISADE method compare

with some reference methods as: jDE [30], PSO [39] and SaDE [3], the last

experiment, we will apply ISADE to some constrained engineering optimizations.

These experiments are performed 20 trials for every function. .

3.4.1 Benchmark Tests

To estimate the stability and convergence to the optimal solution of ISADE, We

will use 9 well-known benchmark test functions with 30 dimensions such as Sphere

(Sp), Rosenbrock (Ro), Ridge (Ri), Griewank (Gr), Rastrigin (Ra), Ackley (Ac),

54

3.4 Numerical Experiments

Levy (Le), Schawefel (Sc) and Alpine (Al) function. These functions are given as

follows:

Sphere:

f1 =
n∑

i=1

{x2
i } (3.27)

Rosenbrock:

f2 =
n∑

i=1

[100(xi+1 − x2
i)

2 + (xi − 1)2] (3.28)

Ridge:

f3 =
n∑

i=1

(
i∑

j=1

xj

)2

(3.29)

Griewank:

f4 = 1 +
n∑

i=1

x2
i

4000
−

n∏

i=1

cos

(
xi√
i

)
(3.30)

Rastrigin:

f5 = 10n+
n∑

i=1

{x2
i − 10cos(2πxi)} (3.31)

Ackley:

f6 = −20 exp

−0.2

√√√√ 1

n

n∑

i=1

x2
i

− exp

(
1

n

n∑

i=1

cos (2πxi)

)
+ 20 + e (3.32)

Levy:

f7 = sin2 (3πx1) +
n−1∑

i=1

(xi − 1)
(
1 + sin2 (3πxi+1)

)
+ (xn − 1)

(
1 + sin2 (2πxn)

)

(3.33)

Schawefel:

f8 =
n∑

i=1

|xi|+
n∏

i=1

|xi| (3.34)

Alpine:

f9 =
n∑

i=1

|xisin (xi) + 0.1xi| (3.35)

Table 3.1 shows the characteristics, the terms dependent or independent prob-

lem, multi-peak, steep denote the dependence relation of the variables, presence

of multi-peak and level of steepness, respectively.

55

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

Table 3.1: Characteristics of Benchmark Functions.
Func Dependent Multi-peak Steep Design range Global opt

Sp No no Average −5.12 ≤ x ≤ 5.12 f (0) = 0

Ro Yes No Big −2.048 ≤ x ≤ 2.048 f (1) = 0

Ri Yes No Average −51.2 ≤ x ≤ 51.2 f (0) = 0

Gr Yes Yes Small −600.0 ≤ x ≤ 600.0 f (0) = 0

Ra No Yes Average −5.12 ≤ x ≤ 5.12 f (0) = 0

Ac No Yes Average −5.12 ≤ x ≤ 5.12 f (0) = 0

Le No Yes Average −10.0 ≤ x ≤ 10.0 f (1) = 0

Sc No No Average −10.0 ≤ x ≤ 10.0 f (0) = 0

AL Yes Yes Average −10.0 ≤ x ≤ 10.0 f (0) = 0

3.4.2 Test to get best value of α in ISADE

As mention above, we know that the gait of sigmoid function is depend on the

sign and value of α, Fig. 3.2 shows the relationship of F and Rank depend on

the α.

In this section, we test to get best value of α. NP = 8 ∗ D, maximum

iteration iter max = 3000, accurate ε = 10−6, τ = 0.1 and alpha value α =

−20,−19, . . . , 19, 20.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

-20

-18

-16

-14

-12

-10

-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

av
er

ag
e i

te
ra

tio
n

Test to get good value of α factor

SP RO

RI GR

RA AC

Figure 3.5: Result of test to get good value of α.

56

3.4 Numerical Experiments

From the result in Fig. 3.5, the solutions of all the benchmark functions with

30 dimensions reach their global optimum solutions with accurate ε = 10−6.

However, the result of α < 0 is better than that of α > 0. The Sp, Ac, and Gr

function are good with α from -10.0 to 10.0 but with Ro, Ri and Ra function is

not good at that value, from −10.0 to 20.0 maybe they are not change when we

change α value, for best value of all function we will choose α = −10 for next

test.

3.4.3 Test to robust of Algorithm

3.4.3.1 ISADE and some approaches are compared in this test with

same accurate ε = 10−6

Population size was NP = 8 ∗D, and accurate ε = 10−6 compare the iteration,

τ = 0.1, at which the optimum is satisfy. The result of this test is shown in table

3.2. We present the average of generations and success ratio for the benchmark

functions. All the readings given are the averages over 20 independent runs per

function.

Table 3.2: Average of generation and the success ratio

Function
PSO jDE SaDE ISADE

ave iter SR ave iter SR ave iter SR ave iter SR

Sp 196.55 100% 568.90 100% 238.75 100% 107.90 100%

Ro – 0% 5663.15 100% 1084.06 85% 781.40 100%

Ri 1517.15 80% 8325.70 100% 766.95 95% 494.03 100%

Gr 155.30 100% 457.45 100% 181.25 100% 128.90 100%

Ra – 0% 3563.65 100% 1200.8 100% 1164.75 100%

Ac 390.45 100% 973.15 100% 414.50 100% 305.70 100%

Le 298.35 100% 655.40 100% 264.00 100% 357.30 95%

Sc 592.85 85% 996.50 100% 473.10 100% 449.70 100%

Al 847 .85 20% – 0% 1898.30 100% 966.30 100%

57

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

As in table 3.2, ISADE method compare with some reference methods as:

jDE [29], PSO [39] and SaDE [3]. We wish to mention here that ISADE is

able obtain the optimal solutions for almost benchmark test functions except

Le function, with the success ratio equal 100% . The ISADE also gets global

optimum at less iteration than that of reference in all benchmark functions, so

ISADE could certainly achieve optimal solution with low calculation cost. With

four functions Ro, Ri, Ra and Al the new approach ISADE is very strong robust.

The convergence of the optimal solution could be improved more significantly in

ISADE than that in EAs for the same accurate.

3.4.3.2 Test with maximum iteration compares the mean of global

minimum and (Std) standard deviation

In this experiment, we did test with N = 8 ∗ D, D = 30 dimensions, τ = 0.1,

process will be stop at maximum generation. The mean and standard deviation

best fitness of these 20 independent runs has been reported. The result of this

test is shown in table 3.3.

The comparison results are listed in table 3.3, all of benchmark functions are

tested with maximum iteration. From the results, it can be seen that the average

of best fitness value and standard deviation of ISADE is better than that of

reference jDE [29], PSO [39] and SaDE [3].

Overall, ISADE was capable of attaining robustness, high quality, low cal-

culation outstanding efficient performance on many benchmark problems. We

confirmed satisfactory performance through various benchmark tests.

3.4.4 Solve some real constrained engineering design op-

timization problems

In this section, we will apply HISADE to solve some real constrained engineer-

ing design optimization problems. A set of 4 engineering design optimization

problems was chosen to evaluate the performance of our proposed algorithm.

58

3.4 Numerical Experiments

T
ab

le
3.

3:
(M

ea
n

)
A

ve
ra

ge
of

gl
ob

al
m

in
im

u
m

an
d

(s
td

)
th

e
st

an
d
ar

d
d
ev

ia
ti

on

F
it
er

m
a
x

P
S
O

jD
E

S
a
D

E
IS

A
D

E

M
ea

n
st

d
M

ea
n

st
d

M
ea

n
st

d
M

ea
n

st
d

S
p

50
0

2.
83
E
−

12
8.

24
E
−

12
1.

14
E
−

05
2.

77
E
−

06
1.

32
E
−

11
5.

77
E
−

11
4
.8

4
E

-3
6

1.
58
E
−

35

R
o

15
00

2.
08
E

+
01

2.
72
E

+
00

1.
77
E

+
01

3.
10
E
−

01
4.

81
E
−

18
1.

94
E
−

17
4
.4

5
E

-2
8

1.
27
E
−

27

R
i

15
00

6.
89
E
−

05
5.

99
E
−

05
1.

15
E

+
02

3.
19
E

+
01

2.
06
E
−

14
6.

18
E
−

14
3
.0

6
E

-2
6

1.
19
E
−

25

G
r

50
0

1.
61
E
−

14
3.

26
E
−

14
2.

67
E
−

07
7.

53
E

-0
8

2
.2

2
E

-1
5

8.
00
E
−

15
3
.6

1
E

-1
6

1.
21
E
−

16

R
a

15
00

3.
16
E

+
01

1.
04
E

+
01

3.
29
E

+
01

3.
29
E

+
00

8.
28
E
−

12
2.

74
E
−

11
1
.3

2
E

-1
4

5.
22
E
−

15

A
c

50
0

4.
12
E
−

07
6.

67
E
−

07
2.

19
E
−

03
2.

55
E
−

04
1.

49
E
−

07
2.

63
E
−

07
4
.0

9
E

-1
4

1.
03
E
−

14

L
e

50
0

6.
12
E
−

11
1.

56
E
−

10
1.

75
E
−

04
4.

84
E
−

05
4.

04
E
−

10
1.

40
E
−

09
2
.2

1
E

-3
1

2.
56
E
−

31

S
c

50
0

6.
69
E
−

04
1.

43
E
−

03
7.

95
E
−

03
1.

14
E
−

03
1
.1

5
E

-0
6

2.
08
E
−

06
1
.2

4
E

-0
6

2.
39
E
−

06

A
l

15
00

5.
38
E
−

12
4.

23
E
−

12
5.

25
E
−

03
6.

97
E
−

04
3.

38
E
−

05
3.

96
E
−

05
1
.0

9
E

-0
9

3.
43
E
−

09

59

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

We performed 20 independent runs per problem. As in chapter 3, we used the

following parameters: NP = 8D, τ = 0.1.

3.4.4.1 E01: Welded beam design optimization problem

The problem is to design a welded beam for minimum cost, subject to some

constraints [42]. Fig. 3.6 shows the welded beam structure which consists of a

beam A and the weld required to hold it to member B. The objective is to find

the minimum fabrication cost, considering four design variables: x1, x2, x3, x4

and constraints of shear stress τ , bending stress in the beam σ, buckling load

on the bar Pc , and end deflection on the beam δ. The optimization model is

summarized in the next equation:

Minimize:

f(x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

subject to:

g1(x) = τ(x)− 13, 600 ≤ 0 ; g2(x) = σ(x)− 30, 000 ≤ 0

g3(x) = x1−x4 ≤ 0 ; g4(x) = 0.10471x2
1 + 0.04811x3x4(14.0 +x2)− 5.0 ≤ 0

g5(x) = 0.125−x1 ≤ 0 ; g6(x) = δ(x)−0.25 ≤ 0 ; g7(x) = 6, 000−Pc(x) ≤
0

With

τ(x) =
√

(τ ,)2 + (2τ ,τ ,,) x2

2R
+ (τ ,,)2 ; τ , = 6,000√

2x1x2
; τ ,, = MR

J

M = 6, 000
(
14.0 + x2

2

)
; R =

√
x2
2

4
+
(
x1+x3

2

)2
; J = 2

{
x1x2

√
2

[
x2
2

4.0
+

(
x1+x3

2

)2
]}

σ(x) = 504,000
x4x2

3
; δ(x) = 65,856,000

(30×106)x4x3
3

Pc(x) =
4.013(30×106)

√
x23x

6
4

36.0

196.0

(
1−

x3

√
30×106

4(12×106)

28.0

)

With 0.1 ≤ x1, x4 ≤ 2.0, and 0.1 ≤ x2, x3 ≤ 10.0.

60

3.4 Numerical Experiments

Best solution: x∗ = (0.205730, 3.470489, 9.036624, 0.205729)

Where f(x∗) = 1.724852

Figure 3.6: Welded Beam.

3.4.4.2 E02: Pressure vessel design optimization problem

A compressed air storage tank with a working pressure of 3,000 psi and a minimum

volume of 750 ft3 . A cylindrical vessel is capped at both ends by hemispherical

heads (see Fig. 3.7). Using rolled steel plate, the shell is made in two halves

that are joined by toe longitudinal welds to form a cylinder. The objective is

minimize the total cost, including the cost of the materials forming the welding

[16]. The design variables are: thickness x1, thickness of the head x2, the inner

radius x3, and the length of the cylindrical section of the vessel x4. The variables

x1 and x2 are discrete values which are integer multiples of 0.0625 inch. Then,

The mathematical formulation of this problem is:

Minimize:

f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

subject to:

g1(x) = −x1 + 0.0193x3 ≤ 0; g2(x) = −x2 + 0.00954x3 ≤ 0

61

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

g3(x) = −πx2
3x4 − 4

3
πx3

3 + 1, 296, 000.0 ≤ 0; g4(x) = x4 − 240.0 ≤ 0

With 1× 0.0625 ≤ x1, x2 ≤ 99× 0.0625, 10.0 ≤ x3, and x4 ≤ 200.0.

Best solution: x∗ = (0.8125, 0.4375, 42.098446, 176.636596)

Where f(x∗) = 6, 059.714335.

Figure 3.7: Pressure Vessel.

3.4.4.3 E03: Speed reducer design optimization problem

The design of the speed reducer [34] shown in Fig. 3.8, is considered with the face

width x1, module of teeth x2, number of teeth on pinion x3, length of the first shaft

between bearings x4, length of the second shaft between bearings x5, diameter

of the first shaft x6, and diameter of the first shaft x7 (all variables continuous

except x3 that is integer). The weight of the speed reducer is to be minimized

subject to constraints on bending stress of the gear teeth, surface stress, transverse

deflections of the shafts and stresses in the shaft. The mathematical formulation

of this problem is:

Minimize:

f(x) = 0.7854x1x
2
2(3.3333x2

3 + 14.9334x3 − 43.0934)− 1.508x1(x2
6 + x2

7)

+7.4777(x3
6 + x3

7) + 0.7854(x4x
2
6 + x5x

2
7)

subject to:

62

3.4 Numerical Experiments

g1(x) = 27.0
x1x2

2x3
− 1.0 ≤ 0 ; g2(x) = 397.5

x1x2
2x

2
3
− 1.0 ≤ 0

g3(x) =
1.93x3

4

x2x3x2
6
− 1.0 ≤ 0 ; g4(x) =

1.93x3
5

x2x3x4
7
− 1.0 ≤ 0

g5(x) = 1.0
110.0x3

6

√(
745.0x4

x2x3

)2

+ 16.9× 106 − 1.0 ≤ 0

g6(x) = 1.0
85.0x3

7

√(
745.0x5

x2x3

)2

+ 157.5× 106 − 1.0 ≤ 0

g7(x) = x2x3

40.0
− 1.0 ≤ 0 ; g8(x) = 5.0x2

x1
− 1.0 ≤ 0 ; g9(x) = x1

12.0x2
− 1.0 ≤ 0

g10(x) = 1.5x6+1.9
x4

− 1.0 ≤ 0 ; g11(x) = 1.1x7+1.9
x5

− 1.0 ≤ 0

With 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤
8.3, 2.9 ≤ x6 ≤ 3.9, and 5.0 ≤ x7 ≤ 5.5,

Best solution: x∗ = (3.500000, 0.7, 17, 7.300000, 7.800000, 3.350214, 5.286683)

Where f(x∗) = 2, 996.348165.

Figure 3.8: Speed Reducer.

63

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

3.4.4.4 E04: Tension/compression spring design optimization prob-

lem

This problem[2, 32] minimizes the weight of a tension/compression spring Fig. 3.9,

subject to constraints of minimum deflections, shear stress, surge frequency, limits

on outside diameter and on design variables. There are three design variables:

the wire diameter x1, the mean coil diameter x2, and the number of active coils

x3. The mathematical formulation of this problem is:

Minimize:

f(x) = (x3 + 2)x2x
2
1

subject to:

g1(x) = 1.0− x3
2x3

7,1785x4
1
≤ 0; g2(x) =

4.0x2
2−x1x2

12,566(x2x3
1−x4

1)
+ 1.0

5,108x2
1
− 1.0 ≤ 0

g3(x) = 1.0− 140.45x1

x2
2x3

≤ 0; g4(x) = x1+x2

1.5
− 1.0 ≤ 0

With 0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3, and 2.0 ≤ x3 ≤ 15.0.

Best solution: x∗ = (0.051690, 0.356750, 11.287126)

Where f(x∗) = 0.012665.

Figure 3.9: Tension/Compression Spring.

64

3.4 Numerical Experiments

Table 3.4: Result of applying ISADE for E01 (Welded beam) problem.

Solutions Constraints

x1 0.205730 g1(x) -4.60E-07

x2 3.470489 g2(x) -1.20E-06

x3 9.036624 g3(x) -3.97E-12

x4 0.205730 g4(x) -3.97E-12

f(x) 1.724852 g5(x) -3.97E-12

FE 8000 g6(x) -3.97E-12

g7(x) -3.43E+00

Table 3.5: Result of applying ISADE for E02 (Pressure vessel) problem.

Solutions Constraints

x1 0.812500 g1(x) 0.0

x2 0.437500 g2(x) -3.59E-02

x3 42.098446 g3(x) 0.0

x4 176.636596 g4(x) -6.34E+01

f(x) 6059.714

FE 24000

3.4.4.5 Result of applying ISADE for constrained engineering opti-

mization

Table.3.4, Table.3.5, Table.3.6 and Table.3.7 show the vectors of the best solution

as well as the values of the constraint terms reached by ISADE, for each of the

problems tested. We got the optimum solution at 8000 objective Function Eval-

uations (FE) per run with the welded beam problem, 24000 with the pressure

vessel problem, 12000 with the speed reducer problem and 8000 with the ten-

sion/compression spring problem. We also tested the algorithm with more than

above of objective function evaluation, but no performance improvements.

65

3. IMPROVE SEFT-ADAPTIVE CONTROL PARAMETERS IN
DIFFERENTIAL EVOLUTION ALGORITHM

Table 3.6: Result of applying ISADE for E03(Speed reducer) problem.

Solutions Constraints Constraints

x1 3.500008 g1(x) -7.39E-02 g9(x) -5.83E-01

x2 0.700000 g2(x) -1.98E-01 g10(x) -5.13E-02

x3 17.000014 g3(x) -4.99E-01 g11(x) -1.09E-02

x4 7.300033 g4(x) -9.01E-01 FE 15000

x5 7.8000016 g5(x) -9.16E-06

x6 3.350225 g6(x) -3.08E-07

x7 5.286684 g7(x) -7.02E-01

f(x) 2996.358 g8(x) -2.30E-06

Table 3.7: Result of applying ISADE for E04 (Tension/Compression spring).

Solutions Constraints

x1 0.051690 g1(x) 0

x2 0.356742 g2(x) 0

x3 11.287534 g3(x) -4.05E00

f(x) 0.012665 g4(x) -7.28E-01

FE 8000

3.5 Conclusion

Locating global minimizers is a very challenging task for any minimization method.

To overcome the weak point of EAs, and to achieve the global search for the

solution space of multi-peak optimization problems with multi-dimensions, we

proposed new evolution strategies of improvement of self-adaptive differential

evolution is proposed. The main idea is that the three mutation scheme opera-

tors are chosen to be applied to individuals in the current population with the

same probability, the scalar factor F is adaptively calculated by sigmoid function

after ranking population in their fitness value and the control parameter CR is

adjusted to balance the abilities of DE in exploitation and DE in exploration.

66

3.5 Conclusion

The search ability of ISADE with multi-dimensions optimization problems is

very effective, compared with that of EAs. Nevertheless, the number of digits of

design variables in the numerical experiments is insufficient to discuss about the

stability of convergence.

Some benchmark test functions are used to validate the performance of the

ISADE. The proposed approach performed well in several test problems both

in terms of the number of fitness function evaluations required and in terms of

the quality of the solutions found. The results show that ISADE outperforms in

most function minimization. The experimental results showed that the accuracy

and speed performance of this study had significantly outperformed the results

produced by to other Evolutionary Algorithms (EAs), and Memetic Algorithms

(MAs). Moreover, the convergence analysis showed that the proposed method

was capable to escape from the local optima more effectively. We confirmed that

these methods could reduce the calculation cost and dramatically improve the

convergence towards the optimal solution. Moreover, it could solve large scale

optimization problems with high probability.

This study plans to do a modified DE with the self-adaptive parameter in DE.

To improve the local search ability of DE, we will present new hybrid ISADE with

a local method name as Nelder mead Simplex method in the next chapter and

apply it for some real constrain engineering optimization.

67

Chapter 4

Training Artificial Feed-forward

Neural Network using

Modification of Differential

Evolution Algorithm

In the chapter 3, we introduce the new version of DE algorithm, to show it’s

powerful this chapter we will apply this algorithm to training an artificial neural

network (ANN). Training an artificial neural network (ANN) is an optimiza-

tion task where the result is to find optimal weight and bias set of the network.

There are many traditional method to training ANN, such as Back Propagation

(BP) Algorithm, Levenberg-Marquadt(LM), Quasi-Newton(QN), Genetic Algo-

rithm(GA) etc. Traditional training algorithms might get stuck in local minima

and the global search techniques might catch global minima very slow. Therefore

this research we apply the improvement of self-adaptive strategy for controlling

parameters in differential evolution algorithm (ISADE) for training neural net-

work.

68

4.1 Introduction

4.1 Introduction

Artificial Neural Networks (ANNs) are widely applied in many fields of science,

in pattern classification, function approximation, optimization, pattern matching

and associative memories [33], [47]. Currently, there have been many algorithms

used to train the ANNs, such as back propagation (BP) algorithm, Levenberg-

Marquadt(LM), Quasi-Newton(QN), genetic algorithm (GA), simulating anneal-

ing (SA) algorithm, particle swarm optimization (PSO) algorithm, hybrid PSO-

BP algorithm [36], hybrid ABC-BP algorithm [8] and so on. Back propagation

(BP) learning can realize the training of feed-forward multilayer neural network.

The algorithm mainly revises neural network weights according to the gradient

descent methods to reduce error. This kind of method calculates simply. But

there are still many drawbacks if neural network are used alone, for example, low

training speed, easy to trap into local minimum point, and poor global searching

ability, and so on. Though many improvements have already been carried on in

this aspect, such as introducing momentum parameter, but it can’t solve problem

by the root. The ISADE [63] can overcome the barriers of BP algorithm.

In the last version of ISADE [63] we worked is to improve self-adaptive differ-

ential evolution, to do this the three DE’s mutation scheme operators are selected

as candidates due to their good performance on problems with different charac-

teristics. These three mutation scheme operators are chosen to be applied to

individuals in the current population with the same probability. The scaling fac-

tor F is calculated by ranking the population and applying formula of sigmoid

function depend on the rank number of population size and the crossover control

CR is also adaptively changed instead of taking fixed values to deal with differ-

ent classes of problems. Another critical parameter of DE, the population size

NP remains a user specified variable to tackle problems with different complexity.

The remainder of this chapter is organized as following manner. The concept

of Artificial Neural Network is described in Section 4.1. Mathematical model of

Neural Network and numerical experiments are described in Section 4.2. Finally,

Section 4.3 includes some brief conclusions.

69

4. TRAINING ARTIFICIAL FEED-FORWARD NEURAL NETWORK
USING MODIFICATION OF DIFFERENTIAL EVOLUTION
ALGORITHM

4.2 Training Feed-Forward Artificial Neural Net-

work

4.2.1 Introduction Neural Network

NNs are mathematical modes that aim to represent certain characteristics of

brain functions. This research was based on models of the living brain. Models

of the brain are becoming increasingly significant owing to advances in neuro-

science, especially the distinction between biology and neuroscience (also known

as ANNs). NNs were first modelled by McCulloch and Pitts in 1943. The learn-

ing method was proposed by Hebb in 1949, which forms the basis of the current

neural network learning method. The perceptron neural network was proposed

in 1958. Recent studies have made further advances, including the development

of computational resources, which have been reviewed by Yao [69], as follows.

• Incorporating the concept of energy into NNSs, which has a powerful effect

when addressing combinatorial optimization problems.

• Exploiting the concept of physical annealing (simulated annealing), which

is effective for solving various type of problems (Boltzmann model).

• A learning method for error back-propagation in the NN hierarchy [55]

(back-propagation).

Neural network can be divided into three major learning paradigms such as

supervised learning, unsupervised learning, and reinforcement learning. If super-

vised learning is that you are provided a mapping implied by the data, unsuper-

vised learning is used for data clustering. As a result of any reduced dimension,

for linearly inseparable problems and the amount of multi-dimensional data such

as images and statistics, a good solution is relatively obtained with small amount

of calculation. From this fact, including data mining and pattern recognition,

have been applied in various fields. In reinforcement learning, data are ussually

not given, but generated by an agent’s interactions with environment. ANNs are

frequently used in reinforcement learning as part of the overall algorithm.

70

4.2 Training Feed-Forward Artificial Neural Network

4.2.1.1 Types of Neural Network

There are many types of Neural Networks (NN).

1. The feedforward neural network was the first and arguably most simple type

of artificial neural network devised. In this network the information moves

in only one direction forwards: from the input nodes data goes through the

hidden nodes (if any) and to the output nodes. There are no cycles or loops

in the network. Feedforward networks can be constructed from different

types of units. Continuous neurons, frequently with sigmoidal activation,

are used in the context of backpropagation of error.

2. Contrary to feedforward networks, recurrent neural networks (RNNs) are

models with bi-directional data flow. While a feedforward network propa-

gates data linearly from input to output, RNNs also propagate data from

later processing stages to earlier stages. RNNs can be used as general se-

quence processors.

1 X

2 X

3 X

4 X

1 O

2 O

Input
layer

Hidden
layer

Output
layer

ij w
kj w

In

Out 1 X

2 X

3 X

4 X

1 O

2 O

ij w
kj w

Figure 4.1: Hierarchical Neural Networks.

4.2.1.2 Neural Network Process

Back-propagation is a method used by the three-layer structure found in most

NNs. Figure 4.1 shows the output of each neuron outj, a sum of weights netj,

71

4. TRAINING ARTIFICIAL FEED-FORWARD NEURAL NETWORK
USING MODIFICATION OF DIFFERENTIAL EVOLUTION
ALGORITHM

Figure 4.2: Neural Networks Interconnection.

the output unit connection weights from the hidden units wjk and the connection

weights to the hidden units from the input layer unit wji. The back-propagation

error activation function (a sigmoid function) shown in equation (4.3) is often

used. To determine whether the output of the output layer is much closer to the

teacher signal, the error back-propagation method defines the squared error E,

which can be expressed using equation (4.4). Thus, if E approaches 0, the output

of the output layer approaches the teacher signal. Therefore, the purpose of the

back-propagation method is to determine the weight of wji, wjk.

netj =
Ln∑

i=0

wjiouti , (4.1)

wjnin = ynm/y(n−1)m , (4.2)

f (netj) =
1

1 + exp−netj
, (4.3)

E =
1

2

Ln∑

i

(ypi − outi)2 ; (1 ≤ p ≤ P) . (4.4)

4.2.1.3 Training Feed-Forward Artificial Neural Network

The neural network is a large-scale self-organization and self-adaptation nonlinear

dynamic system. Artificial neural network technology is an effective way to solve

72

4.2 Training Feed-Forward Artificial Neural Network

complex nonlinear mapping problem. In numerous neural network models, feed-

forward multi-layer neural network model is one of the most widely used models

in current, there are many researches show that three-layer feed-forward neural

network can with arbitrary accuracy approximate any continuous function and

its each order derivatives.

An ANN consists of a set of processing elements Fig. 4.3 also known as neurons

or nodes, which are interconnected with each other [69]. In feed forward neural

network models, shown in Fig. 4.4, each node receives a signal from the nodes

in the previous layer and each of those signals is multiplied by a separate weight

value. The weighted inputs are summed, and passed through a limiting function

which scales the output to a fixed range of values. The output of the limiter is

then broadcast to all of the nodes in the next layer. The input values to the

inputs of the first layer, allow the signals to propagate through the network, and

read the output values where output of the the node can be described by (4.5)

2 Training Feed-Forward Artificial
Neural Network

The neural network is a large-scale self-organization
and self-adaptation nonlinear dynamic system. Artifi-
cial neural network technology is an effective way to
solve complex nonlinear mapping problem. In numer-
ous neural network models, feed-forward multilayer
neural network model is one of the most widely used
models in current, there are many researches show
that three-layer feed-forward neural network can with
arbitrary accuracy approximate any continuous func-
tion and its each order derivatives.

An ANN consists of a set of processing elements
Fig. 1 also known as neurons or nodes, which are in-
terconnected with each other (X.Yao, 1999). In feed
forward neural network models, shown in Fig. 2, each
node receives a signal from the nodes in the previous
layer and each of those signals is multiplied by a sep-
arate weight value. The weighted inputs are summed,
and passed through a limiting function which scales
the output to a fixed range of values. The output of
the limiter is then broadcast to all of the nodes in the
next layer. The input values to the inputs of the first
layer, allow the signals to propagate through the net-
work, and read the output values where output of the
the node can be described by (1)

⁞ ωn

∑│f(net) ωi

ω1

Xn

X1

Xi

y

Figure 1: Processing unit of an ANN (neuron).

y j = f j(
n

∑
i=1

wi, jxi +b j) (1)

where y j is the output of node j, xi is the ith input to
the node j, wi j is the connection weight between the
node i and node j, b j is the threshold (or bias) of the
node j, and f j is the node transfer function. Usually,
the node transfer function is a nonlinear function such
as a sigmoid function, a Gaussian function, etc. In this
paper, the logarithmic sigmoid (2)

y = f (x) =
1

1+ e−x (2)

The optimization goal is to minimize the objective
function by optimizing the network weights. The
mean square error (MSE), given by (3), is chosen as

x1

xi

xn

w11 V11 y1

BiasBias

σ(.)

yk

yp

wij Vjk
σ(.)

σ(.)

σ(.)

σ(.)

σ(.)

w1j

Figure 2: Multilayer feed-forward neural network (MLP).

network error function.

E(−→w (t)) =
1
N

L

∑
l=1

p

∑
k=1

(dk −ok)
2 (3)

where E(−→w (t)) is the error at the tth iteration; −→w (t)
the weight vector at the tth iteration; dk and ok repre-
sent respectively the desired and actual values of kth
output node; L is the number of patterns.

3 Differential evolution

Differential evolution (DE), proposed by Storn
and Price (R.Storn and K.Price, 1995), is a very
popular EA. Like other EAs, DE is a population-
based stochastic search technique. It uses mutation,
crossover and selection operators at each generation
to move its population toward the global optimum
minimum.

3.1 Initialization in DE

The initial population was generated uniformly at ran-
dom in the range lower boundary (LB) and upper
boundary (UB).

XG=0
i j = lb j + rand j(0,1)∗ (ub j − lb j) (4)

where :rand j(0,1) a random number in [0,1].

3.2 Mutation operation

In this process, DE creates a mutant vector V G
i =

(V G
i,1, · · · ,V G

i,D) for each individual at each generation
G, XG

i (called a target vector) in the current popula-
tion.There are several variants of DE, according to
(R.Storn and K.Price, 1995), (R.Storn and K.Price,
1997) we have some mutation schemes as follow:
DE/rand/1:

V G
i, j = XG

r1, j +F ∗ (XG
r2, j −XG

r3, j) (5)

Figure 4.3: Processing unit of an ANN (neuron).

yj = fj(
n∑

i=1

wi,jxi + bj) (4.5)

where yj is the output of node j, xi is the ith input to the node j, wij is the

connection weight between the node i and node j, bj is the threshold (or bias)

of the node j, and fj is the node transfer function. Usually, the node transfer

function is a nonlinear function such as a sigmoid function, a Gaussian function,

etc. In this paper, the logarithmic sigmoid (4.6)

y = f(x) =
1

1 + e−x
(4.6)

73

4. TRAINING ARTIFICIAL FEED-FORWARD NEURAL NETWORK
USING MODIFICATION OF DIFFERENTIAL EVOLUTION
ALGORITHM

2 Training Feed-Forward Artificial
Neural Network

The neural network is a large-scale self-organization
and self-adaptation nonlinear dynamic system. Artifi-
cial neural network technology is an effective way to
solve complex nonlinear mapping problem. In numer-
ous neural network models, feed-forward multilayer
neural network model is one of the most widely used
models in current, there are many researches show
that three-layer feed-forward neural network can with
arbitrary accuracy approximate any continuous func-
tion and its each order derivatives.

An ANN consists of a set of processing elements
Fig. 1 also known as neurons or nodes, which are in-
terconnected with each other (X.Yao, 1999). In feed
forward neural network models, shown in Fig. 2, each
node receives a signal from the nodes in the previous
layer and each of those signals is multiplied by a sep-
arate weight value. The weighted inputs are summed,
and passed through a limiting function which scales
the output to a fixed range of values. The output of
the limiter is then broadcast to all of the nodes in the
next layer. The input values to the inputs of the first
layer, allow the signals to propagate through the net-
work, and read the output values where output of the
the node can be described by (1)

⁞ ωn

∑│f(net) ωi

ω1

Xn

X1

Xi

y

Figure 1: Processing unit of an ANN (neuron).

y j = f j(
n

∑
i=1

wi, jxi +b j) (1)

where y j is the output of node j, xi is the ith input to
the node j, wi j is the connection weight between the
node i and node j, b j is the threshold (or bias) of the
node j, and f j is the node transfer function. Usually,
the node transfer function is a nonlinear function such
as a sigmoid function, a Gaussian function, etc. In this
paper, the logarithmic sigmoid (2)

y = f (x) =
1

1+ e−x (2)

The optimization goal is to minimize the objective
function by optimizing the network weights. The
mean square error (MSE), given by (3), is chosen as

x1

xi

xn

w11 V11 y1

BiasBias

σ(.)

yk

yp

wij Vjk
σ(.)

σ(.)

σ(.)

σ(.)

σ(.)

w1j

Figure 2: Multilayer feed-forward neural network (MLP).

network error function.

E(−→w (t)) =
1
N

L

∑
l=1

p

∑
k=1

(dk −ok)
2 (3)

where E(−→w (t)) is the error at the tth iteration; −→w (t)
the weight vector at the tth iteration; dk and ok repre-
sent respectively the desired and actual values of kth
output node; L is the number of patterns.

3 Differential evolution

Differential evolution (DE), proposed by Storn
and Price (R.Storn and K.Price, 1995), is a very
popular EA. Like other EAs, DE is a population-
based stochastic search technique. It uses mutation,
crossover and selection operators at each generation
to move its population toward the global optimum
minimum.

3.1 Initialization in DE

The initial population was generated uniformly at ran-
dom in the range lower boundary (LB) and upper
boundary (UB).

XG=0
i j = lb j + rand j(0,1)∗ (ub j − lb j) (4)

where :rand j(0,1) a random number in [0,1].

3.2 Mutation operation

In this process, DE creates a mutant vector V G
i =

(V G
i,1, · · · ,V G

i,D) for each individual at each generation
G, XG

i (called a target vector) in the current popula-
tion.There are several variants of DE, according to
(R.Storn and K.Price, 1995), (R.Storn and K.Price,
1997) we have some mutation schemes as follow:
DE/rand/1:

V G
i, j = XG

r1, j +F ∗ (XG
r2, j −XG

r3, j) (5)

Figure 4.4: Multilayer feed-forward neural network (MLP).

The optimization goal is to minimize the objective function by optimizing

the network weights. The mean square error (MSE), given by (4.7), is chosen as

network error function.

E(−→w (t)) =
1

N

L∑

l=1

p∑

k=1

(dk − ok)2 (4.7)

where E(−→w (t)) is the error at the tth iteration; −→w (t) the weight vector at the tth

iteration; dk and ok represent respectively the desired and actual values of kth

output node; L is the number of patterns.

4.2.2 Numerical Experiments

We apply our ISADE to training some neural network, same in [8], that include

XOR, 3-Bit Parity and Decoder-Encoder problems. These experiments involved

30 trials for each problem. The initial seed number was varied randomly during

each trial.

The three layer feed-forward neural networks are used for each problem, i.e.

one hidden layer and input and output layers. In the network structures, bias

nodes are also applied and sigmoid function is placed as the activating function

of the hidden nodes.

74

4.2 Training Feed-Forward Artificial Neural Network

4.2.2.1 The Exclusive-OR Problem

The first test problem is the exclusive OR (XOR) Boolean function which is

a difficult classification problem mapping two binary inputs to a single binary

output shown in Table 4.1. In the simulations, we used a 2− 2− 1 feed-forward

neural network with six connection weights, no biases (having six parameters,

XOR6) and a 2− 2− 1 feed-forward neural network with six connection weights

and three biases (having 9 parameters, XOR9) and a 2 − 3 − 1 feed-forward

neural network having nine connection weights and four biases totally thirteen

parameters (XOR13). For XOR6, XOR9 and XOR13 problems, the parameter

ranges [−100, 100], [−10, 10] and [−10, 10] are used, respectively. The maximum

iteration was 200.

Table 4.1: Binary XOR problem.

Input1 Input2 Output

0 0 0

0 1 1

1 0 1

1 1 0

4.2.2.2 The 3-Bit Parity Problem

The second test problem is the three bit parity problem. The problem is taking

the modulus 2 of summation of three inputs. In other words, if the number of

binary inputs is odd, the output is 1, otherwise it is 0 shown in Table 4.2. We use

a 3 − 3 − 1 feed-forward neural network structure for the 3-Bit Parity problem.

The parameter range was [−10, 10] for this problem. The maximum iteration was

400.

4.2.2.3 The 4-Bit Encoder-Decoder Problem

The third problem is 4-bit encoder/decoder problem. The network is presented

with 4 distinct input patterns, each having only one bit turned on. The output

75

4. TRAINING ARTIFICIAL FEED-FORWARD NEURAL NETWORK
USING MODIFICATION OF DIFFERENTIAL EVOLUTION
ALGORITHM

Table 4.2: 3-Bit parity problem.

Input1 Input2 Input3 Out

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

is a duplication of the inputs shown in Table 4.3. A 4− 2− 4 feed-forward neural

network structure is used for this problem. For this problem, the parameter range

is [−50, 50]. The maximum iteration was 400.

Table 4.3: 4-Bit Encoder-Decoder Problem.
Input1 Input2 Input3 Input4 Out1 Out2 Out3 Out4

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

1 0 0 0 1 0 0 0

4.2.3 Result of experiment

The results, given in Table 4.4, shows that the new algorithm ISADE chas faster

convergence speed, and it can obtain the lesser mean square error, it is superior

to the references. The convergence of the optimal solution could be improved

more significantly in ISADE than that in references.

76

4.3 CONCLUSIONS

Table 4.4: Mean and standard deviation of MSE for algorithm and problems

Problem Mean/std ABC ABC-LM LM ISADE

XOR6
Mean 0.007051 0.000752 0.110700 1.1954E-21

std 0.00223 0.000980 0.063700 5.3828E-21

XOR9
Mean 0.006956 2.1246E-09 0.049100 2.9189E-17

std 0.002402 1.9579E-10 0.064600 1.4827E-16

XOR13
Mean 0.006079 2.6111E-09 0.007800 6.5278E-10

std 0.003182 1.2586E-09 0.022300 3.5487E-09

3-Bit Par
Mean 0.006679 6.3156E-07 0.020900 5.3143E-15

std 0.002820 3.3189E-06 0.043000 1.7173E-14

Enc.Dec.
Mean 0.008191 1.3007E-06 0.024300 9.8123E-17

std 0.001864 8.8443E-07 0.042400 4.5439E-16

4.3 CONCLUSIONS

Locating global minimizers is a very challenging task for any minimization method.

In this research, a new improvement of self-adaptive differential evolution is pro-

posed. The main idea is that the three mutation scheme operators are chosen to

be applied to individuals in the current population with the same probability, the

scalar factor F is adaptively calculated by sigmoid function after ranking popu-

lation in their fitness value and the control parameter CR is adjusted to balance

the abilities of DE in exploitation and DE in exploration.

The new algorithm ISADE is used to train feed-forward artificial neural net-

works on the XOR, 3- Bit Parity and 4-Bit Encoder-Decoder benchmark prob-

lems. The results of the experiments show that ISADE has better performance

than the performance of the some reference algorithms.

Moreover, the ISADE was compared to other EAs, which showed that it was

significantly better than other EAs.

We confirmed that the ISADE reduces the calculation cost and dramatically

improves the convergence towards the optimal solution. It can also solve large

scale optimization problems with a high probability.

77

4. TRAINING ARTIFICIAL FEED-FORWARD NEURAL NETWORK
USING MODIFICATION OF DIFFERENTIAL EVOLUTION
ALGORITHM

The future work we will plan to apply this new algorithm ISADE for training

neural networks on high dimensional classification and approximate benchmark

problems.

78

Chapter 5

Hybrid Improved Self-Adaptive

Differential Evolution and

Nelder-Mead Simplex Method

In the chapter 3, we proposed a new improvement self-adaptive strategy for con-

trolling parameters in differential evolution. The new algorithm shown it’s out-

standing in comparison with others evolutionary algorithms when running some

benchmark test functions. However the new ISADE need to be improved the lo-

cal search ability before applying to solve real structural optimization constraints.

Therefore in this chapter we propose a new hybrid algorithm based on exploration

power of a new improvement self-adaptive strategy for controlling parameters in

differential evolution (ISADE) algorithm and exploitation capability of Nelder-

Mead Simplex method is presented (HISADE-NMS) to reduce calculation cost,

and to improve convergence towards the optimal solution. To valid the robust-

ness of new hybrid algorithm, we apply it to solve some examples of structural

optimization constraints. We confirmed satisfactory performance through various

benchmark tests.

79

5. HYBRID IMPROVED SELF-ADAPTIVE DIFFERENTIAL
EVOLUTION AND NELDER-MEAD SIMPLEX METHOD

5.1 Introduction

Recently global optimization has been a concern of researchers, especially when

the fitness function is dependent on a large number of variables or it is strictly

confined to some constraints. A combination of two algorithms, in which one ex-

plores a promising area likely to contain global minima and the other exploits the

area to find the desired point would be promising if properly performed. Global

methods like particle swarm optimization, genetic algorithm, differential evolu-

tion, simulated annealing etc are known as efficient search engines to find and

localize areas containing global minima, but they are very much time consuming

while converging to a specified point. On the other hand local methods includ-

ing Nelder-Mead Simplex [31], hill climbing, steepest descent, Newton Raphson

method etc are good for exploitation of the search domain. In this study we

present a hybrid algorithm based on exploitation (diversification) power of a new

improvement of self-adaptive strategy for controlling parameters in differential

evolution algorithm and exploitation (intensification) feature of the Nelder-Mead

Simplex. The advantage of the simplex search method is that it is straightfor-

ward in an algorithmic sense and computationally efficient. However, as a result

of using only local information, when they converge to a stationary point, there

is no guarantee that the global optimum is found unless the domain in which the

global minimum lies is provided. In contrast the DE [61] has been used in many

practical cases and has demonstrated good convergence properties. DE explores

the global search space without using local information of promising search direc-

tions. It has only a few control parameters as number of particles (NP), scaling

factor (F) and crossover control (CR), which are kept fixed throughout the entire

evolutionary process. However, these control parameters are very sensitive to

the setting of the control parameters based on their experiments. The value of

control parameters depend on the characteristics of each objective function, so

we have to tune their value in each problem that mean it will take too long time

to perform.

We propose a new hybrid algorithm based on exploration power of a new

improvement self-adaptive strategy for controlling parameters in differential evo-

80

5.2 What is a hybrid algorithm?

lution (ISADE) algorithm and exploitation capability of Nelder-Mead Simplex

method is presented (HISADE-NMS) to reduce calculation cost, and to improve

convergence towards the optimal solution.

5.2 What is a hybrid algorithm?

The best results found for various practical problems have proven that combi-

nation of different algorithms are very powerful, in case of large and difficult

problems. Many hybrid metaheuristic algorithms have been proposed and im-

plemented to solve many combinatorial optimization problems, e.g. those known

as NP-hard. Ref [15] presented several hybridization methods for heuristic algo-

rithms. According to Fig. 5.1, two algorithms can be hybridized at a high level

or low level using relay or co-evolutionary methods, which may be homogeneous

or heterogeneous.

Hybrid Metaheuristics

Low-Level High-Level

Relay Relay Co-evolutionary Co-evolutionary

Specialist

Heterogeneous Homogeneous

Globlal Partial

General

Figure 5.1: Classification of Hybrid Metaheuristic.

The low-level hybridization addresses the functional composition of a single

optimization method. In this hybrid class, a given function of a metaheuristic is

81

5. HYBRID IMPROVED SELF-ADAPTIVE DIFFERENTIAL
EVOLUTION AND NELDER-MEAD SIMPLEX METHOD

replaced by another metaheuristic.

The high-level hybrid algorithms, the different metaheuristics are self-contained.

We have no direct relationship to the internal workings of a metaheuristic.

Relay hybridization, a set of meta-heuristics is applied one after another, each

using the output of the previous as its input, acting in a pipeline fashion.

Co-evolutionary hybridization represents cooperative optimization models, in

which we have many parallel cooperating agents, each agent carries out a search

in a solution space.

Four classes are divided from this hierarchical taxonomy:

LRH (Low-level Relay Hybrid). This class of hybrids represents algorithms

in which a given metaheuristic is embedded into a single-solution metaheuristic.

Few examples from the literature belong to this class.

LCH (Low-level Co-evolutionary Hybrid) Two competing goals govern the de-

sign of a metaheuristic: exploration and exploitation. In order to achieve the best

performance, most efficient population-based heuristics (i.e., genetic algorithms,

scatter search, ant colonies, etc.) have been coupled with local search method

such as hill-climbing, simulated annealing and tabu search.

HRH (High-level Relay Hybrid). In HRH hybrid, self-contained metaheuris-

tics are executed in a sequence. For example, evolutionary algorithms are not

well suited for fine-tuning structures which are very close to optimal solutions.

Instead, the strength of EA is in quickly locating the high performance regions of

vast and complex search spaces. Once those regions are located, it may be useful

to apply local search heuristics to the high performance structures evolved by the

EA.

HCH (High-level Co-evolutionary Hybrid). The HCH scheme involves several

self-contained algorithms performing a search in parallel, and cooperating to find

an optimum. Intuitively, HCH will ultimately perform at least as well as one

algorithm alone, more often perform better, each algorithm providing information

to the others to help them.

82

5.3 Hybrid Improved Self-adaptive Differential Evolution and
Nelder-Mead Simplex Method

5.3 Hybrid Improved Self-adaptive Differential

Evolution and Nelder-Mead Simplex Method

follow chapter 3 to do more power of improve seft-adaptive differential evolution

algorithm (ISADE) to reduce a large amount of calculation cost and to improve

the convergence towards the optimal solution. We will present new hybrid ISADE

with a local method name as Nelder mead Simplex method in the next chapter

and apply it for some real constrain engineering optimization.

5.3.1 Nelder-Mead Simplex Method

The NelderMead simplex search method (NMS) is based upon the work of J.A.Nelder

and R.Mead [31]. A simplex is a geometrical figure consisting in n-dimensions, of

(n+1) points: x1, . . . , xn+1. Through a sequence of elementary geometric trans-

formation (reflection, contraction, expansion and multi-contraction), the initial

simplex moves, expands or contrasts. To select appropriate transformation, the

method only uses the values of the objective function to be optimized at the

verticals of the simplex considered. After each transformation, the current worst

vertex is replaced by a better one. The trial movements in Fig. 5.2 to Fig. 5.2 are

generated according to these operators (xn+1: Represents the vertex where the

objective function is the highest and xl represents the vertex where the objective

function is lowest).

C

X2 X3

X1

X2

Xr

Xe

X2

X2 X3

X1

X2 X3

X1

X2 X3

X1

X3

X1

X2 X3

X1

C

C

C

C

C

Xic

Xoc

Figure 5.2: Simplex original in two dimensions.

83

5. HYBRID IMPROVED SELF-ADAPTIVE DIFFERENTIAL
EVOLUTION AND NELDER-MEAD SIMPLEX METHOD

C

X2 X3

X1

X2

Xr

Xe

X2

X2 X3

X1

X2 X3

X1

X2 X3

X1

X3

X1

X2 X3

X1

C

C

C

C

C

Xic

Xoc

Figure 5.3: Simplex Reflection in two dimensions.

C

X2 X3

X1

X2

Xr

Xe

X2

X2 X3

X1

X2 X3

X1

X2 X3

X1

X3

X1

X2 X3

X1

C

C

C

C

C

Xic

Xoc

Figure 5.4: Simplex Expansion in two dimensions.

C

X2 X3

X1

X2

Xr

Xe

X2

X2 X3

X1

X2 X3

X1

X2 X3

X1

X3

X1

X2 X3

X1

C

C

C

C

C

Xic

Xoc

Figure 5.5: Simplex Outside contraction in two dimensions.

C

X2 X3

X1

X2

Xr

Xe

X2

X2 X3

X1

X2 X3

X1

X2 X3

X1

X3

X1

X2 X3

X1

C

C

C

C

C

Xic

Xoc

Figure 5.6: Simplex Inside contraction in two dimensions.

84

5.3 Hybrid Improved Self-adaptive Differential Evolution and
Nelder-Mead Simplex Method

Algorithm 3 Nelder Mead algorithm

1: Require: α, β, γ and σ. Where: α, β, γ and σ are real parameters that

control the operators of the Simplex.

2: INITIALIZE Creates initial population include n+1 points shown in Fig. 5.2

3: while (TERMINATION CONDITION) do

4: Order: Order the n + 1 vertex to satisfy f(X1) ≤ f(X2) ≤ . . . ≤ f(Xn) ≤
f(Xn+1) using the tie-breaking rules given below;

5: Reflection: Compute the reflection point Xr Fig. 5.3 shows reflection pro-

cedure

Xr = C + α(C −Xn+1) = (1 + α)C − αXn+1 (5.1)

Where C =
∑n

i=1 Xi/n is the centroid of the n best points (all vertices except

for Xn+1). If f1 ≤ fr < fn, accept the reflected point Xr and terminate the

iteration.;

6: Expansion: If fr < f1 then compute the expansion point Xe Fig. 5.4 shows

expansion procedure.

Xe = C + β(Xr − C) = (1− β)C + βXr = C + αβ(C −Xn+1) (5.2)

If fe < fr , accept xe and terminate the iteration; otherwise (if fe ≥ fr),

accept Xr and terminate the iteration. ;

7: Contract: if fr ≥ fn perform a contraction between and the better of Xn+1

and Xr.

- Outside contraction: If fn ≤ fr < fn+1, perform an outside contrac-

tion: compute the outside contraction point Fig. 5.5 shows outside contrac-

tion procedure.

Xoc = C + γ(Xr − C) (5.3)

If foc ≤ fr , accept Xoc and terminate the iteration; otherwise, go to step 8

(perform a shrink).

- Inside contraction: If fr ≥ fn+1, perform an inside contraction:

compute the inside contraction point Xic Fig. 5.6 shows inside contraction

procedure.

Xic = C − γ(xr − C) (5.4)

8: Perform a shrink step: Fig. 5.7 shows inside contraction procedure. For

2 ≤ i ≤ n+ 1 define:

Xi = X1 + σ(Xi −X1) (5.5)

9: If the stopping conditions are not satisfied, repeat at step 4.

10: end while

85

5. HYBRID IMPROVED SELF-ADAPTIVE DIFFERENTIAL
EVOLUTION AND NELDER-MEAD SIMPLEX METHOD

C

X2 X3

X1

X2

Xr

Xe

X2

X2 X3

X1

X2 X3

X1

X2 X3

X1

X3

X1

X2 X3

X1

C

C

C

C

C

Xic

Xoc

Figure 5.7: Simplex procedure shrink in two dimensions.

Fig. 5.2 to Fig. 5.7 show the effects of refection, expansion, contraction and

shrinkage for a simplex in two dimensions (a triangle), using the standard coeffi-

cients α = 1, β = 2, γ = 0.5 and σ = 0.5. Observe that, except in a shrink, the

one new vertex always lies on the (extended) line joining of centroid C and xn+1.

Furthermore, it is visually evident that the simplex shape undergoes a noticeable

change during an expansion or contraction with the standard coefficients.

5.3.2 Improve Self-adapting Control Parameters in Dif-

ferential Evolution

In this section the hybrid algorithm HISADE-NMS is presented in detail.

5.3.2.1 Exploration of the Search Domain by Improving Self-adaptive

Differential Evolution

The ISADE is ignited by the randomly selected particles. The algorithm takes

these initial points to make up the first population in which the first generation

will be born afterwards. Experiments show that a properly coded ISADE can ex-

plore the search domain to the global solution, although this magnitude is highly

dependent on the complexity of the problem. We want to ignore the common

convergence criteria of the ISADE by gradually decreasing the interference of

the ISADE in the solution of the algorithm. According to this consideration, in

the first steps, the ISADE is the only working algorithm that travels around the

86

5.3 Hybrid Improved Self-adaptive Differential Evolution and
Nelder-Mead Simplex Method

Hybrid Improved Self-adaptive Differential Evolution and Nelder-Mead Simplex
Method for Solving Constrained Real-Parameters

556

Start

Initialization
DE creates initial population Eq. (1)

Evaluation rank pupolation
Calculate fitness value and sort population

by their descent fitness

Mutation:
Apply adaptive selection learning strategies

creates a mutation vector V in Eq. (2) to Eq. (7)

Crossover
DE creates a trial vector Eq. (8)

Selection
Eq. (9)

Termianal?

Rerurn best solution

Memory
The best solution foud so far

Adaptive scaling factor F
(Eq.15) to (Eq.18)

Adaptive crossover control parameter CR
Eq. (19)

N

Y

Fig. 5 Procedure of ISADE.

NO

YES

YES

NO

Start

Exploration of the search
domain by ISADE

Exploitation
by NMS

Iter ≤
Max_iter

End

Iter=1

Iter=Iter+1

Update best solution in each
iteration

Iter Mod period
=0

Initialization
population

Fig. 6 HISADE-NMS procedure.

4. Experiments

In this section, we will apply HISADE-NMS to

solve some real constrained engineering design

optimization problems. A set of four engineering

design optimization problems was chosen to evaluate

the performance of our proposed algorithm. We

performed 20 independent runs per problem. Our

algorithm used the following parameters: NP = 8 D, τ

= 0.1.

4.1 E01: Welded Beam Design Optimization Problem

The problem is to design a welded beam for

minimum cost, subject to some constraints [6]. Fig. 7

shows the welded beam structure. The objective is to

find the minimum fabrication cost, considering four

design variables: x1, x2, x3, x4. The optimization model

is summarized in the next equation:

Minimize

 2432
2
1 0.1404811.010471.1 xxxxxxf

Subject to

1() = () 13,600 0 g x x -
2 () = () 30,000 0 g x x -

3 1 4() = 0g x x x-
2

4 1 3 4 2() = 0.10471 + 0.04811 (14.0 +) 5.0 0g x x x x x -

5 1() = 0.125 0g x x-

6 () = () 0.25 0 g x x -

7 () = 6,000 () 0cg x P x-

with 0.1 ≤ x1, x4 ≤ 2.0 and 0.1 ≤ x2, x3 ≤ 10.0.

Best solution: x = (0.205730, 3.470489, 9.036624,

0.205729), where f(x) = 1.724852.

4.2 E02: Pressure Vessel Design Optimization Problem

A compressed air storage tank has a working

pressure of 3,000 psi and a minimum volume of 750 ft3.

A cylindrical vessel is capped at both ends by

hemispherical heads (Fig. 8). The objective is

minimizing the total cost, including the cost of the

materials forming the welding [7]. The design variables

are: thickness x1, thickness of the head x2, the inner

radius x3 and the length of the cylindrical section of the

vessel x4. The variables x1 and x2 are discrete values

which are integer multiple of 0.0625 inch. Then, the

mathematical formulation of this problem is

Minimize

 2
1 3 4 2 3

2 2
1 4 1 3

0.6224 1.7781

+ 3.1661 19.84

f x x x x x x

x x x x

Eqs. (15)-(18)

Iter = 1

Iter = Iter + 1

Figure 5.8: HISADE-NMS Procedure.

87

5. HYBRID IMPROVED SELF-ADAPTIVE DIFFERENTIAL
EVOLUTION AND NELDER-MEAD SIMPLEX METHOD

search domain to fine out the optimum regions and may be stopped if the maxi-

mum iteration is reached. Fig. 5.8 shows procedure of HIADE-NMS algorithm.

5.3.2.2 Exploitation Search Domain by Nelder-Mead Simplex Method

To improve the exploitation search ability of ISADE we will apply NMS after

a number of iterations that is called period time. To do this we get D+1 best

particle from main loop of ISADE as the D+1 vertex of NMS. After that the best

particle, got from NMS, will be updated as best particle of main HISADE-NMS.

The exploitation search of NMS can be seeing on Fig. 5.8.

5.4 Experiments

In this section, we will apply HISADE-NMS to solve some real constrained engi-

neering design optimization problems to evaluate the performance of new hybrid

algorithm HISADE-NMS. As in chapter 3, we used the following parameters:

NP = 8D, τ = 0.1. for ISADE and we use the standard coefficients α = 1, β = 2,

γ = 0.5 and σ = 0.5 for Nelder-Mead Simplex Method.

5.5 Result of applying HISADE-NMS for con-

strained engineering optimization

Table.5.1, Table.5.2, Table.5.3 and Table.5.4 show the vectors of the best solution

as well as the values of the constraint terms reached by HISADE-NMS, for each

of the problems tested. We got the optimum solution at 8000 objective Function

Evaluations (FE) per run with the welded beam problem, 12000 with the pres-

sure vessel problem, 12000 with the speed reducer problem and 8000 with the

tension/compression spring problem. We also tested the algorithm with more

than above of objective function evaluation, but no performance improvements.

88

5.5 Result of applying HISADE-NMS for constrained engineering
optimization

Table 5.1: Result of applying HISADE-NMS for E01 (Welded beam) problem.

Solutions Constraints

x1 0.205730 g1(x) -6.46E-05

x2 3.470489 g2(x) -1.63E-04

x3 9.036624 g3(x) -4.11E-09

x4 0.205730 g4(x) -4.11E-09

f(x) 1.724852 g5(x) -4.11E-09

FE 8000 g6(x) -4.11E-09

g7(x) -3.43E+00

Table 5.2: Result of applying HISADE-NMS for E02 (Pressure vessel) problem.

Solutions Constraints

x1 0.812500 g1(x) 0.0

x2 0.437500 g2(x) -3.59E-02

x3 42.098446 g3(x) 0.0

x4 176.636596 g4(x) -6.34E+01

f(x) 6059.714

FE 12000

From the result shown in Table.5.5, we can see that the new algorithm HISADE-

NMS and original ISADE are both can get global optimization of all real con-

strained engineering design optimization problems, for the welded beam prob-

lem and the tension/compression spring problem both algorithms required same

8000 objective Function Evaluations (FE) to get final result. the new algorithm

HISADE-NMS is better ISADE when running the pressure vessel problem and

the speed reducer problem in comparison of objective function evaluations.

89

5. HYBRID IMPROVED SELF-ADAPTIVE DIFFERENTIAL
EVOLUTION AND NELDER-MEAD SIMPLEX METHOD

Table 5.3: Result of applying HISADE-NMS for E03(Speed reducer) problem.

Solutions Constraints Constraints

x1 3.500000 g1(x) -7.39E-02 g9(x) -5.83E-01

x2 0.700000 g2(x) -1.98E-01 g10(x) -5.13E-02

x3 17.000014 g3(x) -4.99E-01 g11(x) -1.09E-02

x4 7.300035 g4(x) -9.01E-01 FE 12000

x5 7.8000040 g5(x) -1.07E-01

x6 3.350215 g6(x) -9.68E-09

x7 5.286683 g7(x) -7.02E-01

f(x) 2996.349 g8(x) -6.68E-08

Table 5.4: Result of applying HISADE-NMS for E04 (Tension/Compression

spring).

Solutions Constraints

x1 0.051695 g1(x) -4.44E-16

x2 0.356865 g2(x) -6.78E-14

x3 11.280313 g3(x) -4.05E00

f(x) 0.012665 g4(x) -7.28E-01

FE 8000

Table 5.5: Compare functional evaluation (FE) of HISADE-NMS and ISADE.

Problems ISADE HISADE-NMS

welded beam 8000 8000

pressure 24000 12000

speed reducer 15000 12000

tension\compression spring 8000 8000

90

5.6 Conclusion

5.6 Conclusion

Locating global minimizes is a very challenging task for any minimization method.

In this research, a new hybrid improvement of self-adaptive differential evolution

and Nelder-Mead simplex algorithm is proposed. We present a new version of the

DE algorithm for obtaining self-adaptive control parameter settings. A hybrid

algorithm using both of these characteristics (exploration and exploitation) would

be promising to find global minima of problems. The main goals of the present

hybrid algorithm are as follows:

-Reliability: A proper functioning of exploration and exploitation of the search

domain (sometimes referred to as diversification and intensification) in order to

find the true global minima.

-Efficiency: Using simple but effective combination to reduce the total amount

of function evaluation. Some constrained engineering optimization are used to val-

idate the performance of the HISADE-NMS. The proposed approach performed

well in several test problems both in terms of the number of fitness function

evaluations required and in terms of the quality of the solutions found.

91

Chapter 6

Conclusion

6.1 Contributions of This Dissertation

The overall objectives of these methodologies proposed in this dissertation are

to solve large scale optimization problems, to reduce calculation cost, and to

improve stability of convergence towards the optimal solution. Therefore, the

approach that can lead to statistically significantly superior to other techniques

is especially considered in this dissertation. The contributions of this dissertation

are as follows:

Firstly, we propose the improvement self-adaptive for controlling parameters

in differential evolution (ISADE) to solve large scale optimization problems, to re-

duce calculation cost, and to improve stability of convergence towards the optimal

solution. These proposed algorithms combine the search ability of all optimiza-

tion techniques, the global search ability and the local search ability of Adaptive

Plan.

Secondly, new algorithms (ISADE) was applied to several numerical bench-

mark tests, constrained real parameter optimization and trained artificial neural

network to evaluate its performance.

Finally, to improve the optimization process and overall performance of these

methodologies, we introduce the hybridization of a local search algorithm with

92

6.2 Future Work

an evolution algorithm (H-MNS ISADE), which are the Nelder-Mead simplex

method (MNS) and differential evolution (DE).

6.2 Future Work

In this dissertation, overcome the computational complexity, some integrated

evolutionary strategy is proposed to solve large scale optimization problems, to

reduce a large amount of calculation cost, and to improve the convergence to

the optimal solution. Then, we verified the effectiveness of these algorithms by

the numerical experiments performed some benchmark tests and constrained real

parameter optimization.

Moreover, these methodologies was compared to other EAs, it shown to be

statistically significantly superior to other EAs.

We confirmed that these algorithms reduces the calculation cost and dramat-

ically improves the convergence towards the optimal solution. Moreover, it could

solve large scale optimization problems with high probability.

About a solution of the problem of cost reduction, minimum time and max-

imum reliability, we would like to apply this study for optimal topology design

shown in Fig. 6.1, it is our future work.

For the future research, several improvements are suggested to further enhance

the performance of the proposed method. Firstly, the adaptive control parameter

can be introduced to enhance the function evaluation scheme by the evolutionary

operations. This is important to ensure that the speed performance will not

be affected by the problem complexity. Lastly, the proposed method should be

tested to estimate the parameters in more complex problems such as noise and

identifiability.

Finally, we will apply this study to solve other constrained real parameters

and dynamic optimization problems, and further real-life applications.

93

6. CONCLUSION

1.2 Design Optimization 19

k Nondesignable Domains

(a) (b)

Figure 1.7. Optimal topology design.

smoothing, and edge extraction (Figure 1.7(c)). Practical manufacturing rules can
also be applied automatically to derive a part that can be made by a particular pro-
cess, for example, by casting (Figure 1.7(d)). This method has been successfully
used in the automotive industry to design highly efficient structural components with
complicated geometry.

Other efforts at obtaining optimal configuration design involve the assignment
of design variables with integer zero or one values to each possible design feature
depending on whether the feature is included in the design or not. Such models
are quite difficult to construct and also tend to result in intractable combinatorial
problems. Artificial intelligence methods showed much promise in the 1980s but
have produced few operationally significant results. Genetic algorithms seem to be
the most promising approach at the present time.

The simplest approach for dealing with optimal configurations, recommended
here at least as a first attempt, is to rely on the experience and intuition of the designer
to configure different design solutions in an essentially qualitative way. A mathe-
matical model for each configuration can be produced to optimize each configuration
separately. The resulting optima can then be compared in a quantitative way. The pro-
cess is iterative and the insights gained by attempting to optimize one configuration
should help in generating more and better alternatives.

In our future discussions we will be making the tacit assumption that the models
refer to single configurations arrived at through some previous synthesis.

Figure 6.1: Optimal Topology Design.

94

Appendix

Optimization Benchmark Functions

To estimate the stability and convergence to the optimal solution, We will use

9 well-known benchmark test functions with 30 dimensions such as Sphere (Sp),

Rosenbrock (Ro), Ridge (Ri), Griewank (Gr), Rastrigin (Ra), Ackley (Ac), Levy

(Le), Schawefel (Sc) and Alpine (Al) function. These functions are given as

follows

.1 Sphere Functions

Sphere functions is one of the simplest test benchmark. Function is continuous,

convex and unimodal fig. 2 show the sphere function in 2D. It has the following

general definition:

f3 =
D∑

i=1

x2
i (1)

where xi ∈ [−51.2, 51.2], i = 1, . . . , D. Global minimum f(x) = 0 is obtainable

for xi = 0, i = 1, . . . , D.

.2 Rosenbrock Functions

Rosenbrocks valley is a classic optimization problem, also known as banana func-

tion. The global optimum lays inside a long, narrow, parabolic shaped flat valley.

95

. APPENDIX

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5
2.0

1

2

3

4

5

6

7

8

Figure 2: Sphere Functions in 2D.

To find the valley is trivial, however convergence to the global optimum is diffi-

cult and hence this problem has been frequently used to test the performance of

optimization algorithms fig. 3 show the Rosenbrock function in 2D. Function has

the following definition:

f5 =
D∑

i=1

[100(xi+1 − x2
i)

2 + (1− xi)2] (2)

where xi ∈ [−2.048, 2.048], i = 1, . . . , D. Global minimum f(x) = 0 is obtainable

for xi = 1, i = 1, . . . , D.

96

.3 Schwefels Problem 1.2 (Ridge Functions)

x

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5
2.0

y

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

500

1000

1500

2000

2500

Figure 3: Rosenbrock Functions in 2D.

.3 Schwefels Problem 1.2 (Ridge Functions)

This function continuos, convex and unimodal, fig. 4 show the Schwefels Problem

1.2 in 2D. Function has the following definition:

f3 =
D∑

i=1

(
i∑

j=1

xj

)2

(3)

where xi ∈ [−51.2, 51.2], i = 1, . . . , D. Global minimum f(x) = 0 is obtainable

for xi = 0, i = 1, . . . , D.

.4 Griewank Functions

Griewangks function is a non-convex function used as a performance test problem

for optimization algorithms. The function interpretation changes with the scale;

the general overview suggests convex function, medium-scale view suggests exis-

tence of local extreme, and finally zoom on the details indicates complex structure

97

. APPENDIX

Figure 4: Ridge Functions in 2D.

of numerous local extreme, fig. 5 show the Griewank function in 2D. Function

has the following definition:

f11 = 1 +
D∑

i=1

x2
i

4000
−

D∏

i=1

cos

(
xi√
i

)
(4)

where xi ∈ [−600, 600], i = 1, . . . , D. Global minimum f(x) = 0 is obtainable for

xi = 0, i = 1, . . . , D.

.5 Rastrigin Functions

The Rastrigin function is a non-convex function used as a performance test prob-

lem for optimization algorithms. It is a typical example of non-linear multimodal

function. It was first proposed by Rastrigin [43] as a 2-dimensional function and

has been generalized by Mühlenbein et al. [25] Finding the minimum of this

98

.6 Ackley Functions

Figure 5: Griewank Functions in 2D.

function is a fairly difficult problem due to its large search space and its large

number of local minima, fig. 6 show the Rastrigin function in 2D.

f9 = 10D +
D∑

i=1

[x2
i − 10cos(2πxi)] (5)

where xi ∈ [−5.12, 5.12], i = 1, . . . , D. Global minimum f(x) = 0 is obtainable

for xi = 0, i = 1, . . . , D.

.6 Ackley Functions

The Ackley test function is multimodal and separable, with several local optima

that, look more like noise, although they are located at regular intervals. The

Ackley function only has one global optimum, fig. 7 show the Ackley function in

99

. APPENDIX

Figure 6: Rastrigin Functions in 2D.

2D.

f10 = −20 exp

−0.2

√√√√ 1

D

D∑

i=1

x2
i

− exp

(
1

D

D∑

i=1

cos (2πxi)

)
+ 20 + e , (6)

where xi ∈ [−51.2, 51.2], i = 1, . . . , D. Global minimum f(x) = 0 is obtainable

for xi = 0, i = 1, . . . , D.

.7 Levy Functions

Figure. 8 show the Levy function in 2D

f7 = sin2 (3πx1) +
n−1∑

i=1

(xi − 1)
(
1 + sin2 (3πxi+1)

)
+ (xn − 1)

(
1 + sin2 (2πxn)

)

(7)

where xi ∈ [−10, 10], i = 1, . . . , D. Global minimum f(x) = 0 is obtainable for

xi = 1, i = 1, . . . , D.

100

.7 Levy Functions

x

−4

−2

0

2

4
y

−4
−2

0
2

4

2

4

6

8

10

12

14

Figure 7: Ackley Functions in 2D.

Figure 8: Levy Functions in 2D.

101

. APPENDIX

.8 Schawefel’s problem 2.22

Figure. 9 show the Schawefel’s problem 2.22 in 2D

f8 =
n∑

i=1

|xi|+
n∏

i=1

|xi| (8)

where xi ∈ [−10, 10], i = 1, . . . , D. Global minimum f(x) = 0 is obtainable

for xi = 0, i = 1, . . . , D.

Figure 9: Schawefel’s problem 2.22 in 2D.

.9 Alpine Functions

This is a multimodal minimization problem, fig. 10 show the Alpine function in

2D. The problem is defined as follows:

f9 =
D∑

i=1

|xisin (xi) + 0.1xi| (9)

102

.9 Alpine Functions

Figure 10: Alpine Functions in 2D.

where xi ∈ [−10, 10], i = 1, . . . , D. Global minimum f(x) = 0 is obtainable for

xi = 0, i = 1, . . . , D.

————————————————————————

103

List of Publications

[P.1] T. Bui, H. Pham and H. Hasegawa, “Improved Self-adaptive control param-

eters In Differential Evolution for solving constrained engineering optimiza-

tion problems”, Journal of Computational Science and Technology, Vol. 7,

No. 1, pp. 59-74, 2013 April.

[P.2] T. Bui, H. Pham and H. Hasegawa, “Hybrid Improved Self-adaptive Differ-

ential Evolution and Nelder-Mead Simplex method for solving constrained

real-parameters”, Journal of Mechanics Engineering and Automation. Vol.3

No.9 P.551-559, 2013 September.

[P.3] T. Bui and H. Hasegawa, “Training Artificial Neural Network using Modi-

fication of Differential Evolution Algorithm”, Journal of Machine Learning

and Computing (IJMLC, ISSN: 2010-3700).Vol.5, No.1, pp.1-6, 2015 Febru-

ary.

[P.4] T. Bui, H. Pham and H. Hasegawa, “Hybrid Integration of Differential Evo-

lution with Articial Bee Colony for Global Optimization”, 4th International

Conference on Evolutionary Computation Theory and Applications (ECTA

2012), p. 15-23, 2012 October 5th -7th.

[P.5] T. Bui, H. Pham and H. Hasegawa, “Modified Self-adaptive Strategy for

Controlling Parameters in Differential Evolution”, Asia Simulation Confer-

ence (AsiaSim), p. 370-378, 2012 October 27th-29th.

[P.6] T. Bui, H. Pham and H. Hasegawa, “Hybrid Improved Self-adaptive Differ-

ential Evolution and Nelder-Mead Simplex method for solving constrained

104

real-parameters”, 5th International Conference on Manufacturing, Machine

Design and Tribology (ICMDT), 2013.

[P.7] T. Bui and H. Hasegawa, “Training Artificial Neural Network using Mod-

ification of Differential Evolution Algorithm, 5th International Conference

on Computer and Computational Intelligence (ICCCI), 2014.

105

References

[1] A.Baykasoglu and L.Ozbakr. Artificial bee colony algorithm and its

application to generalized assignment problem, swarm intelligence: Focus on

ant and particle swarm optimization. In I-Tech Education and Publishing,

Vienna, Austria, 2007.

[2] A.Belegundu. A study of mathematical programming methods for struc-

tural optimization. In PhD thesis, pages –, Department of Civil Environ-

mental Engineering, University of Iowa, Iowa, 1982.

[3] A.K.Qin and P.N.Suganthan. Self-adaptive differential evolution al-

gorithm for numerical optimization. In Evolutionary Computation, IEEE

Congress (CEC2005), 2, pages 1785–1791, 2005.

[4] Cascella G.L. Neri F. Salvatore N. Caponio, A. and M. Sumner.

A fast adaptive memetic algorithm for online and offline control design of

pmsm drives. IEEE transactions on Systems, Man and Cybernetics Part B,

Special Issue on Memetic Algorithms, 37(1):28–41, 2007.

[5] M. Clerc. Particle swarm optimization. ISTE, 2005.

[6] M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and

convergence in a multidimensional complex space. IEEE Transactions on

Evolutionary Computation, 6(1):58–73, 2002.

[7] M. Clerc and J. Kennedy. The particle swarm-explosion, stability and

convergence in a multidimensional complex space. IEEE Trans. Evol. Com-

put, 6(2):73–58, 2002.

106

REFERENCES

[8] C.Ozturk and D.Karaboga. Hybrid artificial bee colony algorithm

for neural network training. In Evolutionary Computation (CEC). IEEE

Congress, 2011.

[9] J.D. Digalakis and K.G. Margaritis. An experimental study of bench-

marking functions for genetic algorithms. Proceedings of IEEE Conference

on Transactions, 5:3810–3815, 2000.

[10] D.Karaboga, B.Akay, and C.Ozturk. Artificial bee colony (abc) op-

timization algorithm for training feed-forward neural networks. In Modeling

Decisions for Artificial Intelligence, 2007.

[11] D.Karaboga and B.Basturk. An artificial bee colony (abc) algorithm

for numeric function optimization. In IEEE Swarm Intelligence Symposium

2006, Indianapolis, Indiana, USA, 2006.

[12] D.Karaboga and B.Basturk. A powerful and efficient algorithm for

numerical function optimization:artificial bee colony (abc) algorithm. In

Journal of Global Optimization, 2007.

[13] RC. Eberhart and Y. Shi. Comparing inertia weights and constriction

factors in particle swarm optimization. 1, pages 84–8, 2000.

[14] R.C. Eberhart and Y. Shi. Tracking and optimizing dynamic systems

with particle swarms. pages 94–100, 2001.

[15] E.G.Talbi. A taxonomy of hybrid metaheuristic. In Journal of Heuristics,

2002.

[16] E.Sandgren. Nonlinear integer and discrete pro-gramming in mechanical

design optimization. In J.Mech. Des.-T. ASME, 112, pages 223–., 1990.

[17] A.V. Fiacco and G.P. McCormick. Nonlinear Programming: Sequen-

tial Unconstrained Minimization Techniques. John Wiley & Sons, New York.,

1986.

[18] D.E. Goldberg. Genetic Algorithms in Search Optimization and Machine

Learning. Addison - Wesley, 1989.

107

REFERENCES

[19] Krasnogor N. Hart, W.E. and J.E. Smith. Recent Advances in

Memetic Algorithms. Springer, 2005.

[20] H. Hasegawa. Adaptive plan system with genetic algorithm based on syn-

thesis of local and global search method for multi-peak optimization prob-

lems. 2007.

[21] Sasaki H. Uehara H. Hasegawa, H. and K. Kawamo. The optimisa-

tion of spot-weld positions for vehicle design by using hybrid metaheuristics.

International Journal of Vehicle Design, 43(1-4):151–172, 2007.

[22] Yoshikawa M. Uehara H. Hasegawa, H. and K. Kawamo. The hy-

brid meta-heuristics by reflecting recognition of dependence relation among

design variables for integer optimization of multi-peak problems. Journal of

Japan Society for Simulation Technology, 25(2):144–155, 2006.

[23] M.R Hestenes. Multiplier and gradient methods. In Journal of Optimiza-

tion Theory and Applications, 4, pages 303–320, 1969.

[24] Miki M. Hiroyasu, T. and M. Ogura. Parallel simulated annealing

using genetic crossover. 2000.

[25] J.Born H.Mühlenbein and D.Schomisch. The parallel genetic algo-

rithm as function optimizer. In Parallel Computing, number 17, pages 619–

632, 1991.

[26] J. Holland. Genetic algorithms and the optimal allocation of trials. SIAM

J. of Computing 2, pages 88–105, 1973.

[27] J. Holland. Adaptation in natural and artificial systems. The University

of Michigan 1975, MIT Press, 1992.

[28] J.H. Holland. Adaptation in natural and artificial systems. 1975.

[29] B. Bošković M. Mernik J. Brest, S. Greiner and V. ˇ Zumer. Self-

adapting control parameters in differential evolution: A comparative study

on numerical benchmark problems. IEEE Trans. Evol. Comput, 10(6):646–

657, 2006.

108

REFERENCES

[30] B. Bošković M. Mernik J. Brest, S. Greiner and V. ˇ Zumer.

Performance comparison of self-adaptive and adaptive differential evolution

algorithms. Soft Comput, 11(7):617–629, 2007.

[31] J.A.Nelder and R.Mead. A simplex method for function minimization.

In Comput. J, 7, pages 308–313, 1965.

[32] J.Arora. Introduction to optimum design,. In McGrawHill, pages –, 1989.

[33] J.Dayhoff. Neural network architectures: An introduction. In New York:

Van Nostrand Reinhold, 1990.

[34] J.Golinski. An adaptive optimization system applied to machine synthesis.

In Mech. Mach. Theory, 8, pages 419–436, 1973.

[35] J.Teo. Exploring dynamic self-adaptive populations in differential evolu-

tion. In Soft Comput, 10, pages 673–686, 2006.

[36] J.Zhang, T.Lok, and M.Lyu. A hybrid particle swarm optimization back

propagation algorithm for feed forward neural network training. In Applied

Mathematics and Computation. ELSEVIER, 2007.

[37] Y.T. Kao and E. Zahara. A hybrid genetic algorithm and particle swarm

optimization for multimodal functions. Applied Soft Computing, 8(2):849–

857, 2008.

[38] D. Karaboga. An idea based on honeybee swarm for numerical optimiza-

tion. In TECHNICAL REPORT-TR06, 2005.

[39] J. Kennedy and R. Eberhart. Particle swarm optimization. 4, pages

1942–1948, 1995.

[40] J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann

Publishers, 2001.

[41] Gelatt C. D. Vecchi M. P. Kirkpatrick, S. Optimization by simu-

lated annealing. In Science, 220, pages 671–680, Dec 1983.

109

REFERENCES

[42] K.Ragsdell and D.Phillips. Optimal design of a class of welded struc-

tures using geometric programming. In J. Eng. Ind, 98, pages 1021–1025,

1976.

[43] L.A.Rastrigin. Systems of extremal control. 1974.

[44] J. Liu and J. Lampinen. A fuzzy adaptive differential evolution algorithm.

Soft Computing - A Fusion of Foundations, Methodologies and Applications,

9(6):448–462, 2005.

[45] S.W. Mahfoud and D.E. Goldberg. A genetic algorithm for parallel

simulated annealing. Parallel Problem Solving from Nature, (2):301–310,

1992.

[46] Hiroyasu T. Miki, M. and T. Fushimi. Parallel simulated annealing

with adaptive neighborhood determined by ga. 2003.

[47] M.K, M.C, and R.S. Elements of artificial neural networks. In Cambridge,

MA: MIT Press, 1997.

[48] Tirronen V. Kärkkäinen T. Neri, F. and T. Rossi. Fitness diversity

based adaptation in multimeme algorithms: A comparative study. pages

2374–2381, 2007.

[49] Lim M.H. Zhu N. Ong, Y.S. and K.W. Wong. Classification of adaptive

memetic algorithms: A comparative study. IEEE transactions on Systems,

Man and Cybnetics Part B, 36(1):141–152, 2006.

[50] Y.S. Ong and A.J. Keane. Meta-lamarckian learning in memetic algo-

rithms. IEEE transactions on evolutionary computation, 8(2):99–110, 2004.

[51] Panos Y. Papalambros and Douglass J. Wilde. Principles of Optimal

Design. Modeling and Computation, The University of Michigan Press, Ann

Arbor., 2nd edition edition, 2000.

[52] M.J.D. Powell. A Method for Nonlinear Constraints in Minimization

Problems, Optimization. Edited by R. Fletcher, Academic Press, New York,

New York., 1972.

110

REFERENCES

[53] J.Blasco R.Meza, G.Sanchis and X.Herrero. Hybrid de algorithm

with adaptive crossover operator for solving real-world numerical optimiza-

tion problems. In Evolutionary Computation (CEC2011), IEEE Congress,

pages 1551–1556, 2011.

[54] B.E. Rosen and R. Nakano. Simulated annealing - basics and recent

topics on simulated annealing. Journal of Japanese Society for Artificial

Intelligence, 9(3), 1994.

[55] D.E. Rumelhart and J.L. McClelland. Parallel distributed process-

ing: Explorations in the microstructure of cognition. MIT Press, 1986.

[56] Patrick Siarry Jayaraman V.K. Shelokar, P.S. and B.D. Kulka-

rni. Particle swarm and ant colony algorithms hybridized for improved con-

tinuous optimization. Applied Mathematics and Computation, 188(1):129–

142, 2007.

[57] Y. Shi and R.C. Eberhart. A modified particle swarm optimizer. pages

69–73, 1998.

[58] Y. Shi and RC. Eberhart. Empirical study of particle swarm optimiza-

tion. 3, pages 100–6, 1999.

[59] S.O.Soliman and T.L. Bui. A self-adaptive strategy for controlling pa-

rameters in differential evolution. In IEEE World Congress on Computa-

tional Intelligence, pages 2837–2842, 2008.

[60] D. Srinivasan and T.H. Seow. Evolutionary computation. pages 2292–

2297, 2003.

[61] R. Storn and K. Price. Differential evolution - a simple and efficient

adaptive scheme for global optimization over continuous spaces. In technical

report tr-95-012. Technical report, ICSI, 1995.

[62] R. Storn and K. Price. Differential evolution - a simple and efficient

heuristic for global optimization over continuous spaces. Journal Global Op-

timization, 11(4):341–357, 1997.

111

REFERENCES

[63] Tam.BN, Hieu.PN, and H.Hasegawa. Improve self-adaptive control pa-

rameters in differential evolution for solving constrained engineering opti-

mization problems. In Journal of Computational Science and Technology,

2013.

[64] Neri F. Kärkkäinen T. Majava K. Tirronen, V. and T. Rossi. An

enhanced memetic differential evolution in filter design for defect detection in

paper production. Evolutionary Computation Journal, 16(4):529–555, 2008.

[65] S. Tooyama and H. Hasegawa. Adaptive plan system with genetic algo-

rithm using the variable neighborhood range control. pages 846–853, 2009.

[66] H. Uehara. Study on Development of General-purposed Optimization En-

gine and its Performance Evaluation - The proposal of Parallel Simulated

Annealing with Selection. Master’s thesis, Shibaura Institute of Technology,

2004.

[67] Kawada H. Uehara, H. and K. Kawamo. Numerical experiments on

optimal points searching using hybrid method of genetic algorithm and sim-

ulated annealing. pages 117–118, 2003.

[68] Amir Hossein Gandomi Xin-She Yang, Seyyed Soheil Sadat Hos-

seini. Firefly algorithm for solving non-convex economic dispatch problems

with valve loading effect. In Comput. J, 12, pages 1180–1186, March 2012.

[69] X.Yao. Evolving artificial neural networks. 87, pages 1423–1447, 1999.

[70] Xin-She Yang. Nature-Inspired Metaheuristic Algorithms. Luniver Press,

University of Cambridge. United Kingdom., 2nd edition edition, 2010.

[71] Xin-She Yang. A new metaheuristic bat-inspired algorithm. In Nature

Inspired Cooperative Strategies for Optimization (NICSO 2010) (Eds. J. R.

Gonzalez et al.), Studies in Computational Intelligence, Springer Berlin,,

284, pages 65–74, Dec 2010.

[72] Xin-She Yang and S. Deb. Cuckoo search via lévy flights. In Nature

Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on,

pages 210–214, Dec 2009.

112

	Abstract
	List of Figures
	List of Tables
	List of Algorithm
	1 Introduction
	1.1 Optimal Systems Design
	1.2 Optimal Design of Complex Mechanical Systems
	1.3 Constraints and Challenges
	1.3.1 Method of Lagrange Multipliers
	1.3.2 Penalty Method
	1.3.3 Step Size in Random Walks

	1.4 Motivation and Objects
	1.5 Contributions
	1.6 Outline

	2 Metaheuristic Algorithms for Global Optimization
	2.1 Introduction bimimetic
	2.2 A brief introduction of Evolutionary Algorithm
	2.2.1 What is an Evolutionary Algorithm (EA)
	2.2.2 Components of Evolutionary Algorithms

	2.3 Simulated Annealing (SA)
	2.3.1 Annealing and Boltzmann Distribution
	2.3.2 SA Algorithm

	2.4 Genetic Algorithms (GA)
	2.5 Differential Evolution (DE) Algorithm
	2.6 Artificial Bee Colony Algorithm (ABC)
	2.7 Particle Swarm Optimization (PSO)
	2.7.1 PSO Algorithm
	2.7.2 Improved PSO algorithm

	3 Improve Seft-Adaptive Control Parameters in Differential Evolution Algorithm
	3.1 Introduction
	3.2 Review of DE and related work
	3.2.1 Formulation of Optimization Problem
	3.2.2 Review of Differential Evolution Algorithm
	3.2.2.1 Initialization in DE
	3.2.2.2 Mutation operation
	3.2.2.3 Crossover operation
	3.2.2.4 Selection operation

	3.2.3 Related work of Differential Evolution Algorithm

	3.3 Improvement of Self-Adapting Control Parameters in Differential Evolution
	3.3.1 Adaptive selection learning strategies in the mutation operator
	3.3.2 Adaptive scaling factor F
	3.3.3 Adaptive crossover control parameter CR
	3.3.4 ISADE algorithm pseudo-code

	3.4 Numerical Experiments
	3.4.1 Benchmark Tests
	3.4.2 Test to get best value of in ISADE
	3.4.3 Test to robust of Algorithm
	3.4.3.1 ISADE and some approaches are compared in this test with same accurate =10-6
	3.4.3.2 Test with maximum iteration compares the mean of global minimum and (Std) standard deviation

	3.4.4 Solve some real constrained engineering design optimization problems
	3.4.4.1 E01: Welded beam design optimization problem
	3.4.4.2 E02: Pressure vessel design optimization problem
	3.4.4.3 E03: Speed reducer design optimization problem
	3.4.4.4 E04: Tension/compression spring design optimization problem
	3.4.4.5 Result of applying ISADE for constrained engineering optimization

	3.5 Conclusion

	4 Training Artificial Feed-forward Neural Network using Modification of Differential Evolution Algorithm
	4.1 Introduction
	4.2 Training Feed-Forward Artificial Neural Network
	4.2.1 Introduction Neural Network
	4.2.1.1 Types of Neural Network
	4.2.1.2 Neural Network Process
	4.2.1.3 Training Feed-Forward Artificial Neural Network

	4.2.2 Numerical Experiments
	4.2.2.1 The Exclusive-OR Problem
	4.2.2.2 The 3-Bit Parity Problem
	4.2.2.3 The 4-Bit Encoder-Decoder Problem

	4.2.3 Result of experiment

	4.3 Conclusions

	5 Hybrid Improved Self-Adaptive Differential Evolution and Nelder-Mead Simplex Method
	5.1 Introduction
	5.2 What is a hybrid algorithm?
	5.3 Hybrid Improved Self-adaptive Differential Evolution and Nelder-Mead Simplex Method
	5.3.1 Nelder-Mead Simplex Method
	5.3.2 Improve Self-adapting Control Parameters in Differential Evolution
	5.3.2.1 Exploration of the Search Domain by Improving Self-adaptive Differential Evolution
	5.3.2.2 Exploitation Search Domain by Nelder-Mead Simplex Method

	5.4 Experiments
	5.5 Result of applying HISADE-NMS for constrained engineering optimization
	5.6 Conclusion

	6 Conclusion
	6.1 Contributions of This Dissertation
	6.2 Future Work

	Appendix
	.1 Sphere Functions
	.2 Rosenbrock Functions
	.3 Schwefelâ•Žs Problem 1.2 (Ridge Functions)
	.4 Griewank Functions
	.5 Rastrigin Functions
	.6 Ackley Functions
	.7 Levy Functions
	.8 Schawefel's problem 2.22
	.9 Alpine Functions

	List of Publications
	References

