168 research outputs found

    A Survey of Binary Covering Arrays

    Get PDF
    Binary covering arrays of strength t are 0–1 matrices having the property that for each t columns and each of the possible 2[superscript t] sequences of t 0's and 1's, there exists a row having that sequence in that set of t columns. Covering arrays are an important tool in certain applications, for example, in software testing. In these applications, the number of columns of the matrix is dictated by the application, and it is desirable to have a covering array with a small number of rows. Here we survey some of what is known about the existence of binary covering arrays and methods of producing them, including both explicit constructions and search techniques

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Intelligent integrated maintenance for wind power generation

    Get PDF
    A novel architecture and system for the provision of Reliability Centred Maintenance (RCM) for offshore wind power generation is presented. The architecture was developed by conducting a bottom-up analysis of the data required to support RCM within this specific industry, combined with a top-down analysis of the required maintenance functionality. The architecture and system consists of three integrated modules for Intelligent Condition Monitoring, Reliability and Maintenance Modelling, and Maintenance Scheduling that provide a scalable solution for performing dynamic, efficient and cost effective preventative maintenance management within this extremely demanding renewable energy generation sector. The system demonstrates for the first time, the integration of state-of-the-art advanced mathematical techniques: Random Forests, Dynamic Bayesian Networks, and Memetic Algorithms in the development of an intelligent autonomous solution. The results from the application of the intelligent integrated system illustrated the automated detection of faults within a wind farm consisting of over 100 turbines, the modelling and updating of the turbines’ survivability and creation of a hierarchy of maintenance actions, and the optimising of the maintenance schedule with a view to maximising the availability and revenue generation of the turbines

    Causally-Guided Evolutionary Computation for Design

    Get PDF
    During recent years, evolutionary computation methods have been used successfully to discover solutions to problems involving design and invention in a wide variety of fields. However, for the evolutionary process to remain computationally tractable when applied to increasingly complex design problems, new extensions must be developed that increase the efficiency and effectiveness with which evolutionary systems produce optimal designs. To this end, the goal of the research presented here is to develop one such potential extension: causally-guided evolution. By this I mean evolutionary systems where the application of genetic operators to an individual are driven in part by observing that individual's performance characteristics and applying these operators based on explicit cause-effect relations in the domain. This differs from past evolutionary methods in which, after fitness-based selection, genetic operators are applied to individuals blindly and randomly (i.e., without respect to the performance characteristics of the individuals). In this context, this dissertation makes a number of significant contributions. A framework for causally-guided evolution is defined, including causally-guided genetic operators based on causal knowledge that is supplied by domain experts. The ability of these methods and causally-guided mutation to produce better solutions than conventional evolutionary processes is demonstrated on a neural network optimization task. These methods are then extended to include crossover, and the synergistic effects of causally-guided crossover and mutation are demonstrated when applied to a real-world antenna design task. Causally-guided mutation is extended further to influence both where and how mutation occurs, and the effectiveness of this approach is shown when applied to a constructive design task that creates synthetic social networks. Finally, a causally-guided evolutionary system that acquires causal knowledge through observation of the evolutionary process, rather than being given the knowledge a priori, is developed and successfully applied, demonstrating the applicability of causally-guided evolution to problems in which causal knowledge is not available. Collectively, this work clearly demonstrates for the first time the promise of causally-guided evolutionary computation in a variety of forms and when applied to a range of application problems

    High-Quality Hypergraph Partitioning

    Get PDF
    This dissertation focuses on computing high-quality solutions for the NP-hard balanced hypergraph partitioning problem: Given a hypergraph and an integer kk, partition its vertex set into kk disjoint blocks of bounded size, while minimizing an objective function over the hyperedges. Here, we consider the two most commonly used objectives: the cut-net metric and the connectivity metric. Since the problem is computationally intractable, heuristics are used in practice - the most prominent being the three-phase multi-level paradigm: During coarsening, the hypergraph is successively contracted to obtain a hierarchy of smaller instances. After applying an initial partitioning algorithm to the smallest hypergraph, contraction is undone and, at each level, refinement algorithms try to improve the current solution. With this work, we give a brief overview of the field and present several algorithmic improvements to the multi-level paradigm. Instead of using a logarithmic number of levels like traditional algorithms, we present two coarsening algorithms that create a hierarchy of (nearly) nn levels, where nn is the number of vertices. This makes consecutive levels as similar as possible and provides many opportunities for refinement algorithms to improve the partition. This approach is made feasible in practice by tailoring all algorithms and data structures to the nn-level paradigm, and developing lazy-evaluation techniques, caching mechanisms and early stopping criteria to speed up the partitioning process. Furthermore, we propose a sparsification algorithm based on locality-sensitive hashing that improves the running time for hypergraphs with large hyperedges, and show that incorporating global information about the community structure into the coarsening process improves quality. Moreover, we present a portfolio-based initial partitioning approach, and propose three refinement algorithms. Two are based on the Fiduccia-Mattheyses (FM) heuristic, but perform a highly localized search at each level. While one is designed for two-way partitioning, the other is the first FM-style algorithm that can be efficiently employed in the multi-level setting to directly improve kk-way partitions. The third algorithm uses max-flow computations on pairs of blocks to refine kk-way partitions. Finally, we present the first memetic multi-level hypergraph partitioning algorithm for an extensive exploration of the global solution space. All contributions are made available through our open-source framework KaHyPar. In a comprehensive experimental study, we compare KaHyPar with hMETIS, PaToH, Mondriaan, Zoltan-AlgD, and HYPE on a wide range of hypergraphs from several application areas. Our results indicate that KaHyPar, already without the memetic component, computes better solutions than all competing algorithms for both the cut-net and the connectivity metric, while being faster than Zoltan-AlgD and equally fast as hMETIS. Moreover, KaHyPar compares favorably with the current best graph partitioning system KaFFPa - both in terms of solution quality and running time

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Automatic software generation and improvement through search based techniques

    Get PDF
    Writing software is a difficult and expensive task. Its automation is hence very valuable. Search algorithms have been successfully used to tackle many software engineering problems. Unfortunately, for some problems the traditional techniques have been of only limited scope, and search algorithms have not been used yet. We hence propose a novel framework that is based on a co-evolution of programs and test cases to tackle these difficult problems. This framework can be used to tackle software engineering tasks such as Automatic Refinement, Fault Correction and Improving Non-functional Criteria. These tasks are very difficult, and their automation in literature has been limited. To get a better understanding of how search algorithms work, there is the need of a theoretical foundation. That would help to get better insight of search based software engineering. We provide first theoretical analyses for search based software testing, which is one of the main components of our co-evolutionary framework. This thesis gives the important contribution of presenting a novel framework, and we then study its application to three difficult software engineering problems. In this thesis we also give the important contribution of defining a first theoretical foundation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Streaming, Local, and Multi­Level (Hyper)Graph Decomposition

    Get PDF
    (Hyper)Graph decomposition is a family of problems that aim to break down large (hyper)graphs into smaller sub(hyper)graphs for easier analysis. The importance of this lies in its ability to enable efficient computation on large and complex (hyper)graphs, such as social networks, chemical compounds, and computer networks. This dissertation explores several types of (hyper)graph decomposition problems, including graph partitioning, hypergraph partitioning, local graph clustering, process mapping, and signed graph clustering. Our main focus is on streaming algorithms, local algorithms and multilevel algorithms. In terms of streaming algorithms, we make contributions with highly efficient and effective algorithms for (hyper)graph partitioning and process mapping. In terms of local algorithms, we propose sub-linear algorithms which are effective in detecting high-quality local communities around a given seed node in a graph based on the distribution of a given motif. In terms of multilevel algorithms, we engineer high-quality multilevel algorithms for process mapping and signed graph clustering. We provide a thorough discussion of each algorithm along with experimental results demonstrating their superiority over existing state-of-the-art techniques. The results show that the proposed algorithms achieve improved performance and better solutions in various metrics, making them highly promising for practical applications. Overall, this dissertation showcases the effectiveness of advanced combinatorial algorithmic techniques in solving challenging (hyper)graph decomposition problems
    • …
    corecore