
INAUGURALDISSERTATION

zur

Erlangung der Doktorwürde

der

Gesamtfakultät für Mathematik, Ingenieur und Naturwissenschaften

der

Ruprecht–Karls–Universität

Heidelberg

vorgelegt von

Marcelo Fonseca Faraj

aus Belo Horizonte, Brasilien

Tag der mündlichen Prüfung:

Streaming, Local, and MultiLevel (Hyper)Graph Decomposition

Betreuer: Prof. Dr. Christian Schulz

Abstract

(Hyper)Graph decomposition is a family of problems that aim to break down large (hy
per)graphs into smaller sub(hyper)graphs for easier analysis. The importance of this lies
in its ability to enable efficient computation on large and complex (hyper)graphs, such as
social networks, chemical compounds, and computer networks. This dissertation explores
several types of (hyper)graph decomposition problems, including graph partitioning, hyper
graph partitioning, local graph clustering, process mapping, and signed graph clustering.
Our main focus is on streaming algorithms, local algorithms and multilevel algorithms. In
terms of streaming algorithms, we make contributions with highly efficient and effective
algorithms for (hyper)graph partitioning and process mapping. In terms of local algorithms,
we propose sublinear algorithms which are effective in detecting highquality local com
munities around a given seed node in a graph based on the distribution of a given motif. In
terms of multilevel algorithms, we engineer highquality multilevel algorithms for process
mapping and signed graph clustering. We provide a thorough discussion of each algorithm
along with experimental results demonstrating their superiority over existing stateoftheart
techniques. The results show that the proposed algorithms achieve improved performance
and better solutions in various metrics, making them highly promising for practical appli
cations. Overall, this dissertation showcases the effectiveness of advanced combinatorial
algorithmic techniques in solving challenging (hyper)graph decomposition problems.

v

Zusammenfassung

(Hyper)Graphenzerlegung fasst mehrere Probleme zusammen, bei denen große Graphen
oder Hypergraphen zur einfacheren Analyse in kleinere Subgraphen oder Subhypergraphen
zerlegt werden. Dies ist bedeutsam, denn es befähigt dazu Berechnungen auf großen und
komplexen Graphen und Hypergraphen, wie soziale Netzwerke, chemische Verbindungen
und Computernetzwerke, effizient zu machen. Diese Dissertation befasst sich mit der Unter
suchung verschiedener Arten von (Hyper)Graphenzerlegungsproblemen, darunter Graph
partitionierung, Hypergraphpartitionierung, Prozesszuweisung, SignedGraphClustering
und LocalGraphClustering. Unser Hauptaugenmerk liegt auf StreamingAlgorithmen,
lokalenAlgorithmen undMultiLevelAlgorithmen. ImBereich der StreamingAlgorithmen
leisten wir Beiträge mit hocheffizienten und effektiven Algorithmen für die
(Hyper)Graphpartitionierung und Prozesszuweisung. Bei den lokalen Algorithmen schla
gen wir sublineare Algorithmen vor, die auf Grundlage der Verteilung eines bestimmten
Motivs hochwertige lokale Cluster um einen gegebenen Startknoten in einem Graphen bes
timmen. Was die MultiLevelAlgorithmen betrifft, so entwickeln wir hochwertige Multi
LevelAlgorithmen für Prozesszuweisung und SignedGraphClustering. Wir liefern zu
jedem Algorithmus eine ausführliche Diskussion zusammen mit experimentellen Ergebnis
sen, die ihre Überlegenheit gegenüber bestehenden Stand der Technik zeigen. Die
Ergebnisse legen dar, dass die vorgeschlagenen Algorithmen eine bessere Laufzeit und
bessere Lösungen in verschiedenen Metriken erzielen, womit sie für praktische Anwendun
gen sehr vielversprechend sind. Insgesamt zeigt diese Dissertation die Effektivität fortschrit
tlicher kombinatorischer algorithmischer Techniken bei der Lösung anspruchsvoller
(Hyper)Graphenzerlegungsprobleme.

vii

Acknowledgements

I feel incredibly grateful and indebted to my advisor, Prof. Dr. Christian Schulz. Thanks
to him, I was introduced to the fascinating world of algorithm engineering and (hyper)graph
decomposition problems, which quickly became a passion. His guidance and support through
outmy Ph.D. journeywere invaluable, and I couldn’t have asked for amore nurturingmentor.
Under his supervision, I learned the habits and behaviors that make a scientist successful and
a leader effective. Working at the University of Vienna and Heidelberg University, thanks
to him, allowed me to publish and present many papers at top conferences across the globe,
an opportunity I cherish. Most importantly, Christian is not just an excellent mentor but
also a kind and friendly person who always motivated and inspired me to pursue my am
bitions. Additionally, I am grateful for the chance to meet and interact with some of the
giants of Computer Science, such as Peter Sanders, Monika Henzinger, and Robert Tarjan,
all thanks to him.

I cannot express enough gratitude towards my wife, Yara Dalilla Xavier Faraj, who
has been my rock throughout this journey. Yara’s unwavering love and support have been
instrumental in helping me navigate the challenges of pursuing a Ph.D. abroad. She has been
with me every step of the way, from being my girlfriend to becoming my wife and greatest
partner in life. Without her, those four years would have been much more arduous and less
happy. I am thankful for Yara’s caring and nurturing presence, which provided me with a
sense of family during my time away from home. Yara’s encouragement and unwavering
support have helped me stay motivated and focused on my goals. I feel blessed to have
such a wonderful person in my life, and I am excited to continue our journey together as
we embark on new adventures.

I would like to express my deep gratitude to two wonderful couples who made my
time in Europe even more special. Firstly, my cousin Alfred Lenzner and his wife Mar
ilia Simão dos Santos, with whom Yara and I shared some great moments during our stay
in Germany. Secondly, I would like to thank Alexander Noe and AniqueMarie Cabardos,
with whom we had the pleasure of spending unforgettable moments in both Vienna and
Mannheim. Their company, warmth, and positive energy made our experiences in Europe
truly unique and enriching.

ix

x Acknowledgements

I want to express my gratitude to all the amazing people who have been a part of my
academic journey. First, I would like to thank my colleagues from Heidelberg Univer
sity, Alexander Noe, Konrad von Kirchbach, Stefan Neumann, Gramoz Goranci, Alexander
Svozil, Wolfgang Ost, and Ernestine Großmann, for being wonderful coPh.D. students and
for making my time in Heidelberg so enjoyable. I would also like to express my sincere
thanks to Kathrin Hanauer, Rudolf Hürner, Sagar Kale, Ami Paz, XiaoweiWu (Eric), Kamer
Kaya, Ulrike FrolikSteffan, Christina Licayan, Catherine ProuxWieland, and Henrik Re
instädtler, for being such amazing colleagues and making my Ph.D. journey an enriching
experience. I also want to thank all my coauthors, including Ümit V. Çatalyürek, Karen D.
Devine, Lars Gottesbüren, Tobias Heuer, Alexander van der Grinten, Henning Meyerhenke,
Jesper Larsson Träff, Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel Seemaier,
Dorothea Wagner, Adil Chhabra, Felix Hausberger, and Kamal Eyubov, for collaborating
with me on joint papers.

Furthermore, I would like to thank all the students I had the pleasure of supervising in
their scientific practica or theses. I would also like to express my appreciation to Bora Uçar
for the wonderful opportunity to work together on various projects and share an office with
him in Lyon and Heidelberg. I would like to extendmy thanks to Peter Bastian for the incred
ible opportunity to participate in the IGCM 2023 conference in Bangalore. Additionally, I
would like to thank Monika Henzinger for the opportunity to be a part of her research group
in Vienna. I cannot forget to thank Jesper Larsson Träff, who worked with me in Vienna and
with whom I had some amazing philosophical discussions. Finally, I want to thank my dear
friend and former (co)advisor João Fernando Machry Sarubbi, who has been a source of
inspiration and guidance since my Bachelor’s thesis. I am grateful for his continued support
and advice as I navigate through my academic and personal life.

I want to express my deepest gratitude to my family. First and foremost, I want to thank
my wonderful parents, who have been an unwavering source of love and support throughout
my life. Even though theyweremiles away fromme, they never failed to show their constant
presence and care in a way that only Brazilian parents could do or even imagine. I also want
to thank my amazing siblings, Nara Carolina, Priscila, Sarah, Valéria, and Mário, along
with their partners and children. I am blessed to have such a loving and caring family,
and I am grateful for all the lessons and values they have instilled in me. Additionally, I
want to express my appreciation to my aunts, uncles, cousins, and inlaws for their support,
encouragement, and inspiration.

In conclusion, I want to express my deepest gratitude to God for His continuous bless
ings and guidance in my life. As Aristotle said, ”To know thyself is the beginning of all
wisdom.” However, our knowledge of ourselves is limited, and it is only through God’s in
finite wisdom and love that we can truly know our purpose and potential. I am grateful for

Acknowledgements xi

all the opportunities and experiences that God has presented me with, and for the strength
and wisdom He has granted me to face challenges along the way.

Related Publications

Several contributions in this thesis are already published or accepted for publication in con
ference and journal papers as well as technical reports. Here we list all these publications.

Accepted Papers

[1] Marcelo Fonseca Faraj, Alexander van der Grinten, Henning Meyerhenke, Jesper
Larsson Träff, and Christian Schulz. HighQuality Hierarchical Process Mapping.
In Proceedings of the 18th Symposium on Experimental Algorithms (SEA), volume
160 of LIPIcs, pages 4:1–4:15, 2020.

[2] Marcelo Fonseca Faraj and Christian Schulz. Buffered Streaming Graph Partitioning.
ACM Journal of Experimental Algorithmics, Volume 27, pages 1.10:1–1.10:26, 2022.

[3] Marcelo Fonseca Faraj and Christian Schulz. Recursive MultiSection on the Fly:
SharedMemory Streaming Algorithms for Hierarchical Graph Partitioning and Pro
cess Mapping. In IEEE International Conference on Cluster Computing (CLUSTER),
volume 9411, pages 473–483, 2022.

[4] Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren, To
bias Heuer, Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz,
Daniel Seemaier, and Dorothea Wagner More Recent Advances in (Hyper)Graph
Partitioning. ACM Computing Surveys, Volume 55, Issue 12, Article No 253, pages
1–38, 2022.

[5] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Local Motif Cluster
ing via (Hyper)Graph Partitioning (Extended Abstract). In Proceedings of the 15th
International Symposium on Combinatorial Search (SoCS), pages 261–263, AAAI
Press, 2022.

[6] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Local Motif Cluster
ing via (Hyper)Graph Partitioning. In Proceedings of the Symposium on Algorithm
Engineering and Experiments (ALENEX), pages 96–109. SIAM, 2023.

xiii

xiv Related Publications

[7] Felix Hausberger, Marcelo Fonseca Faraj, and Christian Schulz. A Distributed Mul
tilevel Memetic Algorithm for Signed Graph Clustering (Short Paper). In Genetic
and Evolutionary Computation Conference Companion (GECCO ’23 Companion),
to appear, 2023.

[8] Kamal Eyubov, Marcelo Fonseca Faraj, and Christian Schulz. FREIGHT: Fast
Streaming Hypergraph Partitioning. In Proceedings of the 21st Symposium on Ex
perimental Algorithms (SEA), to appear, 2023.

Papers under Peer Review

[1] Felix Hausberger, Marcelo Fonseca Faraj, and Christian Schulz. A Distributed Mul
tilevel Memetic Algorithm for Signed Graph Clustering. 2023.

[2] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Faster Local Motif
Clustering via Maximum Flows. 2023.

Technical Reports

[1] Marcelo Fonseca Faraj, Alexander van der Grinten, Henning Meyerhenke, Jesper
Larsson Träff, and Christian Schulz. HighQuality Hierarchical Process Mapping.
Technical Report, University of Vienna, Humboldt Universtät zu Berlin, and Techni
cal University of Vienna, 2020. (arXiv:2001.07134v2)

[2] Marcelo Fonseca Faraj and Christian Schulz. Buffered Streaming Graph Partitioning.
Technical Report, Heidelberg University, 2021. (arXiv:2102.09384)

[3] Marcelo Fonseca Faraj and Christian Schulz. Recursive MultiSection on the Fly:
SharedMemory Streaming Algorithms for Hierarchical Graph Partitioning and Pro
cess Mapping. Technical Report, Heidelberg University, 2021. (arXiv:2202.00394)

[4] Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren, To
bias Heuer, Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz,
Daniel Seemaier, and Dorothea Wagner More Recent Advances in (Hyper)Graph
Partitioning. Technical Report, 2022. (arXiv:2205.13202)

[5] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Local Motif Cluster
ing via (Hyper)Graph Partitioning. Technical Report, Heidelberg University, 2022.
(arXiv:2205.06176)

Related Publications xv

[6] Felix Hausberger, Marcelo Fonseca Faraj, and Christian Schulz. A Distributed Multi
level Memetic Algorithm for Signed Graph Clustering. Technical Report, Heidelberg
University, 2022. (arXiv:2208.13618)

[7] Kamal Eyubov, Marcelo Fonseca Faraj, and Christian Schulz. FREIGHT: Fast
Streaming Hypergraph Partitioning. Technical Report, Heidelberg University, 2023.
(arXiv:2302.06259)

[8] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Faster Local Motif
Clustering via Maximum Flows. Technical Report, Heidelberg University, 2023.
(arXiv:2301.07145)

Contents

Abstract v

Zusammenfassung vii

Acknowledgements ix

Related Publications xiii

Contents xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Main Contributions . 3

1.2.1 Streaming Algorithms . 4
1.2.2 Local Algorithms . 5
1.2.3 Multilevel Algorithms . 5

1.3 Outline . 6

2 Preliminaries 7
2.1 Graphs and Hypergraphs . 7
2.2 Partitions and Clusterings . 8
2.3 Process Mapping . 9
2.4 Flows . 10
2.5 Multilevel Scheme . 11
2.6 Evolutionary Algorithms . 13
2.7 Computational Models . 14
2.8 Instances . 14

2.8.1 Graphs . 15
2.8.2 Hypergraphs . 17
2.8.3 Signed Graphs . 17

2.9 Machines . 17

xvii

xviii Contents

2.10 Methodology . 19

3 Related Work 21
3.1 (Hyper)Graph Partitioning . 21

3.1.1 Streaming Graph Partitioning . 21
3.1.2 Restreaming Graph Partitioning 22
3.1.3 Buffered Streaming Graph Partitioning 23
3.1.4 Streaming Hypergraph Partitioning 24

3.2 Local Motif Clustering . 25
3.3 Process Mapping . 26
3.4 Signed Graph Clustering . 29

3.4.1 ContractionBased . 30
3.4.2 Evolutionary . 30
3.4.3 Integer Linear Programming . 31

4 Streaming Algorithms 33
4.1 Buffered Streaming Graph Partitioning . 33

4.1.1 HeiStream . 34
4.1.2 Experimental Evaluation . 40

4.2 Streaming Process Mapping . 52
4.2.1 Online Recursive MultiSection 52
4.2.2 Experimental Evaluation . 58

4.3 Streaming Hypergraph Partitioning . 64
4.3.1 FREIGHT . 64
4.3.2 Experimental Evaluation . 70

4.4 Experimental Comparison . 75
4.5 Conclusion . 77

5 Local Algorithms 79
5.1 Local Motif Clustering . 79

5.1.1 LMCHGP . 80
5.1.2 SOCIAL . 89
5.1.3 Experimental Evaluation . 94

5.2 Conclusion . 98

6 Multilevel Algorithms 101
6.1 Multilevel Process Mapping . 101

6.1.1 Integrated Mapping . 102

Contents xix

6.1.2 Experimental Evaluation . 107
6.2 Multilevel Signed Graph Clustering . 113

6.2.1 Multilevel Algorithm . 114
6.2.2 Distributed Evolutionary Algorithm 116
6.2.3 Experimental Evaluation . 120

6.3 Conclusion . 124

7 Discussion 125
7.1 Conclusion . 125
7.2 Future Work . 126

Bibliography 129

Curriculum Vitae 149

List of Publications 151

Chapter 1

Introduction

1.1 Motivation

(Hyper)graphs are incredibly versatile mathematical structures that have proven to be use
ful for modeling and analyzing a wide range of phenomena. These can include anything
from social networks and chemical compounds to computer networks and communication
systems. As these systems grow in size and complexity, it becomes increasingly difficult to
process their underlying (hyper)graphs on a single computer. This is where (hyper)graph de
composition comes in. The idea behind (hyper)graph decomposition is to break down a large
(hyper)graph into smaller subgraphs or partitions, which can be processed separately. By
doing this, we can enable more efficient computation on large and complex (hyper)graphs,
which has applications in many areas of research.

In fact, (hyper)graph decomposition is becoming increasingly important in a wide range
of fields. Its potential applications are vast, including scientific simulations, routing, com
munity detection, computational linear algebra, and more. With the ability to efficiently
process large and complex (hyper)graphs, we can gain deeper insights into the structure
and behavior of the systems they model. This can lead to breakthroughs in fields ranging
from social science to engineering. There are several types of (hyper)graph decomposition
problems, each of which has its own constraints, objective functions, challenges, and appli
cations. In this thesis, we specifically explore the following problems: graph partitioning,
hypergraph partitioning, local graph clustering, process mapping, and signed graph cluster
ing. We now explain the problems in detail.

The (hyper)graph partitioning problem is a very important and wellstudied problem.
It consists of partitioning the nodes of a given (hyper)graph into a predetermined number
of blocks with roughly equal cardinality or weight in order to minimize some metric such
as the number of cut (hyper)edges. Specifically in the case of hypergraph partitioning, an
additional optimization metric is the connectivity, which measures the difference between

1

2 1.1. Motivation

the number of blocks that have nonempty intersection with cut hyperedges and the num
ber of hyperedges. A natural application for this problem is the distributed processing of
(hyper)graphs, in which multiple processors operate on unique nodes of the (hyper)graph
and communicate with one another using messagepassing in case of (hyper)edges shared
across processors. (Hyper)graph partitioning is NPhard [1] and there can be no approxi
mation algorithm with a constant ratio for general (hyper)graphs [2]. Thus, heuristics are
used in practice. A current trend for partitioning huge (hyper)graphs quickly and using low
computational resources are streaming algorithms [3–12].

The process mapping problem can be seen as an application and a generalization of
the graph partitioning problem. In this problem, we are given a communication graph and
a topology containing processing elements (PEs) alongside with their pairwise distances.
The goal of the problem consists of mapping the nodes of the communication graph onto
the topology in such a way that roughly the same (weighted) number of nodes are mapped
to each PE and the total communication cost is minimized. The total communication cost is
usually defined as the sum of weights of the cut edges multiplied by the distance between
the PEs containing their respective endpoints. A natural application of process mapping
consists of assigning interdependent tasks to highperformance (HPC) systems in order to
minimize the total execution time. It can also be useful in other areas, such as manufactur
ing, where optimizing the flow of materials and resources is critical. All hardness results
associated with graph partitioning also apply for process mapping, hence heuristics are used
in practice. A special case of topology, known as hierarchical topology, has been the sub
ject of widespread research. In this topology, PEs are arranged in a multilayered hierarchy
of modules and submodules, and the distance between any two PEs depends exclusively
on their nearest shared module within the topology.

The local graph clustering problem involves a graph and a seed node, where the ob
jective is to obtain a wellcharacterized cluster that contains the seed node. Conceptually,
a wellcharacterized cluster is a subgraph that consists of many internal edges and few ex
ternal edges. More specifically, the quality of a cluster can be quantified by metrics such
as conductance [13]. Applications of this problem include those that only require analyz
ing a small, localized portion of a graph rather than the entire graph. This is the case for
communitydetection on Web [14] and social [15] networks as well as structurediscovery
in bioinformatics [16] networks, among other realworld problems. Since minimizing con
ductance is NPhard [17], approximative and heuristic approaches are used in practice. Fur
thermore, the nature and scale of this problem necessitates sublinear methodologies, i.e.,
which entail time and memory utilization that is only dependent on the size of the dis
covered cluster, rather than the entire graph. While traditional approaches to local clus
tering typically consider the edge distribution when evaluating the quality of a local com

1.2. Main Contributions 3

munity [18–22], novel methods [23–26] have shifted focus to finding local communities
based on the distribution of motifs, higherorder structures within the graph. Empirical ev
idence shows that this approach, which can be called local motif clustering, is effective at
detecting highquality local communities [23].

The signed graph clustering problem involves a signed graph, i.e., a graph in which each
edge is associated with a weight that can be either positive or negative. The goal is to parti
tion the nodes of the graph into an unspecified number of wellcharacterized clusters. In the
context of signed graphs, a wellcharacterized cluster is defined as being densely connected
by edges with positive weight and sparsely connected by edges with negative weight. Con
versely, distinct clusters that are wellcharacterized exhibit dense interconnections through
edges with negative weight and sparse interconnections through edges with positive weight.
Signed graph clustering necessitates distinct metrics and approaches as opposed to those for
traditional, unsigned graph clustering. On the one hand, traditional metrics such as conduc
tance [13] and modularity [27] are insufficient to address negative edge weights. On the
other hand, negative edge weights can make clustering structure more explicit. As a conse
quence, metrics like edgecut, which simplymeasures the sum of edge weights between clus
ters, can be used for evaluating signed clustering. In signed graphs, the edgecut is bounded
by the sum of negative edge weights. Hence, achieving this edgecut value through cluster
ing will separate all positive edges within clusters and cut all negative edges, fulfilling the
purpose of the problem. In many realworld applications, interactions between two entities
can be accurately represented by signed graphs, i.e., the sign associated with an edge can in
dicate when the nature of an interaction between nodes is positive (e.g., attraction, similarity,
friendship) or negative (e.g., repulsion, difference, animosity). With that being said, graph
clustering has practical applications in areas such as criminology, public health, politics, and
analysis of social networks [28]. The problem of finding a clustering of signed graphs with
minimum edgecut is NPhard [29], hence heuristic algorithms are used in practice.

1.2 Main Contributions

In this section we list our main algorithmic contributions in the context of (hyper)graph
decomposition. Our algorithms utilize various algorithmic techniques and data structures
to achieve improved performance and better solutions compared to stateoftheart meth
ods. To make the exposition clear, we split our contributions in three groups of algorithms:
streaming algorithms, local algorithms and multilevel algorithms. A summary of each con
tribution is presented along with a selection of experimental results, which illustrate their
superiority in various metrics when compared to the stateoftheart.

4 1.2. Main Contributions

1.2.1 Streaming Algorithms

Wedevelop three (buffered) streaming algorithms for (hyper)graph decomposition problems.
More specifically, we propose algorithms for (hyper)graph partitioning and process mapping.

We start by proposing a buffered streaming algorithm for graph partitioing. Our algo
rithm loads a batch of nodes and then builds a model that represents the loaded subgraph
as well as the already present partition structure. This model enables us to apply multilevel
algorithms and in turn compute much higher quality solutions of huge graphs on cheap ma
chines than previously possible. To partition the model, we develop a multilevel algorithm
that optimizes an objective function that has previously shown to be effective for the stream
ing setting. Surprisingly, this also removes the dependency on the number of blocks from
the running time compared to the previous stateoftheart. Our algorithm computes consid
erably better solutions than the stateoftheart using a very small buffer size. In addition,
for large numbers of blocks, our algorithm becomes faster than the stateoftheart.

Our second streaming algorithm is a sharedmemory parallel streaming algorithm for
the process mapping problem. It is designed to map a streamed communication graph onto
a hierarchical topology by performing recursive multisections on the fly. If a hierarchy
is not specified as an input, our approach can also be used as a general tool to solve the
graph partitioning problem. Our approach is the first streaming algorithm for the process
mapping problem. Furthermore, in the context of nonbuffered streaming graph partition
ing, it has a considerably lower running time complexity in comparison with stateofthe
art. Our experiments indicate that our algorithm is both faster and produces better process
mappings than competing streaming tools. In case of graph partitioning, our framework
is up to two orders of magnitude faster at the cost of 5% more cut edges compared to
a stateoftheart algorithm.

Our third streaming algorithm solves the hypergraph partitioning problem by extending
from a stateoftheart streaming algorithm for graph partitioning. By using an efficient
data structure, we make the overall running of our algorithm linearly dependent on the pin
count of the hypergraph and the memory consumption linearly dependent on the numbers
of nets and blocks. The results of our extensive experimentation showcase the promising
performance of our algorithm as a highly efficient and effective solution for streaming hyper
graph partitioning. Our algorithm demonstrates competitive running time with the Hashing
algorithm, with a difference of a maximum factor of four observed on three fourths of the
instances. Significantly, our findings highlight the superiority of our algorithm over all exist
ing (buffered) streaming algorithms and even an inmemory algorithm HYPE, with respect
to both weighted number of cut hyperedges and connectivity measures.

1.2. Main Contributions 5

1.2.2 Local Algorithms

We develop two local algorithms for graph decomposition. In particular, both algorithms
are designed to solve the local motif clustering problem. Our algorithms starts by building
a (hyper)graph model which represents the motifdistribution around the seed node on the
original graph. While the graph model is exact for motifs of size at most three, the hyper
graph model works for arbitrary motifs and is designed such that an optimal solution in the
(hyper)graph model minimizes the motif conductance in the original network.

In our first algorithm, the (hyper)graph model is then partitioned using a powerful multi
level hypergraph or graph partitioner in order to directly minimize the motif conductance of
the corresponding partition in the original graph. Extensive experiments evaluate the trade
offs between the two different models. Moreover, when using the graph model for triangle
motifs, our algorithm computes communities that have on average one third of the motif con
ductance value than communities computed by the stateoftheart while being faster on aver
age and removing the necessity of a preprocessing motifenumeration on the whole network.

In our second algorithm, we transform the hypergraph model into a flowmodel based on
the fast and effective algorithm maxflow quotientcut improvement (MQI) [30]. We show
that a nontrivial maximum flow exists if and only if a superior solution exists, which is
obtained automatically. In our experiments with the triangle motif, our flowbased algo
rithm produces better communities than the stateoftheart, while also being up to multiple
orders of magnitude faster.

1.2.3 Multilevel Algorithms

We develop two multilevel algorithms for graph decomposition. Multilevel algorithms con
sist of three main phases: coarsening, construction, and uncoarsening. In coarsening, the
graph is recursively contracted into a sequence of smaller graphs which maintain some gen
eral structure. In construction, an initial solution is computed on the smallest graph. In
uncoarsening, the contractions are recursively undone, and local search methods are used to
refine the solution induced by each level of contraction. We propose algorithms for process
mapping and signed graph clustering.

We propose and engineer multiple setups of a multilevel algorithm for the process map
ping problem. Important ingredients of our algorithm include fast label propagation, more
localized local search, initial partitioning, as well as a compressed data structure to compute
processor distances without storing a distance matrix. Moreover, our algorithm is able to
exploit a given hierarchical structure of the distributed system under consideration. Exper
iments indicate that our algorithm speeds up the overall mapping process and, due to the
integrated multilevel approach, also finds much better solutions in practice. For example,

6 1.3. Outline

one configuration of our algorithm yields similar solution quality as the previous stateof
theart in terms of mapping quality for large numbers of partitions while being a factor 9.3
faster. Compared to the currently fastest iterated multilevel mapping algorithm Scotch, we
obtain 16% better solutions while investing slightly more running time.

Our last proposed algorithms are designed to solve the signed graph clustering prob
lem by leveraging some of the most effective techniques from graph partitioning that min
imize edgecut. We engineer all the details of a multilevel algorithm, which encompasses
a coarseninguncoarsening process and efficient local search methods. We also introduce
a memetic algorithm that utilizes our multilevel algorithm and further enhances it with nat
ural multilevel recombination and mutation operations. We also parallelize our approach
using a scalable coarsegrained islandbased strategy which has already shown to be scal
able in practice. Experimental results demonstrate that our memetic algorithm outperforms
the stateoftheart with respect to edgecut, producing significantly better solutions.

1.3 Outline

This dissertation is organized as follows. We begin in Chapter 2 by presenting preliminaries
and basic concepts that are used throughout this thesis. We continue by elaborating related
work in Chapter 3. Our algorithmic contributions are presented in Chapter 4, Chapter 5,
and Chapter 6, which correspond to streaming algorithms, local algorithms, and multilevel
algorithms, respectively. Specific conclusions are given in respective chapters dedicated to
each family of algorithms, and a general conclusion is provided in Chapter 7.

Chapter 2

Preliminaries

In this chapter, we present the basic concepts used in this dissertation.

2.1 Graphs and Hypergraphs

Let G = (V = {0, . . . , n − 1}, E) be an undirected graph with no multiple or self edges
allowed, such that n = |V | and m = |E|. Let c : V → R≥0 be a nodeweight function,
and let ω : E → R>0 be an edgeweight function. We generalize c and ω functions to sets,
such that c(V ′) =

∑
v∈V ′ c(v) and ω(E ′) =

∑
e∈E′ ω(e). Let N(v) = {u : {v, u} ∈ E}

be the open neighborhood of v, and let N [v] = N(v) ∪ {v} be the closed neighborhood
of v. We generalize the notations N(.) and N [.] to sets, such that N(V ′) = ∪v∈V ′N(v)

and N [V ′] = ∪v∈V ′N [v]. A graph G′ = (V ′, E ′) is said to be a subgraph of G = (V,E)

if V ′ ⊆ V and E ′ ⊆ E ∩ (V ′ × V ′). When E ′ = E ∩ (V ′ × V ′), G′ is the subgraph
induced in G by V ′. Let V ′ = V \ V ′ be the complement of a set V ′ ⊆ V of nodes. Let
a motif µ be a connected graph. Enumerating the motifs µ in a graph G consists building
the collectionM of all occurrences of µ as a subgraph of G. Let d(v) be the degree of node
v and ∆ be the maximum degree of G. Let dω(v) be the weighted degree of a node v and
∆ω be the maximum weighted degree of G. Let dµ(v) be the motif degree of a node v, i.e.,
the number of motifs µ ∈ M which contain v. We generalize the notations d(.), dω(.), and
dµ(.) to sets, such that the volume of V ′ is d(V ′) =

∑
v∈V ′ d(v), the weighted volume of V ′

is dω(V ′) =
∑

v∈V ′ dω(v), and the motif volume of V ′ is dµ(V ′) =
∑

v∈V ′ dµ(v). Let a
spanning forest ofG be an acyclic subgraph ofG containing all its nodes. Let the arboricity
of G be the minimum number of spanning forests of G necessary to cover all its edges.

Let an undirected signed graph be a graphG = (V = {0, . . . , n−1}, E)which expands
the above definition to permit edges with both positive and negative weights. More specifi
cally, let ω : E → R \ {0} be a signed edgeweight function associated with a signed graph.
Let E− denote the set of edges with negative weight and E+ denote the set of edges with

7

8 2.2. Partitions and Clusterings

positive weight, such that E− ∪E+ = E, E− ∩E+ = ∅,m− = |E−|, andm+ = |E+|. Let
N−(v) = N(v) ∩ E− denote the neighbors of v which are connected to v by an edge with
negative weight. Let N+(v) = N(v) ∩ E+ denote the neighbors of v which are connected
to v by an edge with positive weight.

LetH = (V = {0, . . . , n− 1}, E) be an undirected hypergraph with no multiple or self
hyperedges allowed, with n = |V | nodes andm = |E| hyperedges (or nets). A net is defined
as a subset of V . The nodes that compose a net are called its pins. Let c : V → R≥0 be a
nodeweight function, and let w : E → R>0 be a netweight function. We generalize c and
w functions to sets, such that c(V ′) =

∑
v∈V ′ c(v) andw(E ′) =

∑
e∈E′ w(e). A node v ∈ V

is incident to a net e ∈ E if v ∈ e. Let I(v) be the set of incident nets of v, let d(v) = |I(v)|
be the degree of v, and let dw(v) = w(I(v)) be the weighted degree of v. We generalize
the notations d(.) and dw(.) to sets, such that the volume of V ′ is d(V ′) =

∑
v∈V ′ d(v) and

the weighted volume of V ′ is dw(V ′) =
∑

v∈V ′ dw(v). Two nodes are adjacent if both are
incident to the same net. Let the number of pins |e| in a net e be the size of e. Given a
cluster V ′ ⊆ V , the cut or cutnet cut(V ′) of V ′ consists of the total weight of the nets
crossing the cluster, i.e., cut(V ′) =

∑
e∈E′ w(E ′), in which E ′ =

{
e ∈ E : ∃i, j | e ∩ V ′ 6=

∅, e ∩ V ′ 6= ∅, i 6= j
}
.

2.2 Partitions and Clusterings

The kway (hyper)graph partitioning problem consists of assigning each node of a (hy
per)graph to exactly one of k distinct blocks respecting a balancing constraint in order to
minimize the weight of the (hyper)edges running between the blocks, i.e., the edgecut (resp.
cutnet). More precisely, it partitions V into k blocks V1,…,Vk (i.e., V1 ∪ · · · ∪ Vk = V and
Vi ∩ Vj = ∅ for i 6= j), which is called a kpartition of the (hyper)graph. The edgecut
(resp. cutnet) of a kpartition consists of the total weight of the cut edges (resp. cut nets),
i.e., edges (resp. nets) crossing blocks. More formally, let the edgecut (resp. cutnet) be∑

i<j ω(E
′), in which E ′ =

{
e ∈ E, ∃ {u, v} ⊆ e : u ∈ Vi, v ∈ Vj, i 6= j

}
is the cutset

(i.e., the set of all cut nets). The balancing constraint demands that the sum of node weights
in each block does not exceed a threshold associated with some allowed imbalance ϵ. More
specifically, ∀i ∈ {1, . . . , k} : c(Vi) ≤ Lmax =

⌈
(1 + ϵ) c(V)

k

⌉
. For each net e of a hyper

graph, Λ(e) := {Vi | Vi∩e 6= ∅} denotes the connectivity set of e. The connectivity λ(e) of a
net e is the cardinality of its connectivity set, i.e., λ(e) := |Λ(e)|. The socalled connectivity
metric (λ1) is computed as

∑
e∈E′(λ(e)− 1) ω(e), where E ′ is the cutset.

In the local graph clustering problem, a graph G = (V,E) and a seed node u ∈ V are
taken as input and the goal is to detect a wellcharacterized cluster (or community) C ⊂ V

containing u. A highquality cluster C usually contains nodes that are densely connected to

2.3. Process Mapping 9

one another and sparsely connected toC. There are many functions to quantify the quality of
a cluster, such as modularity [27] and conductance [13]. The conductance metric is defined
as ϕ(C) = |E ′|/min(d(C), d(C)), where E ′ = E ∩ (C ×C) is the set of edges shared by a
clusterC and its complement. Local motif graph clustering is a generalization of local graph
clustering where a motif µ is taken as an additional input and the computed cluster optimizes
a clustering metric based on µ. In particular, the motif conductance ϕµ(C) of a cluster C is
defined by Benson et al. [31] as a generalization of the conductance in the following way:
ϕµ(C) = |M ′|/min(dµ(C), dµ(C)), where M ′ are all the motifs µ which contain at least
one node in C and one node in C. Note that, if the motif under consideration is simply an
edge, then |M ′| is the edgecut and ϕµ(C) = ϕ(C).

Let a clustering of a graph G = (V,E) be any partition of V , i.e., a set of blocks or
clusters V1,…,Vt ⊂ V such that V1 ∪ · · · ∪ Vt = V and Vi ∩ Vj = ∅, where t ∈ [1, n]. An
abstract view of the clustering is a quotient graph Q, in which nodes represent clusters and
edges are induced by the connectivity between clusters. We call neighboring clusters a pair
of clusters that is connected by an edge in the quotient graph. A node v ∈ Vi that has a
neighbor w ∈ Vj, i 6= j, is a boundary node. The edgecut of a clustering consists of the
total weight of the edges crossing clusters (also called cut edges), i.e.,

∑
i<j ω(Eij), where

Eij = {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. Note that 1
2
d−ω (V) is an absolute lower bound for the

edgecut of any clustering. Let a signed graph be balanced if there exists a clustering of it
with edgecut equal to 1

2
d−ω (V), i.e., where all edges with positive weight are inside clusters

and all edges with negative weight are cut. If such clustering does not exist, e.g., a triangle
with only one edge with negative weight, we say that the signed graph is unbalanced. Let
the signed graph clustering (SGC) consist of obtaining a clustering of an undirected signed
graph G in order to minimize the edgecut.

2.3 Process Mapping

For processmapping applications of hierarchical partitions, assume that we haven processes
and a topology containing k PEs. Let C ∈ Rn×n denote the communication matrix and let
D ∈ Rk×k denote the (implicit) topology matrix or distance matrix. In particular, Ci,j

represents the required amount of communication between processes i and j, while Dx,y

represents the cost of each communication between PEs x and y. Hence, if processes i and
j are respectively assigned to PEs x and y, or viceversa, the communication cost between
i and j will be Ci,jDx,y. Throughout this thesis, we assume that C and D are symmetric –
otherwise one can create equivalent problems with symmetric inputs [32].

In particular, for process mapping applications tackled in this paper, we assume that
topologies are organized as homogeneous hierarchies. In this case S = a1 : a2 : ... : aℓ is a

10 2.4. Flows

sequence describing the hierarchy of a supercomputer. The sequence should be interpreted
as each processor having a1 cores, each node a2 processors, each rack a3 nodes, and so forth,
such that the total number of PEs is k = Πℓ

i=1ai. Without loss of generality, we assume that
ai ≥ 2, ∀i ∈ {1, . . . , ℓ}. Let D = d1 : d2 : . . . : dℓ be a sequence describing the distance
between PEs within each hierarchy level, meaning that the distance between two cores in
the same processor is d1, the distance between two cores in the same node but in different
processors is d2, the distance between two cores in the same rack but in different nodes is d3,
and so forth. The process mapping problem consists of assigning the nodes of a graph to PEs
in a communication topology while respecting a balancing constraint in order to minimize
the emphtotal communication cost. Let Π : {1, . . . , n} 7→ {1, . . . , k} be the function that
maps a node onto its PE. The objective of process mapping is to minimize Equation (2.1).

J(C,D,Π) :=
∑
i,j

Ci,jDΠ(i),Π(j). (2.1)

The exact total communication cost of a given mapping of processes onto PEs depends
on a combination of bandwidth and latency, which depends on a multitude of factors in prac
tice. The total communication cost in latencybased topologies is also known as the Coco(.)
or hopbyte objective function. An alternative objective function to the total communication
cost is the bandwidthbased metric maximum congestion, which is defined as the maximum
number of message exchanges through any link of the topology graph. Another possible
objective is the maximum dilation, which is defined as the maximum communication cost
directly associated with a pair of PEs for a given mapping.

2.4 Flows

Let Gf = (Vf , Ef) be a flow graph. A flow graph has one source node s ∈ Vf , one sink
node t ∈ Vf , and a set of remaining nodes V \ {s, t}. All edges e = (u, v) in a flow
graph are directed and associated with a nonnegative capacity cap(u, v). An st flow is a
function f : Vf × Vf → R>0 which satisfies a capacity constraint, i. e., f(u, v) ≤ cap(u, v),
a symmetry constraint, i. e., ∀u, v ∈ Vf : f(u, v) = −f(v, u), and a flow conservation
constraint, i. e., ∀u ∈ Vf \ {s, t} :

∑
v∈Vf

f(u, v) = 0. An edge (u, v) is called saturated if
cap(u, v) = f(u, v); The total amount of flow moved from s to t is defined as the value |f |
of f and is computed as follows: |f | =

∑
u∈Vf

f(u, t) =
∑

v∈Vf
f(s, v). A given st flow f

in Gf is maximum if, for any st flow f ′ in Gf , |f ′| ≤ |f |. Let Gr = (Vf , Er) be the
residual graph associated with a given flow f on Gf , such that Er = {(u, v) ∈ Vf × Vf :

cap(u, v)−f(u, v) > 0}. According to the MaxFlowMinCut Theorem [33], the value |f |
of a maximum st flow f on Gf equals the weight of a minimum st cut on Gf , i. e., a

2.5. Multilevel Scheme 11

2way partition of Gf where edge weights equal edge capacities, s and t are in distinct
blocks, and the total weight of the cut edges is minimum. To find the sink side of the
minimum cut associated with a maximum flow in Gf , a reverse breadthfirst search can be
performed on Gf starting at the sink node t.

For each node u in a flow graph Vf , let exc(u) =
∑

v∈Vf
f(u, v) be its excess value

and d(u) be its potential. A node u is called active if exc(u) > 0. An edge (u, v) is called ad
missible if cap(u, v)− f(u, v) > 0 and d(u) = d(v) + 1. The pushrelabel [34] algorithm
builds a maximum flow by computing a succession of preflows, i. e., flows where the flow
conservation constraint is substituted by ∀u ∈ Vf \ {s, t} : exc(u) ≥ 0. In the initial pre
flow, all outedges of s are saturated, ∀u ∈ Vf \ {s} : d(u) = 0, and d(s) = |Vf |. The
initial preflow is evolved via operations push, i. e., sending as much flow as possible from
an active node through an admissible edge, and relabel, i. e., increasing the potential of a
node until it becomes active. Preflows induce minimum sinkside cuts, so a maximum flow
and a minimum cut are obtained once no node is active.

A common technique to solve flow and cut problems on hypergraphs consists of trans
forming them in directed graphs and then applying traditional graphbased techniques on them.
Among the existing transformations [35, 36], we highlight clique expansion, star expansion,
and Lawler expansion. In the clique expansion, each net is represented by a clique, i.e., a
set of edges connecting each pair of its pins in both directions. In this approach, the weight
of each edge is equal to weight of the corresponding net e divided by |e| − 1 and parallel
edges are substituted by a single edge whose weight is the sum of the weights of the removed
edges. In the star expansion, each net is represented by an auxiliary artificial node connected
to its pins by edges in both directions. In this expansion, the edges have the same weight as
the corresponding net. In the Lawler expansion, each net eis represented by two auxiliary
artificial nodes w1 and w1 and a collection of edges. In particular, there is a directed edge
(w1, w2) which has the same weight as the corresponding net. Additionally, each pin of the
corresponding net has an outedge to w1 and an inedge from w2, each of them with weight
infinity. The three transformation approaches are exemplified in Figure 2.1.

2.5 Multilevel Scheme

In this section, we characterize the multilevel scheme, which is a successful heuristic for
clustering or partitioning large (hyper)graphs. Before describing the multilevel scheme, we
need to define the terms contraction and uncontraction. Contracting an edge e = {u, v}
consists of replacing the nodes u and v by a new node x connected to the former neighbors
of u and v and setting c(x) = c(u) + c(v). If replacing edges of the form {u,w}, {v, w}
would generate two parallel edges {x,w}, a single edge with ω({x,w}) = ω({u,w}) +

12 2.5. Multilevel Scheme

Lawler ExpansionStar ExpansionClique Expansion

Figure 2.1. Three existing approaches to represent a hypergraph using a directed graph.
Nodes and nets of the original hypergraph are respectively represented by black circles and
colored areas around them. Auxiliary artificial nodes and edges are respectively represented
by circles and arrows, both with the same color as the corresponding net. Bidirectional
arrows represent a pair of edges in both directions. Solid edges have finite weight while
dashed edges have infinite weight.

ω({v, w}) is inserted. Contracting a cluster of nodes C = {u1, . . . , uℓ} involves replacing
them with a new node v whose weight is the sum of the weights of the clustered nodes and
is connected to all elements w ∈

∪ℓ
i=1N(ui), ω({v, w}) =

∑ℓ
i=1 ω({ui, w}). This ensures

the transfer of partition from a coarser to a finer level maintains the edgecut, as exemplified
in Figure 2.3. We define the contraction operator as

/
such that G

/
V ′, with V ′ ⊆ V , is the

(hyper)graph obtained by contracting the nodes from V ′ onG. The uncontraction of a node
undoes the contraction.

We describe the multilevel scheme within the scope of graph partitioning, although the
basic idea is also extensible to other problems, such as process mapping, hypergraph par
titioningm and graph clustering. A multilevel approach consists of three main phases. In
the contraction (coarsening) phase, successive approximations of an original input graph
are created. The contractions quickly reduce the size of the graph and stop as soon as it
becomes sufficiently small to be partitioned by an expensive algorithm. In the construc
tion phase, an initial partitioning is obtained by partitioning the coarsest graph. Due to
the way we define contraction, every partition of the coarsest level implies a corresponding
partition of the input graph with equal edgecut and balance. In the local improvement (or
uncoarsening) phase, we uncontract previously contracted nodes to go back through each
level, from the coarsest approximation to the original graph. After each uncoarsening, lo
cal improvement algorithms move nodes between blocks in order to improve the objective
function or balance. Local search moves nodes between blocks to reduce the objective, as
exemplified in Figure 2.4.

2.6. Evolutionary Algorithms 13

input
graph

... ...

initial

c
o
n
tra

c
tio

n
 p

h
a
s
e

local improvement

uncontract

partitioning

contract

output
partition

u
n
c
o
a
rs

e
n
in

g
 p

h
a
s
e

Figure 2.2. Multilevel scheme (adapted from [37]).

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Figure 2.3. Contraction of a clustering [38]. Each cluster is represented by a different color
on the left hand side graph. Each cluster on the lefthand side is contracted to a single node
on the right hand side.

2.6 Evolutionary Algorithms

Evolutionary orMemetic algorithms [39] are populationbased heuristics that mimic natural
evolution to optimize a problem. They use a convenient notation to represent the decision
variables, called individuals, and evaluate their quality through a fitness function (simulation
or mathematical [40]). A population of individuals evolves during the algorithm. Recom
bination [41] (crossover) exploits characteristics of previous individuals to create new and
better solutions. Mutation [42] introduces random variations to explore the search space and
escape local optima. Evolutionary algorithms do not guarantee optimality, but are effective
in exploring and exploiting the solution space.

14 2.7. Computational Models

Figure 2.4. Typical step of a local search algorithm. Cluster assignments are indicated by
colors. In this example, a single node is moved to another cluster in order to decrease the
overall edgecut.

2.7 Computational Models

Streaming algorithms usually follow a loadcomputestore logic shown in Figure 2.5. The
classic streaming model is the onepass model, in which the nodes are loaded one at a time
alongside with their (hyper)edges, then some logic is applied to permanently assign them to
blocks. This logic can be as simple as aHashing function or as complex as scoring all blocks
based on some objective and then assigning the node to the block with highest score. When
assignment decisions of an algorithm for the current node depend on the previous decisions,
an algorithm in the model has to store the assignment of the previous loaded nodes and
hence needs Ω(n) space. An extended version of this model is called the buffered streaming
model. More precisely, a δsized buffer or batch of input nodes with their neighborhood
is repeatedly loaded. Partition/block assignment decisions have to be made after the whole
buffer is loaded. While we investigate the dependence of our algorithm on this parameter, in
practice the parameter will depend on the amount of available memory on a machine. The
parameter can be dynamically chosen such that the buffer is “full” if Θ(n) space has been
loaded from the disk. Hence the buffered streaming model asymptotically does not need
more space than a onepass streaming algorithm if this setting is used. This holds true even
in the worst case: when a node has degree close to n.

2.8 Instances

Throughout this thesis we present experiments on various kinds of (signed) (hyper)graphs.
In this section, we summarize the main properties, the source, and the area of application of
the graphs.

2.8. Instances 15

past nodes. . . current batch future nodes . . .

load batch

compute assignment

permanently assign nodes to blocks

past nodes. . . next batch future nodes . . .

(hyper)edges between current

batch and past nodes

(hyper)edges between current

batch and future nodes

block assignments

Figure 2.5. Typical layout of streaming algorithm for (hyper)graph partitioning.

2.8.1 Graphs

Experimentswith StreamingAlgorithms. In our experiments with streaming algorithms,
we use graphs from various sources [43–47]. Most of the considered graphs were used for
benchmark in previous works on graph partitioning. The graphs wikiTalk and webGoogle,
as well as most networks of copurchasing, roads, social, web, autonomous systems, cita
tions, circuits, similarity, meshes, and miscellaneous are publicly available either in [43] or
in [44]. We also use graphs such as eu2005, in2004, uk2002, and uk200705, which are
available at the 10th DIMACS Implementation Challenge website [45]. Finally, we include
some artificial random graphs. We use the name rggX for random geometric graph with
2X nodes where nodes represent random points in the unit square and edges connect nodes
whose Euclidean distance is below 0.55

√
lnn/n. We use the name delX for a graph based

on a Delaunay triangulation of 2X random points in the unit square [46]. We use the name
RHGX for random hyperbolic graphs [47, 48] with 108 nodes and X × 109 edges. Basic
properties of the graphs under consideration can be found in Table 2.1. For our experiments,
we split the graphs in three disjoint sets. A tuning set for the parameter study experiments,
a test set for the comparisons against the stateoftheart, and a set of huge graphs for spe
cial larger scale tests. In any case, when streaming the graphs we use the natural given
order of the nodes.

Experiments with Multilevel Process Mapping. The instances used in our experiments
with multilevel process mapping come from various sources to test our algorithm. We use
the largest six graphs from Chris Walshaw’s benchmark archive [49]. Graphs derived from
sparse matrices have been taken from the SuiteSparse Matrix Collection [50]. We also use
graphs from the 10th DIMACS Implementation Challenge [45] website. Here, rggX and
delX are defined as before. The graphs af_shell9, thermal2, and nlr are from the matrix and

16 2.8. Instances

Graph n m Type

Tuning Set
coAuthorsCiteseer 227 320 814 134 Citations
citationCiteseer 268 495 1 156 647 Citations
amazon0312 400 727 2 349 869 CoPurch.
amazon0601 403 364 2 443 311 CoPurch.
amazon0505 410 236 2 439 437 CoPurch.
roadNetPA 1 087 562 1 541 514 Roads
comYoutube 1 134 890 2 987 624 Social
soclastfm 1 191 805 4 519 330 Social
roadNetTX 1 351 137 1 879 201 Roads
in2004 1 382 908 13 591 473 Web
G3_circuit 1 585 478 3 037 674 Circuit
socpokec 1 632 803 22 301 964 Social
asSkitter 1 694 616 11 094 209 Aut.Syst.
wikitopcats 1 791 489 28 511 807 Social
roadNetCA 1 957 027 2 760 388 Roads
wikiTalk 2 388 953 4 656 682 Web
socflixster 2 523 386 7 918 801 Social
del22 4 194 304 12 582 869 Artificial
rgg22 4 194 304 30 359 198 Artificial
del23 8 388 608 25 165 784 Artificial
rgg23 8 388 608 63 501 393 Artificial

Huge Graphs
uk2005 39 459 923 783 027 125 Web
twitter7 41 652 230 1 202 513 046 Social
sk2005 50 636 154 1 810 063 330 Web
socfriendster 65 608 366 1 806 067 135 Social
erfact1.5s26 67 108 864 907 090 182 Artificial
RHG1 100 000 000 1 000 913 106 Artificial
RHG2 100 000 000 1 999 544 833 Artificial
uk200705 105 896 555 3 301 876 564 Web

Graph n m Type

Test Set
Dubcova1 16 129 118 440 Meshes
hcircuit 105 676 203 734 Circuit
coAuthorsDBLP 299 067 977 676 Citations
WebNotreDame 325 729 1 090 108 Web
Dblp2010 326 186 807 700 Citations
ML_Laplace 377 002 13 656 485 Meshes
coPapersCiteseer 434 102 16 036 720 Citations
coPapersDBLP 540 486 15 245 729 Citations
Amazon2008 735 323 3 523 472 Similarity
eu2005 862 664 16 138 468 Web
webGoogle 916 428 4 322 051 Web
cahollywood2009 1 087 562 1 541 514 Roads
Flan_1565 1 564 794 57 920 625 Meshes
Ljournal2008 1 957 027 2 760 388 Social
HV15R 2 017 169 162 357 569 Meshes
Bump_2911 2 911 419 62 409 240 Meshes
del21 2 097 152 6 291 408 Artificial
rgg21 2 097 152 14 487 995 Artificial
FullChip 2 987 012 11 817 567 Circuit
socorkutdir 3 072 441 117 185 083 Social
patents 3 750 822 14 970 766 Citations
citPatents 3 774 768 16 518 947 Citations
socLiveJournal1 4 847 571 42 851 237 Social
circuit5M 5 558 326 26 983 926 Circuit
italyosm 6 686 493 7 013 978 Roads
greatbritainosm 7 733 822 8 156 517 Roads

Table 2.1. Graphs for experiments with streaming algorithms.

the numeric section of the DIMACS benchmark set. The graphs eur and deu are large road
networks of Europe and Germany taken from [51]. Basic properties of the graphs under
consideration can be found in Table 2.2.

Experiments with Local Motif Clustering. In our experiments with local motif cluster
ing, we use graphs from various sources [43–45]. Most of the considered graphs were used
for benchmark in previous works in the area. Basic properties of the graphs under consider
ation can be found in Table 2.3. For our experiments, we split the graphs in two disjoint sets:
a tuning set for the parameter study experiments and a test set for the comparisons against
the stateoftheart. The graphs in the test set are exactly the graphs used in [23].

2.9. Machines 17

Graph n m Type

Tuning Graphs
fe_rotor 99 617 662 431 Miscellaneous
598a 110 971 741 934 Miscellaneous
ecology2 999 999 1 997 996 Circuit
G3_circuit 1 585 478 3 037 674 Circuit
del22 4 194 304 12 582 869 Artificial
rgg22 4 194 304 30 359 198 Artificial

UF Graphs
cop20k_A 99 843 1 262 244 Miscellaneous
2cubes_sphere 101 492 772 886 Miscellaneous
thermomech_TC 102 158 304 700 Miscellaneous
cfd2 123 440 1 482 229 Miscellaneous
boneS01 127 224 3 293 964 Miscellaneous
Dubcova3 146 689 1 744 980 Miscellaneous
bmwcra_1 148 770 5 247 616 Numerical
G2_circuit 150 102 288 286 Circuit
shipsec5 179 860 4 966 618 Miscellaneous
cont300 180 895 448 799 Miscellaneous

Graph n m Type

Large Walshaw Graphs
598a 110 971 741 934 Meshes
fe_ocean 143 437 409 593 Miscellaneous
144 144 649 1 074 393 Meshes
wave 156 317 1 059 331 Meshes
m14b 214 765 1 679 018 Meshes
auto 448 695 3 314 611 Meshes

Large Other Graphs
af_shell9 504 855 8 542 010 Miscellaneous
thermal2 1 227 087 3 676 134 Miscellaneous
nlr 4 163 763 12 487 976 Meshes
deu 4 378 446 5 483 587 Roads
del23 8 388 608 25 165 784 Artificial
rgg23 8 388 608 63 501 393 Artificial
del24 16 777 216 50 331 601 Artificial
rgg24 16 777 216 132 557 200 Artificial
eur 18 029 721 22 217 686 Roads

Table 2.2. Graphs for multilevel process mapping experiments.

2.8.2 Hypergraphs

In our experiments, we consider hypergraphs that have been used for benchmark in previ
ous works on hypergraph partitioning. We use the same benchmark as in [52]. This consists
of 310 hypergraphs from three benchmark sets: 18 hypergraphs from the ISPD98 Circuit
Benchmark Suite [53], 192 hypergraphs based on the University of Florida Sparse Matrix
Collection [50], and 100 instances from the international SAT Competition 2014 [54]. The
SAT instances were converted into hypergraphs by mapping each boolean variable and its
complement to a node and each clause to a net. From the Sparse Matrix Collection, one ma
trix was selected for each application area that had between 10 000 and 10 000 000 columns.
The matrices were converted into hypergraphs using the rownet model, in which each row
is treated as a net and each column as a node.

2.8.3 Signed Graphs

For experiments with signed graphs, we use the realworld signed graphs listed in Table 2.4.
They were all obtained from the public graph collections SNAP [55] and KONECT [56].

2.9 Machines

We now describe the five machines that are used in the following chapters. With hyper
threading, all used machine are capable of handling a number of threads equal to twice the

18 2.9. Machines

Graph n m Triangles

Tuning Set
citationCiteseer 268 495 1 156 647 847 420
coAuthorsCiteseer 227 320 814 134 2 713 298
amazon0312 400 727 2 349 869 3 686 467
amazon0505 410 236 2 439 437 3 951 063
amazon0601 403 364 2 443 311 3 986 507
del22 4 194 304 12 582 869 8 436 672
del23 8 388 608 25 165 784 16 873 359
socpokec 1 632 803 22 301 964 32 557 458
rgg22 4 194 304 30 359 198 85 962 754
rgg23 8 388 608 63 501 393 188 022 664
in2004 1 382 908 13 591 473 464 257 245

Graph n m Triangles

Test Set
comamazon 334 863 925 872 667 129
comdblp 317 080 1 049 866 2 224 385
comyoutube 1 134 890 2 987 624 3 056 386
comlivejournal 3 997 962 34 681 189 177 820 130
comorkut 3 072 441 117 185 083 627 584 181
comfriendster 65 608 366 1 806 067 135 4 173 724 142

Table 2.3. Graphs for local motif clustering experiments.

Graph n m Type

bitcoinalpha 3 783 14 081 Commerce
bitcoinotc 5 881 21 434 Commerce
elec 7 118 100 355 Miscellaneous
chess 7 301 32 650 Miscellaneous
slashdot081106 77 357 466 666 Social
slashdotzoo 79 116 465 840 Social
slashdot090216 81 871 495 666 Social
slashdot090221 82 144 498 532 Social
wikiconflict 118 100 1 461 058 Social
epinions 131 828 708 507 Social
wikisignedk2 138 592 712 337 Social

Table 2.4. Signed realworld graphs for signed graph clustering experiments.

number of their cores. Machine A has a two sixcore Intel Xeon E52630 processor running
at 2.8 GHz, 64 GB of main memory, and 3 MB of L2Cache. It runs Ubuntu GNU/Linux
20.04.1 and Linux kernel version 5.4.048. Machine B has a fourcore Intel Xeon E5420
processor running at 2.5 GHz, 16 GB of main memory, and 24 MB of L2Cache. The ma
chine runs Ubuntu GNU/Linux 20.04.1 and Linux kernel version 5.4.065. Machine C has
a sixteencore Intel Xeon Silver 4216 processor running at 2.1 GHz, 100 GB of main mem
ory, 16 MB of L2Cache, and 22 MB of L3Cache running Ubuntu 20.04.1. The machine
can handle 32 threads with hyperthreading. Machine D has a sixtyfourcore AMD EPYC
7702P processor running at 2.0 GHz, 1 TB of main memory, 32 MB of L2Cache, and 256

MBof L3Cache. Machine E has four sixteencore Intel XeonHaswellEXE78867 proces
sors running at 2.5 GHz, 1 TB of main memory, and 32768 KB of L2Cache. The machine
runs Debian GNU/Linux 10 and Linux kernel version 4.19.672.

2.10. Methodology 19

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

%
 i

n
s
ta

n
c
e
s
 ≤

 τ
 f

a
s
te

s
t

τ

MAPPR

LMCHGP

SOCIAL

Figure 2.6. Performance profile comparing running times of three algorithms.

2.10 Methodology

In this section, we describe our experimental methodology. The concepts and details pre
sented here apply throughout the thesis, unless explicitly stated otherwise. Depending on
the focus of the experiment, we measure running time, memory consumption and/or solu
tion quality. Depending on the problem under study, solution quality is measured in terms
of edgecut, cutnet, connectivity, communication cost, and/or motif conductance. In gen
eral, we perform ten repetitions per algorithm and instance using different random seeds for
initialization, and we compute the arithmetic average of the computed objective functions
and running time per instance. When further averaging over multiple instances, we use the
geometric mean in order to give every instance the same influence on the final score.

For a solution generated by an algorithmA, we express its score σA (which can measure
running time or solution quality) using one or more of the following tools: improvement
over an algorithm B, computed as

(
σB

σA
− 1

)
∗ 100%; ratio, computed as

(
σA

σmax

)
with σmax

being the maximum score for a given instance or for a given xaxis parameter among all
competitors including A; relative value over an algorithm B, computed as

(
σA

σB

)
. Bar charts

and boxplots are also employed to represent our findings. We use bar charts to visualize
the average value of an objective function in relation to an xaxis parameter, where each
algorithm is represented by vertical bars of a given color with origin on the xaxis. The
bars for every value of this parameter have a common origin and are arranged in terms of
their height, allowing all heights to be visible. We use boxplots to give a clear picture of the
dataset distribution by displaying the minimum, maximum, median, first and third quartiles,
while disregarding outliers.

We also present performance profiles which relate the running time (resp. solution qual
ity) of a group of algorithms to the fastest (resp. best) one on a perinstance basis. Their
xaxis shows a factor τ while their yaxis shows the percentage of instances for which A
has up to τ times the running time (resp. solution quality) of the fastest (resp. best) algo

20 2.10. Methodology

rithm. Achieving higher fractions at smaller τ values is considered better. As an example,
Figure 2.6 compares the running time of three different algorithms using a performance pro
file. In this plot, the algorithm SOCIAL is the fastest one for 87% of the instances, while
the algorithms LMCHGP and MAPPR are the fastest ones for 12% and 1% of the instances,
respectively (see τ = 100). Note also that the running time of SOCIAL is within a factor 1.18
of the running times of the fastest competitors for all instances (see yaxis = 1). Further
more, the running time of LMCHGP and MAPPR are within a factor 10 of the running times
of the fastest competitors for 67% and 46% of the instances, respectively (see τ = 101).

Chapter 3

Related Work

In this chapter, we give an overview of previous work that has been done on streaming (hy
per)graph partitioning, local motif clustering, process mapping, and signed graph clustering.

3.1 (Hyper)Graph Partitioning

There is massive research on (hyper)graph partitioning in the literature. The most prominent
tools to partition (hyper)graphs in memory include PaToH [57], Metis [58], hMetis [59],
Scotch [60], HYPE [61], KaHIP [62], KaMinPar [63], KaHyPar [52], Mt-KaHyPar [64], and
mt-KaHIP [65]. The readers are referred to [66–68] for extensive material and references.
Here, we focus on the results specifically related to the scope of this paper. In particular, we
provide an exhaustive account of the stateoftheart solutions available for the (hyper)graph
partitioning problem in the context of the (buffered) (re)streaming model.

3.1.1 Streaming Graph Partitioning

Stanton and Kliot [69] propose heuristics to tackle the graph partitioning problem in the
streaming model. Among their most prominent heuristic is the onepass method linear de
terministic greedy (LDG) which produces solutions with the best overall edgecut. In this
algorithm, node assignments prioritize blocks containing more neighbors and use a penalty
multiplier to control imbalance. Particularly, a node v is assigned to the block Vi that maxi
mizes |Vi ∩ (v)|Φ(i) with Φ(i) being a multiplicative degrading factor defined as (1− |Vi|

Lmax
)

The intuition is that the degrading factor avoids to overload blocks that are already very
heavy. In case of ties on the objective function, LDG assigns the node to the block with
fewer nodes. Overall, LDG partitions a graph in O(m + nk) time. Moreover, the authors
also propose a simple onepass methods based on hashing, which has running time O(n)

and produces a poor edgecut.

21

22 3.1. (Hyper)Graph Partitioning

Later, Stanton [70] studies the streaming graph partitioning problem from a more theo
retical perspective. The author proves that no algorithm can obtain an o(n)approximation
with a random or adversarial stream ordering. Next, two variants of a randomized greedy
algorithm are analyzed by using a novel coupling to finite Polya Urn [71] processes, which
intuitively explains the performance of the compared algorithms.

Tsourakakis et al. [3] propose Fennel, a simple onepass partitioning algorithm which
adapts the widelyknown clustering objective function modularity [27]. Roughly speaking,
Fennel assigns a node v to a block Vi in order to maximize an expression of type |Vi∩ (v)|−
f(|Vi|), where f(|Vi|) is an additive degrading factor. More specifically, the authors defined
the Fennel objective function by using f(|Vi|) = αγ|Vi|γ−1, in which γ is a free parameter
and α = mkγ−1

nγ . After a parameter tuning made by the authors, Fennel uses γ = 3
2
, which

implies α =
√
k m
n3/2 . Although the objective function penalizes imbalanced partitions, the

authors define the possibility of a hard constraint to enforce balancing. In their experiments,
Fennel cuts fewer edges than LDG [69] and, for some instances, it cuts roughly the same
number of edges as an offline partitioning algorithm.

Zhang et al. [72] propose AKIN, a streaming graph partitioning algorithm for distributed
graph storage systems. AKIN is able to partition graphs where the number of nodes n is not
known in advance by allowing the migration of nodes between blocks over time. The assign
ment decisions are mainly based on the similarity between nodes, which is evaluated with
the Jaccard similarity coefficient [73]. Given the (partial) neighborhoods of two nodes, this
coefficient is defined as the ratio of their intersection over their union. Initially, AKIN as
sumes a base block for each node, which is given by a hash function. This base block is taken
as a preliminary node assignment as well as a constanttime index for reaching information
in the distributed graph storage. More specifically, for each node, AKIN stores in its base
block a fixedlength list containing its loaded neighbors with largest degree. This list is used
for computing the similarity between nodes. As soon as an edge is loaded, AKIN assigns
and migrates it and both of its endpoints to the block which maximizes a similaritybased
heuristic. In the experimental evaluation, the version of AKIN keeping up to 100 neighbors
per node cuts fewer edges compared to Fennel while maintaining equivalent imbalance and
spending 10% more running time.

3.1.2 Restreaming Graph Partitioning

Nishimura and Ugander [74] introduce a restreaming approach to partition the nodes of a
graph. Their approach is motivated by scenarios where the same graph is streamed multiple
times. In their model, a onepass partitioning algorithm can pass multiple times through
the entire input while the edgecut is iteratively reduced. The authors propose ReLDG and

3.1. (Hyper)Graph Partitioning 23

ReFennel, which are respective restreaming adaptations of linear deterministic greedy [69]
(LDG) and Fennel [3]. On the one hand, ReLDG modifies the objective of LDG to account
only for node assignments performed during the current pass when computing block weights.
On the other hand, ReFennel uses the same objective as Fennel during restreaming, but its
additive balancing degrading factor is increased after each pass in order to enforce balance.
Additionally, the authors prove that ReFennel converges after a finite number of restreams
even without increasing the degrading factor. Their experiments confirm that their restream
ing methods can iteratively reduce edgecut.

Awadelkarim and Ugander [4] investigate how the order in which nodes are streamed in
fluences onepass graph partitioning. The authors introduce the notion of prioritized stream
ing, where (re)streamed nodes are statically or dynamically reordered based on some prede
fined priority. Their approach, which is a prioritized version of ReLDG, uses multiplicative
weights of restreaming algorithms and adapts the ordering of the streaming process inspired
by balanced label propagation. In their experiments, the authors consider a wide range of
stream orderings. The minimum overall edgecut is obtained using a dynamic node order
ing based on their own metric ambivalence. This approach is closely followed by a static
ordering based on node degree.

3.1.3 Buffered Streaming Graph Partitioning

Patwary et al. [75] propose WStream, a simple streaming graph partitioning algorithm that
keeps a sliding window in memory. The authors allow a few hundred nodes in the sliding
window in order to obtain more information about a node before it is permanently assigned
to a block based on a greedy function. As soon as a node is allocated to a block, one more
node is loaded from the input stream into the sliding window, which keeps the window size
constant. In their experiments, WStream cuts fewer edges than LDG and more edges than
offline multilevel partitioning for most tested graphs.

Jafari et al. [5] perform graph partitioning using a buffered streaming computational
model. The authors propose a sharedmemory algorithm which repeatedly loads a batch of
nodes from the stream input, partitions it using a multilevel scheme, and then permanently
assigns the nodes to blocks. Their multilevel scheme is based on a simplified structure
where the onepass algorithm LDG is used for coarsening, computing an initial partition,
and refining it. They parallelize LDG in a nodecentric way by simply splitting nodes among
processors, which yields a parallelization of the three steps of their multilevel scheme. In
their experiments, their algorithms cuts fewer edges than LDG while scaling better than
offline partitioning algorithms.

24 3.1. (Hyper)Graph Partitioning

3.1.4 Streaming Hypergraph Partitioning

Alistarh et al. [8] propose Min-Max, a onepass streaming algorithm to assign the nodes of a
hypergraph to blocks. For each block, this algorithm keeps track of nets which contain pins
in it. This implies a memory consumption of O(mk), which is more than the typical mem
ory consumption of a streaming algorithm for graph partitioning. When a node is loaded,
Min-Max allocates it to the block containing the largest intersection with its nets while re
specting a hard constraint for load balance. The authors theoretically prove that their algo
rithm is able to recover a hidden coclustering with high probability, where a coclustering
is defined as a simultaneous clustering of nodes and hyperedges. In the experimental eval
uation, Min-Max outperforms five intuitive streaming approaches with respect to load im
balance, while producing solutions up to five times more imbalanced than internalmemory
algorithms such as hMetis.

Taşyaran et al. [9] propose improved versions of the algorithm Min-Max [8]. The au
thors present Min-Max-N2P, a modified version of Min-Max that stores blocks containing
each net’s pins instead of storing nets per block, as done in Min-Max. In their experiments,
Min-Max-N2P is three orders of magnitude faster than Min-Max while keeping the same
cutnet. The authors also introduce three algorithms with reduced memory usage compared
to Min-Max: Min-Max-Lℓ, a modification of Min-Max-N2P that employs an upperbound ℓ
to limit memory consumption per net, Min-Max-BF which utilizes Bloom filters for mem
bership queries, and Min-Max-MH that uses hashing functions to replace the connectivity
information between blocks and nets. In their experiments, their three algorithms reduce the
running time in comparison to Min-Max, especially Min-Max-Lℓ and Min-Max-MH, which
are up to four orders of magnitude faster. On the other hand, the three algorithms generate so
lutions with worse cutnet than Min-Max, especially Min-Max-MH, which increases the cut
net by up to an order of magnitude. Moreover, the authors propose a technique to improve
the partitioning decision in the streaming setting by including a buffer to store some nodes
and their net sets. This approach operates similarly toMin-Max-N2P, but with the added abil
ity to revisit buffered nodes and adjust their partition assignment based on the connectivity
metric. The authors propose three algorithms using this buffered approach: REF that buffers
every incoming node but only reassigns those that may improve connectivity,REF_RLX that
buffers all nodes and reassigns all nodes in the buffer, and REF_RLX_SV that only buffers
nodes with small net sets and reassigns all nodes in the buffer. Their experimental results
show that the use of buffered approaches leads to a 520% improvement in partitioning qual
ity compared to nonbuffered approaches, but with a tradeoff of increased runtime.

3.2. Local Motif Clustering 25

3.2 Local Motif Clustering

Motifbased clustering has been widely studied in the literature, with works such as [23, 76–
79] partitioning all the nodes of a graph into clusters based on motifs. We also address the
topic of clustering based on motifs, but our focus is on identifying clusters in the immediate
vicinity of a specific seed node, rather than on the entire graph. Several works [21, 80–83]
propose local clustering algorithms, but they do not focus on optimizing for motifbased
metrics like this thesis. Instead, they use metrics based on edges, like conductance and
modularity. In this section, we review previous work on local clustering based on motifs,
which is the focus of this thesis.

Rohe and Qin [84] propose a local clustering algorithm based on triangle motifs. Their
algorithm starts by initializing a cluster containing only the seed node, and iteratively grows
this cluster. Particularly, the algorithm greedily inserts nodes contained in at least a pre
defined number of cut triangles. Huang et al. [85] recover local communities containing
a seed node in online and dynamic setups based on higherorder graph structures named
Trusses [86]. They define the ktruss of a graph as its largest subgraph whose edges are all
contained in at least (k− 2) triangle motifs, hence trusses are a graph structure based on the
frequency of triangles. The authors use indexes to search for ktruss communities in time
proportional to the size of the recovered community.

Yin et al. [23] propose MAPPR, a local motif clustering algorithm based on the Ap
proximate Personalized PageRank (APPR) method. In a preprocessing phase, MAPPR enu
merates the motif of interest in the entire input graph and constructs a weighted graph W ,
in which edges only exist between nodes that appear in at least one instance of the motif,
and their edge weight is equal to the number of occurrences of the motif containing these
two endpoints. Afterward, MAPPR uses an adapted version of the APPR method to find
local communities in the weighted graph constructed in the preprocessing phase. MAPPR
is able to extract local communities from directed input graphs, something that cannot be
done using APPR alone.

Zhang et al. [24] propose LCD-Motif, an algorithm that addresses the local motif clus
tering problem using a modified version of the spectral method. LCD-Motif has two main
differences in comparison to the traditional spectral motif clustering method. First, instead
of computing singular vectors, the algorithm performs random walks to identify potential
members of the searched cluster. They use the span of a few dimensions of vectors, obtained
through random walks, as an approximation for the local motif spectra. Second, Instead of
using kmeans for clustering, LCD-Motif searches for the minimum 0norm vector within
the previously mentioned span, which must contain the seed nodes in its support vector.

26 3.3. Process Mapping

Meng et al. [25] propose FuzLhocd, a local motif clustering algorithm that uses fuzzy
arithmetic to optimize a modified version of modularity. Given seed node, FuzLhocd starts
by detecting probable core nodes of the targeted local community using fuzzy membership.
After identifying the probable core nodes of the target local community using fuzzy member
ship, the algorithm expands these nodes using another fuzzy membership to form a cluster.

Zhou et al. [87] propose HOSPLOC, a local motif clustering algorithm that uses a motif
based random walk to compute a distribution vector, which is then truncated and used in
a vectorbased partitioning method. The algorithm begins by approximately estimating the
distribution vector through a motifbased random walk. To further refine the computation
and focus on the local region, HOSPLOC sets all small vector entries to 0. After this prepro
cessing step, the algorithm applies a vectorbased partitioning method [88] on the resulting
distribution vector in order to identify a local cluster.

Shang et al. [89] propose HSEI, a local motif clustering algorithm that uses motif and
edge information to grow a cluster from a seed node. The algorithm begins by creating an
initial cluster consisting of only the seed node. It then adds nodes to the cluster from the
seed’s neighborhood, selecting them based on their motif degree. The cluster is expanded
using a motifbased extension of the modularity function.

3.3 Process Mapping

The algorithms for process mapping can be categorized in two groups. On the one hand,
the singlephase or integrated algorithms combine process mapping with graph partitioning
[90, 91], such that the objective of the partitioning – commonly edgecut – is typically re
placed by a function that measures communication cost. On the other hand, the twophase
algorithms decouple partitioning and mapping [32, 92–95]. In a twophase or decoupled
algorithm, a default graph partitioning algorithm is used to partition a communication graph
into k blocks while typically minimizing edgecut. Afterwards, the quotient graph of the
partitioned communication graph is mapped onto PEs in order to minimize the total com
munication cost J (Equation (2.1)) or other objective function. This step is also known
as onetoone (process) mapping. To the best of our knowledge there is no streaming al
gorithm specifically designed adapted to optimize for the process mapping problem. We
now describe the stateoftheart for the process mapping problem. The reader is referred
to [67, 96] for older works on process mapping.

Jostle and Scotch are integrated algorithms to solve the processmapping problem. Jostle
integrates local search into a multilevel scheme to partition the model of computation and
communication. In this scheme, it solves the problem on the coarsest level and afterwards
performs refinements based on the usersupplied network communication model. Scotch

3.3. Process Mapping 27

performs dual recursive bipartitioning to compute a mapping. More precisely, it starts the
recursion considering all given processes and PEs. At each recursion level, it bipartitions
the communication graph and also the distance graph with a graph bipartitioning algorithm.
The first (resp., second) block of the communication graph is then assigned to the first (resp.,
second) block of the distance graph.

MüllerMerbach [94] propose a greedy construction method to obtain an initial permu
tation for the onetoone process mapping problem. The method roughly works as follows:
Initially compute the total communication volume for each process and also the sum of dis
tances from each core to all the others. Afterwards, the algorithm proceeds in rounds. In
each round, the process with the largest communication volume is assigned to the core with
the smallest total distance.

A method to improve an already given solution for onetoone process mapping was
proposed in [93]. The method repeatedly tries to perform swaps in the assignment in a
pairexchange neighborhood N(Π) that contains all permutations that can be reached by
swapping two elements in Π. Here, swapping two elements means that Π−1(i) will be as
signed to processor j and Π−1(j) will be assigned to processor i after the swap is done. The
algorithm then looks at the neighborhood in a cyclic manner. A swap is performed if it
reduces the objective. To reduce the runtime, Brandfass et al. [32] introduced a couple of
modifications to speed up the algorithm, such as only considering pairs for swapping that
can reduce the objective or partitioning the search space into s consecutive blocks and only
performing swaps inside those blocks.

Deveci et al. [97] propose a greedy construction algorithm and two refinement algo
rithms to map processes to PEs based on a topology graph. The construction algorithm
iteratively picks the process with highest connectivity to the already mapped processes.
Then, this process is assigned to the module which minimizes hopbytes, which is found
by performing a breadthfirst search on the topology graph. Both their refinement meth
ods are based on process swapping, but one of them aims at minimizing hopbytes while
the other one aims at minimizing congestion. The authors experimentally compare their
algorithms on a torusbased system against the default mapper of the system as well as
Scotch [98] and LibTopoMap [99]. Their algorithms induce performance increases of 43%
and 23% for a communicationonly application and a sparse matrix vector multiplication, re
spectively, compared to the default mapper of the system, and have the best overall results
among the competitors.

Deveci et al. [100] also propose a scheme that exploits geometric partitioning to map
processors to PEs. The application data and PEs are partitioned separately using the Multi
Jagged geometric partitioner [101]. Blocks from the data partition are then mapped to cor
responding blocks in the PE partition, effectively assigning interdependent data to “nearby”

28 3.3. Process Mapping

PEs in the network. The method is appropriate for applications that have geometric coordi
nates as well as graph data.

Vogelstein et al. [102] solve an applicationagnostic problem where there are two graphs
with the same number of nodes which are bijectively mapped onto one another in order to
minimize the number of induced edge disagreements. The authors call this problem graph
matching problem and formulate it as a quadratic assignment problem (QAP). They solve it
with a nonlinear approximation algorithm based on the gradient vector. Their algorithm has
complexityO(k3) and performs better than the previous stateoftheart [103–105] regarding
running time and objective function for over 80% of the QAPLIB benchmark library [106].

Glantz et al. [95] propose two greedy algorithms to bijectively map blocks onto PEs
assuming a communication graph. Their most successful algorithm, GreedyAllC, is an adap
tation of the greedy mapping algorithm proposed byMüllerMerbach [94]. Glantz et al. [95]
modify this algorithm by scaling the distance with the amount of communication to be done.
This modification improves the overall mapping quality with respect to the quality measures
maximum congestion and maximum dilation.

Glantz et al. [107] propose a local improvement algorithm for onetoone process map
ping in which the hardware topology is a partial cube, i.e., an isometric subgraph of a hyper
cube. The authors exploit the regularity of these topologies to label PEs as well as processes
with bitstrings along convex cuts. These bitstrings permit fast computation of distances be
tween PEs and the implementation of effective hierarchical refinement methods to improve
the mapping induced by the labels. Their experimental results show that their algorithm
reduces the total communication cost of the mappings produced by stateoftheart mapping
algorithms [95, 98] in a range from 6% to 34% while the mapping time stays within the
same order of magnitude.

Schulz and Träff [92] solve the process mapping for a hierarchical topology using a two
phase approach. Their algorithm uses the stateoftheart partitioner KaHIP [108] for the
partitioning phase and then a multisection for the onetoone mapping phase. The referred
multisection algorithm recursively partitions the quotient graph of the previously obtained
partition throughout the layers of the communication topology in a topdown direction. After
this algorithm obtains a onetoone mapping, a lightweight modification of the swapbased
refinement method proposed by Brandfass et al. [32] is executed to further minimize the
communication cost. In particular, the authors experimentally show thatN10

C , which restricts
swapping to processes that have a distance smaller than 10 in the communication graph, is an
adequate choice to obtain good solutions with a moderate running time. Their experiments
also show that their approach produces mappings with lower total communication cost in
comparison with alternative approaches which combine the same KaHIPbased first phase
with stateoftheart algorithms for onetoone mapping [94, 95, 99]. Kirchbach et al. [109]

3.4. Signed Graph Clustering 29

further improve the twopass approach by Schulz and Träff [92]. In particular, the authors
specialize the partitioning phase to apply KaHIP multiple times, namely throughout the hi
erarchical topology. Kirchbach et al experimentally show that their best algorithm is faster
while also decreasing the total communication cost in comparison to the algorithm from
Schulz and Träff [92].

Predari et al. [110] propose a singlephase distributed algorithm to solve the process
mapping for a hierarchical topology. The authors model the system hierarchy as an implicit
labeled tree and label the nodes of the communication graph in order to implicitly induce
the mapping. The algorithm optimizes the mapping by using an adapted version of parallel
label propagation where the labeling scheme is used for quick gain computations. In their
experiments, the proposed algorithm has good scalability for up to thousands of PEs while
achieving a total communication cost smaller than the distributed algorithms ParMetis [58]
and ParHIP [111] and comparable cost to the stateoftheart sequential mapping algorithm.

Kirchbach et al. [112] address the process mapping problem assuming processes that
communicate in a sparse stencil pattern and PEs organized in Cartesian grids. First, the
authors prove that the Cartesianmapping is alreadyNPhard for a twodimensional Cartesian
grid and a onedimensional stencil. Then three fast construction algorithms which exploit
the regularity of the problem are proposed. Their algorithm with best overall results is the
stencil strips algorithm, which partitions the grid into strips of lengths close to the scaled
length of an optimal bounding rectangle of the coordinates of the target stencil. In their
experimental evaluation using the MPI_Neighbor_alltoall routine of MPI, their algorithms
are up to two orders of magnitude faster than general purpose graph mapping tools such
as VieM [113] while resulting in a similar communication performance. Moreover, their
algorithms are up to three times faster than other Cartesian grid mapping algorithms while
resulting in a much better communication performance.

3.4 Signed Graph Clustering

There is a huge body of research on signed graph clustering. Roughly the same problem
is solved under different names and terms in the literature such as community detection (or
mining) in signed networks [114–116], correlation clustering [117, 118], and clique parti
tioning problem [119–122]. Among the most frequent approach for solving the problem,
we mention spectral clustering [123–126] and metaheuristics [115, 127–131]. The readers
are referred to the surveys [124, 132, 133] for extensive material and references. Here, we
focus on the results specifically related to the scope of this thesis.

30 3.4. Signed Graph Clustering

3.4.1 ContractionBased

Keuper et al. [134] propose an algorithm named Greedy Additive Edge Contraction (GAEC).
GAEC is an adaptation of the greedy agglomeration algorithmwhere the criterion to evaluate
the strength of interactions between clusters is the summed weight of the edges shared by
them. Bailoni et al. [135] propose GASP, a framework for hierarchical agglomerative clus
tering on weighted signed graphs. The authors prove that their framework is a generalization
to many existing clustering algorithms such as GAEC [134] and introduce new algorithms
based on yet unexplored special instances of their framework, such as HCC-Sum. GASP is a
bottomup approach where nodes are initially assigned to their own clusters, which are then
iteratively merged in a pairwise fashion. The framework should be configured to use a spe
cific criterion to evaluate the interaction between a pair of clusters. Some of these criteria
are the (average) weighted edgecut between the clusters and the weight of their shared edge
with highest absolute weight. The unconstrained variety of GASP starts by merging clusters
with the largest positive interaction and stops once the remaining clusters share only neg
ative interactions. The constrained variety of GASP introduces cannotmerge constraints
between pairs of clusters and terminates when all the remaining clusters are constrained
against their neighbors. This approach greedily selects the pair of clusters with highest ab
solute interaction, which can be either positive or negative. When it is positive, the clusters
are merged, otherwise a constraint is added to prohibit the clusters from being merged until
the end of the algorithm. Experimentally, the best algorithms contemplated by GASP with
respect to the minimization of edgecut are GAEC [134] and HCC-Sum. Similarly to GAEC
and HCC-Sum, our multilevel algorithm also constructs a clustering based on successive
contractions of the graph.

Hua et al. [136] propose FCSG, an algorithm for signed graph clustering which combines
a random walk gap (RWG) mechanism with a greedy shrinking method. The RWG mech
anism makes a random walk on a version of the graph where negative edges are removed
and another random walk on a version of the graph where negative edges are made positive.
Using the two random walk graphs that are constructed, the gap between the two graphs is
calculated to give information on the natural clustering structure of the signed graph. This
information is then used to build a new signed graph whose edge weights more accurately re
flect the natural clustering structure of the input signed graph. A clustering is then computed
on this new signed graph based on a greedy shrinking approach.

3.4.2 Evolutionary

Che et al. [115] propose MACD-SN, an evolutionary algorithm for signed graph clustering
optimizing for signed modularity. In their algorithm, an individual represents a clustering

3.4. Signed Graph Clustering 31

and the signed modularity [137] metric is used as fitness function. An individual is denoted
by an nsized string where each node is assigned to a cluster. Individuals for the initial
population are built in two steps. First, randomly assign all nodes to clusters. Second, go
through nodes in order to assign each node u to its neighboring cluster Vi which minimizes
the expressionNID(u, Vi) = |N−∩Vi|+ |N+∩Vi|. Classical approaches are implemented
for selection, recombination, and mutation. Namely, a tournament selection, a randomized
twoway crossover recombination, and a uniform random mutation. The authors also im
plement a mutation operator which finds the cluster whose nodes contain the highest aver
age value of NID(u, Vi) and then simply assign each of its nodes u to the cluster which
minimizes NID(u, Vi). Finally, a local search algorithm is executed on the best mutated
offspring in each generation. While the operators of MACD-SN are rather simple and tradi
tional, the operators of our evolutionary algorithm are based on a sophisticated multilevel
algorithm which we propose in this thesis. However, the approach only scales to networks
with a few thousand nodes.

3.4.3 Integer Linear Programming

Many integer linear programming (ILP) formulations were proposed for solving the signed
graph clustering problem in order to optimize for edgecut, as we do here. Grötschel andWak
abayashi [119] propose an ILP formulation consisting of Θ(n2) binary variables represent
ing pairs of nodes and Θ(n3) transitivity constraints. These constraints ensure that, if two
nodes u, v are clustered together, then any other node w will be clustered together with
u if, and only if, it is also clustered together with v. Dinh and Thai [120] remove a set
of redundant constraints from the ILP by Grötschel and Wakabayashi [119] for a special
case of the signed clustering problem and Miyauchi and Sukegawa [121] extend the ILP
by Dinh and Thai [120] to signed graph clustering in general. The formulation proposed
in [121] removes transitivity constraints associated with two of more edges with negative
weight, which reduces the number of constraints to O(n(n2 −m−)) constraints.

Miyauchi et al. [122] obtain an improved numberO(nm+) of constraints by running the
ILP from [121] on a new signed graph where artificial edges are introduced between pairs of
unconnected nodes from the input graph. In particular, these artificial edges have a negative
weight which is small enough to ensure that every optimal solution in this new graph corre
sponds to an optimal solution in the input graph. Recently Koshimura et al. [138] proposed
a further improvement for the ILP by Miyauchi et al. [122] which removes around 50% of
its constraints. Although there have been many improved ILP formulations for signed graph
clustering in the last years, this approach does not scale well for large instances (in particular
for the size of the instances considered in this paper). In particular, signed graphs with more

32 3.4. Signed Graph Clustering

than a few thousand nodes become intractable in practice, which is the reason why most
instances in the works cited above have no more than a few hundred nodes.

Chapter 4

Streaming Algorithms

In this chapter, we present our contributions in the field of (buffered) streaming (hyper)graph
decomposition. Firstly, we introduce the algorithm HeiStream that solves the graph parti
tioning problem using the buffered streaming model. The algorithm operates by partition
ing batches or buffers of nodes with a multilevel algorithm after building a model for each
loaded buffer. HeiStream is shown to produce solutions of better quality than previous state
oftheart algorithms while also being faster when partitioning into large numbers of blocks.
Secondly, we propose Online Recursive Multi-Section, a streaming algorithm for the pro
cess mapping problem that uses recursive multisections onthefly. Our approach is the
first in the literature designed specifically for process mapping, and its versatility allows it
to also solve the graph partitioning problem. Experimental results show that our recursive
multisection onthefly algorithm produces significantly better solutions in terms of total
communication cost while being up to multiple orders of magnitude faster than the stateof
theart. Thirdly, we introduce FREIGHT, a streaming algorithm for hypergraph partitioning
that extends the graphbased algorithm Fennel. Our proposed implementation for FREIGHT
is highly efficient, leading to significantly faster computation times and better cutnet and
connectivity measures than previous stateoftheart algorithms. Lastly, we present an ex
perimental comparison of our three algorithms for the graph partitioning problem.

References. This chapter is based on [10] and [11], which is joint work with Christian
Schulz, and on [12], which is joint work with Kamal Eyubov and Christian Schulz. The
experimental comparison of our three streaming algorithms is new.

4.1 Buffered Streaming Graph Partitioning

In this section, we start to fill the gap currently observed between inmemory and streaming
algorithms for graph partitioning algorithms. We propose HeiStream, an algorithm that can

33

34 4.1. Buffered Streaming Graph Partitioning

Algorithm 4.1 Structure of HeiStream
while G has not been completely streamed do

Load batch of nodes
Build model B
Run multilevel partitioning on model B
Assign nodes of batch to permanent blocks

compute significantly better partitions of huge graphs than the currently available streaming
algorithms while using a single machine without a lot of memory. We adopt the buffered
streaming model which allows a buffer of nodes to be received and stored before making as
signment decisions. Our algorithm is carefully engineered to produce partitions of improved
quality by using a sophisticated multilevel scheme on a compressed model of the buffer and
the already assigned nodes. Our multilevel algorithm optimizes for the same objective as the
previous stateoftheart Fennel. However, due to the multilevel scheme used on the com
pressed model, our local search algorithms have a global view on the optimization problem
and hence compute better solutions overall. Lastly, using the multilevel scheme reduces the
time complexity from O(nk +m) of Fennel to O(n+m), where k is the number of blocks
a graph has to be partitioned in. To this end, experiments indicate that our algorithm can
partition huge networks on machines with small memory while computing better solutions
than the previous stateoftheart in the streaming setting. At the same time our algorithm
is faster than the previous stateoftheart for larger values of blocks k.

4.1.1 HeiStream

4.1.1.1 Overall Structure

We now explain the overall structure of HeiStream. We slide through the streamed graph
G by repeating the following successive operations until all the nodes of G are assigned to
blocks. First, we load a batch containing δ nodes alongside with their adjacency lists. Sec
ond, we build a model B to be partitioned. This model represents the already partitioned
nodes as well as the nodes of the current batch. Third, we partition B with a multilevel
partitioning algorithm to optimize for the Fennel objective function. And finally, we per
manently assign the nodes from the current batch to blocks. Algorithm 4.1 summarizes the
general structure of HeiStream and Figure 4.1 shows the detailed structure of HeiStream.

4.1.1.2 Model Construction

We build two different models, which yield a running timequality tradeoff. We start by
describing the basic model and then extend this later.

4.1. Buffered Streaming Graph Partitioning 35

past nodes

. . .

current batch future nodes

. . .

load batch

build model

partition model

assign batch to blocks

past nodes

. . .

next batch future nodes

. . .

edges contained in batch

edges to past nodes

edges to future nodes

block assignments

artificial nodes

Figure 4.1. Detailed structure of HeiStream. The algorithm starts by loading a batch of
nodes alongside with their edges. Next, it builds a meaningful model based on the loaded
nodes and edges. This model is then partitioned using a multilevel algorithm. Based on the
partition of the model, the nodes of the current batch are permanently assigned to blocks.
This whole process is repeated for the next batch until the whole graph is partitioned.

When a batch is loaded, we build the basic model B as follows. We initialize B as the
subgraph of G induced by the nodes of the current batch. If the current batch is not the first
one, we add k artificial nodes to the model. These represent the k preliminary blocks in
their current state, i.e., filled with the nodes from the previous batches, which were already
assigned. The weight of an artificial node i is set to the weight of block Vi. A node of the
current batch is connected to an artificial node i if it has a neighbor from the previous batch
that has been assigned to block Vi. If this creates parallel edges, we replace them by a single
edge with its weight set to the sum of the weight of the parallel edges. Note that the basic
model does ignore edges towards nodes that will be streamed in future batches, i. e., batches
that have not been streamed yet.

Our extendedmodel incorporates edges towards nodes from future, not yet loaded, batches
– if the stream contains such edges. We call edges towards nodes of future batches ghost
edges and the corresponding endpoint in the future batch ghost node. Ghost nodes and ghost
edges provide partial information about parts of G that have not yet been streamed. Hence,
representing them in the model B enhances the partitioning process. Note though that sim

36 4.1. Buffered Streaming Graph Partitioning

ply inserting all ghost nodes and edges can overload memory in case there is an excessive
number of them. Thus our approach consists of randomly contracting the ghost nodes with
one of their neighboring nodes from the current batch. Note that this contraction increments
the weight of a node within our model and ensures that if there are more than one node from
the current batch connected to the same future node, then there will be edges between those
nodes in our model. Also note that the contraction ensures that the number of nodes in all
models throughout the batched streaming process is constant. This prevents memory from
being overloaded and makes it unnecessary to reallocate memory forB between successive
batches. In order to give a lower priority to ghost edges in comparison to the other edges,
we divide the weight of each ghost edge by 2 in our model. The construction of the extended
model is conceptually illustrated in Figure 4.1.

4.1.1.3 Multilevel Weighted Fennel

Our approach to partition the modelB is a multilevel version of the algorithm Fennel. Recall
that the multilevel scheme consists of three successive phases: coarsening, initial partition
ing, and uncoarsening, as depicted in Figure 2.2.

It should be noted that the artificial nodes present in our model may become very heavy.
As an acknowledgement of their representation of permanent block assignments, any con
traction or block change of artifical nodes is prohibited. Consequently, these nodes require
special handling in our multilevel algorithm. Furthermore, note that the original formula
tion of Fennel only works for unweighted graphs [3]. However, our model B has nodes and
edges that are weighted – as a result of connections to artificial nodes and future nodes that
may be contracted into the model, as well as due to the generation of a series of weighted
graphs through the multilevel scheme. Hence, the Fennel algorithm requires some adapta
tion to be utilized in HeiStream. We introduce a generalization of the Fennel algorithm for
weighted graphs that can be directly employed in a multilevel algorithm. Within this section,
we will present this generalized Fennel objective and provide a detailed explanation of our
multilevel algorithm for partitioning the model.

Generalized Fennel. As a necessary feature, our generalization of the Fennel gain func
tion must ensure that the gain of a node at a coarser level equals the sum of the gains of
the nodes that it represents at the finer levels. This way the algorithm gets a global view
onto the optimization problem on the coarser levels and a very local view on the finer lev
els. Moreover, it is ensured that on each level of the hierarchy the algorithm works towards
optimizing the given objective.

Our generalization of the gain function of Fennel is as follows. Let u be the node that
should be assigned to a block. Our generalized Fennel assigns u to a block i that maximizes

4.1. Buffered Streaming Graph Partitioning 37

Equation (4.1) such that f(c(Vi)) = α∗γ ∗ c(Vi)
γ−1. Note that this is a direct generalization

of the unweighted case. First, if the graph does not have edge weights, then the first part of
the equation becomes |Vi ∩N(u)| which is the first part of the Fennel objective. Second, if
the graph also does not have node weights, then the second part of the equation is the same
as the second part of the equation in the Fennel objective. Moreover, observe that the penalty
term f(c(Vi)) in our objective is multiplied by c(u). This is done to have the property stated
above and formalized in Theorem 4.1. Finally, we keep the original value of the parameters
α and γ in order to keep consistency.

∑
v∈Vi∩N(u)

ω(u, v)− c(u)f(c(Vi)) (4.1)

Theorem 4.1. If a set of nodes S ⊆ V is contracted into a node w, the generalized Fennel
gain function of w is equal to the sum of the generalized Fennel gain functions of the nodes
in S.

Proof. On the one hand, the generalized Fennel gain of assigning a node w to a block i is
computed as: ∑

v∈Vi∩N(w)

ω(w, v)− c(w)f(c(Vi)) (4.2)

On the other hand, the sum of the generalized Fennel gains of assigning all nodes in S to a
block i consists of: ∑

u∈S

∑
v∈Vi∩N(u)

ω(u, v)−
∑
u∈S

c(u)f(c(Vi)) (4.3)

Since the factor f(c(Vi)) is identical in (4.2) and (4.3), the two of them are equivalent if
equalities (4.4) and (4.5) hold:∑

v∈Vi∩N(w)

ω(w, v) :=
∑
u∈S

∑
v∈Vi∩N(u)

ω(u, v) (4.4)

c(w) :=
∑
u∈S

c(u) (4.5)

But equalities (4.4) and (4.5) are trivially true as a property of the contraction process.

Multilevel Fennel. In principle, our model B could be partitioned by any multilevel par
titioning algorithm which allows fixed nodes. Nevertheless, our preliminary tests using an
adaptation ofKaHIP [37] generated poor edgecut. This is the case because internal memory
algorithms such as KaHIP and Metis [139] are designed to minimize edgecut as much as
possible while ensuring a low balancing constraint. This leads to two possibilities, both of
which are bad for the overall edgecut within the buffered streaming model: (i) using a large
balancing constraint for the first buffers, the internal memory partitioner will tend to assign

38 4.1. Buffered Streaming Graph Partitioning

all their nodes to a single block, (ii) using a low balancing constraint for each batch, the
overall partitioning problem will be aggressively overrestricted. Hence, we design a mul
tilevel algorithm based on the Fennel function, which is a function that successively deals
with the tradeoff between edgecut and imbalance associated with graph streaming.

We now explain ourmultilevel algorithm to partition themodelB. Our coarsening phase
is based on an adapted version of the sizeconstraint label propagation approach [38]. To be
selfcontained, we shortly outline the coarsening approach and then show how to modify it
to be able to handle artificial nodes. To compute a graph hierarchy, the algorithm computes
a sizeconstrained clustering on each level and contract that to obtain the next level. The
clustering is contracted by replacing each of its clusters by a single node (as exemplified in
Figure 2.3), and the process is repeated recursively until the graph becomes small enough.
This hierarchy is then used by the algorithm. Due to the way we define contraction, it
ensures that a partition of a coarse graph corresponds to a partition of all the finer graphs
in the hierarchy with the same edgecut and balance. Note that cluster contraction is an
aggressive coarsening strategy. In contrast to matchingbased approaches, it enables us to
drastically shrink the size of irregular networks. The intuition behind this technique is that
a clustering of the graph (one hopes) contains many edges running inside the clusters and
only a few edges running between clusters, which is favorable for the edge cut objective.

The algorithm to compute clusters is based on label propagation [140] and avoids large
clusters by using a size constraint, as described in [38]. For a graph with n nodes and
m edges, one round of sizeconstrained label propagation can be implemented to run in
O(n + m) time. Initially, each node is in its own cluster/block, i. e., the initial block ID
of a node is set to its node ID. The algorithm then works in rounds. In each round, all
the nodes of the graph are traversed. When a node v is visited, it is moved to the block
that has the strongest connection to v, i. e., it is moved to the cluster Vi that maximizes
ω({(v, u) | u ∈ N(v) ∩ Vi}). Ties are broken randomly. We perform at most L rounds,
where L is a tuning parameter.

In HeiStream, we have to ensure that two artificial nodes are not contracted together
since each of them should remain in its previously assigned block. We achieve this by ig
noring artificial nodes and artificial edges during the label propagation, i. e., artificial nodes
cannot not change their label and nodes from the batch can not change their label to become
a label of an artificial node. As a consequence, artificial nodes are not contracted during
coarsening. Overall, we repeat the process of computing a sizeconstrained clustering and
contracting it, recursively. As soon as the graph is small enough, i. e., it has fewer nodes
than an O(max(|B|/k, k)) threshold, it is initially partitioned by an initial partitioning algo
rithm. More precisely, we use the threshold max(|B|

2xk
, xk), in which x is a tuning parameter.

Note that, for large enough buffer sizes, this threshold will be O(|B|/k).

4.1. Buffered Streaming Graph Partitioning 39

When the coarsening phase ends, we run an initial partitioning algorithm to compute
an initial kpartition for the coarsest version of B. That means that all nodes other than the
artificial nodes, which are already assigned, will be assigned to blocks. To assign the nodes,
we run our generalized Fennel algorithm with explicit balancing constraint Lmax, i. e., the
weight of no block will exceed Lmax. To be precise, a node u will be assigned to a block i

that maximizes
∑

v∈Vi∩N(u) ω(u, v) − c(u)f(c(Vi)), such that f(c(Vi)) = α ∗ γ ∗ c(Vi)
γ−1

and c(Vi ∪ u) ≤ Lmax. Note that the algorithm at this point considers all possible blocks
i ∈ {1, . . . , k} and hence has complexity proportional to k. However, as the coarsest graph
has O(|B|/k) nodes, overall the initial partitioning needs time which is linear in the size of
the input model. When initial partitioning is done, we transfer the current solution to the next
finer level by assigning each node of the finer level to the block of its coarse representative.
At each level of the hierarchy, we apply a local search algorithm. Our local search algorithm
is the same sizeconstraint label propagation algorithm we used in the contraction phase but
with a different objective function. Namely, when visiting a nonartificial node, we remove
it from its current block and then we assign it to the neighboring block which maximizes
the generalized Fennel gain function defined in Equation (4.1). Note that, in contrast to the
initial partitioning, only blocks of adjacent nodes are considered here. Hence, one round of
the algorithm can still be implemented to run in linear time in the size the current level. As in
the coarsening phase, artificial nodes cannot be moved between blocks. Differently though,
we do not exclude the artificial nodes from the label propagation here. This is the case
because the artificial nodes and their edges are used to compute the generalized Fennel gain
function of the other nodes. As in the initial partitioning, we use the explicit size constraint
Lmax of G. As a side note, we also tried to use highquality offline algorithms as initial
partitioning algorithms, however, in preliminary experiments this results in very unbalanced
blocks (even with adaptively configured balance constraints) and overall in reduced quality
throughout the process. Hence, we did not consider this further.

Assuming geometrically shrinking graphs throughout the hierarchy and assuming that
the buffer size δ is larger than the number of blocks k, then the overall running time to
partition a batch is linear in the size of the batch. This is due to the fact that the overall
running time of coarsening and local search sums up to be linear in the size of the batch,
while the overall running time of the initial partitioning depends linearly on the size of the
input model. Summing this up over all batches yields overall linear running timeO(n+m).

4.1.1.4 Restreaming

We now extend HeiStream to operate in a restreaming setting. During restreaming, the over
all structure of the algorithm is roughly the same. Nevertheless we need to implement some
adaptations which we explain in this section. The first adaptations concern model construc

40 4.1. Buffered Streaming Graph Partitioning

tion. Recall that the nodes from the current batch are already assigned to blocks during the
previous pass of the input. We explicitly assign these nodes to their respective blocks in B.
Furthermore, ghost nodes and edges are not needed to construct B. This is the case since
all nodes from future batches are already known and assigned to blocks, i. e., these nodes
will be represented in the artificial nodes. More precisely, we adapt the artificial nodes to
represent the nodes from all batches except the current one. Since a partition of the graph is
already given, we do not allow the contraction of cut edges during restreaming in the coars
ening phase of our multilevel scheme. That means that clusters are only allowed to grow
inside blocks. As a consequence, we can directly use the partition computed in the previous
pass as initial partitioning for B so we do not need to run an initial partitioning algorithm.

4.1.1.5 Implementation Details

Our implementation of B is based on an adjacency array and consecutive node IDs. We
reserve the first δ IDs for the nodes from the current batch, which keep their global order.
This means that, when we process the ith batch, nodes IDs can be easily converted from our
model B to G and the other way around by respectively summing or subtracting (i− 1) ∗ δ
on their ID. Similarly, we reserve the last k IDs of B for the artificial nodes and keep their
relative order for all batches. Note that this configuration separates mutable nodes (nodes
from current batch) and immutable nodes (artificial nodes). This allows us to efficiently
control which nodes are allowed to move during coarsening, initial partitioning, and local
search. We keep an array of size n store the permanent block assignment of the nodes of
G. To improve running time, we use approximate computation of powering in our Fennel
function.

4.1.2 Experimental Evaluation

Setup. We performed the implementation of HeiStream and competing algorithms inside
the KaHIP framework (using C++) and compiled them using gcc 9.3 with full optimization
turned on (O3 flag). Most of our experiments were run on a single core of Machine A. The
only exceptions are the experiments with huge graphs, which were run on a single core of
Machine B. When using machine A, we stream the input directly from the internal memory,
and when using machineB, that only has 16 GB of main memory, we stream the input from
the hard disk.

Baselines. We compare HeiStream against various stateoftheart algorithms for stream
ing graph partitioning. Since no official versions of the onepass streaming and restreaming
algorithms are available in public repositories, we implemented them in our framework.

4.1. Buffered Streaming Graph Partitioning 41

Our implementations of these algorithms reproduce the results presented in the respective
papers and are optimized for running time as much as possible. To this end, we imple
mented Hashing, LDG, Fennel, and ReFennel. Multilevel LDG [5] is also not publicly avail
able. We sent a message to the authors requesting an executable version of their algorithm
for our tests but we have not receive any response. Hence, we compare HeiStream against
Multilevel LDG based on the results explicitly reported in [5]. We have used two machines:
Machine A and Machine B.

Instances. In this section, we use three disjoint sets of graphs. Basic properties of the
graphs under consideration can be found in Table 2.1. The tuning set is used for the param
eter study experiments, the test set is used for the comparisons against the stateoftheart,
and the set of huge graphs is used for special larger scale tests. In any case, when streaming
the graphs we use the natural given order of the nodes. We use k ∈ {2, 3, . . . , 128} for most
experiments. We allow an imbalance of 3% for all experiments (and all algorithms). All
partitions computed by all algorithms have been balanced.

Methodology. Depending on the focus of the experiment, wemeasure running time and/or
edgecut. Unless explicitly mentioned otherwise, we average all results of each algorithm
grouped by k.

4.1.2.1 Parameter Study

We now present experiments to tune HeiStream and explore its behavior. We do this on
the tuning set of our instance set. In our strategy, each experiment focuses on a single
parameter of the algorithm while all the other ones are kept invariable. We start with a
baseline configuration consisting of the following parameters: 5 rounds in the coarsening
label propagation, 1 round in the local search label propagation, and x = 64 in the expression
of the coarsest model size. After each tuning experiment, we update the baseline to integrate
the best found parameter. Unless explicitly mentioned otherwise, we run the experiments of
this section over all tuning graphs from Table 2.1 based on the extended model construction,
i. e., including ghost nodes and edges, for a buffer size of 32 768.

Tuning. We begin by evaluating how the number of label propagation rounds during local
search affects running time and solution quality. In particular, we run configurations of
HeiStream with 1, 5, and 25 rounds and report results in Figures 4.2a and 4.2b. Observe
that the results of the baseline have considerably lower solution quality than the other ones
overall. On the other hand, the results of the configurations with 5 and 25 rounds differ
slightly to each other. On average, they respectively improve solution quality 3.6% and

42 4.1. Buffered Streaming Graph Partitioning

 0

 2

 4

 6

 8

2
4

2
5

2
6

2
7

Im
p
ro

v
em

en
t

in
 %

k

1-round
5-rounds

25-rounds

(a) Quality improvement plot for label
propagation rounds during uncoarsening.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

2
4

2
5

2
6

2
7

T
im

e
 R

a
ti

o

k

1-round
5-rounds

25-rounds

(b) Running time ratio plot for label propagation
rounds during uncoarsening.

-40

-30

-20

-10

 0

 10

 20

2
4

2
5

2
6

2
7

Im
p
ro

v
em

en
t

in
 %

k

x=1
x=2
x=4
x=8

x=16
x=32
x=64

(c) Quality improvement plot for parameter x
from expression max(|B|/2xk, xk).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2
4

2
5

2
6

2
7

Im
p
ro

v
em

en
t

in
 %

k

1-pass
2-passes
3-passes
4-passes
5-passes

10-passes

(d) Quality improvement plot for restreaming.

 0

 20

 40

 60

 80

 100

2
4

2
5

2
6

2
7

Im
p
ro

v
em

en
t

in
 %

k

8k
16k
32k
64k

128k
256k
512k

1024k

2048k
4096k
8192k

(e) Quality improvement plot for buffer size.

 0.6

 0.7

 0.8

 0.9

 1

2
4

2
5

2
6

2
7

T
im

e
 R

a
ti

o

k

8k
16k
32k
64k

128k
256k
512k

1024k

2048k
4096k
8192k

(f) Running time ratio plot for buffer size.

Figure 4.2. Results for tuning and exploration experiments. Higher is better for quality
improvement plots. Lower is better for running time ratio plots.

4.1. Buffered Streaming Graph Partitioning 43

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2
4

2
5

2
6

2
7

Im
p
ro

v
em

en
t

in
 %

k

Basic
Extended

(a) Quality improvement plot for model
construction.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2
4

2
5

2
6

2
7

T
im

e
 R

a
ti

o

k

Basic
Extended

(b) Running time ratio plot for model
construction.

Figure 4.3. Results for tuning and exploration experiments. Higher is better for quality
improvement plots. Lower is better for running time ratio plots.

3.7% over the baseline. Regarding running time, they respectively increase 2.2% and 3.4%
on average over the baseline. Since the variation of quality for these two configurations is
not significant, we decided to integrate the fastest one among them in the algorithm, namely
the 5round configuration.

Next we look at the parameter x associated with the expression max
(
|B|/2xk, xk

)
,

which determines the size of the coarsest model. We run experiments for x = 2i, with
i ∈ {0, . . . , 6}, and report results in Figure 4.2c. We omit running time charts for this exper
iment since the tested configurations present comparable behavior in this regard. Figure 4.2c
shows that the baseline presents the overall worst solution quality while x = 2 and x = 4

present the overall best solution quality. Averaging over all instances, these two latter con
figurations produce results respectively 10.3% and 11.2% better than the baseline. In light
of that, we decide in favor of x = 4 to compose HeiStream.

Exploration. We start the exploration of open parameters by investigating how the buffer
size affects solution quality and running time. We use as baseline a buffer of 8 192 nodes
and successively double its capacity until any graph from the tuning set in Table 2.1 fits
in a single buffer. We plot our results in Figures 4.2e and 4.2f. Note that solution quality
and running time increase regularly as the buffer size becomes larger. This behavior occurs
because larger buffers enable more comprehensive and complex graph structures to be ex
ploited by our multilevel algorithm. As a consequence, there is a tradeoff between solution
quality and resource consumption. In other words, we can improve partitioning quality at
the cost of considerable extra memory and slightly more running time. Otherwise, we can
save memory as much as possible and get a faster partitioning process at the cost of lowering
solution quality. In practice, it means that HeiStream can be adjusted to produce partitions

44 4.1. Buffered Streaming Graph Partitioning

as refined as possible with the resources available in a specific system. For the extreme case
of a singlenode buffer, HeiStream behaves exactly as Fennel, while it behaves as an internal
memory partitioning algorithm for the opposite extreme case.

Next, we compare the effect of using the extended model, which incorporates ghost
nodes, over the basic model, which ignores ghost nodes. Figures 4.3a and 4.3b displays
the results. The results show that the extended model provides improved quality over the
basic model, with an 18.3% improvement on average. This happens because the presence
of ghost nodes and edges expands the perspective of the partitioning algorithm to future
batches. This has a similar effect to increasing the size of the buffer, but at no considerable
extra memory cost. Regarding running time, the results show that the extended model is
consistently slower than the basic model for all values of k. Averaging over all instances,
the extended model costs 63.9% more running time than the basic model. This increase in
running time is explained by the higher number of edges to be processed when ghost nodes
are incorporated in the model. As a practical conclusion from the experiment, the extended
model can be used for better overall partitions with no significant extra memory but at the
cost of extra running time. Otherwise, the basic model can be used for a consistently faster
execution at the cost of a lower solution quality.

Finally, we test towhat extent solution quality can be improved by restreamingHeiStream
multiple times. We investigate this by restreaming each input graph 10 times. We collect
results after each pass and plot in Figure 4.2d. The first restream generates a considerable
quality jump, with an improvement over the baseline of 24.6% on average. Each following
pass has a positive impact on solution quality, which converges to be a 40.9%improvement
on average over the baseline after the last pass. On the other hand, the running time has a
roughly linear increase for each pass over the graph. In practice, this adds another degree
of freedom to configure HeiStream for the needs of real systems.

4.1.2.2 StateoftheArt

In this section, we show experiments in which we compare HeiStream against the current
stateoftheart algorithms. Unless mentioned otherwise, these experiments involve all the
graphs from the Test Set group in Table 2.1 and focus on two particular configurations of
HeiStream, which we refer to as HeiStream(32k) and HeiStream(Int.). The first configura
tion is based on batches of size 32 768, while the second one has enough batch capacity to
operate as an internal memory algorithm – both configurations perform a single pass over the
input using the extended model. We also present results for the 2pass restreaming version
of HeiStream(32k), which we refer to as 2ReHeiStream(32k).

Internal memory algorithms such as Metis [139] and KaHIP [37] are beyond the scope
of this thesis since it is common knowledge that internal memory algorithms are better than

4.1. Buffered Streaming Graph Partitioning 45

Cut Edges (%)
Graph

HS(Int.) MLDG(Int.) 2ReHS(32k) 2ReFennel HS(32k) Fennel LDG Hashing

Dubcova1 13.68 14.26 12.92 29.19 13.68 33.99 33.96 95.62
hcircuit 2.73 17.75 2.04 21.86 2.53 28.97 28.97 90.75
coAuthorsDBLP 15.99 24.82 16.90 24.28 17.80 27.12 27.12 94.80
WebNotreDame 5.85 11.01 6.15 12.58 9.20 19.52 19.56 95.97
Dblp2010 11.31 18.52 12.20 22.93 13.42 28.82 28.80 92.49
ML_Laplace 7.93 13.44 7.62 7.82 8.36 7.92 5.77 96.37
coPapersCiteseer 8.23 11.22 8.35 9.63 10.29 12.88 12.27 96.52
coPapersDBLP 14.51 19.29 15.12 16.47 18.33 20.65 20.22 96.39
Amazon2008 10.09 19.01 12.77 28.92 15.56 37.07 37.07 94.68
eu2005 11.14 14.57 14.82 25.53 18.64 35.88 31.96 96.44
WebGoogle 1.62 9.66 3.96 18.04 9.48 30.64 30.64 96.87
cahollywood2009 35.34 32.51 37.86 41.34 42.36 44.54 45.25 96.62
Flan_1565 7.69 9.36 7.30 10.26 8.12 10.59 6.70 96.61
Ljournal2008 29.12 34.76 33.58 43.23 38.58 51.43 51.36 96.07
HV15R 14.09 11.48 15.38 15.05 17.48 16.39 15.49 96.84
Bump_2911 8.66 11.73 7.65 8.61 8.23 8.65 8.30 96.19
FullChip 38.20 48.16 42.24 57.39 45.71 61.93 64.23 95.06
patents 15.57 29.12 41.75 52.60 60.56 70.98 70.98 96.88
CitPatents 15.75 28.65 39.67 51.62 60.76 72.16 72.16 96.88
SocLiveJournal1 29.72 35.69 29.39 34.00 35.62 39.03 45.62 96.66
circuit5M 40.02 34.60 39.20 75.45 41.00 78.42 78.47 96.87

del21 1.38 5.41 33.52 8.53 40.21 40.21 93.39
rgg21 1.53 1.34 4.09 1.52 5.02 4.88 96.89
socorkutdir 37.86 43.19 47.22 54.76 55.85 60.27 96.85
italyosm 0.13 1.19 4.65 1.34 4.80 4.80 78.11
greatbritainosm 0.16 1.43 7.18 1.63 7.34 7.34 79.94

Table 4.1. Edgecut results against competitors for k = 32. Internal memory algorithms
are are on the 2 left columns and streaming algorithms are on the 5 right columns. We refer
to setups of HeiStream with specific buffer sizes as HS(Xk), in which each buffer contains
X × 1024 nodes. HS(Int.) uses a buffer size of n. We bold the best result for each graph
for internal memory approaches and streaming approaches. The results for Multilevel LDG
for the five bottom graphs are missing, as the graphs where not part of their benchmark set.
Lower is better.

46 4.1. Buffered Streaming Graph Partitioning

0

5

10

15

8 32 128

Web-Google

k

C
ut

 E
dg

es
 (

%
)

0

5

10

15

8 32 128

coPapersCiteseer

k

C
ut

 E
dg

es
 (

%
)

20

30

40

50

60

8 32 128

FullChip

k

C
ut

 E
dg

es
 (

%
)

0

10

20

30

8 32 128

Amazon-2008

k

C
ut

 E
dg

es
 (

%
)

Multi.LDG(Int.)

HeiStream(32k)

HeiStream(Int.)

0

5

10

15

20

8 32 128

ML_Laplace

k

C
ut

 E
dg

es
 (

%
)

Figure 4.4. Comparison of HeiStream against Multilevel LDG for buffer containing the
whole graph.

streaming algorithms regarding partition quality if the instances fits in the memory of a ma
chine. For the sake of reproducibility, we ranMetis and the fast social version ofKaHIP over
our Test Set group of instances for k ∈ {2, 4, 8, 16, 32, 64, 128}. On average, Fennel cuts a
factor 7.5more edges than Metis and the fast social version ofKaHIP, while HeiStream(Int.)
cuts a factor 2.2 more edges than both. Furthermore, Fennel is respectively a factor 2.2 and
a factor 6.0 faster than Metis and the fast social version of KaHIP, while HeiStream(Int.) is
56.3% slower than Metis and 72.9% faster than the fast social version of KaHIP.

Results. Wenow present a detailed comparison ofHeiStream (HS) against the stateofthe
art. In the results, we refer to the internal memory version of Multilevel LDG as MLDG(Int.).
Moreover, we refer to the restreaming version of HeiStream and Fennel that passes over
the graph 2 times as 2ReHS and 2ReFennel respectively. First, we focus on k = 32 and
later on choose a much wider range for the number of blocks. Table 4.1 shows the per
centage of edges cut in the partitions generated by each algorithm for the graphs in the
Test Set for k = 32. HeiStream(Int.), 2ReHeiStream(32k), and HeiStream(32k) outper
form all the other competitors for the majority of instances. First, all of them outperform
Hashing for all graphs and LDG for 23 out of the 26 graphs. Next, they also outperform
Fennel in 24 instances. The algorithm 2ReFennel is outperformed by HeiStream(Int.), 2
ReHeiStream(32k), and HeiStream(32k) in 24, 25, and 17 instances, respectively. Consider
ing only the 21 instances for which there are results reported forMulti.LDG(Int.) in literature,

4.1. Buffered Streaming Graph Partitioning 47

-100

-50

 0

 50

 100

 150

 200

 250

 300

2
4

2
5

2
6

2
7

Im
p
ro

v
em

en
t

in
 %

k

HeiStream(Int.)
HeiStream(32k)

2-ReFennel
Fennel

LDG
Hashing

(a) Quality improvement plot over Fennel.

 0.01

 0.1

 1

 10

2
4

2
5

2
6

2
7

T
im

e
 R

a
ti

o

k

HeiStream(Int.)
HeiStream(32k)

2-ReFennel
Fennel

LDG
Hashing

(b) Relative running time plot over Fennel.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32

#
 i

n
st

an
ce

s
≤

τ
b
es

t

τ

HeiStream(Int.)
HeiStream(32k)

2-ReFennel
Fennel

LDG
Hashing

(c) Quality performance profile.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256

#
 i

n
st

an
ce

s
≤

τ
fa

st
es

t

τ

HeiStream(Int.)
HeiStream(32k)

2-ReFennel
Fennel

LDG
Hashing

(d) Running time performance profile.

Figure 4.5. Results for comparison against stateoftheart onepass (re)streaming algo
rithms using performance profiles. Higher is better for quality improvement plots.

the algorithms HeiStream(Int.), 2ReHeiStream(32k), and HeiStream(32k) compute better
partitions for 18, 15, and 14 instances respectively.

For a closer comparison against Multi.LDG(Int.), we present Figure 4.4. We plot edge
cut for Multi.LDG(Int.) based on results graphically reported in [5]. In this figure, we show
ofHeiStream(Int.) andHeiStream(32k) for 5 particular graphs with k = 4, 8, 16, 32, 64, 128.
For all these instances, HeiStream(Int.) outperformsMulti.LDG(Int.) by a considerable mar
gin. Note that HeiStream(32k) outperforms the internal memory version of Multilevel LDG
for the majority of instances. We omit additional comparisons against buffered versions of
Multilevel LDG, since they provide lower quality than the internal memory version. We ran
wider experiments over ourwhole Test Set for 127 different values of k. Figures 4.5a and 4.5b
show a quality improvement plot over Fennel and a relative running time plot, respectively.
Figures 4.5c and 4.5d show performance profiles for solution quality and running time, re
spectively. Observe that HeiStream(Int.) produces solutions with highest quality overall. In
particular, it produces partitions with smallest edgecut for almost 86.9% of the instances
and improves solution quality over Fennel 195.0% on average. We now provide some re

48 4.1. Buffered Streaming Graph Partitioning

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16

%
 i

n
st

a
n

c
e
s

≤
τ

b
e
st

τ

2-ReHeiStream(32k)
2-ReFennel

Figure 4.6. Quality performance profile of 2ReHeiStream(32k) against 2ReFennel.

sults in which we exclude HeiStream(Int.), since it has access to the whole graph. The
best algorithm is HeiStream(32k), which produces the best solution quality for 63.3% of
the instances and improves solution quality over Fennel 75.9% on average. It is followed
by 2ReFennel, which is the best tested algorithm from the previous stateoftheart. In par
ticular, it computes the best partition for 26.8% of the instances and improves on average
19.2% over Fennel. LDG and Fennel come next. Particularly, LDG finds the best parti
tion for 9.8% of the instances and improves on average 2.4% over Fennel. Fennel does not
find the best partition for any instance. Finally, Hashing produces the worst solutions, with
72.5%worse quality than Fennel on average. Regarding running time, Hashing is the fastest
one for all instances, which is expected since it is the only one with time complexity O(n).
The second fastest one is LDG, whose running time is a factor 9.6 higher than Hashing on
average. Fennel, HeiStream(32k) and HeiStream(Int.) come next with factors 32.4, 41.4
and 56.2 slower than Hashing on average, respectively. ReFennel is the slowest algorithm
of the test, being a factor 64.61 slower than Hashing on average. In a direct comparison,
HeiStream(32k) and HeiStream(Int.) are respectively 27.7% and 73.2% slower than Fennel
on average. Note that both configurations of HeiStream are faster than Fennel for larger
values of k, which is consistent with the fact the running time of HeiStream is O(n + m)

while the running time of Fennel is O(nk +m).

Restreaming. Now we directly evaluate the restreaming version of HeiStream. As shown
in Table 4.1, 2ReHeiStream(32k) computes solutionswith smaller edgecut than 2ReFennel
for almost all our Test Set when k = 32. Figure 4.6 shows that this is the case for k ∈
{2, . . . , 128}. In particular, 2ReHeiStream(32k) produces the best solution for 98.3% of
the instances and improves solution quality over 2ReFennel by 79.6% on average. The av
erage improvement of 2ReHeiStream(32k) over 2ReFennel is comparable to the average
improvement of HeiStream(32k) over Fennel. Nevertheless, the percentage of instances for

4.1. Buffered Streaming Graph Partitioning 49

(Hashing(Fennel(HeiStream(1k) KaHIP(fsocial)

k = 2

k = 3

k = 4

k = 8

Figure 4.7. Visualization of partitions generated by the algorithms Hashing, Fennel,
HeiStream(1k) and the fast social version of KaHIP for the graph rgg15, which has 32 768
nodes and 160 240 edges.

which 2ReHeiStream(32k) outperforms 2ReFennel is almost 100%, which means that 2
ReHeiStream(32k) almost dominates 2ReFennel with respect to edgecut. Note that this is
considerably higher than the percentage of instances for whichHeiStream(32k) outperforms
Fennel (63.3%).

Visualization. As shown, the edgecut of partitions produced by HeiStream is on average
lower than the edgecut of partitions produced by its competitor streaming algorithms. We
shortly look at some visualizations in order to concretely understand why this happens. In
Figure 4.7, we show a visual comparison of some partition layouts generated by Hashing,
Fennel, HeiStream and the fast social version ofKaHIP for the graph rgg15. Since this graph
has only 32 768 nodes, we use a buffer size of 1 024 nodes for HeiStream in order to parti
tion the graph over multiple successive batches. There is a leap of partitioning quality from
Hashing to Fennel, i. e., welldelimited clusters associated to a same block can be identified

50 4.1. Buffered Streaming Graph Partitioning

in the partitions generated by Fennel but not in partitions generated by Hashing. Similarly
there is a leap of partitioning quality from Fennel toKaHIP, i. e., a block generated by Fennel
consists of multiple small clusters that are not mutually connected while a block generated
by KaHIP usually consists of a single connected cluster. Note that the partitions produced
by HeiStream have intermediary characteristics between the partitions generated by Fennel
and KaHIP. More specifically, a block generated by HeiStream consists of fewer and larger
clusters than a block generated by Fennel but not as few and as large clusters as those gen
erated by KaHIP. This behavior is a direct consequence of the more or less global view
provided by the distinct computational models used by these three algorithms.

4.1.2.3 Huge Graphs

We now switch to the main use case of streaming algorithms: computing highquality parti
tions for huge graphs on small machines. The experiments in this section are based on the
huge graphs listed in Table 2.1 and are run on the relatively small Machine B. Namely, we
ran experiments for k = {8, 16, 32, 64, 128, 256} and we did not repeat each test multiple
times with different seeds as in previous experiments. We also ran Metis and KaHIP on
those graphs on this machine, but they fail on all instances since they require more memory
than the machine has. For all instances, HeiStream performs a single pass over the input
based on the extended model construction. We refer to setups of HeiStream with specific
buffer sizes as HeiStream(Xk), in which a buffer containsX×1024 nodes. In Table 4.2, we
report detailed perinstance results with large buffer sizes able to run on Machine B. We ex
clude from Table 4.2 the IO delay to load the input graph from the disk, since it depends on
the disk and is roughly the same independently of the used partitioning algorithm. For com
pleteness, we report this delay (in seconds) for the huge graphs listed in Table 2.1 following
their respective order: 131.3, 203.2, 313.2, 294.0, 164.9, 186.1, 340.7, 551.5.

The results show that HeiStream outperforms all the competitor algorithms regarding
solution quality for most instances. Notably, HeiStream computes partitions with consider
ably lower edgecut in comparison to the onepass algorithms for 4 out of the tested graphs:
uk2005, sk2005, uk200705, and RHG1. For the social networks socfriendster and twit
ter7, HeiStream is the best for all instances, but the improvement over Fennel and LDG is
not so large as in the other instances. One outlier can be seen on the network RHG2. While
HeiStream produces fairly small edgecut values, which are all below 0.7%, Fennel does
outperform it and LDG improves solution quality even further on this instance. Further
more, note that the running time of Fennel increases with increasing k to the point in which
it becomes higher than the running time of HeiStream for 5 out of the 8 huge graphs tested.

4.1. Buffered Streaming Graph Partitioning 51

Graph k
HeiStream(Xk) Fennel LDG Hashing
X CE(%) RT(s) CE(%) RT(s) CE(%) RT(s) CE(%) RT(s)

uk2005

8 1024 4.03 290.23 19.93 37.19 19.97 19.36 73.70 3.28
16 1024 6.01 300.04 22.76 58.05 22.72 22.58 78.86 3.38
32 1024 7.65 310.72 25.24 98.78 25.19 29.19 81.39 3.30
64 1024 8.99 322.14 26.88 183.15 26.81 42.90 82.60 3.28
128 1024 9.94 346.73 27.89 342.74 27.76 61.87 83.18 3.27
256 1024 10.68 386.64 28.78 666.22 28.65 109.20 83.46 3.31

twitter7

8 512 41.64 1727.13 45.18 184.17 56.11 180.85 71.66 3.46
16 512 47.04 1774.92 53.49 213.17 61.73 186.27 76.78 3.57
32 512 52.59 1884.16 58.15 244.18 66.84 184.90 79.34 3.49
64 512 57.53 1988.11 62.95 330.46 68.68 197.86 80.62 3.50
128 512 61.87 2113.34 66.68 504.53 69.94 219.65 81.26 3.93
256 512 65.47 2357.92 78.32 846.20 71.26 280.99 81.57 3.51

sk2005

8 1024 3.23 634.79 21.95 55.39 21.13 30.98 81.50 4.17
16 1024 4.11 648.48 26.36 82.41 25.33 35.44 87.26 4.20
32 1024 5.32 667.84 29.59 137.42 27.97 43.76 90.11 4.23
64 1024 7.55 695.60 32.52 238.54 30.18 59.19 91.50 4.21
128 1024 8.95 733.05 35.87 449.19 32.44 91.36 92.19 4.20
256 1024 12.02 798.73 40.06 857.76 35.69 150.64 92.55 4.26

socfriendster

8 1024 27.36 4099.35 30.57 405.68 45.60 381.78 87.53 5.45
16 1024 34.50 4202.04 45.74 440.11 58.98 361.54 93.77 5.62
32 1024 39.52 4345.96 54.87 503.90 61.00 408.56 96.89 5.49
64 1024 46.35 4546.98 59.27 649.34 64.02 422.87 98.45 5.44
128 1024 52.41 4796.56 60.82 888.14 68.17 475.16 99.22 5.72
256 1024 57.79 5323.08 64.25 1426.16 71.90 523.66 99.61 5.53

erfact1.5s26

8 1024 73.27 2216.99 73.44 259.98 73.44 208.81 87.50 5.57
16 1024 80.18 2292.12 80.40 288.90 80.40 226.01 93.75 5.57
32 1024 84.36 2400.35 84.63 357.21 84.63 255.60 96.87 5.60
64 1024 86.99 2534.09 87.31 506.23 87.31 270.58 98.44 5.58
128 1024 88.72 2725.81 89.10 769.61 89.10 407.59 99.22 5.57
256 1024 89.99 2913.95 90.45 1329.57 90.45 408.35 99.61 5.65

RHG1

8 1024 0.04 380.04 2.02 86.95 2.02 44.42 91.91 8.37
16 1024 0.06 391.63 2.12 143.47 2.12 52.11 97.39 8.57
32 1024 0.09 406.56 2.16 252.15 2.16 65.65 99.19 8.38
64 1024 0.15 435.71 2.17 450.73 2.17 95.22 99.74 8.33
128 1024 0.22 482.06 2.18 877.69 2.18 147.22 99.90 8.31
256 1024 0.34 569.77 2.19 1708.33 2.18 273.76 99.95 8.45

RHG2

8 1024 0.09 621.56 0.05 103.83 0.04 56.23 89.71 8.31
16 1024 0.13 632.61 0.07 153.29 0.04 60.14 96.15 8.57
32 1024 0.19 648.68 0.12 262.91 0.05 77.34 98.73 9.85
64 1024 0.29 674.36 0.18 468.04 0.05 108.39 99.57 8.32
128 1024 0.44 727.66 0.28 872.68 0.07 157.75 99.85 8.31
256 1024 0.68 816.60 0.44 1686.18 0.09 278.51 99.92 8.47

uk200705

8 1024 0.54 1024.26 25.23 107.46 25.21 58.19 87.91 8.80
16 1024 0.60 1045.36 28.02 166.06 28.19 70.72 94.08 8.79
32 1024 0.70 1058.73 29.40 278.38 29.32 85.42 97.12 8.99
64 1024 0.92 1099.64 29.94 517.20 29.85 115.18 98.61 9.32
128 1024 1.31 1163.45 30.73 935.98 30.18 175.01 99.33 8.79
256 1024 1.95 1280.48 31.65 1808.52 30.70 324.71 99.68 8.92

Table 4.2. Experiments with huge graphs. CE and RT denote cut edges and running time.

52 4.2. Streaming Process Mapping

Memory Consumption. We now shortly review the amount of memory needed by the
streaming algorithms under consideration. First of all note that the memory of HeiStream
depends on the size of the buffer that is used. If the buffer only contains one node, then
the memory requirements match those of Fennel and LDG. Here, we measure the mem
ory consumption of HeiStream for various buffer sizes and compare it to Fennel and LDG.
To do that, we measured the memory consumption of HeiStream(1024k), HeiStream(32k),
Fennel and LDG on the three largest graphs (RHG1, RHG2, and uk200705). On average,
HeiStream(1024k) consumes respectively 2.5GB, 4.1GB, and 9.9GB of memory to partition
these graphs. while HeiStream(32k) consumes 472MB, 521MB, and 3.7GB, and Fennel and
LDG use 399MB, 401MB, and 445MB. Note that the increased amount of used memory of
HeiStream(1024k) is expected, since we use a fairly large buffer. Given the size of the
graphs, we believe those required amounts of memory are more than reasonable.

4.2 Streaming Process Mapping

In this section, we developOnline Recursive Multi-Section, a sharedmemory parallel stream
ing algorithm for process mapping. Our algorithm performs recursive multisections on the
fly, which allows us to perform multisectioning along a hierarchical topology using only
one pass over the communication graph. To the best of our knowledge, ours is the first
streaming algorithm designed specifically for the process mapping problem. On average,
our algorithm computes 41% better process mappings and is 55 times faster than Fennel
which ignores the given hierarchy. In scalability tests, our algorithm is only 3 times slower
than Hashing when running on 32 threads. If no hierarchy is specified as an input, our ap
proach can also be used as a tool to solve the standard graph partitioning problem. Our
approach has a significantly lower running time complexity compared to stateoftheart
nonbuffered onepass partitioning algorithms. Our experiments show that on average, our
algorithm is 134.4 times faster than Fennel at the cost of 5% more cut edges.

4.2.1 Online Recursive MultiSection

4.2.1.1 Overall Scheme

A successful offline algorithm to partition and map the nodes of a communication graph
onto PEs is the recursive multisection [92, 109]. This approach specializes the partitioning
process for the case in which the communication cost between two processes (nodes) highly
depends on the hierarchy level shared by the PEs (blocks) in which they are allocated. Recall
that a hierarchical topology can represented by a string S = a1 : a2 : ... : aℓ which in
the process mapping application means that each processor has a1 cores, each node has a2

4.2. Streaming Process Mapping 53

Algorithm 4.2 Online Recursive Multi-Section
1: for u ∈ V (G) do
2: Load N(u)

3: X ← {V ℓ
1 , . . . , V

ℓ
aℓ
}, V ∗ ← ∅

4: for i ∈ {ℓ, . . . , 1} do
5: if i 6= ℓ then X ← subblocks of V ∗

6: V ∗ ← argmax
W∈X

{
score(W)

}
7: Assign node to subblock V ∗

processors, each rack has a3 nodes, and so forth. The offline recursive multisection works
as follows. First, the whole graph is partitioned in aℓ blocks. Then, the subgraph induced
by each block of an aipartition is recursively partitioned in ai−1 subblocks until the whole
graph is partitioned in k =

∏ℓ
i=1 ai blocks. This recursive approach have been developed

for process mapping and exploits the fact that the communication between PEs is cheaper
through lower layers of the communication hierarchy. It creates a hierarchy of partitioning
subproblems that directly reflects the hierarchical topology of the system, which yields an
improved process mapping in practice [109].

Intuitively, for any given hierarchy S (independent of the application), recursive multi
section can be implemented in the streaming model using ℓ successive passes of any one
pass partitioning algorithm over the input graph, i.e., by restreaming the graph ℓ times and
subpartitioning the corresponding blocks in each pass. In our algorithm, which we call
Online Recursive Multi-Section, we compress all steps performed during the ℓ passes into a
single pass, as follows. After a node is loaded, assign it to one of the aℓ blocks {V ℓ

1 , . . . , V
ℓ
aℓ
}

in layer ℓ. Then, for each layer i < ℓ, assign the node to one of the ai subblocks of the block
chosen in the previous step. After going through all layers, the node is directly assigned
to a final block, which makes this approach feasible for online execution. Algorithm 4.2
summarizes the structure of our Online Recursive Multi-Section and Figure 4.8 exemplifies
it. Here, score depends on the algorithm logic used, e.g. Fennel or LDG, as well as other
parameters that are specific to our multisection algorithm. We give more details in Section
4.2.1.2. Note that it produces exactly the same result as the version with ℓ passes over the
input since it does not violate any data dependency.

Online Recursive Multi-Section can be applied to compute any hierarchical partitioning
and is not limited to the process mapping application. However, in case of the process
mapping application, as the offline recursive multisection our streaming algorithm exploits
the inherent structure of the problem in two ways: (i) its layout reproduces the hierarchical
communication topology; (ii) the topdown order in which the nodes are assigned to sub
blocks of previously assigned blocks reflects the order in which the communication costs

54 4.2. Streaming Process Mapping

Figure 4.8. Assigning a node with Online Recursive Multi-Section over a grid composed of
256 blocks that are contained within a hierarchy S = 4 : 4 : 4 : 4. In the first 4partition
(black), the node is assigned to the lower left block. In the following 4partitions, it is
assigned to the upper right subblock (blue), its upper left subblock (green), and finally its
upper left subblock (purple), which is a block from the original partitioning problem.

decrease in a communication topology. In other words, this topdown order reflects the
need for primarily avoiding cut edges amongmodules of higher layers in the communication
hierarchy. We give the time and space complexity of our algorithm.

Lemma 4.2. Online Recursive Multi-Section needs O(k) space to store block weights.

Proof. By definition, the multisection consists of ℓ layers such that a layer i ∈ {1, . . . , ℓ}
contains exactly

∏ℓ
r=i ar blocks whose weight we need to keep track of. As we define ar ≥

2 ∀r, we can write
∏ℓ

r=i ar ≤ (1/2i−1)
∏ℓ

r=1 ar = (1/2i−1)k. Hence, the total number of
block weights that we need to keep track of is

∑ℓ
i=1

∏ℓ
r=i ar ≤

∑ℓ
i=1 (1/2

i−1)k ≤ 2k.

Theorem 4.3. Online Recursive Multi-Section coupled with Fennel or LDG needsO(n+ k)

memory.

Proof. Due to the hierarchical structure of multisection, Fennel and LDG may keep track
of a single block assignment per node, which is enough to infer all its superblocks. Hence,
the space complexity O(n+ k) directly follows from Lemma 4.2.

Theorem 4.4. Online Recursive Multi-Section coupled with Fennel or LDG has time com
plexity O(mℓ+ n

∑ℓ
i=1 ai).

Proof. Online Recursive Multi-Section assigns each node u over ℓ layers. Using Fennel or
LDG, the running time to assign u in a given layer i is O(|N(u)| + ai). Accounting for all
layers and nodes, this sums up to O(mℓ+ n

∑ℓ
i=1 ai).

4.2. Streaming Process Mapping 55

Corollary 4.5. Online Recursive Multi-Section coupled with Fennel or LDG has time com
plexity O

(
(m+ n) log k

)
if ai = b, ∀i ∈ {1, . . . , ℓ} for any constant b ≥ 2.

Proof. Based on the assumption, we derive the claimed bound from Theorem 4.4 by proving
ℓ = O(log k) and

∑ℓ
i=1 ai = O(log k). The first part trivially holds since k =

∏ℓ
i=1 ai =

bℓ ⇒ ℓ = logb k. To prove the second part, notice that
∑ℓ

i=1 ai = bℓ. Since ℓ = logb k, it
follows that k =

∏ℓ
i=1 ai = b logb k = O(log k).

4.2.1.2 Partitioning Subproblems

Our Online Recursive Multi-Section algorithm implies a hierarchy of onepass partitioning
subproblems. As selfcontained, onepass partitioning problems, these subproblems can be
solved using any onepass partitioning algorithm in literature. The focus of this section is to
analyze the subproblems in relation to the parameters of a hierarchical partitioning problem.

Consider all the partitioning subproblems contained in some layer i of our algorithm.
The initial point of consideration is the uniformity of these subproblems, which implies
that they are supplied with an induced subgraph containing a similar quantity of nodes and
edges, and subsequently partition it among ai blocks. More specifically, a subproblem in
layer i partitions among ki = ai blocks and receives as input a graph containing roughly
ni = n/

∏ℓ
r=i+1ar nodes and mi = m/

∏ℓ
r=i+1ar edges. Consequently, the size constraint

Li for a block from the subproblems in layer i is determined by the equation Li = d(1 +

ϵ)ni/kie ' Lmax
∏i−1

r=1 ar, which simply denotes the total capacity of all blocks from the
original problem that are encompassed within it. The variations observed in the dimensions
subproblems at different layers within our algorithm have further implications based on the
choice of streaming partitioning algorithm employed to address them, as we show next.

Fennel Mapping. Using Fennel within Online Recursive Multi-Section requires attention
to its constant α. Recall that it is defined as α =

√
km/n3/2 for partitioning the whole graph

into k blocks with vanilla Fennel. Using this value of α for all partitioning subproblems con
tained in our algorithm is not a natural choice since we intend to apply Fennel independently
for each subproblem. Independently applying the definition of Fennel for each partitioning
subproblem contained in our algorithm implies ℓ different parameters αi, i ∈ {1, . . . , ℓ},
for all multisection layers. We derive the value of αi by applying the Fennel definition
αi =

√
ki

mi

n
3/2
i

and substituting the values of ki,mi, and ni which we have already discussed.
It follows that αi =

α√∏i−1
r=1 ar

.

LDGMapping. Combining LDG with Online Recursive Multi-Section is straightforward,
since it directly uses the remaining capacity of each block as a multiplicative penalty. Hence,

56 4.2. Streaming Process Mapping

we can configure LDG for a subproblem in layer i by simply computing this penalty based
on the block capacity Li, whose value we have already discussed.

4.2.1.3 General Partitioning

In this section, we show how to partition a streamed graph into an arbitrary number of
blocks using Online Recursive Multi-Section when no explicit hierarchy is given. We do
this by creating an artificial hierarchy.

The recursive bisection is a successful offline approach to partition graphs into an ar
bitrary number k of blocks [66]. If k is a power of 2, the algorithm works as a recursive
multisection with log2 k layers of 2way partitioning subproblems. Otherwise, it is irregu
lar and cannot be represented by a string S. In analogy to the offline algorithm, we define an
online recursive bisection to partition a graph on the fly when no hierarchy is given. Recall
that the whole hierarchy of blocks and subblocks has to be kept in memory throughout the
execution of Online Recursive Multi-Section, hence the same requirement applies here. We
build this hierarchy, which we callmultisection tree, as a preliminary step for the streaming
partitioning process. In Algorithm 4.3, we define the procedure BuildHierarchy which re
cursively builds this multisection tree for any value of k. This procedure receives as input
a parent block P for the multisection tree as well as the endpoints kL and kR of the range
of blocks to be covered by the multisection tree. In line 2, it terminates the recursion when
P is a leaf of the multisection tree, which is true when kL = kR. Otherwise, it creates two
subblocks for P and inserts them as sons of P in the multisection tree (line 3). Then, it
splits the range {kL, . . . , kR} in roughly equal parts and performs 2 recursive calls to itself.

We further generalize the recursive bisection to recursive bsection for a base b. Given a
base b ≥ 2, a recursive bsection is a recursive multisection associated with a multisection
tree in which blocks have up to b subblocks. Algorithm 4.3 can be adapted to deal with b
section by creating min{b, kR − kL + 1} subblocks in line 3 and, afterwards, making the
same number of recursive calls with proper parameters. We create the multisection tree by

Algorithm 4.3 Create Blocks for MultiSection Tree
Input P : Parent block in hierarchy, kL: Left endpoint of blocks covered by hierarchy. kR:
Right endpoint of blocks covered by hierarchy

1: procedure BuildHierarchy(P, kL, kR)
2: if kL = kR then return

3: PL, PR ← Create subblocks for P
4: BuildHierarchy

(
PL, kL,

⌊
kL+kR

2

⌋)
5: BuildHierarchy

(
PR,

⌊
kL+kR

2

⌋
+ 1, kR

)

4.2. Streaming Process Mapping 57

calling the command BuildHierarchy(∅, 1, k) at the cost ofO(k). Given a multisection tree,
we solve it by using Algorithm 4.2. Analogously to Theorem 4.3, it is possible to prove that
the online recursive bsection respectively stores O(k) blocks and needs O(n+ k) memory
when coupled with Fennel or LDG. Theorem 4.6 provides a running time bound.

Theorem 4.6. Online recursive bsection coupled with Fennel or LDG has time complexity
O
(
(m+ nb) logb k

)
.

Proof. The number of layers in the multisection tree is up to dlogb ke. In other words, each
node should be assigned through up to 1 + logb k layers. Since all subproblems partition
among up to b blocks, then the running time to assign a node u over a layer is |N(u)| + b.
Accounting for all layers and nodes, this sums up to (2m + nb)(logb k + 1) = O

(
(m +

nb) logb k
)
.

Heterogeneous Partitioning. When k is not a power of b, the recursive bsection hierarchy
may contain some partitioning subproblems with heterogeneous blocks. We deal with this
by computing the size constraint of each block in the multisection tree individually. For
simplicity, we explain how to do this when b = 2 (recursive bisection), but this can be easily
extended to an arbitrary b. For example when k = 5, the two blocks in the first 2way
partitioning subproblem respectively cover 2 and 3 of the blocks from the original 5way
partitioning. Hence, these two blocks shall respectively have capacities 2Lmax and 3Lmax,
where Lmax is the size constraint of a block in the original kway partitioning. Putting it
in general terms, each block from the multisection tree created in line 3 of Algorithm 4.3
covers t = kR − kL + 1 blocks of the original kway partitioning. For simplicity, we use
t to refer to this number covered by a given block, and we use t1 and t2 to refer to the
numbers covered by the two blocks of a partitioning subproblem. The size constraint of a
block is t× Lmax.

When a subproblem has blocks with heterogeneous size constraints, the used partitioning
algorithm has to cope with it. We adapt Fennel to address this issue by increasing (decreas
ing) the constant α used to compute the score of a specific block when its size constraint
is lower (higher) than the other block from the same subproblem. Recall that α depends
on the numbers of nodes, edges and blocks for a specific subproblem. A subproblem re
ceives as input an induced subgraph with roughly t1+t2

k
of the nodes and edges from the

original kway partitioning. We redefine the number of blocks as t1+t2
t1

for the first block
and t1+t2

t2
for the second block of a subproblem. This value equals 2 for both blocks when

t1 = t2. Nevertheless, if t1 6= t2, this value is larger (smaller) than 2 for the block with
smaller (larger) size constraint. Summing up, the value of α for a given block will be

√
t

times smaller than the value α from the original kway partitioning problem. Consequently,

58 4.2. Streaming Process Mapping

the imbalance penalty function for Fennel will be more pronounced for blocks with lower
capacities, thereby addressing the issue of heterogeneous balancing.. For LDG, a natural
adaptation for heterogeneous blocks arises from its very definition, since it directly uses the
remaining capacity of each block as a multiplicative penalty.

4.2.1.4 SharedMemory Parallelization

Since Online Recursive Multi-Section is a nodecentric algorithm, we can parallelize it by
independently splitting the nodes of the graph among threads. More specifically, it can be
achieved with OpenMP by parallelizing the for loop in line 1 of Algorithm 4.2. This par
allelization requires the nodes from the input graph to be concurrently loaded by distinct
threads alongside with their neighborhoods, which is a reasonable assumption in many prac
tical environments. Regarding data consistency, the only source of concern are the block
weights, whose values can be concurrently read and incremented by multiple threads. This
is important because an inconsistency could compromise the load balance between blocks.
We ensure writing consistency by making the incrementation an atomic operation. Poten
tially, a block can still be overloaded if multiple threads decide to assign a node to it at
the same time. Since this is very unlikely, we do not use any synchronization to keep it
from happening.

4.2.2 Experimental Evaluation

Setup. We performed our implementations using C++ and compiled them using gcc 9.3
with full optimization turned on (O3 flag). The majority of our experiments were executed
on a single core of Machine C, with the exception of the scalability experiments, which
employed up to 32 threads using hyperthreading. Unless otherwise mentioned we stream the
input directly from the internal memory to obtain clear running time comparisons. However,
note that the streaming algorithma could also be run streaming the graph from hard disk.

Baselines. We identify Fennel and LDG as the stateoftheart of nonbuffered onepass
stream partitioning algorithms which aim at minimizing edgecut. Since Fennel generates
better solutions on average than LDG [3], we focus our experiments on Fennel without loss
of generality. We also include Hashing as a competitor, since it is the fastest algorithm for
streaming partitioning. To the best of our knowledge, there are no streaming partitioning
algorithms specifically designed for process mapping. Since no official versions of Fennel,
LDG, and Hashing are available in public repositories, we implemented them in our frame
work. For comparison purposes, we ran experiments with internalmemory tools, i.e. we
compare against the fastest version of the integrated multilevel algorithm proposed in Chap

4.2. Streaming Process Mapping 59

ter 6.1 of this dissertation, which we refer to as IntMap. In addition, we compare our results
against KaMinPar [63], a very fast internalmemory algorithm that is orders of magnitudes
faster than mt-Metis in terms of running time and produces comparable cuts while also en
forcing balance (in contrast to mt-Metis). In particular, the purpose of running IntMap and
KaMinPar is to provide a reference of streaming algorithms in comparison to internal mem
ory algorithms. We set a timeout of 30 minutes for an algorithm to partition a graph. Only
IntMap exceeded this time limit for some instances. Hence, we exclude this algorithm from
the plots. Our implementations of these algorithms reproduce the results presented in the
respective papers and are optimized for running time as much as possible.

Instances. In this section, we use two disjoint sets of graphs: the tuning set is used for the
parameter study experiments, while the test set is used for the comparisons against the state
oftheart. Basic properties of the graphs under consideration can be found in Table 2.1. In
any case, when streaming the graphs we use the natural given order of the nodes. Unless
otherwise mentioned, we use the following configurations for process mapping experiments:
D = 1 : 10 : 100, S = 4 : 16 : r, with r ∈ {1, 2, 3, . . . , 128}. Hence, k = 64r.
This is the same configuration used in other studies [92, 109]. Analogously, we use k =

64s, s ∈ {1, 2, 3, . . . , 128} for graph partitioning experiments unless mentioned otherwise.
We allow a fixed imbalance of 3% for all experiments (and all algorithms) since this is a
frequently used value in the partitioning literature. All partitions computed by all algorithms
were balanced.

Methodology. We perform two types of experiments: experiments for the process map
ping objective (with given hierarchies as specified below) and standard graph partitioning in
which we create implicit hierarchies as described above. Depending on the focus of the ex
periment, we measure running time, edgecut, and/or the process mapping communication
cost defined in Equation (2.1).

4.2.2.1 Parameter Study

Weperformed extensive tuning experiments using the graphs from the tuning set in Table 2.1.
We briefly summarize the main results here. Online Recursive Multi-Section produces on
average 3.89% better mapping and 0.19% better edgecut when coupled with Fennel than
when coupled with LDG. Hence, we use Fennel as our scoring function. Computing adapted
values of α for each partitioning subproblem is superior than using the default value of α of
the original kway partitioning. Particularly, it is on average 3.1% faster while producing
9.7% better mapping and cutting roughly the same number of edges. Hence, our algorithm
uses adapted α values. When no communication hierarchy is given, using the base b = 4 to

60 4.2. Streaming Process Mapping

 0

 500

 1000

 1500

 2000

 2500

 3000

2
10

2
11

2
12

2
13

M
ap

p
in

g
 i

m
p

ro
v

em
en

t
in

 %

k

Hashing
OMS

Fennel
KaMinPar

(a)Mapping improvement over Hashing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128

%
 i

n
st

an
ce

s
≤

τ
b

es
t

m
ap

τ

Hashing
OMS

Fennel
KaMinPar

(b)Mapping performance profile.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
11

2
12

2
13

E
d

g
e-

cu
t

im
p

ro
v

em
en

t
in

 %

k

Hashing
nh-OMS

Fennel
KaMinPar

(c) Edgecut improvement over Hashing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024 4096

%
 i

n
st

an
ce

s
≤

τ
fa

st
es

t

τ

Hashing
nh-OMS

OMS
Fennel

KaMinPar

(d) Running time performance profile.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128

%
 i

n
st

an
ce

s
≤

τ
b

es
t

ed
g

e-
cu

t

τ

Hashing
nh-OMS

Fennel
KaMinPar

(e) Edgecut performance profile.

 1

 4

 16

 64

 256

 1024

2
10

2
11

2
12

2
13

S
p

ee
d

u
p

k

Hashing
nh-OMS

OMS

Fennel
KaMinPar

(f) Total speedup over Fennel.

Figure 4.9. Comparison against the stateoftheart. Higher is better.

4.2. Streaming Process Mapping 61

 0.5

 1

 2

 4

 8

 16

 1 2 4 8 16 32

S
p

ee
d

u
p

Threads

 Hashing
 nh-OMS

 OMS
 Fennel

 KaMinPar

(a) Speedup versus number of used threads for
graph socorkutdir.

 0.25

 1

 4

 16

 64

 256

 1024

 1 2 4 8 16 32

R
u

n
n

in
g

 t
im

e
(s

)

Threads

 Hashing
 nh-OMS

 OMS
 Fennel

 KaMinPar

(b) Running time versus number of used threads
for graph socorkutdir.

 0.5

 1

 2

 4

 8

 16

 1 2 4 8 16 32

S
p

ee
d

u
p

Threads

 Hashing
 nh-OMS

 OMS
 Fennel

 KaMinPar

(c) Speedup versus number of used threads for
graph HV15R.

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 1 2 4 8 16 32

R
u

n
n

in
g

 t
im

e
(s

)

Threads

 Hashing
 nh-OMS

 OMS
 Fennel

 KaMinPar

(d) Running time versus number of used threads
for graph HV15R.

 0.5

 1

 2

 4

 8

 16

 1 2 4 8 16 32

S
p

ee
d

u
p

Threads

 Hashing
 nh-OMS

 OMS
 Fennel

 KaMinPar

(e) Speedup versus number of used threads for
graph socLiveJournal1.

 0.25

 1

 4

 16

 64

 256

 1024

 1 2 4 8 16 32

R
u

n
n

in
g

 t
im

e
(s

)

Threads

 Hashing
 nh-OMS

 OMS
 Fennel

 KaMinPar

(f) Running time versus number of used threads
for graph socLiveJournal1.

Figure 4.10. Speedup and time comparison for k = 8192. Higher is better for speedup.
Lower is better for time.

62 4.2. Streaming Process Mapping

build the multisection tree is the fastest configuration overall. Using b = 4, our algorithm is
16.7% faster and cuts 3.2% fewer edges than using b = 2. Hence, our algorithm uses base
b = 4. From now on, we refer to our Online Recursive Multi-Section algorithm as OMS
when a communication hierarchy is given and nh-OMS otherwise.

4.2.2.2 StateoftheArt

In this section, we show experiments in which we compare Online Recursive Multi-Section
against the current stateoftheart.

Solution Quality (Process Mapping). We start by looking at the mapping quality pro
duced by OMS. In Figure 4.9a, we plot the average mapping improvement over Hashing.
KaMinPar produces the best mapping overall, with an average improvement of 1117% over
Hashing. Among the instances IntMap could solve, it improves on average 7.6% over
KaMinPar. IntMap produces the best overall mapping in 67% of the cases it could solve.
Note that this is in line with previous works in the area of graph partitioning, i.e. streaming
algorithms typically compute worse solutions than internal memory algorithms that always
have access to the whole graph. OMS has an average improvement of 257.8% over Hashing,
while Fennel improves 153% on average over Hashing. In a direct comparison, OMS pro
duces on average 41%better mappings than Fennel. In Figure 4.9b, we plot the mapping per
formance profile. In the plot, KaMinPar produces the best overall mapping for all instances.
We conclude that OMS produces the best mapping among the streaming competitors.

Solution Quality (EdgeCut). Next we look at the edgecut of nh-OMS. In Figure 4.9c,
we plot the edgecut improvement over Hashing. KaMinPar produces the best overall edge
cut, with an average improvement of 3024% over Hashing. IntMap cuts 20% more edges
on average than KaMinPar for the instances it solved. Among the streaming algorithms,
Fennel and nh-OMS produce improvements of respectively 130.5% and 118.2% on average
over Hashing. In a direct comparison, nh-OMS cuts on average 5%more edges than Fennel.
In Figure 4.9e, we plot the edgecut performance profile. KaMinPar produces the smallest
edgecut for all instances. Among the streaming algorithms, Fennel is slightly better than
nh-OMS and both are distinctly better than Hashing.

Running Time. Wenow investigate the running time ofOMS and nh-OMS. In Figure 4.9f,
we plot the speedup over Fennel. On average,Hashing is 1301 times faster than Fennel, while
nh-OMS and OMS are respectively 133 and 55.4 times faster than Fennel. In a direct com
parison,Hashing is on average 9.7 times faster than nh-OMS and 23.4 times faster thanOMS.
KaMinPar comes next with an average speedup of 5.3 over Fennel. In a direct comparison,

4.2. Streaming Process Mapping 63

Threads
Hashing nh-OMS OMS Fennel KaMinPar
RT SU RT SU RT SU RT SU RT SU

1 0.49 1.0 4.8 1.0 10.7 1.0 673.6 1.0 36.9 1.0
2 0.72 0.7 4.6 1.1 6.4 1.7 346.3 1.9 19.3 1.9
4 0.70 0.7 3.6 1.3 3.9 2.7 184.6 3.6 10.5 3.5
8 0.72 0.7 3.0 1.6 2.6 4.1 96.3 7.0 5.8 6.4
16 0.75 0.7 2.5 1.9 2.3 4.7 54.0 12.5 3.5 10.5
32 0.46 1.1 1.7 2.8 1.3 8.2 44.2 15.2 3.1 11.9

Table 4.3. Average time in seconds (RT) and average speedup (SU) for k = 8192.

nh-OMS and OMS are respectively 25.1 and 10.5 times faster than KaMinPar. KaMinPar is
on average 2.5 times faster than IntMap for the instances IntMap could solve. In Figure 4.9d,
we plot the running time performance profile. Note that the running time of nh-OMS is at
most 16 times slower than Hashing for 100% of the experiments, which is in accordance
with Theorem 4.6. As the third fastest algorithm, OMS is considerably faster than all the
other competitors, including Fennel.

Memory Requirements. We now look at the memory requirements of the different algo
rithms. We measured this on three graphs of our collection. In this case, we run stream
graphs directly from disk for the streaming algorithms. Besides being the fastest algorithm,
Hashing needs the least memory overall. For socorkutdir, HV15R, and socLiveJournal1,
it respectively needs 17MB, 13MB, and 24MB. OMS, nh-OMS, and Fennel have compara
ble consumption, all of which using 19MB, 14MB, and 25MB for the mentioned graphs,
respectively. Finally, KaMinPar respectively uses 4.1GB, 4.1GB, and 1.8GB, while IntMap
respectively uses 34GB, 12GB, and 10GB.

4.2.2.3 Scalability

Now we evaluate the scalability of Online Recursive Multi-Section. As in Section 4.2.2.2,
we refer to our algorithm as OMS when a process mapping communication hierarchy is
given and nh-OMS otherwise. As competitors, we include KaMinPar, Fennel, and Hashing.
For a fair comparison against Fennel and Hashing, we implemented them with the same
parallelization scheme of our algorithm, i. e., a nodecentric parallelization. We do not in
clude IntMap in these experiments since it cannot run in parallel. For these experiments,
we selected the 12 graphs from our collection which have at least two million nodes and
partitioned them into k = 8192 blocks using all algorithms.

In Figure 4.10, we plot speedup and running time versus number of threads for the graphs
socorkutdir, HV15R, and socLiveJournal1. In Table 4.3, we plot the average running time
in seconds and speedup over all graphs as a function of the number of threads. For all graphs,

64 4.3. Streaming Hypergraph Partitioning

Hashing presents the worst scalability, with speedups smaller than 1. Although Hashing is
theoretically an embarrassingly parallel algorithm, it has two limitations: (i) it is extremely
fast, hence the overhead of the parallelization is too large in comparison to the overall run
ning time and (ii) it neither reuses data nor accesses sequential positions in memory, so there
are almost no cache hits. On the other hand, Fennel presents the best scalability. Differently
than Hashing, it is rather slow but reuses data, e. g., the assignments of previous nodes to
blocks, and goes through the array of blocks in order to compute their score. Following
Fennel, KaMinPar has the second best scalability which roughly reproduces the behavior re
ported in [63]. The algorithms OMS and nh-OMS have an intermediary scalability between
KaMinPar and Hashing. This is explained by their characteristics, which are intermediary
between Fennel and Hashing. Note that OMS is more scalable than nh-OMS. This happens
because OMS goes through and scores several blocks in one of the partitioning subprob
lems contained in the multisection hierarchy, which favors cache hits, whereas nh-OMS
partitioning subproblems have at most 4 blocks. For 32 threads, the average running time
of OMS is within a factor 3 of the running time of Hashing.

4.3 Streaming Hypergraph Partitioning

In this section, we propose FREIGHT: a Fast stREamInG Hypergraph parTitioning algo
rithm that can optimize for cutnet and connectivity. By using an efficient data structure, we
make the overall running time of FREIGHT linearly dependent on the pincount of the hyper
graph and the memory consumption linearly dependent on the numbers of nets and blocks.
Our proposed algorithm demonstrates remarkable efficiency, with a running time compara
ble to the Hashing algorithm and a maximum discrepancy of only four in three quarters of
the instancesr Our study establishes the superiority of FREIGHT over all current (buffered)
streaming algorithms and even the inmemory algorithm HYPE, in both cutnet and connec
tivity measures. This shows the potential of our algorithm as a valuable tool for partitioning
hypergraphs in the context of large and constantly changing data processing environments.

4.3.1 FREIGHT

4.3.1.1 Mathematical Definition

In this section, we provide a mathematical definition for FREIGHT by expanding the idea
of Fennel to the domain of hypergraphs. Recall that, assuming the nodes of a graph be
ing streamed onebyone, the Fennel algorithm assigns an incoming node v to a block Vd

where d is computed as follows:

4.3. Streaming Hypergraph Partitioning 65

already streamed nodes. . . u future nodes . . .

load node

evaluate a function

permanently assign node to block

already streamed nodes. . . v future nodes . . .

nets incident with u
block assignments

Figure 4.11. Typical layout of streaming algorithm for hypergraph partitioning.

d = argmax
i, |Vi|<Lmax

{
|Vi ∩N(v)| − α ∗ γ ∗ |Vi|γ−1

}
(4.6)

The term−α∗γ ∗|Vi|γ−1, which penalizes block imbalance in Fennel, is directly used in
FREIGHT without modification and with the same meaning. The term |Vi ∩ N(v)|, which
minimizes edgecut in Fennel, needs to be adapted in FREIGHT to minimize the intended
metric, i.e., either cutnet or connectivity. Before explaining how this is adapted, recall
that, in contrast to graph partitioning, in hypergraph partitioning the incident nets I(v) of
an incoming node v might contain nets that are already cut, i.e., with pins assigned to mul
tiple blocks. The version of FREIGHT designed to optimize for connectivity accounts for
already cut nets by keeping track of the block de to which the most recently streamed pin of
each net e has been assigned. More formally, the connectivity version of FREIGHT assigns
an incoming node v of a hypergraph to a block Vd with d given by Equation (4.7), where
I iobj(v) = I icon(v) = {e ∈ I(v) : de = i}. On the other hand, the version of FREIGHT de
signed to optimize for cutnet ignores already cut nets, since their contribution to the overall
cutnet of the hypergraph kpartition is fixed and cannot be changed anymore. More for
mally, the cutnet version of FREIGHT assigns an incoming node v of a hypergraph to a
block Vd with d given by Equation (4.7), where I iobj(v) = I icut(v) = I icon(v) \ E ′ and E ′ is
the set of already cut nets.

d = argmax
i, |Vi|<Lmax

{
|I iobj(v)| − α ∗ γ ∗ |Vi|γ−1

}
(4.7)

Both configurations of FREIGHT interpolate two objectives: favoring blocks with many
incident (uncut) nets and penalizing blocks with large cardinality. We briefly highlight
that FREIGHT can be adapted for weighted hypergraphs. In particular, when dealing with
weighted nets, the term |I iobj(v)| is substituted by ω(I iobj(v)). Likewise when dealing with
weighted nodes, the term −α ∗ γ ∗ |Vi|γ−1 is substituted by −c(v) ∗ α ∗ γ ∗ c(Vi)

γ−1, where
the weight c(v) of v is used as a multiplicative factor in the penalty term.

66 4.3. Streaming Hypergraph Partitioning

4.3.1.2 Streaming Hypergraphs

In this section, we present and discuss the streaming model used by FREIGHT. Recall in
the streaming model for graphs, nodes are loaded one at a time alongside with their adja
cency lists. Thus, just streaming the graph (without doing additional compuations, implies
a time cost O(m + n). In our model, the nodes of a hypergraph are loaded one at a time
alongside with their incident nets, as illustrated in Figure 4.11. Our streaming model im
plies a time cost O(

∑
e∈E |e|+ n) just to stream the hypergraph, where O(

∑
e∈E |e|) is the

cost to stream each net e exactly |e| times. FREIGHT uses O(m + k) memory, with O(m)

being used to keep track, for each net e, of its cut/uncut status as well as the block de to
which its most recently streamed pin was assigned. This nettracking information, which
substitutes the need to keep track of node assignments, is necessary for executing FREIGHT.
Although FREIGHT consumes more memory than required by graphbased streaming al
gorithms which often use O(n + k) memory, it is still far better than the O(mk) worst
case memory required by the stateoftheart algorithms for streaming hypergraph partition
ing [8, 9], all of which are also based on a computational model that implies a time cost
O(

∑
e∈E |e|+ n) just to stream the hypergraph.

4.3.1.3 Efficient Implementation

In this section, we describe an efficient implementation for FREIGHT. Recall that, for every
node v that is loaded, FREIGHT uses Equation (4.7) to find the block with the highest score
among up to k options. A simple method to accomplish this task consists of explicitly eval
uating the score for each block and identifying the one with the highest score. This results
in a total of O(nk) evaluations, leading to an overall complexity of O(

∑
e∈E |e|+ nk). We

propose an implementation that is significantly more efficient than this approach.
For each loaded node v, our implementation separates the blocksVi for which |Vi| < Lmax

into two disjoint sets, S1 and S2. In particular, the set S1 is composed of the blocks Vi where
|I iobj(v)| > 0, while the set S2 comprises the remaining blocks, i.e., blocks Vi for which
|I iobj(v)| = 0. Using the sets provided, we break down Equation (4.7) into Equation (4.8)
and Equation (4.9), which are solved separately. The resulting solutions are compared based
on their FREIGHT scores to ultimately find the solution for Equation (4.7). The overall pro
cess is illustrated in Figure 4.12.

d = argmax
i∈S1

{
|I iobj(v)| − α ∗ γ ∗ |Vi|γ−1

}
(4.8)

d = argmax
i∈S2

{
|I iobj(v)| − α ∗ γ ∗ |Vi|γ−1

}
= argmin

i∈S2

|Vi| (4.9)

Now we explain how we solve Equation (4.8) and Equation (4.9). To solve Equa
tion (4.8), we use the theoretical complexity outlined in Theorem 4.7 and solve it explicitly.

4.3. Streaming Hypergraph Partitioning 67

all blocks
(a)

S1

S2
(b)

S2
(c) (d)

Figure 4.12. Illustration of the process to solve Equation (4.7) for an incoming node u with
k = 512 blocks. (a) The k blocks are decomposed into S1 and S2, with |S1| = O(|I(u)|).
(b) Equation (4.8) is explicitly solved at cost O(|I(u)|). (c) Equation (4.9) is implicitly
solved at cost O(1). (d) Both solutions are then evaluated using their FREIGHT scores to
determine the final solution for Equation (4.7).

In contrast, Equation (4.9) is implicitly solved by identifying the block with minimal cardi
nality. We use an efficient data structure to keep all blocks sorted by cardinality throughout
the entire execution, which enables us to solve Equation (4.9) in constant time.

Theorem 4.7. Equation (4.8) can be solved in time O(|I(v)|).

Proof. The terms |I iobj(v)| in Equation (4.8) can be computed by iterating through the nets
of v at a cost of O(|I(v)|) and determining their status as cut, unassigned, or assigned to a
block. The calculation of the factors−α ∗ γ ∗ |Vi|γ−1 in Equation (4.8) can be done in time
O(|S1|) = O(|I(v)|), thus completing the proof.

Now we explain our data structure to keep the blocks sorted by cardinality during the
whole algorithm execution. The data structure is implemented with two arrays A and B,
both with k elements, and a list L. The arrayA stores all k blocks always in ascending order.
The array B maps the index i of a block Vi to its position in A. Each element in the list L
represents a bucket. Each bucket is associated with a unique block cardinality and contains
the leftmost and the rightmost positions ℓ and r of the range of blocks in A which currently
have this cardinality. Reciprocally, each block in A has a pointer to the unique bucket in L

corresponding to its cardinality. To begin the algorithm, L is set up with a single bucket
for cardinality 0 which covers the k positions of A, i.e., its paramenters ℓ and r are 1 and k,
respectively. The blocks in A are sorted in any order initially, however, as each block starts
with a cardinality of 0, they will be ordered by their cardinalities.

When a node is assigned to a block Vd, we update our data structure as detailed in Al
gorithm 4.4 and exemplified in Figure 4.13. We describe Algorithm 4.4 in detail now. In

68 4.3. Streaming Hypergraph Partitioning

1

2

3

5

6

1

2

3

4

5

6

1

2

3

5

6

1

2

3

5

6

1

2

3

5

6

7

1

2

3

5

6

8

Figure 4.13. Illustration of our data structure used to keep the blocks sorted by
cardinality throughout the execution of FREIGHT. The array A is represented as
a vertical rectangle. Each region of A is covered by a unique bucket, which is
represented by a unique color filling the corresponding region in A. The cardinal
ity associated with each bucket is written in the middle of the region of A covered
by it. Here we represent the behavior of the data structure when assigning nodes
to the block surrounded by a dotted rectangle five times consecutively.

line 1, we find the position p of Vd in A and find the bucket C associated with it. In line 2,
we exchange the content of two positions in A: the position where Vd is located and the po
sition identified by the variable r in C, which marks the rightmost block in A covered by C.
This variable r is afterwards decremented in line 3 since Vd is now not covered anymore by
the bucket C. In lines 4 and 5, we check if the new (increased) cardinality of Vd matches
the cardinality of the block located right after it in A. If so, we associate Vd to the same
bucket as it and decrement this bucket’s leftmost position ℓ in line 6; Otherwise, we push
a new bucket to L and match it to Vd adequately in lines 8 and 9. Finally, in line 10, we
delete C in case its range [ℓ, r] is empty. Figure 4.13 shows our data structure through five
consecutive executions of Algorithm 4.4. Theorem 4.8 proves the correctness of our data
structure. Theorem 4.9 shows that, using our proposed data structure, we need timeO(1) to
either solve Equation (4.9) or prove that the solution for Equation (4.8) solves Equation (4.7).
Note that our data structure can only handle unweighted vertices. In case of weighted ver
tices, a bucket queue can be used instead of our data structure, resulting in the same overall
complexity and requiring O(k+Lmax)memory, while our data structure only requires O(k)

memory. The overall complexity of FREIGHT, which directly follows from Theorem 4.7
and Theorem 4.9, is expressed in Corollary 4.10.

4.3. Streaming Hypergraph Partitioning 69

Algorithm 4.4 Increment cardinality of block Vd in the proposed data structure
1: p← Bd; C ← Ap.bucket;
2: q ← C.r; c← Aq.id; Swap(Ap, Aq); Swap(Bc, Bd);
3: C.r ← C.r − 1;
4: C ′ ← Aq+1.bucket;
5: if C.cardinality + 1 = C ′.cardinality then
6: Aq.bucket← C ′; C ′.ℓ← C ′.ℓ− 1;
7: else
8: C ′′ ← NewBucket(); Aq.bucket← C ′′; L← L ∪ {C ′′};
9: C ′′.cardinality ← C.cardinality + 1; C ′′.ℓ← q; C ′′.r ← q;

10: if C.r = C.ℓ then L← L \ {C};

Theorem 4.8. Our proposed data structure keeps the blocks within array A consistently
sorted in ascending order of cardinality.

Proof. We inductively prove two claims at the same time: (a) the variables ℓ and r contained
in each bucket from L respectively store the leftmost and the rightmost positions of the
unique range of blocks in A which currently have this cardinality; (b) the array A contains
the blocks sorted in ascending order of cardinality. Both claims are trivially true at the
beginning, since all blocks have cardinality 0 and L is initialized with a single bucket with
ℓ = 1 and r = k. Now assuming that (a) and (b) are true at some point, we show that they
keep being true after Algorithm 4.4 is executed. Note that line 2 performs the only position
exchange in A throughout the whole algorithm. As (a) is assumed, it is the case that Vd

swaps positions with the rightmost block in A containing the same cardinality of Vd. Since
the cardinality of Vd will be incremented by one and all blocks have integer cardinalities, this
concludes the proof of (b). To prove that (a) remains true, note that the only buckets in L

that are modified are C (line 3), C ′ (line 6), and C ′′ (line 9). Claim (a) remains true for C
because Vd, whose cardinality will be incremented, is the only block removed from its range.
Claim (a) remains true for C ′ because line 6 is only executed if the new cardinality of Vd

equals the cardinality ofC ′, whose current range starts right after the new position of Vd inA.
Bucket C ′′ is only created if the new cardinality of Vd is respectively larger and smaller than
the cardinalities ofC andC ′. Since (b) is true, then this condition only happens if there is no
block in A with the same cardinality as the new cardinality of Vd. Hence, claim (a) remains
true for C ′′, which is created covering only the position of Vd in A.

Theorem 4.9. By utilizing our proposed data structure, solving Equation (4.9) or demon
strating that any solution for Equation (4.8) is also a solution for Equation (4.7) can be
accomplished in O(1) time.

70 4.3. Streaming Hypergraph Partitioning

Proof. Algorithm 4.4 contains no loops and each command in it has a complexity of O(1),
thus the total cost of the algorithm is O(1). Our data structure executes Algorithm 4.4 once
for each assigned node, hence it costs O(1) per node. Say we are evaluating an incoming
node v. According to Theorem 4.8, the block Vd with minimum cardinality is stored in the
first position of the arrayA, hence it can be accessed in timeO(1). In case Vd ∈ S2, then d is
a solution for Equation (4.9). On the other hand, if Vd is in S1, the FREIGHT score of Vd will
be larger than the FREIGHT score of the solution for Equation (4.9) by at least |Idobj(v)| > 0.
In this case, it follows that any solution for Equation (4.8) solves Equation (4.7).

Corollary 4.10. The overall complexity of FREIGHT is O
(∑

e∈E |e|+ n
)
.

4.3.2 Experimental Evaluation

Setup. We performed our implementations in C++ and compiled them using gcc 11.2 with
full optimization turned on (O3 flag). Unless mentioned otherwise, all experiments are per
formed on a single core ofMachine C. Unless otherwise mentioned we stream (hyper)graphs
directly from the internal memory to obtain clear running time comparisons. However,
note that FREIGHT as well as most of the other used algorithms can also be run stream
ing the hypergraphs from hard disk.

Baselines. We compare FREIGHT against various stateoftheart algorithms. In this sec
tion we will list these algorithms and explain our criteria for algorithm selection. We have
implemented Hashing in C++, since it is a simple algorithm. It basically consists of hashing
the IDs of incoming nodes into {1, . . . , k}. The remaining algorithms were obtained either
from official repositories or privately from the authors, with the exception of Min-Max, for
which there is no official implementation available. Here, we use the Min-Max implemen
tations by Taşyaran et al. [9]. All algorithms were compiled with gcc 11.2.

We run Hashing, Min-Max [8] and its improved versions proposed in [9]: Min-Max-BF,
Min-Max-N2P, Min-Max-Lℓ, Min-Max-MH, REF, REF_RLX, and REF_RLX_SV. (see Sec
tion 3.1.4 for details on the different Min-Max versions), HYPE [61], and PaToH v3.3 [57].
Hashing is relevant because it is the simplest and fastest streaming algorithm, which gives
us a lower bound for partitioning time. Min-Max is a current stateoftheart for streaming
hypergraph partitioning in terms of cutnet and connectivity. The improved and buffered
versions of Min-Max proposed in [9] are relevant because some of them are orders of mag
nitude faster than Min-Max while others produce improved partitions in comparison to it.
HYPE and PaToH are inmemory algorithms for hypergraph partitioning, hence they are
not suitable for the streaming setting. However, we compare against them because HYPE
is among the fastest inmemory algorithms while PaToH is very fast and also computes par

4.3. Streaming Hypergraph Partitioning 71

titions with very good cutnet and connectivity. Note that KaHyPar [52] is the leading tool
with respect to solution quality, however it is also much slower than PaToH.

Instances. In our experiments we use 310 hypergraphs which are described in more detail
in Section 2.8.2. Prior to each experiment, we converted all hypergraphs to the appropriate
streaming formats required by each algorithm. We removed parallel and empty hyperedges
and self loops, and assigned unitary weight to all nodes and hyperedges. In all experiments
with streaming algorithms, we stream the hypergraphs with the natural given order of the
nodes. We use a number of blocks k ∈ {512, 1024, 1536, 2048, 2560} unless mentioned
otherwise. We allow a fixed imbalance of 3% for all experiments (and all algorithms) since
this is a frequently used value in the partitioning literature. All algorithms always gener
ated balanced partitions, except for HYPE which generated highly unbalanced partitions in
around 5% of its experiments.

Methodology. Depending on the focus of the experiment, we measure running time, cut
net, andor connectivity. We perform 5 repetitions per algorithm and instance using random
seeds for nondeterministic algorithms.

4.3.2.1 StateoftheArt

In this section, we show experiments in which we compare FREIGHT against the current
stateoftheart of streaming hypergraph partitioning. As already mentioned, we also use
two internalmemory algorithms [57, 61] as more general baselines for comparison. We
focus our experimental evaluation on the comparison of solution quality and running time.
Observe that PaToH and FREIGHT have distinct versions designed to optimize for each
quality metric (i.e., connectivity and cutnet). For a meaningful comparison, we only take
into account the relevant version when dealing with each quality metric, however, both
versions are still considered for running time comparisons. To differentiate between the
versions, suffixes -con and -cut are added to represent the connectivityoptimized and cut
net versions respectively.

For clarity, we refrain from discussing stateoftheart streaming algorithms that are
dominated by another algorithm. We define a dominated algorithm as one that has worse
running time compared to another without offering a superior solution quality in return,
or viceversa. In particular, we leave out Min-Max and Min-Max-BF since they are dom
inated by Min-Max-N2P, which is referred to as MM-N2P hereafter. Similarly, we omit
Min-Max-MH because it is dominated by Hashing. We use a buffer size of 15% for test
ing the buffered algorithms REF, REF_RLX, and REF_RLX_SV, following the best results
outlined in [9]. We omit the first two of them since they are dominated by the latter one,

72 4.3. Streaming Hypergraph Partitioning

 0

 100

 200

 300

 400

 500

 600

 700

512 1024 1536 2048 2560

%
 i

m
p

ro
v

em
en

t
in

 c
o

n
n

ec
ti

v
it

y

k

PaToH-con
FREIGHT-con

HYPE
RRS(0.15)
MM-N2P

MM-L5

(a) Connectivity improvement over Hashing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16%
 i

n
st

an
ce

s
≤

τ
b

es
t

co
n

n
ec

ti
v

it
y

τ

Hashing
FREIGHT-con

MM-L5
MM-N2P

RRS(0.15)
HYPE

PaToH-con

(b) Connectivity performance profiles.

 0

 20

 40

 60

 80

 100

 120

 140

 160

512 1024 1536 2048 2560

%
 i

m
p

ro
v

em
en

t
in

 c
u

t

k

PaToH-cut
FREIGHT-cut

HYPE
RRS(0.15)
MM-N2P

MM-L5

(c) Cutnet improvement over Hashing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8

%
 i

n
st

an
ce

s
≤

τ
b

es
t

cu
t

τ

Hashing
FREIGHT-cut

MM-L5
MM-N2P

RRS(0.15)
HYPE

PaToH-cut

(d) Cutnet performance profiles.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

ti
m

e
p

er
 p

in
 (

n
s)

algorithm

Hashing
FREIGHT-cut
FREIGHT-con

MM-L5
MM-N2P

RRS(0.15)
HYPE

PaToH-cut
PaToH-con

(e) Running time boxplots.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024 4096

%
 i

n
st

an
ce

s
≤

τ
fa

st
es

t

τ

Hashing
FREIGHT-cut
FREIGHT-con

MM-L5
MM-N2P

RRS(0.15)
HYPE

PaToH-cut
PaToH-con

(f) Running time performance profiles.

Figure 4.14. Comparison against the stateoftheart streaming algorithms for hypergraph
partitioning. We show performance profiles, improvement plots overHashing, and boxplots.
Note that PaToH-con, PaToH-cut, and Hashing align almost perfectly with the yaxis in
Figures 4.14b, 4.14d, and 4.14f, respectively. Also the curves and bars of MM-N2P and
MM-L5 roughly overlap with one another in Figure 4.14d and Figure 4.14c.

4.3. Streaming Hypergraph Partitioning 73

which is referred to as RRS(0.15) from now on. Since Min-Max-Lℓ is not dominated by
any other algorithm, we exhibit its results with ℓ = 5, as seen in the best results in [9], and
we refer to it as MM-L5 from this point.

Connectivity. We start by looking at the connectivity metric. In Figure 4.14a, we plot
the average connectivity improvement over Hashing for each value of k. PaToH-con pro
duces the best connectivity on average, yielding an average improvement of 443% when
compared to Hashing. This is in line with previous works in the area of (hyper)graph parti
tioning, i.e. streaming algorithms typically compute worse solutions than internal memory
algorithms, which have access to the whole graph. FREIGHT-con is found to be the second
best algorithm in terms of connectivity, outperforming both the internal memory algorithm
HYPE and the buffered streaming algorithm RRS(0.15). On average, these three algorithms
improve 194%, 171%, and 136% over Hashing, respectively. Finally, MM-N2P and MM-L5
compute solutions which improve 111% and 96% over Hashing on average, respectively. In
direct comparison, FREIGHT-con shows average connectivity improvements of 8%, 24%,
39%, and 50% over HYPE, RRS(0.15), MM-N2P, and MM-L5, respectively. Note that each
algorithm retains its relative ranking in terms of average connectivity over all values of k.

In Figure 4.14b, we plot connectivity performance profiles across all experiments. Note
that PaToH-con produces the best overall connectivity for 96.4% of the instances, while
FREIGHT-con produces the best connectivity for 3.1% of the instances and no other algo
rithm computes the best connectivity for more than 0.35%of the instances. The connectivity
produced by FREIGHT-con, HYPE, RRS(0.15), MM-N2P, MM-L5, and Hashing are within
a factor 2 of the best found connectivity for 67%, 61%, 47%, 41%, 34%, and 9% of the
instances, respectively. In summary, FREIGHT-con produces the best connectivity among
(buffered) streaming competitors, outperforming even inmemory algorithm HYPE.

CutNet. Next we examine at the cutnet metric. In Figure 4.14c, we plot the cutnet
improvement over Hashing. PaToH-cut produces the best overall cutnet, with an average
improvement of 100% compared to Hashing. FREIGHT-cut is found to be the second best
algorithmwith respect to cutnet, superior to internalmemory algorithmHYPE and buffered
streaming algorithm RRS(0.15). These three algorithms improve connectivity over Hashing
by 37%, 30%, and 17% respectively. Finally, both MM-N2P and MM-L5 improve connec
tivity by 13% on average over Hashing. In direct comparison, FREIGHT-cut shows average
connectivity improvements of 6%, 18%, 22%, and 22% over HYPE, RRS(0.15), MM-N2P,
and MM-L5, respectively. Each algorithm preserves its relative ranking in average cutnet
across all values of k.

74 4.3. Streaming Hypergraph Partitioning

In Figure 4.14d, we plot cutnet performance profiles across all experiments. In the
plot, PaToH-cut produces the best overall connectivity for 98.0% of the instances, while
FREIGHT-cut andHYPE produce the best cutnet for 6.8% and 5.2%of the instances and all
other streaming algorithms (RRS(0.15), MM-N2P, MM-L5, and Hashing) produce the best
cutnet for 4.8% of the instances. The cutnet results produced by FREIGHT-cut, HYPE,
RRS(0.15), MM-N2P, MM-L5, and Hashing are within a factor 2 of the best found cutnet
for 83%, 79%, 69%, 66%, 66%, and 58% of the instances, respectively. This shows that
FREIGHT-cut produces the best cutnet among all (buffered) streaming competitors and
even beats the inmemory algorithm HYPE.

Running Time. Now we compare the algorithms’ runtime. Boxes and whiskers in Fig
ure 4.14e display the distribution of the running time per pin, measured in nanoseconds, for
all instances. Hashing, FREIGHT-cut, and FREIGHT-con are the three fastest algorithms,
with median runtimes per pin of 15ns, 38ns, and 41ns, respectively. MM-L5, MM-N2P,
HYPE, and RRS(0.15) follow with median runtimes per pin of 130ns, 437ns, 792ns, and
833ns, respectively. Lastly, the algorithms with the highest median runtime per pin are
PaToH-cut and PaToH-con, with 2 516ns and 3 333ns respectively. The measured runtime
per pin for both HYPE and PaToH align with values reported in prior research [141].

In Figure 4.14f, we show running time performance profiles. Hashing is the fastest
algorithm for 98.3% of the instances, while FREIGHT-cut is the fastest one for 1.2% of the
instances and no other algorithm is the fastest one for more than 0.4% of the instances. The
running time of FREIGHT-cut and FREIGHT-con is within a factor 4 of that of Hashing for
82% and 72% of instances, respectively. In contrast, for only 16% of instances does this
occur for MM-L5, and for less than 0.4% of instances for all other algorithms. The close
running times of FREIGHT to Hashing are surprising given FREIGHT’s superior solution
quality compared to Hashing and all other streaming algorithms and even HYPE.

Further Comparisons. For graph partitioning FREIGHT and Fennel are mathematically
equivalent. However, FREIGHT exhibits a lower computational complexity of O(m + n)

compared to the standard implementation of Fennel, which has a complexity of O(m+ nk)

due to evaluating all blocks for each node. To optimize its performance for this use case,
we have implemented an optimized version of FREIGHT with a memory consumption of
O(n + k), matching that of Fennel. In our experiments, we utilized the same graphs as
in [11] and tested with k ∈ {512, 1024, 1536, 2048, 2560}. On average, FREIGHT proves to
be 109 times faster than the standard implementation of Fennel. Moreover, the performance
gap is found to increase as the value of k grow, with FREIGHT reaching up to 261 times
faster than Fennel in some instances.

4.4. Experimental Comparison 75

4.4 Experimental Comparison

In this section, we present an unpublished experimental comparison of our three stream
ing algorithms. We performed experiments for k = 8, 16, 32, 64, 128, 256 on the huge
graphs listed in Table 4.4 using Machine B, which is a relatively modest machine. As in
Section 4.1.2.3, we did not repeat each test multiple times with different seeds. As men
tioned in Section 4.1.2.3, we also ran Metis and KaHIP on these graphs, but they failed on
all instances as they require more memory than the machine has.

Like in Section 4.1.2.3, we refer to setups of HeiStream with specific buffer sizes as
HeiStream(Xk), where a buffer contains X × 1024 nodes. Apart from HeiStream, we ran
Online Recursive Multi-Section (referred to as nh-OMS) and FREIGHT. In particular, we
use here the best parameters of nh-OMS found in the tuning experiments in Section 6.1.2.1.
Table 4.4 provides detailed perinstance results with HeiStream using large buffer sizes ca
pable of running on Machine B. We have excluded the IO delay of loading the input graph
from the disk in Table 4.4 as it depends on the disk and is roughly the same regardless of
the used partitioning algorithm. The delay (in seconds) is reported in Section 4.1.2.3.

The results indicate that HeiStream performs better than its competitors in terms of solu
tion quality for most instances. Notably, it produces partitions with significantly lower edge
cut compared to our other streaming algorithms for four tested graphs, namely uk2005, sk
2005, uk200705, and RHG1. For social networks socfriendster and twitter7, HeiStream
outperforms all other algorithms, but the improvement over nh-OMS and FREIGHT is not
as substantial as in other cases. However, there is an exception on the RHG2 network,
where HeiStream produces edgecut values below 0.7%, but FREIGHT performs better and
nh-OMS produces even lower edgecut values. Overall, FREIGHT and nh-OMS produce
comparable quality results, with FREIGHT being slightly better on three graphs and nh-OMS
being slightly better on five graphs.

In terms of running time, HeiStream is considerably slower than nh-OMS and FREIGHT.
Although the runtime complexity of HeiStream isO(m+n), which is not worse than that of
nh-OMS and FREIGHT, its constant factors are larger due to more complex computations.
It is also worth noting that the running time of nh-OMS increases with increasing k, while
the running time of FREIGHT remains roughly constant for any k. This is expected because
the running time of nh-OMS is O((m + n) log k), while the running time of FREIGHT for
graphs is O(m+ n). As a result, FREIGHT becomes faster than nh-OMS as k increases.

76 4.4. Experimental Comparison

Graph k
HeiStream(Xk) nh-OMS FREIGHT
X CE(%) RT(s) CE(%) RT(s) CE(%) RT(s)

uk2005

8 1024 4.03 290.23 22.08 26.96 23.87 20.07
16 1024 6.01 300.04 25.40 27.85 26.79 21.49
32 1024 7.65 310.72 28.34 34.01 30.15 21.16
64 1024 8.99 322.14 30.58 36.52 32.10 21.89
128 1024 9.94 346.73 32.05 41.89 33.31 22.74
256 1024 10.68 386.64 33.71 44.50 34.35 23.51

twitter7

8 512 41.64 1727.13 60.14 178.59 55.13 173.88
16 512 47.04 1774.92 72.74 182.74 61.73 184.13
32 512 52.59 1884.16 81.78 187.33 65.07 179.02
64 512 57.53 1988.11 87.64 205.12 76.78 183.84
128 512 61.87 2113.34 92.06 228.06 81.20 185.98
256 512 65.47 2357.92 94.28 249.24 83.39 188.20

sk2005

8 1024 3.23 634.79 20.86 40.10 23.89 34.13
16 1024 4.11 648.48 25.69 43.63 28.87 33.97
32 1024 5.32 667.84 28.71 49.29 31.90 35.58
64 1024 7.55 695.60 32.59 53.15 35.20 35.87
128 1024 8.95 733.05 35.65 61.62 38.59 37.56
256 1024 12.02 798.73 39.64 64.80 43.15 38.58

socfriendster

8 1024 27.36 4099.35 37.68 362.80 35.54 383.06
16 1024 34.50 4202.04 52.70 393.57 50.06 383.60
32 1024 39.52 4345.96 64.99 426.01 54.70 374.97
64 1024 46.35 4546.98 76.39 427.77 57.88 388.27
128 1024 52.41 4796.56 80.88 481.40 60.59 394.40
256 1024 57.79 5323.08 83.32 477.39 63.32 408.62

erfact1.5s26

8 1024 73.27 2216.99 74.33 233.06 73.44 231.99
16 1024 80.18 2292.12 81.59 255.07 80.40 243.52
32 1024 84.36 2400.35 86.27 293.15 84.63 255.88
64 1024 86.99 2534.09 89.05 316.62 87.31 253.72
128 1024 88.72 2725.81 90.82 374.28 89.10 248.61
256 1024 89.99 2913.95 91.80 393.10 90.45 261.57

RHG1

8 1024 0.04 380.04 1.89 58.12 2.02 44.17
16 1024 0.06 391.63 1.99 60.36 2.12 44.83
32 1024 0.09 406.56 2.02 70.22 2.16 46.87
64 1024 0.15 435.71 2.05 75.38 2.17 45.09
128 1024 0.22 482.06 2.07 92.34 2.18 47.09
256 1024 0.34 569.77 2.09 92.16 2.19 46.92

RHG2

8 1024 0.09 621.56 0.04 73.03 0.05 57.02
16 1024 0.13 632.61 0.04 72.78 0.08 57.87
32 1024 0.19 648.68 0.04 84.19 0.12 57.34
64 1024 0.29 674.36 0.05 92.05 0.18 57.78
128 1024 0.44 727.66 0.06 97.14 0.27 56.64
256 1024 0.68 816.60 0.08 105.69 0.44 61.23

uk200705

8 1024 0.54 1024.26 23.04 76.25 25.28 62.97
16 1024 0.60 1045.36 26.69 82.78 28.18 65.81
32 1024 0.70 1058.73 28.14 94.47 29.46 66.08
64 1024 0.92 1099.64 29.74 103.21 29.92 66.86
128 1024 1.31 1163.45 30.80 118.08 30.63 67.78
256 1024 1.95 1280.48 32.10 125.89 31.54 70.58

Table 4.4. Our algorithms compared. CE and RT denote cut edges and running time.

4.5. Conclusion 77

4.5 Conclusion

In this chapter, we proposed three streaming algorithms for (hyper)graph decomposition:
HeiStream, Online Recursive Multi-Section, and FREIGHT. All were discussed in detail
and were subjected to extensive experimental evaluation against the stateoftheart. Lastly,
we presented an experimental comparison between them for the graph partitioning problem.

We proposedHeiStream, a buffered streaming graph partitioning algorithm. It combines
the buffered streamingmodel with multilevel graph partitioning techniques and an extension
of Fennel to a multilevel algorithm. Compared to the previous state oftheart, HeiStream
computes significantly better solutions while at the same time being faster in many cases.
An important property of HeiStream is that its running time does not depend on the number
of blocks, while the previous stateoftheart streaming partitioning algorithms have running
time almost proportional to this number of blocks.

We proposed Online Recursive Multi-Section, a streaming algorithm to compute hier
archical partitionings of graphs. In terms of time complexity our algorithm outperforms
previous stateoftheart onepass streaming algorithms for graph partitioning while also
implicitly optimizing process mapping objectives. To the best of our knowledge, this is
the first streaming algorithm for the process mapping problem. We present extensive ex
perimental results in which compare it against the previous stateoftheart algorithms for
streaming nonbuffered onepass graph partitioning, and show that we can speed it up even
further with a multithreaded parallelization. Experiments show that our algorithm is up to
two orders of magnitude faster than the previous state oftheart while producing solutions
with better communication cost and slightly worse edgecut. Moreover, our algorithm is
only three times slower than Hashing when running on 32 threads while computing signifi
cantly better results.

We proposed FREIGHT, a streaming algorithm for hypergraph partitioning. Our al
gorithm leverages an optimized data structure, resulting in linear running time with re
spect to pincount and linear memory consumption in relation to the numbers of nets and
blocks. The results of our extensive experimentation demonstrate that the running time
of FREIGHT is competitive with the Hashing algorithm, with a maximum difference of a
factor of four observed in three fourths of the instances. Importantly, our findings indi
cate that FREIGHT consistently outperforms all existing (buffered) streaming algorithms
and even the inmemory algorithm HYPE, with regards to both cutnet and connectivity
measures. This underscores the significance of our proposed algorithm as a highly effi
cient and effective solution for hypergraph partitioning in the context of largescale and
dynamic data processing.

78 4.5. Conclusion

We presented an unpublished experimental comparison of our three streaming algo
rithms. Although each of them is designed for a specific problem, they are all capable of
solving the graph partitioning problem, so we compare them for this problem. In our evalua
tionHeiStream produces the lowest edgecut while consuming themost runtime. Our results
show that, in terms of graph partitioning, FREIGHT andOnline Recursive Multi-Section pro
duce comparable solution quality but FREIGHT becomes considerably faster than Online
Recursive Multi-Section for larger numbers of blocks.

In future work, we intend to parallelize HeiStream and extend it to solve other (hy
per)graph decomposition problems such as hypergraph partitioning and process mapping.
While Online Recursive Multi-Section is already useful for a widerange of applications that
need (hierarchical) partitions very fast, in future work, we plan to parallelize the algorithm
in the distributed memory model and want to port it to GPUs. Moreover, we intend to
parallelize FREIGHT and try to make it even more effective by adapting its mathematical
formulation to more accurately encode the connectivity gains involved.

Chapter 5

Local Algorithms

In this chapter, we propose our contributions in the field of local graph decomposition.
Our contributions comprise the detailed design of two algorithms, namely, LMCHGP and
SOCIAL, for solving the local motif clustering problem. LMCHGP constructs a (hyper)graph
model centered around the seed node in such a way that optimizing for conductivity in the
model is equivalent to optimizing for motif conductance in the original graph. The model is
then partitioned utilizing highquality (hyper)graph partitioning techniques available in the
literature. On the other hand, SOCIAL builds the same hypergraph model around the seed
node but converts it into a flow network that guarantees exact quality improvement. The
flow network is then recursively solved using a standard maxflow algorithm until a locally
optimal cluster is obtained. In our experiments, both LMCHGP and SOCIAL outperform
the stateoftheart by producing clusters with lower motif conductance value while being
significantly faster, up to multiple orders of magnitude.

References. This chapter is based on [142] and [143], which is joint work with Adil
Chhabra and Christian Schulz, and on the technichal report [144], which is also joint work
with Adil Chhabra and Christian Schulz and is currently under submission.

5.1 Local Motif Clustering

Within this section, we propose two novel algorithms to solve the local motif clustering
problem using sophisticated combinatorial algorithms.

As a first contribution, we propose LMCHGP (Local Motif Clustering via (Hyper)Graph
Partitioning). This is an algorithm based on (hyper)graph partitionig which has two versions:
one based on a graph model and the other one based on hypergraph model. To begin, our
algorithm constructs a (hyper)graph model that represents the distribution of motifs around
the seed node on the original graph. While the graph model accurately captures motifs of

79

80 5.1. Local Motif Clustering

size at most three, the hypergraph model accommodates arbitrary motifs and is designed
to minimize motif conductance in the original network. We then partition the (hyper)graph
model using a powerful multilevel hypergraph or graph partitioner to directly minimize the
motif conductance of the corresponding partition in the original graph.

As a second contribution, we propose an algorithm named SOCIAL (faSter mOtif Clus
tering vIa mAximum fLows). This algorithm optimizes for motif conductance by combining
the strongly local hypergraph model proposed in Chapter 5.1 with an adapted version of the
fast and effective algorithm maxflow quotientcut improvement(MQI)[30]. Using the same
hypergraph model as our previous algorithm, we construct a flow model in which certain
cuts correspond onetoone with subsets of the initial cluster that include the seed node and
have lower motif conductance than that of the whole cluster. We then utilize a pushrelabel
algorithm to find such a cut and recursively repeat the process, or prove that the current
cluster is optimal among all its subclusters containing the seed node.

We extensively evaluate our proposed algorithms LMCHGP and SOCIAL against the
stateoftheart. In experiments involving triangle motifs, LMCHGP and SOCIAL compute
clusters with a motif conductance value lower than the stateoftheart, while also being up
to multiple orders of magnitude faster.

5.1.1 LMCHGP

5.1.1.1 Overall Strategy

Given a graph G = (V,E), a seed node u, and a motif µ, our strategy for local clustering is
based on four consecutive phases. First, we select a set S ⊆ V containing u and closeby
nodes. From now on, we refer to this set S as a ball around u. Second, we enumerate the
collection M of occurrences of the motif µ which contain at least one node in S. Next, we
build a graph or a hypergraph model Hµ depending on the configuration of the algorithm.
In particular, we design Hµ in such a way that the motifconductance metric in G can be
computed directly inHµ. Then, we partition this model into two blocks using a highquality
(hyper)graph partitioning algorithm. The obtained partition ofHµ is directly translated back
toG as a local cluster around the seed node. Figure 5.1 provides a comprehensive illustration
of the consecutive phases of our algorithm. Note that (hyper)graph partitioning algorithms
do not optimize for traditional clustering objectives such as conductance. Instead, they aim
at minimizing the edgecut (resp. cutnet) value while respecting a hard balancing constraint.
To improve for the correct objective, we repeat the partitioning phase β times with different
imbalance constraints and pick the clustering with best motif conductance. Especially for
the graphbased version of our model Hµ, we subsequently run a special label propagation
for each of these β iterations in order to increase the chances of reaching a local minimum

5.1. Local Motif Clustering 81

assigned to local cluster

not assigned to local cluster

(hyper)edges contained in S

(hyper)edges between S and S

motifs contained in S

motifs in S and S

V

u
(a)

u S S
(b)

u

(c)

u t
(d)

u t
(e)

u

Figure 5.1. Illustration of the phases of our algorithm. (a) Given a seed node u and a graph
G, a ball S around u is selected. (b) Motif occurrences of µ with at least a node in S are
enumerated. (c) The (hyper)graph modelHµ is built by converting motifs into (hyper)edges
and contracting S into a node r. (d) The model is partitioned into two blocks using a multi
level (hyper)graph partitioner. (e) The partition ofHµ is converted in a local cluster around
the seed node in G.

motif conductance. Moreover, the first three phases of our strategy are repeatedα times with
different balls around the seed node in order to better explore the vicinity of the seed node
in the original graph. Our overall strategy including the mentioned repetitions is outlined in
Algorithm 5.1.

5.1.1.2 Ball around Seed Node

Our approach to select S is a fixeddepth breadthfirst search (BFS) rooted on u. More
specifically, we compute the first ℓ layers of the BFS tree rooted on u, then we include all its
nodes in S. For each of the α repetitions of our overall algorithm, we use different amounts
ℓ of layers for a better algorithm exploration. Two exceptional cases are handled by our
algorithm, namely a ball S that is either too small or disconnected from S. We avoid the
first exceptional case by ensuring that S contains 100 or more nodes in at least one repetition
of our overall algorithm. More specifically, in case this condition is not automatically met,
then we accomplish it in the last repetition by growing additional layers in our partial BFS
tree while it contains fewer than 100 nodes. The number 100 is based on the findings of
Leskovec et al. [19], which show that most well characterized communities from realworld
graphs have a relatively small size, in the order of magnitude of 100 nodes. If the second

82 5.1. Local Motif Clustering

Algorithm 5.1 Local Motif Clustering via (Hyper)Graph Partitioning
Input graph G = (V,E); seed node u ∈ V ; motif µ
Output cluster C∗ ⊆ V

1: C∗ ← ∅
2: for i = 1, . . . , α do
3: Select ball S around u
4: M ← Enumerate motifs in S
5: Build (hyper)graph model Hµ based on S andM
6: for j = 1, . . . , β do
7: Partition model Hµ into (C,C), where u ∈ C

8: if C∗ = ∅ ∨ ϕµ(C) < ϕµ(C
∗) then

9: C∗ ← C

10: Convert C∗ into a local motif cluster in G

exceptional case happens, it means that the whole BFS tree rooted on the seed node has at
most ℓ layers. In this case, we simply stop the algorithm and return the entire ball S, which
corresponds to an optimal community with motif conductance 0 provided that there is at
least one motif in S.

The approach described above makes sure that there is a reasonable chance that a well
characterized community containing u is contained in S, since it has at least 100 nodes [19]
which are all very close to u. This likelihood is further increased due to the multiple repeti
tions of our overall algorithm using balls S of different sizes. Our BFS approach to select
S can be executed in time linear on the subgraph induced in G by the closed neighborhood
N [S] of S. After selecting S, the further phases of our algorithm do not deal with the whole
graph, but exclusively with S, its edges, and its motif occurrences. As a consequence, our
algorithm operates on a much smaller problem dimension than the size of input graph G,
hence its running time corresponds to the same smaller problem dimension. The number α
of repetitions as well as the amount ℓ of layers used in each repetition are tuning parameters.

5.1.1.3 Motif Enumeration

We now describe and discuss the motifenumeration phase of our algorithm. We optimally
solve it for the triangle motif in time roughly linear on the size of the subgraph induced inG
by the closed neighborhood N [S] of S. Moreover, we show that there are good heuristics
approaches to enumerate higherorder motifs efficiently. The general problem of finding
out if a given motif is a subgraph of some graph is NPhard [145], hence the enumeration
of all such motifs is also NPhard. Nevertheless, some simpler motifs can be enumerated
in polynomial time, which is the case for the triangle motif [146]. Triangles, which can

5.1. Local Motif Clustering 83

be defined as cycles or cliques of length three, have a wide variety of relevant applications
on network analysis and clustering [147–149]. Without loss of generality, we specifically
focus on the triangle motif within our algorithm. Nevertheless, note that many other small
motifs can also be polynomially enumerated, such as small (directed and undirected) paths
and cycles. Moreover, our overall algorithm can also be adapted for more arbitrary motifs
if we relax the optimality of the enumeration, which can be done using efficient heuristics
such as the one proposed by Kimmig et al. [150]. A simple and exact algorithm for triangle
enumeration was proposed by Chiba and Nishizeki [151]. Roughly speaking, this algorithm
works by intersecting the neighborhoods of adjacent nodes. For each node v, the algorithm
starts by marking its neighbors with degree smaller than or equal to its own degree. For each
of these specific neighbors of v, it then scans its neighborhood and enumerates new triangles
as soon as marked nodes are found. The running time of this algorithm isO(ma) = O(m

3
2),

where a is the arboricity of the graph. For the motifenumeration phase of our algorithm,
we apply the algorithm of Chiba and Nishizeki [151] only on the subgraph induced in G by
N [S]. This is enough to find all triangles containing at least one node in S, as exemplified
by transformation (a) in figures 5.2 and 5.3. Assuming a constantbounded arboricity, the
overall cost of our motifenumeration phase for triangles is O

(
|N [S]×N [S]) ∩ E|

)
.

5.1.1.4 Hypergraph Model

In this section, we conceptually describe the hypergraph version of our model Hµ and ex
plain how to build it. We show that it can be constructed in time linear on the amount of
nodes in S and motifs inM . We also discuss advantages and limitations of our hypergraph
model approach.

Our hypergraph model Hµ is built in two conceptual operations. First, define a hyper
graph containing V as nodes and a set E of nets such that, for each motif in M , E has a
net with pins equal to the endpoints of this motif. Then, we contract together all nodes in S
into a single node r and substitute parallel nets by a single net whose weight is equal to the
summed weights of the removed parallel nets. More formally, we define the hypergraph
version of our model as Hµ = (S ∪ {r}, E) where the set E of nets contains one net e
associated with each motif occurrence G′ = (V ′, E ′) ∈ M such that e = V ′ if V ′ ⊆ S,
and e = V ′ ∩ S ∪ {r} otherwise. In the former case the net has weight 1, in the latter case
the net has weight equal to the amount of motif occurrences in M represented by it. In a
typical hypergraph contraction, the weight of r would be c(r) = c(S). Nevertheless, we
opt to make the nodes ofHµ unweighted, which is convenient for the purpose of our overall
algorithm as will become clear later. In practice, the hypergraph version of Hµ can be built
by instantiating the nodes in S ∪{r} and the nets in E. Assuming that the number of nodes
in µ is a constant, our model is built in time O(|S|+ |M |) and uses memory O(|S|+ |M |).

84 5.1. Local Motif Clustering

SS

N [S]

(a)

SS

(b)
r

SS

Figure 5.2. Example of motifenumeration and modelconstruction phases of our algorithm
for triangle motif and the hypergraph model. In the left, the nodes of G are split into sets
S and S. In the center, motif occurrences containing nodes in S are enumerated. In the
right, Hµ is built by converting motifs into nets and contracting S into a node r.

The construction of Hµ is illustrated in transformation (c) of Figure 5.1 and demonstrated
for a particular example in transformation (b) of Figure 5.2.

Observing the relationship between G and Hµ, we can distinguish three groups of com
ponents. The first group comprises nodes in S and motifs with all endpoints in S, all of
which are represented in Hµ without any contraction as nodes and nets. The second group
consists of nodes in S and motifs with all endpoints in S, which are compactly represented
in Hµ as the contracted node r. The third group comprises motifs with nodes in both S and
S, all of which are abstractly represented in Hµ as nets containing individual pins in S as
well as the pin r. Summing up, our hypergraph model is a concise representation of the
whole graph G where relevant information for local motif clustering is emphasized in two
perspectives: Edges are omitted while motifs are made explicit and global information is
abstracted while local information is preserved in detail. Theorem 5.1 shows that the cut
net of a partition of Hµ directly corresponds to the motifcut of an equivalent partition in
G if our motif enumeration step is exact. On top of that, Theorem 5.2 shows that the motif
conductance of this equivalent partition of G can be directly computed from Hµ assuming
dµ(S) ≤ dµ(S). Assuming dµ(S) ≤ dµ(S) is fair since S is ideally much smaller than S.
Enumerating the motifs in S is not reasonable for a local clustering algorithm, but we did
verify that our assumption holds during all our experiments.

Theorem 5.1. Every kway partition P of the hypergraph model Hµ corresponds to a dis
tinct kway partition P ′ of G, such that the cutnet of P is equivalent to the motifcut of P ′,
assuming an exact motif enumeration step.

5.1. Local Motif Clustering 85

Proof. For simplicity, we prove the claim assuming that parallel nets are not substituted by
a single net whose weight is equal to their summed weights. This proof directly extends
to our model since the contribution of a contracted cut net to the overall cutnet equals the
contribution of the parallel nets represented by it. Due to the design of our hypergraph
model Hµ, there is a direct correspondence between its nodes and the nodes of G. Hence,
any partition P of Hµ corresponds to a partition P ′ of G where corresponding nodes are
simply assigned to the same blocks. Since S is represented by the single node r in Hµ, no
motif occurrence totally contained inS can be cut inP ′. All the remainingmotif occurrences
inG can be potentially cut in P ′, but these motif occurrences are bijectively associated with
the nets of Hµ with a direct correspondence between motif endpoints in G and net pins in
Hµ. As a consequence, a motif occurrence ofG is cut in P ′ if, and only if, the corresponding
net in Hµ is cut in P .

Theorem 5.2. Given a 2way partitionP = (C,C) of our hypergraphmodelHµ with r ∈ C,
the motif conductance ϕµ(C

′) of the corresponding 2way partition P ′ = (C ′, C ′) of G
is the ratio of the cutnet of P to dw(C), assuming an exact motif enumeration step and
dµ(S) ≤ dµ(S).

Proof. From Theorem 5.1, the motifcut of P ′ can be substituted by the cutnet of P in
the numerator of the definition of ϕµ(C

′). To complete the proof, it suffices to show that
the denominator of ϕµ(C

′), namely min(dµ(C
′), dµ(C ′)), is equal to dw(C). Due to the

design ofHµ, the values of dµ(C ′) and dw(C) are identical. Our assumption r ∈ C leads to
S ⊆ C ′ and C ′ ⊆ S, which respectively imply dµ(S) ≤ dµ(C ′) and dµ(C ′) ≤ dµ(S). Since
dµ(S) ≤ dµ(S), hence dw(C) = dµ(C

′) ≤ dµ(S) ≤ dµ(S) ≤ dµ(C ′).

5.1.1.5 Graph Model

In this section, we describe the graph version of our model Hµ and explain how to build
it. Similarly to the hypergraph version of this model, our graph model can be built in time
linear on the amount of nodes in S and motifs inM . We discuss advantages and limitations
of the graph model in comparison to the hypergraph model.

The graph version of our model Hµ is built in two conceptual operations. The first one
consists of obtaining the weighted graphW proposed by Benson et al. [31] and used in the
stateoftheart algorithmMAPPR [23]. The graphW contains V as nodes and a set of edges
such that two conditions are met: (i) there is an edge between a pair of nodes if, and only if,
both nodes belong at the same time to at least a motif inG; (ii) the weight of an edge is equal
to the number of motif occurrences containing both its endpoints. The second operation
consists of contracting all nodes in S into a single node r and substitute parallel edges by
a single edge whose weight is equal to the summed weights of the removed edges. The

86 5.1. Local Motif Clustering

SS

N [S]

(a)

SS

(b)
r

SS

Figure 5.3. Example of motifenumeration and modelconstruction phases of our algorithm
for trianglemotif and the graphmodel. In the left,G is shownwith its nodes split into the sets
S and S. In the center, the motif occurrences containing at least a node in S are enumerated
and the weight of an edge equals the number triangles it touches. In the right, the modelHµ

is built by contracting S into a single node r. The weight of an edge is represented by its
thickness.

construction of the graph version ofHµ is illustrated in transformation (c) of Figure 5.1 and
demonstrated for a particular example in transformation (b) of Figure 5.3. More formally,
we define the model as Hµ = (S ∪ {r}, Eµ) where Eµ contains an edge e for each pair
of nodes sharing a motif G′ = (V ′, E ′) ∈ M provided that at least one of its endpoints is
contained in S. The weight of r is set to c(r) = c(S). Similarly to our approach with the
hypergraph version of the model, we opt to make the nodes of the graph model unweighted
in our experiments. In practice, the graph version of Hµ can be built by instantiating the
nodes in S ∪ {r} and directly the computing the edges in Eµ and their weights. Assuming
that the number of nodes in µ is a constant, our graph model is built in timeO(|S|+|M |) and
uses memory O(|S| + |Eµ|). Especially for the triangle motif, the memory requirement of
the graph model isO(|S|+ |N [S]×N [S]∩E|), which is linear on n andm in the worst case.

We reproduce here Theorem 5.3 by Yin et al. [23], which shows that conductance in the
weighted graphW is equivalent to motif conductance in G as long as the motif has at most
3 nodes. Based on this result, Theorem 5.4 shows that we can compute motif conductance
directly from our graph modelHµ if dµ(S) ≤ dµ(S). As we mentioned, assuming dµ(S) ≤
dµ(S) is fair sinceS is ideallymuch smaller thanS. Recall that the hypergraph version of our
modelHµ is flexible enough to represent any motif as a net such that Theorems 5.1 and 5.2
continue valid. Although the graph version of our model can technically represent anymotif,
Theorem 5.4 is only valid for motifs with at most three nodes, while other models only allow
a heuristic computation of the motif conductance [31]. Nevertheless, the biggest drawback

5.1. Local Motif Clustering 87

of the hypergraphbased approach is the need for storing up to |M | nets, which costs O(n3)

in the worst case. In contrast, the memory needed to store our graph model is O(n2) in the
worst case and O(n+m) specifically for the triangle motif.

Theorem 5.3 (Theorem 4.1 by Yin et al. [23]). Given a 2way partition P ′′ = (C ′′, C ′′) of
the weighted graphW , the motif conductance ϕµ(C

′) of the corresponding 2way partition
P ′ = (C ′, C ′) in G is equal to the conductance ϕ(C ′′) of C ′′ in W , assuming a motif with
at most three nodes.

Theorem 5.4. Given a 2way partition P = (C,C) of the graph version of model Hµ

with r ∈ C, the motif conductance ϕµ(C
′) of the corresponding 2way partition P ′ =

(C ′, C ′) ofG is the ratio of the edgecut of P to dω(C), assuming an exact motif enumeration
step, dµ(S) ≤ dµ(S), and a motif with at most three nodes.

Proof. From Theorem 5.3, the motif conductance of any 2way partition ofG is equal to the
conductance of the equivalent partition inW assuming a motif with at most 3 nodes. Since
we assume dµ(S) ≤ dµ(S), hence the conductance inW of any communityC ′′ ∈ S is equal
to its edgecut divided by the volume of C ′′. From the construction of our graph modelHµ,
the assumed community C has an equivalent community C ′′ in W with same edgecut and
same volume, which completes the proof.

5.1.1.6 Partitioning

In this section, we describe the (hyper)graph partitioning phase of our local motif clustering
algorithm. We present the used (hyper)graph partitioning algorithms and discuss how we
enforce feasibility of the found solution and maximize its quality. Moreover, we provide
remarks about the running time of our partitioning phase.

The partitioning phase of our algorithm consists of a 2way partitioning of Hµ. When
using the hypergraph model, the partition is computed by the multilevel hypergraph parti
tioner KaHyPar [52]. When using the graph model, the partition is computed by the multi
level graph partitioner KaHIP [108]. These partitioners contain sophisticated algorithms to
produce lowcut partitions of (hyper)graphs efficiently. As already shown, any 2way par
tition of Hµ automatically corresponds to a community in G. Nevertheless, our aim is to
obtain a consistent partition ofHµ, which we define as a partition where the seed node u and
the contracted node r are in different blocks. This consistent partition ultimately corresponds
to a local community inGwhich contains the seed node u and is completely contained in the
ball S. This consistency criterion is important since the nodes in S have not been explored
by our algorithm and are farther from u than the nodes in S. Note that the 2way partition
illustrated in Figure 5.1 generates a consistent local community according to our definition
of it. While KaHyPar allows partitioning hypergraphs with fixed nodes, KaHIP does not

88 5.1. Local Motif Clustering

offer such functionality. Nevertheless, we ensure block feasibility for both versions of our
algorithm by simply assigning the seed node to the block that does not contain r after the
partition is computed (before computing the motif conductance). Although simplistic, this
approach has not affected solution quality considerably for the hypergraphbased version of
our algorithm in preliminary comparisons against a fixed nodesbased approach.

Besides corresponding to a consistent local clustering on the original graph, our solution
should have as low a motif conductance as possible. However, KaHyPar and KaHIP are ran
domized algorithms and do not directly optimize for this objective, but rather minimize the
cut value while enforcing a hard balancing constraint. To improve our results, we explore
different combinations of edgecut (resp. cutnet) and imbalance by repeating the partition
ing procedure β times with random balancing constraints for each built (hyper)graph model,
where β is a tuning parameter. For each obtained partition, our algorithm computes the motif
conductance of the corresponding local cluster as shown in Theorem 5.4 (resp. Theorem 5.2)
and keeps the partition with the best motif conductance.

KaHyPar andKaHIP run in time close to linear in practice. Nevertheless, the partitioning
phase can be the dominating operation of our overall local clustering algorithm. This is
the case because KaHyPar and KaHIP use sophisticated algorithms and data structures in
order to minimize the cut value, which increases constant factors in the algorithm running
time complexity. KaHyPar can be especially much slower than KaHIP since the number of
nets in the hypergraph model can be considerably larger than the number of edges in the
graph model. We can make the hypergraph version of our algorithm faster by using Mt
KaHyPar [152] instead of KaHyPar. MtKaHyPar obtains significant speedups by using
allowing sharedmemory parallel execution.In both cases, running time can be improved
further by using parallelized tools such as MtKaHyPar [152] or KaMinPar [153]. However,
parallelization is not the focus of this thesis.

Local Search. We implement a local search inspired by label propagation [140] for the
graph modelbased version of our algorithm. This local search is designed to optimize for
the correct objective, i.e., motif conductance. We apply it directly on each 2way partition
generated by KaHIP in order to increase the chances of reaching a local minimum motif
conductance. The local search algorithm works in rounds. In each round, it visits all nodes
of Hµ in a random order, starting with the labels being the current assignment of nodes to
blocks. When a node v is visited, it is moved to the opposite block if this movement causes a
decrease in the motif conductance of the clustering. Movements of nodes with zerogain can
occasionally occur with 50% probability. We ensure that the seed node u and the contracted
node r continue in opposite blocks by simply skipping them. We stop the local search when
a local optimum is reached or after at most ℓ rounds, where ℓ is a tuning parameter.

5.1. Local Motif Clustering 89

5.1.2 SOCIAL

5.1.2.1 Overall Strategy

Given a graph G = (V,E), a seed node u, and a motif µ, our strategy for local clustering
is based on the following phases. First, we select a set S ⊆ V containing u and close
by nodes. As in Section 5.1.1.1, we refer to this set S as a ball around u. Second, we
enumerate the collection M of occurrences of the motif µ which contain at least one node
in S. Third, we build a hypergraph model Hµ in such a way that the motifconductance of
any clusterC ⊆ S inG can be computed directly inHµ. Fourth, we setC0 = S as our initial
cluster and use it to build ourMQIbased [30] flowmodelGf from the hypergraphmodelHµ.
Fifth, we useGf to either find a new clusterC ⊂ C0 containing uwith strictly smaller motif
conductance than C0 or prove that such cluster does not exist. While C ⊂ C0 is found, we
take it as our new initial cluster, rebuildGf , and repeat the previous phase. When eventually
no such strict subset is found, the best obtained cluster is directly translated back to G as a
local cluster around the seed node. Figure 5.4 provides a comprehensive illustration of the
consecutive phases of SOCIAL. Note that there is no guarantee of finding the best overall
cluster including u strictly contained in S. Instead, we find a succession of clusters with
strictly decreasing cardinality and motif conductance until a local optimum is reached. To
better explore the vicinity of u in G and overcome the fact we only find clusters inside S,
we repeat the overall strategy α times with distinct balls S. Our overall algorithm including
the mentioned repetitions is outlined in Algorithm 5.2.

5.1.2.2 Hypergraph Model

The hypergraph model employed in SOCIAL is constructed in a manner that is identical to
the hypergraph model utilized in LMCHGP. Specifically, the construction process entails
the creation of a ball S centered around the seed node, as detailed in Section 5.1.1.2. Subse
quently, the collectionM of occurrences of the motif µ that are incident to this ball are enu
merated according to the procedure outlined in Section 5.1.1.3. The hypergraph model Hµ

is then constructed, as illustrated in Figure 5.2 and described in Section 5.1.1.4, to ensure
the validity of Theorem 5.2.

5.1.2.3 Flow Model

In this section, we describe the process of constructing our MQIbased flow modelGf using
the hypergraph model Hµ and an initial cluster C0 ⊆ S which contains the seed node u.
There are three possible implementations of Gf based on the three already explained tech
niques to represent hypergraphs using graphs, namely clique expansion, star expansion, and
Lawler expansion (see Figure 2.1). We show a bijective correspondence between certain st

90 5.1. Local Motif Clustering

assigned to cluster

not assigned to cluster

nets contained in S

nets between S and S

motifs contained in S

motifs in S and S

V

u

(a)

u S S
(b)

u

(c)

u

(d)

u st

(e)

Cu st
(f)

(g)

u

Figure 5.4. Illustration of the phases of SOCIAL. (a) Given a seed node u and a graph
G, a ball S around u is selected. (b) Motif occurrences of µ with at least a node in S

are enumerated. (c) The hypergraph model Hµ is built by converting motifs into nets and
contracting S into a single node. The ball S is taken as the initial cluster C0. (d) The flow
model Gf is built based on C0 in Hµ. (e) A cluster C ⊆ C0 containing u is found using
maximum flows. (f) While C ⊂ C0, the model Gf is rebuilt based on C, which is taken as
the initial cluster C0. (g) When eventually C = S, C is converted in a local cluster around
the seed node in G.

cuts inGf and clustersC ⊆ C0 inG that include the seed node u and havemotif conductance
less than that of C0.

We start by converting our hypergraphmodelHµ in a directed graph using the chosen net
expansion technique. Second, we find a corresponding clusterC ′

0 forC0 in the created graph.
For the clique expansion,C ′

0 = C0 since this transformation does not create artificial nodes.
For the star expansion, C ′

0 consists of C0 and also the auxiliary artificial nodes connected to
at least one node in C0. For the Lawler expansion, C ′

0 consists of C0, the auxiliary artificial
nodesw1 having inedges only from nodes inC0, and the auxiliary artificial nodesw2 having
outedges to at least one node inC0. Third, we contractC ′

0 to a single source node s and then
remove all its inedges. Fourth, wemultiply the weight of all the remaining edges by dw(C0),
i.e., the weighted volume ofC0 inHµ. Fifth, we introduce a sink node t and include inedges
to it from each of the nodes v ∈ C0\{u}, such that the weight of (v, t) is set to cut(C0)dw(v),
i.e., the cutnet ofC0 inHµ multiplied by the weighted degree of v inHµ. Finally, we include
an edge (u, t) from the seed node to the sink and set its weight to infinity. Our flow network
model Gf is concluded by setting edge capacities to match edge weights. Figure 5.5 shows
the three possible configurations of our flow model Gf for a given hypergraph model Hf

and an initial cluster C0.

5.1. Local Motif Clustering 91

Algorithm 5.2 Local Motif Clustering via Maximum Flows
Input graph G = (V,E); seed node u ∈ V ; motif µ
Output cluster C∗ ⊆ V

1: C∗ ← ∅
2: for i = 1, . . . , α do
3: Select ball S around u
4: M ← Enumerate motifs in S
5: Build hypergraph model Hµ based on S andM
6: C ← S

7: do
8: C0 ← C

9: Build flow model Gf based on C0 in Hµ

10: Solve Gf to obtain cluster C ⊆ C0 including u
11: while C ⊂ C0

12: if C∗ = ∅ ∨ ϕµ(C) < ϕµ(C
∗) then

13: C∗ ← C

14: Convert C∗ into a local motif cluster in G

We now analyze the theoretical guarantees provided by the defined flowmodelGf . The
orem 5.5 shows that there is a set C ⊂ C0 in G including the seed node u with motif con
ductance smaller than that of C0 if, and only if, the value of the maximum flow on Gf is
less than cut(C0)dw(C0), which is the weight of the trivial cut ({s}, V (Gf) \ {s}). In the
proof, we show how such improved cluster C can be directly obtained from a maximum
flow on Gf . Assumptions (a) and (b) in Theorem 5.5 are the same used in Theorem 5.2,
which were previously shown to be reasonable in practice. Note that the claim is only valid
for motifs with three nodes for clique and star expansion models, while it is valid in general
for the Lawler expansion model.

Theorem 5.5. There is a set C ⊂ C0 inG including the seed node u with motif conductance
smaller than that of C0 if, and only if, the maximum flow on Gf is less than cut(C0)dw(C0)

under the following assumptions:

1. the motif enumeration phase is exact;

2. dµ(S) ≤ dµ(S) in G;

3. in caseGf is based on clique expansion or star expansion, the motif µ has three nodes;

92 5.1. Local Motif Clustering

Lawler ExpansionStar ExpansionClique ExpansionHypergraph Model

Figure 5.5. Flow model Gf given a hypergraph model Hµ and an initial cluster C0. Nodes
and nets of Hµ are respectively represented by black circles and brown areas around them.
The seed node u is circled in white and the initial clusterC0 is surrounded by a dotted ellipse.
Auxiliary artificial nodes and edges used in each netexpansion are respectively represented
by brown circles and arrows. Bidirectional arrows represent pairs of edges in both directions.
The seed node s, the sink node t, and the inedges of t are respectively represented by a green
circle, a blue circle, and blue arrows. Solid and dashed arrows respectively represent edges
with finite and infinite weight.

Proof. We start with the backward direction, i.e., if the maximum flow on Gf is less than
cut(C0)dw(C0), then there is a subset of C0 in G including the seed node u with motif
conductance smaller than that of C0. According to the MaxFlow MinCut Theorem [33],
the weight of the maximum st flow on a network equals the weight of its minimum s
t cut, hence it follows that there is an st cut (B1, B2) of Gf with weight smaller than
cut(C0)dw(C0). Without loss of generality, let s ∈ B1, t ∈ B2, C = C0 ∩ B2, and hence,
by definition, C0 \ C = C0 ∩B1. Necessarily u ∈ C, otherwise the edge (u, t), which has
infinite weight, would be cut. There are two kinds of edges from B1 to B2. First, there
are the edges (x, t), with x ∈ C0 \ C. By design, the total weight of these edges is given
by cut(C0)dw(C0\C). The second kind consists of edges fromB1 toB2 \ {t}. These edges
vary based on the netexpansion technique used, but their total weight is cut(C)dw(C0) by
design under the given assumptions.

Now we show that the total weight of the edges from B1 to B2 \ {t} is cut(C)dw(C0)

for the three netexpansion techniques. In the clique expansion under assumption (c), each
cut net e of C in Hµ corresponds directly to two cut inedges of B2 in Gf . The weight of
each of these edges is, by design, set to w(e)dw(C0)/2, so they add up to the specified total
weight. In the star expansion under assumption (c), for each cut net e of C in Hµ there
is a single cut inedge of B2 in Gf that connects an auxiliary artificial node and a node
from C0. The weight of this cut edge is set by design to w(e)dw(C0), so the total weight of
these edges is as claimed. In the Lawler expansion, for each cut net e of C in Hµ there is

5.1. Local Motif Clustering 93

exactly one cut inedge ofB2 inGf that connects two auxiliary artificial nodes, namelyw1 ∈
B1 and w2 ∈ B2. If this were not the case, there would be an edge from B1 to B2 with
infinite weight. The weight of this single cut edge is set by design to w(e)dw(C0), so the
sum of the weights of the cut edges is as stated. By adding up the weights of the two
kinds of edges that cross the cut (B1, B2) and verifying that their total weight is less than
cut(C0)dw(C0), we derive Equation (5.1), which can further be simplified to Equation (5.2).
We conclude the proof of the backward direction by applying Theorem 5.2, Equation (5.2),
and the assumptions (a) and (b).

cut(C0)dw(C0 \ C) + cut(C)dw(C0) < cut(C0)dw(C0) (5.1)

cut(C)

dw(C)
<

cut(C0)

dw(C0)
(5.2)

Now we prove the forward direction, i.e., given a setC ⊂ C0 including the seed node u
in G with motif conductance smaller than that of C0, then the maximum flow on Gf is less
than cut(C0)dw(C0). With the assumptions (a) and (b) in place, Equation (5.2) holds true for
the selected set C. Since Equation (5.2) can be rewritten as Equation (5.1). To complete the
proof, we will show that there exists an st cut (B1, B2) ofGf such that s ∈ B1, t ∈ B2,B2∩
C0 = C, and the total weight of the inedges ofB2 is cut(C0)dw(C0 \ C) + cut(C)dw(C0).
Using the MaxFlow MinCut Theorem [33] again, it follows that if there is an st cut with
a weight of less than cut(C0)dw(C0), the maximum flow value on Gf must also be less
than cut(C0)dw(C0). Since B2 ∩ C0 = C, it follows that B1 ∩ C0 = C0 \ C, hence there
are |C0 \ C| cut edges of the form (x, t). By design, the total weight of these edges is
cut(C0)dw(C0 \ C).

Nowwe show that the weights of the remaining cut edges, i.e., edges fromB1 toB2 \ {t}
add up to cut(C)dw(C0) for each netexpansion technique. In the clique expansion, we
forcibly have B2 = C ∪ {t}. Under assumption (c), each cut net e of C in Hµ corresponds
to two cut inedges ofB2 inGf , both with weight set tow(e)dw(C0)/2 by design, hence they
add up to the specified total weight. In the star expansion, under assumption (c), we make
B2 = C ∪ A ∪ {t}, where A is the set of artificial nodes a with |N(a) ∩ C| ≥ |N(a)|/2.
For each cut net e of C in Hµ there is a single cut inedge of B2 in Gf that connects an
auxiliary artificial node and a node from C0. The weight of this cut edge is set by design
to w(e)dw(C0), so the total weight of these cut edges is as stated. In the Lawler expansion,
we make B2 = C ∪ A ∪ {t}, where A consists of the auxiliary artificial nodes w1 having
inedges only from nodes in C, and the auxiliary artificial nodes w2 having outedges to at
least one node in C. Hence, for each cut net e of C in Hµ there is exactly one cut inedge
ofB2 inGf that connects two auxiliary artificial nodes, namely w1 ∈ B1 and w2 ∈ B2. The

94 5.1. Local Motif Clustering

weight of this single cut edge is set by design to w(e)dw(C0), so the sum of the weights of
the cut edges is as expected.

SOCIAL utilizes a pushrelabel approach to iteratively search for a maximum st flow in
the model Gf . If the found maximum flow is strictly smaller than cut(C0)dw(C0), then we
can directly find a minimum cut with the same weight as it and, consequently, a cluster C ⊂
C0 containing the seed node u that has a strictly smaller motif conductance value ϕµ(C) than
that ofC0 inG. If such a cut is found, the algorithm repeats the process recursively setting the
identified subcluster C as the new initial cluster, i.e., it constructs a new flow model based
on Hµ and the initial cluster and uses the pushrelabel algorithm to continue searching for
subclusters with even lower motif conductance values. If, on the other hand, the maximum
flow is not strictly smaller than cut(C0)dw(C0), it means that the current clusterC0 is optimal
among all of its subclusters containing the seed node u, and the algorithm terminates for
the given ball S.

5.1.3 Experimental Evaluation

Setup. We implemented LMCHGP and SOCIAL in C++ within the KaHIP framework.
In particular, LMCHGP was implemented using the public libraries for KaHyPar [52] and
KaHIP [37]. We use the fastest configuration of these libraries throughout our experiments.
Note that using stronger configurations would likely yield better solutions at the cost of
higher running time. We compiled all algorithms using gcc 11.2 with full optimization
turned on (O3 flag). Unless mentioned otherwise, all experiments are performed on a sin
gle core of Machine D. For the reported experiments, we use a time limit of one hour for our
overall algorithm. This time limit is checked between repetitions of each of our algorithms,
hence it can be violated in case a particular partitioning procedure takes too long.

Baselines. We experimentally compare our algorithms against the stateoftheart com
petitors, namely MAPPR [23]. We also ran preliminary experiments with HOSPLOC [87].
However, the algorithm is very slow even for small graphs and not scalable as their algorithm
works using an adjacency matrix and hence needsΩ(n2) space and time. Moverover, experi
ments done in their paper are on graphs that aremultiple orders ofmagnitude smaller than the
graphs used in our evaluation. Hence, we are not able to run the algorithm on the scale of the
instances used in this thesis. We were not able to explicitly compare against LCD-Motif [24]
since their code is not available (neither public, nor privately1) and the data presented in the
respective paper does not warrant explicit comparisons (e.g. seed nodes are typically not
presented in the papers). However, we try to make implicit comparisons in Section 5.1.3.3.

1Personal communication with the authors

5.1. Local Motif Clustering 95

Graph
SOCIAL LMCHGP MAPPR

ϕµ |C| t(s) ϕµ |C| t(s) ϕµ |C| t(s)

comamazon 0.031 76 <0.01 0.037 64 0.22 0.153 58 2.68
comdblp 0.090 58 0.02 0.115 56 0.38 0.289 35 3.04
comyoutube 0.125 1832 4.52 0.172 1443 7.93 0.910 2 10.44
comlivejournal 0.158 494 3.33 0.244 387 8.17 0.507 61 173.80
comorkut 0.273 1041 256.21 0.150 13168 496.94 0.407 511 923.26
comfriendster 0.388 2060 1194.50 0.368 10610 1339.99 0.741 121 16565.99

Overall 0.178 453 2.33 0.181 823 12.67 0.500 50 79.34

Table 5.1. Average comparison against stateoftheart.

We compare our results against the globally best cluster computed for each seed node by
MAPPR using its standard parameters (α = 0.98, ϵ = 10−4).

Instances. Basic properties of the graphs used in our experiments can be found in Ta
ble 2.3. For our experiments, we split the graphs in two disjoint sets: a tuning set for the
parameter study experiments and a test set for the comparisons against the stateoftheart.
The graphs in the test set are exactly the graphs used in the MAPPR paper [23]. Prior to our
experiments, we removed parallel edges, selfloops, and directions of edges and assigning
unitary weight to all nodes and edges. For each graph, we pick 50 random seed nodes and
use all of them as input for each algorithm.

Methodology. For the sake of simplicity, all our experiments are based on the triangle
motif, i.e., the undirected clique of size three. However, in general our method is also ap
plicable to larger motifs. Since this motif has three nodes, Theorems 5.2, 5.4, and 5.5 are
valid in general. In other words, this setup ensures that the graph model and the hyper
graph model of LMCHGP are exact and guarantees that SOCIAL yields exact improvements
for all net expansion techniques. We ensure the integrity of our results by using the same
motifconductance evaluator function for all tested algorithms.

Wemeasure running time, motifconductance, and/or size of the computed cluster. When
averaging motif conductance over multiple instances, the final score is computed via arith
metic mean. This is a necessary averaging strategy since motif conductance can be zero,
which makes the geometric mean infeasible to compute. When averaging running time or
cluster size over multiple instances, we still use the geometric mean in order to give every
instance the same influence on the final score.

96 5.1. Local Motif Clustering

5.1.3.1 Parameter Study

We tune the paramenters of LMCHGP using the graphs in the Tuning Set of Table 2.3, which
are disjoint from the graphs used for the evaluation against stateoftheart. In a compari
son of the hypergraphbased version of our algorithm against its graphbased version, each
approach produces the best motif conductance for around 50% of the instances. Neverthe
less, the hypergraphbased version is 23 times slower on average and uses up to 68.7 times
more memory since the hypergraph model stores a large number of nets. Hence, we exclu
sively use the graphbased version of our algorithm for the remaining experiments. Next,
we compare the effect of using different values for the parameters β and α. The results show
the expected regular relationship between solution quality, running time, and these param
eter: the larger α (resp. β), the smaller the motif conductance and the larger the running
time. Finally, we checked that the impact of including the label propagation local search in
LMCHGP is, on average, a 13% decrease in the motif conductance at the cost of only 1.5%
more running time. Summing up, we use the following parameters for LMCHGP: graph
model, label propagation, α = 3, ℓ ∈ {1, 2, 3}, and β = 80. In view of that fact that the
parameters α and ℓ utilized in SOCIAL carry the same significance as their counterparts in
LMCHGP, we directly incorporate the finelytuned values of these parameters from the latter
in SOCIAL. In addition, the clique expansion method proves to be the most efficient for our
threenode motif as it requires no auxiliary artificial nodes and involves the fewest number
of auxiliary artificial edges compared to all other net expansion techniques. In summary,
we use the following parameters for SOCIAL: clique expansion, α = 3, and ℓ ∈ {1, 2, 3}.

5.1.3.2 StateoftheArt

In this section we present and discuss our experiments against the stateoftheart. All the
reported results are based on the Tet Set of Table 2.3. In the performance profile plots shown
in Figures 5.6a and 5.6b, we compare MAPPR [23], LMCHGP,and SOCIAL. In Table 5.1,
we show average results for each graph.

As shown in Figure 5.6a, SOCIAL obtains the best or equal motif conductance value for
62% of the instances, while LMCHGP and MAPPR respectively obtain the best or equal
motif conductance for 49% and 19% of the instances. This result can be explained with two
observations. First, SOCIAL and LMCHGP explore the solution space considerably better
thanMAPPR, since both build the (hyper)graphmodelmultiple times, whileMAPPR simply
uses the APPR algorithm. Second, SOCIAL is based on a flow approach which directly opti
mizes for motif conductance, whereas LMCHGP is based on a graph partitioning algorithm
which is repeated multiple times to compensate for its design to minimize the number of cut
motifs rather than motif conductance. In Table 5.1, SOCIAL outperforms LMCHGP for 4 of

5.1. Local Motif Clustering 97

the 6 graph and overall, and outperforms MAPPR for all graphs and overall. On the other
hand,LMCHGP outperforms SOCIAL for 2 of the 6 graphs, and outperforms MAPPR with
respect to motif conductance and running time for all graphs and overall. Overall, SOCIAL
computes clusters with motif conductance 0.178while LMCHGP andMAPPR compute clus
ters with motif conductance 0.181 and 0.500, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

%
 i

n
s
ta

n
c
e
s
 ≤

 τ
 b

e
s
t
φ µ

τ

MAPPR

LMCHGP

SOCIAL

(a)Motif conductance.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

%
 i

n
s
ta

n
c
e
s
 ≤

 τ
 f

a
s
te

s
t

τ

MAPPR

LMCHGP

SOCIAL

(b) Running time.

Figure 5.6. Performance profiles comparing our algorithms against the stateoftheart in
terms of solution quality and running time.

As exhibited in Figure 5.6b, SOCIAL is the fastest one for 87% of the instances, while
LMCHGP and MAPPR are the fastest ones for 12% and 1% of the instances, respectively.
Furthermore, the running time of SOCIAL is within a factor 1.18 of the running times of the
fastest competitors for all instances. SOCIAL is respectively up to 237 and 144 063 times
faster than LMCHGP and MAPPR while being a factor 5.4 and 34.1 faster than them on
average. The reason for MAPPR being considerably slower than the other algorithms is that
it must enumerate motifs across the entire graph, while SOCIAL and LMCHGP only require
enumeration of motifs in a ball around the seed node. The reduced but still substantial
difference in running time between SOCIAL and LMCHGP is a result of LMCHGP’s repeated
partitioning of each ball around the seed node, while SOCIAL employs a flow model to
greedily improve the motif conductance metric until a local optimum cluster is obtained.
Table 5.1 demonstrates that, on average, SOCIAL has a lower running time than LMCHGP,
and LMCHGP has a lower running time than MAPPR, for each graph as well as overall.

For a more intuitive analysis of the quality of our results, Figure 5.7 plots motif conduc
tance versus cluster size for all communities computed by the three algorithms. Observe
that the communities found by SOCIAL are densely localized in the lower left area of the
chart, which is the region with smaller motif conductance and smaller cluster size. On the

98 5.2. Conclusion

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
o
ti

f
C

o
n
d
u
c
ta

n
c
e

Cluster Size

MAPPR

LMCHGP

SOCIAL

Figure 5.7. Motif conductance vs cluster size.

other hand, communities computed by MAPPR are often in the upper area of the chart and
communities computed by LMCHGP are often in the right area of the chart.

5.1.3.3 Additional Comparisons

As mentioned above, we were not able to compare against LCD-Motif [24] explicitly since
their code is not available (neither publicly, nor privately) and the data presented in the re
spective papers does not warrant explicit comparisions (e.g., seed nodes are typically not
presented in papers, and in this case instances are directed rather than undirected). Here,
we make an attempt at implicit comparisons. Zhang et al. [24] (Table 4 therein) compare
motif conductance against MAPPR on three directed instances (citHepPh, Slashdot, Stan
fordWeb) and report an geometric mean improvement of 54% in motif conductance for
the triangle motif. As LMCHGP and SOCIAL work for undirected instances, we have build
undirected version of those graphs and run both as well asMAPPR for the triangle motif. Re
spectively, the geometric mean improvement LMCHGP and SOCIAL obtain over MAPPR
is 194% and 223%. Both improvements are significantly larger than the improvement of
Zhang et al. over MAPPR. Also note that in our experiments from Table 5.1, the geometric
mean improvement (using the average motif conductance values) of LMCHGP and SOCIAL
over MAPPR in motif conductance is 192% and 219%, respectively.

5.2 Conclusion

In this chapter, we proposed three local algorithms for graph decomposition: LMCHGP
and SOCIAL. They were discussed in detail and were experimentally compared against

5.2. Conclusion 99

one another and agains the stateoftheart. Both proposed algorithms solve the local mo
tif clustering problem with sophisticated combinatorial techniques. Our first contribution,
LMCHGP (Local Motif Clustering via (Hyper)Graph Partitioning), is an algorithm based
on (hyper)graph partitioning. We construct both a graph model and a hypergraph model to
represent the motifs around the seed node, and then partition the (hyper)graph model us
ing a multilevel partitioner to minimize the motif conductance in the original graph. Our
second contribution, SOCIAL (faSter mOtif Clustering vIa mAximum fLows), combines
the strongly local hypergraph model proposed in the previous algorithm with the maxflow
quotientcut improvement algorithm (MQI) to optimize for motif conductance. We construct
a flow model and utilize a pushrelabel algorithm to find subsets of the initial cluster con
taining the seed node with lower motif conductance than the whole cluster. In experiments
involving triangle motifs, LMCHGP produces communities with lower motif conductance
compared to MAPPR, while being up to multiple orders of magnitude faster than it. On
the other hand, SOCIAL produces communities with lower motif conductance compared to
MAPPR and LMCHGP, while being up to multiple orders of magnitude faster than both.
In future work, we intend to conduct experiments with larger motifs and use the Lawler
expansion version of our flow graph, since it is the only one whose quality guarantee holds
true for larger motifs. Laslty, we intend to add parallelization to improve the speed on
large instances further.

Chapter 6

Multilevel Algorithms

In this chapter, we propose our contributions in the field of multilevel graph decomposition.
Firstly, we introduce an integrated multilevel algorithm for solving the process mapping
problem, which is designed and implemented in multiple versions with different goals. Ex
perimental results demonstrate that the multiple versions of our algorithm outperform the
stateoftheart in terms of both solution quality and running time. Secondly, we design
a multilevel algorithm for solving the signed graph clustering problem and utilize it as a
building block to construct a powerful distributed memetic algorithm. Our experimental
evaluation demonstrates that our memetic algorithm is capable of converging effectively
and significantly outperforms the stateoftheart with respect to edgecut.

References. This section is based on [154], which is joint work with Alexander van der
Grinten, Henning Meyerhenke, Jesper Larsson Träff, and Christian Schulz, on [155], which
is joint work with Felix Hausberger and Christian Schulz, and on the technical report [156],
which is also joint work with Felix Hausberger and Christian Schulz.

6.1 Multilevel Process Mapping

In this section, we propose a highquality algorithm for the process mapping problem. Our
algorithms is an integrated approach based on a multilevel scheme coupled with sophis
ticated initial partitioning and local search techniques. Additionally, we introduce faster
techniques to keep precise topology information without the need to store distance matrices.
Our experiments indicate that our new integrated algorithm improves mapping quality over
other stateoftheart algorithms. For example, one configuration of our algorithm yields
similar solution quality as the previous stateoftheart in terms of mapping quality for large
values of k while being a factor 9.3 faster. Compared to the currently fastest iterated mul
tilevel mapping algorithm Scotch, we obtain 16% better solutions while investing slightly

101

102 6.1. Multilevel Process Mapping

input
graph

... ...

initial

c
o

n
tra

c
tio

n
 p

h
a

s
e

local improvement

uncontractcontract

match

mapping

u
n

c
o

a
rs

e
n

in
g

 p
h

a
s
e

output

mapping

Figure 6.1. Multilevel scheme used to solve the process mapping problem (adapted
from [37]).

more running time. Most importantly, hierarchical multisection algorithms that take the
system hierarchy into account for model creation improve the results of the overall process
mapping significantly.

6.1.1 Integrated Mapping

6.1.1.1 Overall Algorithm

We engineered all the components of a multilevel algorithm to solve the process mapping
problem in an integratedway, as illustrated in Figure 6.1. This algorithm includes coarsening
uncoarsening schemes, methods to construct and refine initial solutions, local search meth
ods, and additional tools to explore tradeoffs in memory usage and performance.

6.1.1.2 Coarsening

We use a matchingbased coarsening scheme. The matching–based coarsening is the most
common choice in multilevel partitioning algorithms due to its simplicity, speed, and gener
ality. It has two consecutive steps: An edge rating function and amatching algorithm. Based
on local information, the edge rating function scores each edge to estimate the benefit of con
tracting it. We employ the same edge rating function exp*(e) = ω(e)/(|Γ(u)| ∗ |Γ(v)|) as
used in [37]. Then, the matching algorithm obtains a maximal match to maximize the sum
of the ratings of the contracted edges. As in [37], we computed matchings with the Global
Paths Algorithm [37], which is a 1

2
approximate algorithm.

6.1.1.3 Initial Solution Algorithms

We compute the initial mapping using a twophase approach. To solve the graph partition
ing phase, we compare two multilevel recursive bisection algorithms: (i) standard bisection
setup, in which we perform a recursive bisection to obtain k blocks; (ii) multisection setup,

6.1. Multilevel Process Mapping 103

in which we perform recursive bisections throughout the hierarchical structure of PEs. To
construct a solution for onetoone mapping, we apply two different construction methods:
(i) identity, which assigns each block to the PE with the same ID to favor locality; (ii) hi
erarchy top down, which partitions the set of blocks throughout the hierarchical structure
of PEs. To refine the onetoone mapping solution, we perform an N10

C swap neighborhood
local search. Hence, the resulting map Π of nodes to PEs becomes our initial solution.

Our standard bisection setup for initial partition corresponds to the initial partition step
in KaHIP. Moreover, it is a canonical choice to produce an initial partition using multilevel
algorithms. On the other hand, the multisection setup draws inspiration from the scheme
used in [109]. It is an attempt to specialize the initial partition for the particular case tack
led in this paper: a regularly hierarchical distribution of PEs in which the communication
cost between two processes (nodes) highly depends on the hierarchy level shared by their
corresponding PEs (blocks). Particularly, we apply a recursive partitioning scheme that
splits all the nodes in aℓ blocks, then splits the nodes in each block in aℓ−1 subblocks, then
splits the nodes in each subblocks in aℓ−2 subsubblocks, and so forth. Observing that
the communication costs decrease as the communicating processes share lower hierarchy
levels, the multisection approach implies a hierarchy of subproblems that directly reflects
the problem cost hierarchy.

In both setups of the partitioning step, we recursively assign consecutive IDs to blocks
throughout the process in order to maintain locality. Moreover, the PEs belonging to each
hierarchy module are labeled with consecutive IDs, which also promotes locality. Then, the
identity method is a fast way to construct a solution for onetoone mapping which takes
advantage of this locality: it assigns each block Vi to the PE with the ID i. Note, the stan
dard bisection setup conveniently combines with the identity mapping approach when k is
a power of 2 since the recursive bisections will be automatically performed throughout the
hierarchical topology. For an analogous reason, the multisection setup is a good algorithm
to create a coarse model to be mapped by the identitymapping approach independently of k.
The hierarchy top down [92] is a more general approach to construct solutions for oneto
one mapping when the PEs are hierarchically organized. Its mechanism is similar to the
idea of multisection throughout the hierarchy.

6.1.1.4 Uncoarsening

After obtaining an initial solution at the coarsest level, we apply a sequence of four local
refinement methods to move nodes between blocks (which are already associated to unique
PEs). Then, we undo each of the contractions performed previously, from the coarsest graph
until the original input graph. After each uncoarsening step, we repeat our four local refine
ment methods. The refinements run in a specific order based on their characteristics. First,

104 6.1. Multilevel Process Mapping

a quotient graph refinement exhaustively tries to improve solution quality and eliminate im
balance by moving nodes between each pair of blocks connected by an edge in the quotient
graph. Second, a kway FiducciaMattheyses (FM) algorithm [157] refinement greedily
goes through the boundary nodes trying to relocate them with a more global perspective in
order to improve the mapping. Third, a label propagation refinement randomly visits all
nodes and moves each one to the most appropriate block while not increasing the objective.
Finally, a multitry FM refinement is exhaustively applied in rounds with random starting
points throughout the graph in order to escape local optima as many times as possible. Be
fore explaining the local search algorithms, we introduce the notion of gain for the process
mapping problem.

Gain. All our refinement methods are based on the concept of gain. We define Ψb(v) as
the partial contribution of a node v to the objective function J(C,D,Π) (Equation (2.1)) in
case v is assigned to the PE b. More precisely,Ψb(v) represents the total cost of the commu
nications involving v ifΠ(v) = b and the neighbors of v remain assigned to their current PEs.
The gain gb(v) represents the value that will be subtracted from J(C,D,Π) if a node v is
moved from its current PE Π(v) to PE b. More precisely, Ψb(v) :=

∑
{v,u}∈I(v) Cv,uDb,Π(u)

and gb(v) := ΨΠ(v)(v)−Ψb(v). Note that gΠ(v)(v) ≡ 0. Observe that a positive (resp., neg
ative) gain indicates improvement (resp., worsening) of the solution. Computing the gains
of v to all blocks in R(v) costs O

(
|R(v)||I(v)|

)
= O

(
|I(v)|2

)
. For comparison purposes,

the computation of the same corresponding gains in the context of graph partitioning and
edgecut objective function costs O

(
|I(v)|

)
.

Quotient Graph Refinement. We implemented an adapted version of the quotient graph
refinement [37] to incorporate our definition of gains. Within this refinement, we visit each
pair of neighboring blocks in the quotient graph Q underlying the current kpartition. Then
we apply an FM algorithm [157] to move nodes between the two currently visited blocks,
keeping two respective gain–based priority queues of eligible nodes. Each queue is ran
domly initialized with the boundary in its corresponding block. After a node is moved
(which can only happen once during an execution of the local search), its unmoved neigh
bors become eligible.

KWay FM Refinement. Our kway FM refinement was adapted from the implementa
tion in [37]. Unlike the quotient graph refinement, the kway FM does not restrict the move
ment of a node to a certain pair of blocks, but performs globalaware movement choices.
Our implementation of kway FM uses only one gain–based priority queue P , which is
initialized with the complete partition boundary in a random order. Then, the local search

6.1. Multilevel Process Mapping 105

repeatedly looks for the highestgain node v andmoves it to the best c(v)underloaded neigh
boring block. When a node is moved, we insert in P all its neighbors that were not in P

and have not been moved yet. The kway local search stops if P is empty (i.e., each node
was moved once) or when a stopping criterion based on a randomwalk model described
in [37] applies. To escape from local optima, this refinement allows some movements with
negative gain or to blocks that are not c(v)underloaded. Afterwards local search is rolled
back to the lowest cut fulfilling the balance criterion that occurred.

Label Propagation Refinement. We propose a local search inspired by label propaga
tion [140]. The algorithm works in rounds. In each round, the algorithm visits all nodes
in a random order, starting with the labels being the current assignment of nodes to blocks.
When a node v is visited, it is moved to the c(v)underloaded neighboring block with highest
positive gain. We consider only c(v)underloaded blocks since this ensures that the target
block is not overloaded when the node is moved there. Ties are broken randomly and a
0gain neighboring block can be occasionally chosen with 50% probability if there is no
neighboring c(v)underloaded block with positive gain. We perform at most ℓ rounds of the
algorithm, where ℓ is a tuning parameter.

MultiTry FM Refinement. We also adapted our gain concept to a localized variant of
the kway local search algorithm similar to that proposed in [37] under the name ofmultitry
FM. Instead of being initialized with all boundary nodes, as in kway FM, multitry FM is
repeatedly initialized with a single boundary node. This introduces a higher diversification
to the search since it is not restricted to movements in boundary nodes with global largest
gain. As a result, this local search can escape local optima more easily than kway FM.

6.1.1.5 Additional Techniques

Implicit Distance Matrix. When the topology matrixD is stored in memory, access time
to obtain the distance between a pair of PEs is O(1), but this requires O(k2) space. From
now on, we refer to the algorithm explicitly keepingD inmemory asmatrix–based approach.
We implement three alternative approaches to save memory by exploiting the fact that our
topology matrix is a hierarchy and the IDs of PEs in each of the hierarchy modules are
sequential. For simplification reasons, we call these approaches: (i) division–based; (ii)
stored division–based; and (iii) binary notation–based.

In the division–based approach, we perform O(ℓ) successive integer divisions and com
parisons in the ID of two PEs when we need to find out their distance. Here, ℓ is the number
of levels in the system hierarchy. As a preprocessing step to be executed only once, we
create a vector h =

(
k
/∏ℓ

t=1 at, k
/∏ℓ

t=2 at, . . . , k
/
aℓ

)
. To find the distance between

106 6.1. Multilevel Process Mapping

Figure 6.2. Section structure of the binary number used to represent PE b.

PEs b and b′ with b 6= b′, we loop through the hierarchy layers from i = ℓ to i = 1. In each
iteration, we perform the integer division of b and b′ by hi. Whenever the division results
differ, then we break the loop and return Db,b′ = di. This approach does not require any
additional memory other than a vector with O(ℓ) integers and has time complexity O(ℓ).

The stored division–based approach works in a similar way as the division–based one.
The only difference is that we avoid repetitive integer divisions of IDs by elements of h
by storing the results of all possible divisions in a preprocessing step executed only once.
Although we still need O(ℓ) running time to perform comparisons in order to obtain the
distance between a pair of PEs, the constant factors involved are much lower. This improve
ment in running time comes at the cost of additional O(kℓ) memory.

The binary notation–based approach is a more compact way of decomposing the IDs of
PEs. Instead of storing ℓ numbers for each PE, we keep in memory a single binary number
per PE. This binary number r consists of ℓ sections ri, each containing s bits, with s given by
Equation (6.1) (see Figure 6.2). To describe the construction of r for a PE b, let a variable t
be initialized as t = b. Then, we loop through the hierarchy layers, from i = 1 to i = ℓ. In
each iteration i, ri receives the remainder of the division of t by ai and, then, t is updated
to store the integer quotient of t by ai. Afterwards, it is possible to precisely locate b at
the hierarchy by sweeping the sections of r from rℓ to r1. In particular, rℓ specifies its
data center, rℓ−1 specifies its server among those belonging to its data center, and so forth.
Obtaining the distance between distinct PEs b and b′ is equivalent to finding which section
ri contains the leftmost nonzero bit in the result of the bitwise operation XOR(b,b′). The
runningtime complexity of finding the section of the leftmost nonzero bit is O(log(ℓ)).
Furthermore, current processors often implement a count leading zeros (CLZ) operation in
hardware which allows the identification of the leftmost nonzero bit inO(1) time, under the
assumption that the size log r = O(log k) of the binary numbers is smaller than the size of
a machine word.

s =
⌈
log2

(
max
1≤t≤ℓ

(at)
)⌉

(6.1)

6.1. Multilevel Process Mapping 107

DeltaGain Updates. Our local searches frequently need to compute gains involved in
the movement of nodes. A base approach to check these gains consists of computing them
from scratch whenever they are needed, which can yield many gain recomputations. For
this reason, we implement a technique to save running time called deltagain updates [52].

In deltagain updates, we store a vectorR of length |R(v)| = O(|Γ(v)|) for each node v.
In this vector, we keep the gains gb(v) for all PEs b containing neighbors of v. Additionally,
we store an nsized vector h to keep flags that indicate whether a node has uptodate gains
in memory. Asymptotically speaking, these vectors representO(n+m) extra memory. Each
flag is initialized with an inactive seed and is considered active if its value equals a counter
that is increased after each uncoarsening steps. When we need to check a gain of some node
v, we look at hv to verify if the gains of v are uptodate. If they are not, we compute all
gains gb(v) from scratch, which costsO

(
|I(v)|2

)
, and activate hv. Otherwise, we just access

the required gain from memory in O(1) time.
If a node v moves from its current PE to another one, we have to update all delta gains

of v and u ∈ Γ(v) with hu being active. Assume that hv and hu are active and v moves
from PE 1 to PE 2 during some local refinement. After this movement, we should change
the delta gains of u and v in memory. For v, it suffices to subtract g2(v) from all other gains
of v and then set g2(v) to 0. For u, it is slightly trickier, but we do not need to recalculate all
its gains from scratch since their only source of change is the edge e that connects u and v.
Hence, we respectively subtract and add to gb(u) the corresponding contribution of e before
and after the movement of v. We end up doing the update in timeO

(
|I(v)|+|I(v)|∗|R(u)|

)
,

where |R(u)| is the average of |R(u)|, ∀{v, u} ∈ I(v).

6.1.2 Experimental Evaluation

Setup. We performed our implementations using the KaHIP framework (using C++) and
compiled them using gcc 8.3 with full optimization turned on (O3 flag). All of our experi
ments were run on a single core of a Machine E.

Baselines. For experiments based on the twophase approach for tackling the process map
ping problem, we solve the graph partitioning phase using KaHIP [37]. We use its config
urations fast, eco and strong which are described in [37] – we respectively refer to them
as K(Fast), K(Eco) and K(Strong). We select the most successful onetoone mapping
algorithms from [92] and also Scotch for our comparison: (i) Top down with Nd

C local
search (TopDownN), which represent the stateoftheart for onetoone mapping when k

is not a power of 2; (ii) identity mapping, which (when coupled with the KaHIP multilevel
partitioning algorithm) represents the stateoftheart for the process mapping problem via
twophase approach when k is a power of 2; (iii) the algorithm of MüllerMerbach [94]

108 6.1. Multilevel Process Mapping

(MüllerMerbach), whose results are also used as a reference algorithm to calculate solution
improvements in [92]; and (iv) Scotch [98]. We run the twophase approches TopDownN,
Identity, and MüllerMerbach coupled with K(Fast), K(Eco) and K(Strong) as a partition
ing algorithm. We also compare against global multisection [109], in which the graph
partitioning step is already using hierarchical multisection itself. In particular, we use its
configurations strong, econ, and fast, which we refer to ass Gmsec(Strong), Gmsec(Eco)
and Gmsec(Fast). Recall that this algorithm is also nonintegrated: it uses different quality
configurations of KaHIP to partition the graph, compute the coarser communication model,
and then apply TopDownN to solve onetoone mapping. We also run Scotch [98] config
ured to only use recursive bipartitioning methods using the quality setting. Scotch is among
the algorithms with best running times in our experiments. Hence, we add an algorithm
(ScotchTC) which reports the best solution out of multiple runs of Scotch with different
random seeds when given the same amount of time to compute a solution as our strong con
figuration has used. We contacted Christopher Walshaw, who informed us that Jostle [158]
is not available anymore.

Instances. Our instances come from various sources. Basic properties of the graphs under
consideration can be found in Table 2.2. To keep the evaluation simple, we use the following
hierarchy configurations for all the experiments: D = 1 : 10 : 100, S = 4 : 16 : r, with
r ∈ {1, 2, 3, . . . , 128}. Hence, k = 64 · r.

Methodology. Depending on the focus of the experiment, wemeasure running time and/or
the process mapping communication cost defined in Equation (2.1). Some of our plots are
modified performance profiles. These plots relate the running times of all algorithms to the
slowest algorithm on a perinstance basis. For each algorithm, these ratios are sorted in
increasing order. The plots show

(
σA

σslowest

)
on the yaxis. A point close to zero indicates that

the algorithm was considerably faster than the slowest algorithm.

6.1.2.1 Parameter Study

In this section, we present a sequence of experiments to test the performance of our algorith
mic components regarding solution quality and running time. Our general goal consists of
individually evaluating the effectiveness and significance of each component. Our specific
goal consists of tuning three different configurations of the algorithm based on different
principles: (i) a strong configuration, mostly concerned with maximizing solution quality;
(ii) a fast configuration, mostly concerned with minimizing running time; and (iii) an eco
configuration, which seeks to balance running time and solution quality.

6.1. Multilevel Process Mapping 109

-4

-2

 0

 2

 4

 6

 8

2
10

2
11

2
12

2
13

Im
p

ro
v

em
en

t
in

 %

k

Bsec
BsecN
MsecT

MsecTN
MsecI

MsecIN

(a) Improvements in objective function over
Bsec. Higher is better.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
4

2
5

2
6

2
7

T
im

e
 R

a
ti

o

Index

Bsec
BsecN
MsecT

MsecTN
MsecI

MsecIN

(b) Performance profile for running time
(ordered running time ratios). Lower is better.

Figure 6.3. Comparing initial mapping algorithms from Table 6.1.

Our experimental strategy consists of defining a single focus aspect of the algorithm
for each experiment. Then, this specific aspect is tested with different components or se
tups while other parameters of the algorithm are kept constant. Initially we use standard
components. Then we use the best component found in an experiment the next section.

We begin by focusing on a representative component of the multilevel scheme: (i) initial
mapping; (ii) local search. Then, we evaluate algorithmic aspects which only affect running
time and memory consumption: the distance matrix representation. The standard configu
ration consists of the matching–based contraction, all local search methods, explicit storage
of distance matrix, and no deltagains updates. All experiments in this section ran for the
six tuning graphs from Table 2.2.

Initial Mapping. For the computation of initial mappings, we consider the six configura
tions listed in Table 6.1. Observe that Bsec and BsecN should apply either identity or top
down depending on k. This choice is based on results obtained in [92] comparing these
two construction algorithms for onetoone mapping. Figure 6.3 plots the results regarding
solution quality and running time for our six configurations.

Looking at solution quality, the configurations using multisection dominate those us
ing standard bisection except for instances having k as a power of 2. This exception was
expected since the standard bisection naturally performs a multisection partition for these
instances. Among the configurations using multisection, identity produces overall better
solutions than hierarchy top down, which is explained by the inherent locality of the mul
tisection approach. Finally, the N10

C local search is the least significant factor for solution
quality, although it slightly improves solution compared to the similar configurations that
skip local search.

110 6.1. Multilevel Process Mapping

Config. Std.Bisec. Multisec. Identity Top Down N10
C

Bsec yes no if k power of 2 if k not power of 2 no
BsecN yes no if k power of 2 if k not power of 2 yes
MsecT no yes no yes no
MsecTN no yes no yes yes
MsecI no yes yes no no
MsecIN no yes yes no yes

Table 6.1. Various configurations for the evaluation of different initial mapping algorithms.

The N10
C local search is the dominant factor regarding running time. Observe that the

configurations using identity are always the fastest ones among those algorithms that ei
ther use N10

C local search or among those that don’t. Hence, the construction algorithm for
onetoone mapping is the second most relevant factor for running time. Finally, the parti
tioning algorithm has little influence over running time, which reflects the rather small time
difference between each of the pairs {BsecN, MsecTN} and {Bsec, MsecT}.

Since MsecIN has the best overall solution quality results, it is the natural choice for
strong. Notice that MsecI has the best overall running times, which makes it the perfect
choice for fast. Nevertheless, it is also the second best regarding solution quality, which
suffices to make it also the best choice for eco.

Local Search. For local search experiments, we start looking at the fast algorithm. To
obtain a fast algorithm, we restrict its number of local search methods to one. Experiments
with single local search algorithms do not yield much insight except that label propagation
with deltagain updates yields a very good tradeoff for running time and solution quality.

For the eco configuration of our algorithm, we build four configurations by incremen
tally inserting the local search methods. Additionally, we consider two extra configurations
equipped with deltagain updates during label propagation. Figure 6.4 summarizes the re
sults concerning these six configurations. Since the behavior of strong in this experiment is
equivalent, we omit its results without loss of completeness.

Figure 6.4 shows that solution quality and running time consistently increase after each
consecutive addition of local refinement methods. Regarding delta gains, running times
decrease for some values of k but increase considerably and irregularly for others. Since
this behavior is undesirable for eco, we drop delta gains for it. We also drop delta gains for
strong since it does not affect solution quality and has negligible influence on running time
compared to the N10

C refinement. The clear choice for strong is the configuration with the
four local searches since all of them contribute to incrementally improve solution quality.
For eco, we drop only the multitry FM local search since it adds little to solution quality
but significantly increases the running time.

6.1. Multilevel Process Mapping 111

 0

 1

 2

 3

 4

 5

 6

 7

2
10

2
11

2
12

2
13

Im
p

ro
v

em
en

t
in

 %

k

Quot
Quot,Kway

Quot,Kway,Label
Quot,Kway,Label,Multit

(a) Improvements in objective function over
Quot. Higher is better.

 0.2

 0.4

 0.6

 0.8

 1

2
4

2
5

2
6

2
7

T
im

e
 R

a
ti

o

Index

Quot
Quot,Kway

Quot,Kway,Label
Quot,Kway,Label,Multit
Quot,Kway,Label(DG)

Quot,Kway,Label(DG),Multit

(b) Performance profile for running time
(ordered running time ratios). Lower is better.

Figure 6.4. Results for local search experiment of the eco algorithm. It comprises four
scenarios that represent successive additions of the respective local search methods. In (b),
we show two additional scenarios in which deltagain updates are used (represented by DG).

Distance Matrix. As the objective function is not influenced by the representation of the
distance matrix, we only evaluate running time. We test four configurations: one with each
of the three techniques that imply the distance matrix and a reference scenario in which we
store the full distance matrix. Since all configurations of our algorithm display equivalent
behavior, we focus on strong without loss of generality. Figure 6.5 plots a running time ratio
chart for strong. It is easily understandable that the binary notation technique is faster than
the stored division–based approach, and also that the latter is faster than the division–based
approach. On the other hand, the binary notation outperforms the fulldistance matrix ap
proach. While both approaches allow O(1) distance calculations on our x86_64 architecture,
accessing the distance matrix incurs a memory access. This leads to frequent cache misses
since theO(k2)sized distance matrix does not fit into the cache of our machine. Lastly, not
using the distancematrix significantly improves thememory footprint of the algorithm. This
especially prounced if the number of blocks gets very large. For example, for 215 blocks,
not using the distance matrix saves roughly an order of magnitude in memory.

After the tuning step, the three configurations of our algorithm ended up as follows:
(i) fast appliesMsecI, label propagation with deltagain updates, and binary notation; (ii) eco
appliesMsecI, quotient graph refinement, kway FM, label propagation, and binary notation;
and (iii) strong applies MsecIN, quotient graph refinement, kway FM, label propagation,
multitry FM, and binary notation. To improve speed even more, we also include a config
uration called fastest which applies MsecI as initial mapping, does not use any local search
during uncoarsening, and never needs to use information from the distance matrix.

112 6.1. Multilevel Process Mapping

 0.8

 0.85

 0.9

 0.95

 1

2
4

2
5

2
6

2
7

T
im

e
 R

a
ti

o
Index

Matrix
Division

Stored Div.
Binary Not.

Figure 6.5. Performance plot for running times of different algorithm configurations (or
dered running time ratios for different distance matrix implementations). Four alternative
configurations are considered: implicit representations of the distance matrix based on di
vision, stored division, and binary notation, and a reference scenario in which the matrix is
explicitly stored. Lower is better.

-20

 0

 20

 40

 60

 80

 100

2
10

2
11

2
12

2
13

Im
p
ro

v
em

en
t

in
 %

k

K(Strong)-TopDownN
K(Eco)-TopDownN
K(Fast)-TopDownN

K(Fast)-Identity

OurAlg(Strong)
OurAlg(Eco)
OurAlg(Fast)

OurAlg(Fastest)

Gmsec(Strong)
Gmsec(Fast)

Scotch
K(Fast)-Mueller

(a) Improvements in objective function over
K(Fast)MüllerMerbach. Higher is better.

 0.001

 0.01

 0.1

 1

2
4

2
5

2
6

2
7

T
im

e
 R

a
ti

o

Index

K(Strong)-TopDownN
K(Eco)-TopDownN
K(Fast)-TopDownN

K(Fast)-Identity
OurAlg(Strong)

OurAlg(Eco)

OurAlg(Fast)
OurAlg(Fastest)
Gmsec(Strong)

Gmsec(Fast)
Scotch

(b) Performance profile for running time. Lower
is better.

Figure 6.6. Comparisons against stateoftheart approaches for process mapping.

6.1.2.2 State of the Art

In this section, we compare our algorithms against the best alternative algorithms in the
literature. We report experiments on all graphs listed in Table 2.2 – excluding the graphs
from the tuning set. Figure 6.6 gives an overview over our results.

Overall, Scotch has the lowest average running time, directly followed by our algorithm
fastest,K(Fast)Identity, and our algorithm fast (respectively 9%, 10%, and 73%slower than
Scotch on average). The average running time of K(Fast)TopDownN and Gmsec(Fast) are
respectivelly a factor 2.3 and 3.1 higher than Scotch. For our algorithms eco and strong, this
factor is respectively 3.3 and 5.4. By definition ScotchTC is also a factor 5.4 higher than
Scotch. Next, Gmsec(Eco) and K(Eco)TopDownN have much higher runtimes (9.3 and
20.4 times slower than Scotch, respectively). Gmsec(Strong) and K(Strong)TopDownN
are the slowest ones (62 and 107 times slower than Scotch, respectively).

6.2. Multilevel Signed Graph Clustering 113

We now highlight the comparison of various configurations/algorithms. Gmsec(Strong)
is the algorithm with best overall mapping quality. It is 2.5% on average better compared
to our strong configuration, however our strong configuration is more than an order of mag
nitude faster on average – a factor 11.5 faster. Better quality of Gmsec(Strong) stems from
the fact that global multisection itself already takes the system hierarchy into account and
hence yields good models to be mapped. Moreover, the graph partitioning approach itself
which is used to compute a communication graph also uses more (timeconsuming) sophis
ticated local search algorithms. This includes methods such as flowbased methods which
particularly work well for small values of k as well as global search methods such as V
cycles. In particular for k > 211, our strong has the same average quality as Gmsec(Strong)
but is 9.3 times faster. Our algorithm computes similar solutions in much less time since
the multilevel algorithm directly optimizes the correct objective. For k > 211, our eco is
2.4% better and 2.8 times faster than Gmsec(Eco), and our fast is 9% better and 2.6 times
faster than Gmsec(Fast). Overall, our strong configuration improves solution quality over
K(Strong)TopDownN by 5.1% while being a factor 20 on average faster. Our eco configu
ration has roughly 3.6% better quality than K(Strong)TopDown but is a factor 32 faster on
average. Our fast configuration still yields 1.3% better solutions than K(Strong)TopDown
on average, and is a factor 62 faster. Here, improvements stem from the fact that the new
algorithms are integrated and not twophase as well as the fact that these algorithms do not
perform multisections. Lastly, our fastest algorithm is on average 9% slower than Scotch
but also improves solution quality over Scotch by 16%. Our strong algorithm is 40% better
than Scotch and consumes a factor 5.4 more running time.

6.2 Multilevel Signed Graph Clustering

In this section, we make a first attempt at solving the signed graph clustering problem
by leveraging some of the most effective techniques from graph partitioning that mini
mize edgecut. We introduce and thoroughly engineer a memetic algorithm specifically
designed for this problem. The memetic algorithm features a multilevel approach, which
encompasses a coarseninguncoarsening process and efficient local search methods. The
memetic algorithm is further enhanced with natural multilevel recombination and mutation
operations. We also parallelize our approach using a scalable coarsegrained islandbased
strategy which has already shown to be scalable in practice. Experimental results show
that our memetic algorithm is able to converge effectively and demonstrate that it outper
forms the stateoftheart with respect to edgecut, producing significantly better solutions
in 1 hour of processing on 16 elements.

114 6.2. Multilevel Signed Graph Clustering

6.2.1 Multilevel Algorithm

We now describe a novel multilevel algorithm for signed graph clustering which is an im
portant component of our memetic algorithm. We start with our multilevel strategy, then
we discuss each of its components.

6.2.1.1 Overall Multilevel Strategy

In this section, we describe our overall multilevel strategy for signed graph clustering. Our
multilevel approach for graph partitioning differs from others in that it lacks a separate algo
rithm for initial solution computation. Instead, our scheme starts with coarsening to produce
a hierarchy of coarser graphs. Upon completion, the coarsest graph is assigned individual
clusters for each node, resulting in an initial clustering. The uncoarsening phase maps the
current best clustering all the way back to the original graph while running local search ap
proaches on each level. Two consecutive cycles of this multilevel process are performed,
as respectively shown in Figures 2.2 and 6.7. In the second cycle, the previously obtained
clustering is forced as the initial solution on the coarsest level, to be further refined during
uncoarsening. Our overall multilevel algorithm is outlined in Algorithm 6.1.

Algorithm 6.1 Our multilevel algorithm
Input graph G = (V,E)

Output clustering Π : V → N

1: G0 ← ∅; G1 ← G; i← 0

2: while Gi 6= Gi+1 do
3: i← i+ 1

4: ComputeClustering(Gi)
5: Gi+1 ← Contract(Gi)

6: Πi ←MapNodesToClusters(Gi)
7: for j ← i− 1, . . . , 1 do
8: Πj ← RemapToFiner(Πj+1)

9: Πj ← RefineClustering(Gj ,Πj)

10: Π← GlobalSearch(Π1)

6.2.1.2 Coarsening

In this section, we explain our coarsening phase. As shown in Algorithm 6.1, it consists
of two consecutive steps which are iteratively repeated on the current coarsest graph until
no more contraction can be performed without increasing the overall edgecut value. In the

6.2. Multilevel Signed Graph Clustering 115

first step, a graph clustering is computed. In the second step, each cluster contained in this
clustering is contracted in order to produce a coarser graph.

To be selfcontained, we briefly outline our clustering algorithm, which is based on label
propagation [140]. In a graph with n nodes andm edges, sizeconstrained label propagation
can be implemented inO(n+m) time. The algorithm starts with each node in its own cluster,
i.e., its initial cluster ID is set to its node ID. The algorithm then works in rounds. In each
round, all nodes are traversed, and each node u is moved to the cluster with the largest
connection weight with u in case it is strictly positive, i.e., it is only moved to the cluster
Vi with maximum connection weight ω({(u, v) | v ∈ N(u) ∩ Vi}) if it is strictly positive.
Ties are broken randomly. This greedy approach ensures that the edgecut is monotonically
decreased. The algorithm is repeated at most L times, where L is a tuning parameter. The
intuition of the overall procedure is to force positive edges inside clusters and negative edges
between clusters, which is favorable for the edgecut objective.

After the label propagation, each cluster is replaced by a single node (as exemplified in
Figure 2.3), creating a hierarchy of coarser graphs. The contraction ensures a clustering of
the coarse graph corresponds to the same edgecut in finer graphs. This aggressive graph
contraction strategy allows us to shrink irregular networks, and the coarsening stops when
no further contraction can be done without increasing the edgecut. The final output is the
coarsest graph, which implies an initial clustering of assigning each node to its own cluster.
This coarsening phase serves as a method to construct an initial clustering, starting with n

clusters and decreasing the number of clusters and the edgecut at each hierarchy level.

6.2.1.3 Uncoarsening

In this section, we explain our uncoarsening phase. It is executed directly after the coars
ening phase has been completed and every node of the coarsest graph has been assigned to
its own cluster. As shown in Algorithm 6.1, our uncoarsening phase consists of two con
secutive steps which are iteratively repeated for each graph in our contraction hierarchy,
from the coarsest one to the finest one. In the first step, the current clustering is mapped
to the graph contained in the current level of the contraction hierarchy. In the second step,
we apply a sequence of local refinement methods to optimize our clustering by moving
nodes between clusters.

At each level of uncoarsening, we remap the best clustering to the next finer graph
using our contraction approach, maintaining edgecut as in the example shown in Figure
2.3. We apply two refinement methods: First, a label propagation refinement randomly
visits all nodes and greedily moves each one to the cluster where edgecut is minimized.
Second, a kway FiducciaMattheyses (FM) [157] refinement greedily goes through the
boundary nodes trying to relocate them with a more global perspective in order to improve

116 6.2. Multilevel Signed Graph Clustering

solution quality. Both methods are based on the concept of Gain, defined as the increase
in edgecut caused by node movement.

Label PropagationRefinement. During uncoarsening, our of our local search procedures
is based on label propagation [140]. The algorithmworks in rounds. In each round, the algo
rithm visits all nodes in a random order, starting with the labels being the current assignment
of nodes to clusters. When a node v is visited, it is moved to the neighboring cluster with
highest positive gain. Ties are broken randomly and a 0gain neighboring cluster can be
occasionally chosen with 50% probability if there is no neighboring cluster with positive
gain. We perform at most ℓ rounds of the algorithm, where ℓ is a tuning parameter.

KWay FM Refinement. Our kway FM refinement was adapted from the implementa
tion in [37], which is an adapted version of the FM algorithm [157] to move nodes between
clusters. Unlike the original algorithm, FM algorithm, our refinement moves nodes glob
ally, rather than restricting movements to pairs of clusters. We use a gainbased priority
queue initialized with the complete partition boundary. We repeatedly move the highest
gain node to its best neighboring cluster, updating the queue by adding its neighbors not yet
moved. The search stops when the queue is empty (i.e., each node was moved once) or a
randomwalk stopping criterion described in [37] is met. The refinement escapes local op
tima by allowing negativeGain movements and rolling back to the lowest cut that satisfies
the balance criterion.

6.2.1.4 Global Search

After the standard multilevel cycle described in Algorithm 6.1, a global search is run using
an extra multilevel cycle almost identical to the standard one, with the previous clustering
used as the initial solution. Figure 6.7 illustrates this global search procedure. Its difference
to the standard multilevel cycle is that the previously computed clustering is forced to be the
initial solution in the extra multilevel cycle. This is achieved by blocking cut edges from
contraction and stopping coarsening when the coarser graph equals the quotient graph of
the clustering. This global search strategy was introduced in [159] and has been success
fully used for many optimization problems. This approach is extended in Section 6.2.2 to
form the operators of our evolutionary algorithm.

6.2.2 Distributed Evolutionary Algorithm

In this section, we extend our multilevel algorithm to a distributed evolutionary framework.
Our approach is directly inspired by the evolutionary algorithm proposed in [160] for graph

6.2. Multilevel Signed Graph Clustering 117

... ...
local improvement

uncontractcontract

u
n

c
o

a
rs

e
n

in
g

 p
h

a
s
e

c
o

a
rs

e
n

in
g

 p
h

a
s
e

clustering

clustering

output
clustering

input

Figure 6.7. Global Search (adapted from [37]).

partitioning. We start by providing a broad description of our overall evolutionary strategy.
Then, we discuss each of its algorithmic components and show how we use our multilevel
algorithm as a tool to implement evolutionary operators such as recombination and mutation.

6.2.2.1 Evolutionary Strategy

In this section, we describe the overall strategy of our distributed evolutionary algorithm,
which is summarized in Algorithm 6.2. As a typical evolutionary approach, our algorithm
is a populationbased heuristic which mimics the biological process of evolution to optimize
for our problem. Given a signed graph G, we define an individual as a particular clustering
on G. Each processing element initializes a population P of α individuals using different
random seeds. Over many rounds or generations, the population evolves via eithermutation
(with probability β = 10%) or recombination (with probability 1−β = 90%). In particular,
the process continues until a desired time limit tf is reached. The recombination procedure
is executed on two good individuals selected via tournament and then used as parents to
produce offspring which partially inherits their characteristics. The mutation procedure is
run on a randomlypicked individual which is used as reference for building another indi
vidual from scratch. The next phase is called replacement. New individuals are inserted
into the population and worst ones are evicted to maintain α population size. Each running
instance of our algorithm generates only one individual per generation, hence it is a steady
state evolutionary algorithm [39]. After each generation, the best individual found so far by
each instance is shared among processing elements.

6.2.2.2 Notation, Population, and Fitness

In this section, we describe how the evolutionary concepts of notation, fitness function, and
population are defined and operated within our algorithm. We define an individual as a
particular clustering Π on the graph G and represent it by its set of cut edges. This way,

118 6.2. Multilevel Signed Graph Clustering

Algorithm 6.2 Our distributed evolutionary algorithm
Input graph G = (V,E)

Output clustering Π : V → N

1: P ← {Π1, . . . ,Πα}
2: while running time < tf do
3: i← Random([0, 1])

4: if i > β then
5: Πa,Πb ← Selection(P)
6: Πc ← Recombination(P)
7: else
8: Πc ←Mutation(Πa)

9: P ← Replacement(P,Πc)
10: CommunicateBest(P)

11: Π← BestIndividualOverall()

each clustering has a unique notation, i.e., there is no symmetry to represent individuals.
Note that some sets of edges cannot be the set of cut edges of any feasible clustering, e.g., a
single edge of a cycle. However, feasibility is implicitly ensured throughout the algorithm,
as will become clear later. As a consequence, we do not need any penalty function, hence the
fitness function of an individual is its edgecut, which is the objective to be minimized. The
initial population is built by running our multilevel algorithm (Algorithm 6.1) from scratch
α times, where α ≥ 3 is automatically determined such that roughly 10% of the allowed
time limit tf is spent on the construction of the initial population.

6.2.2.3 Recombination

In this section, we explain the operation of the recombination operator in our evolutionary
algorithm. We select two good individuals, Πa and Πb, from the population to serve as
parents using a tournament [161], i.e., two distinct individuals are drawn and the one with
best edgecut is selected to be a parent. To ensure distinct parents, the second parent may be
the loser of the tournament if the winner is already the first parent. To create an offspring,
we run Algorithm 6.1 on G and block the cut edges of Πa and Πb from contracting during
the first multilevel cycle. Figure 6.8 demonstrates which edges are blocked for a particular
instance. This leads to a coarsening phase that stops when no further contraction is possible
unless the edgecut increases or blocked edges are contracted. We then choose the best
edgecut clustering among three options: the two parents and a clustering where each node
of the coarsest graph is assigned its own cluster. Our algorithm then uncoarsens this new
clustering, applies local searches, and further improves the clustering with the global search

6.2. Multilevel Signed Graph Clustering 119

parent 1 parent 2

cut edges

edges that cannot

be contracted

blocked edges for recombination

Figure 6.8. In the recombination, the cut edges of both parents cannot be contracted during
the first multilevel cycle to build an offspring.

in Figure 6.7. This approach directly ensures nonincreasing edgecut compared to Πa and
Πb and combines the characteristics of both parents, as expected from recombination.

6.2.2.4 Mutation

In this section, we explain the mutation operator in our algorithm. We randomly select an
individual Πa from the population and create a new individual by running Algorithm 6.1 on
G while blocking Πa’s cut edges from contracting only in the first level of the first multi
level cycle. The initial solution obtained at the finer level of this multilevel cycle can differ
from Πa but inherits some of its characteristics due to this edgeblocking constraint. The
new individual is obtained by optimizing this initial solution during uncoarsening as well
as the global search cycle. This operator does not guarantee nonincreasing edgecut com
pared to Πa, although it increases population variability and optimizes the new individual
as much as possible.

6.2.2.5 Replacement

In this section, we explain the replacement phase in our algorithm. It inserts the newly
generated individualΠc from mutation or recombination into the population P and removes
an individual to keep only α individuals alive. We first check if Πc has worse edgecut
than all individuals in P . If so, we do not insert Πc into P . Otherwise, we remove the
individual in P most similar to Πc, where a high similarity is defined as a lowcardinality
symmetric difference between the two individuals’ edge sets. This approach helps maintain
high diversity in P , which is beneficial for the evolutionary process.

120 6.2. Multilevel Signed Graph Clustering

6.2.2.6 Parallelization

In this section, we explain how our evolutionary algorithm can be executed across distributed
processing elements. We follow the coarsegrained parallelization approach used in [160]
for a similar problem. Each instance follows the same steps outlined in Algorithm 6.2. Com
munication is done through a variation of the randomized rumor spreading protocol [162].
The communication is organized in rounds, in which each process tries to send and receive
individuals. In each round, a process sends the best individual from its local population
to a randomly selected process it has not yet sent this individual to. Afterwards, it tries to
receive incoming individuals and inserts them into its local population using the described
replacement strategy. The overall Algorithm 6.2 is performed asynchronously, i.e., without
global synchronization. The communication rounds can also happen only every x iterations
to save communication time (we use x = 1 on our very fast communication network).

6.2.3 Experimental Evaluation

Setup. We performed the implementation of our algorithms and competing algorithms
inside the KaHIP framework (using C++) and compiled them using gcc 9.3 with full opti
mization turned on (O3 flag). We have used Machine C, which has sixteen cores.

Baselines. As the representative of the stateoftheart for signed graph clustering, we
use the general framework GASP [135], which is publicly available. In particular, the two
best algorithms implemented in it with respect to the minimization of edgecut, namely
HCC-Sum [135] and GAEC [134]. As both of these algorithms have deterministic imple
mentations, we only repeat each experiment with them once. We requested implementations
from the authors of [136], but we have received no response by the time this manuscript was
submitted. However, based on the z_value reported in [136] and preliminary experiments
with GAEC, GAEC outperforms this method. Hence, we do not include it here.

Instances. In our experiments, we use all the realworld signed graphs listed in Table 2.4.
Before running the experiments, we converted each of the graphs in Table 2.4 to an undi
rected signed graph without parallel or self edges. In particular, we achieve this by simply
removing self edges and substituting all parallel and opposite arcs by a single undirected
edge whose weight equals the sum of the weights of these arcs.

Methodology. Depending on the focus of the experiment, wemeasure running time and/or
edgecut. An alternative metric for edgecut is the z_value [136], which can be mathemati
cally defined as 1− edgecut

ω(E−)
where lower values are better and a value of 0 means a perfectly

6.2. Multilevel Signed Graph Clustering 121

-36960

-36880

-36800

-36720

-36640

-36560

-36480

-36400

 0 30 60 90 120 150 180
E

d
g
e

C
u
t

Normalized Time

Memetic
Multilevel

Figure 6.9. Convergence plot for comparison of our memetic algorithm against repeated
executions of our multilevel algorithm for all graphs in Table 2.4.

balanced clustering. Unless explicitly mentioned otherwise, we run our experiments three
times on each of the graphs listed Table 2.4 with different random seeds, except for determin
istic algorithms, which are run only once per graph. Since all values of edgecut computed
in our experiments are negative, we define its geometric mean as the geometric mean of its
absolute value multiplied afterwards by −1.

We present convergence plots, which are computed in the following way. Whenever a
processing element creates a clustering it reports a pair (t, cut), where the timestamp t is
the currently elapsed time (in seconds) on the particular processing element and cut refers
to the edgecut of the computed clustering. After the completion of our algorithms on P

processing elements, we are left with P sequences of pairs (t, cut) which we now merge
into one sequence based on the timestamp. Then, we scan this sequence in ascending order
of timestamp and remove all pairs with an edgecut higher than then minimum edgecut
scanned so far. The resulting sequence defines a step functionwhich indicates the best edge
cut found up to each timestamp. Since multiple repetitions are executed for each graph, we
simply combine the step functions of all repetitions by computing the arithmetic mean of
the best edgecut found during all repetitions at each timestamp. When presenting conver
gence plots over multiple graphs, we normalize the elapsed time for each instance and then
combine all step functions in the same way described above, but based on geometric mean
rather than arithmetic mean. The normalization of the elapsed time is done as in [160] by di
viding all timestamps by a normalization factor representing the approximate running time
necessary to compute a clustering for the respective graph in one processing element. We
define this normalization factor as the first (smallest) timestamp reported for an instance,
which represents the the actual running time invested to create its first clustering.

122 6.2. Multilevel Signed Graph Clustering

-50700

-50650

-50600

-50550

-50500

-50450

-50400

-50350

 0 600 1200 1800 2400 3000 3600

E
d

g
e

C
u

t

Time (s)

Memetic
Multilevel

(a) slashdot090216.

-70300

-70250

-70200

-70150

-70100

-70050

-70000

-69950

 0 600 1200 1800 2400 3000 3600

E
d

g
e

C
u

t

Time (s)

Memetic
Multilevel

(b) epinions.

-41450

-41400

-41350

-41300

-41250

-41200

-41150

-41100

-41050

-41000

-40950

 0 600 1200 1800 2400 3000 3600

E
d

g
e

C
u

t

Time (s)

Memetic
Multilevel

(c) wikisignedk2.

-53700

-53650

-53600

-53550

-53500

-53450

-53400

 0 600 1200 1800 2400 3000 3600

E
d

g
e

C
u

t

Time (s)

Memetic
Multilevel

(d) slashdotzoo.

Figure 6.10. Convergence plot for comparison of our memetic algorithm against repeated
executions of our multilevel algorithm for individual graphs.

6.2.3.1 Convergence

In this section, we evaluate the convergence of our memetic algorithm. For this experi
ment, we run our memetic algorithm for 1 hour on 16 processing elements without hyper
threading. As a baseline, we repeatedly run our multilevel algorithm (Algorithm 6.1) for
the same amount of time in parallel on the same number of processing elements with differ
ent random seeds. Our objective is to check whether our evolutionary strategy is directly
improving the global optimization process, or if it has no advantage over simply repeating
our multilevel algorithm multiple times.

Figures 6.9 shows a convergence plot over all instances. The baseline improves edgecut
at first, but then stabilizes without major improvement. Our memetic algorithm performs
similarly to the baseline for the first 10% of the running time, then outperforms it and con
tinues to improve edgecut. This is as expected, as we allocate roughly 10% of the running
time to construct an initial population using multiple repetitions of our multilevel algorithm.
After that, recombination and mutation operators are applied to the population. Roughly a

6.2. Multilevel Signed Graph Clustering 123

Graph HCC-Sum GAEC Memetic

bitcoinalpha −5 476 −5 529 −5 564
bitcoinotc −20 318 −20 391 −20 440
elec −7 723 −7 717 −7 735
chess −4 293 −4 312 −4 796
slashdot081106 −48 442 −48 454 −49 805
slashdotzoo −51 213 −51 806 −53 703
slashdot090216 −49 831 −49 797 −50 668
slashdot090221 −49 789 −49 798 −50 926
wikiconflict −2 166 604 −2 166 608 −2 167 344
epinions −68 759 −69 156 −70 323
wikisignedk2 −41 377 −41 458 −41 623

Overall −36 202 −36 320 −37 126

Table 6.2. Average edgecut comparison.

similar pattern is observed for all graphs, as exemplified in Figure 6.10. The convergence
plots of individual graphs show another pattern not visible in Figure 6.9. After about 10%
of the running time, our memetic algorithm computes better solutions quickly, then contin
ues to improve edgecut at a slower pace. This shows that our recombination and mutation
operators quickly improve solution quality and continue to do so at a slower pace over time
even after this abrupt improvement.

6.2.3.2 Comparison against StateoftheArt

In this section, we experimentally verify howmuch our evolutionary algorithm can improve
over the stateoftheart. For this experiment, we also run our memetic algorithm for 1 hour
on 16 processing elements. In order to further diversify our initial population and since
HCC-Sum and GAEC are fast algorithms, we include the solutions computed by HCC-Sum
and GAEC in the initial population and compute its remaining individuals using our mul
tilevel algorithm as usual. As a baseline, we use HCC-Sum and GAEC. Note that these
algorithms are not randomized and thus can not be run multiple times to improve the result.
Table 6.2 shows our overall results, in which our memetic algorithm computes better solu
tions than the stateoftheart for every instance. Note that our memetic strategy is able to
improve the initial population (which also contains results of the competing algorithms) sig
nificantly. Our best edgecut gain over HCC-Sum and GAEC is obtained for slashdotzoo,
for which our average edgecut is respectively 2 490 and 1 897 units smaller. In propor
tional terms, our largest increase in the absolute value of the edgecut over HCC-Sum ad
GAEC is obtained for chess: 11.9% and 11.4%, respectively. A natural lower bound for
the edgecut of a graph is given by ω(E−). Based on this bound, our algorithm gets the
smallest absolute optimality gap for bitcoinalpha (3 786 units) and the smallest proportional

124 6.3. Conclusion

optimality gap for wikiconflict (8.35%). We conclude that our memetic strategy is effective
in improving results of the initial population and overall our algorithm can be seen as the
stateoftheart.

6.3 Conclusion

In this chapter, we proposed two multilevel algorithms for graph decomposition. Both
were engineered in all their details and were subjected to extensive experimental evalua
tion against the stateoftheart.

First, we proposed a multilevel algorithm aimed at solving the process mapping problem.
Our algorithm integrates graph partitioning and processmapping and comprisesmultiple ver
sions with varying speed/quality tradeoffs. Key ingredients of our algorithm include fast
label propagation, more localized local search, initial partitioning, as well as a compressed
data structure for computing processor distances without the need for storing a distance ma
trix. Experimental results demonstrate that our algorithm represents the new stateoftheart
for process mapping. Specifically, our algorithm generates superior or comparable overall
solutions compared to any of the competing algorithms while being orders of magnitude
faster than the previous best algorithm in terms of quality. Our improvements are primarily
attributable to the integrated multilevel approach coupled with highquality local search al
gorithms and initial mapping algorithms that divide the initial network based on the specified
system hierarchy. Important future work entails parallelization, as well as the integration of
global search schemes and different types of coarsening to further enhance solution quality.
Additionally, we plan to investigate the impact of our algorithm on the real performance of
applications such as sparse matrixvector multiplications.

Second, we engineered a memetic algorithm for the signed graph clustering problem.
Building upon a novel multilevel algorithm, we derive highly intuitive recombination and
mutation operations. Experimental results show that our memetic strategy produces substan
tially superior solutions compared to the present stateoftheart. In future work, we aim to
enhance our algorithm by incorporating local searches based on maximum flows.

Chapter 7

Discussion

7.1 Conclusion

(Hyper)graph decomposition refers to a set of problems that focus on dividing large (hy
per)graphs into smaller sub(hyper)graphs, which facilitates their analysis. The significance
of this lies in its capability to enable efficient computation on large and intricate (hyper)graphs,
including chemical compounds, social networks, and computer networks. In this disserta
tion, we propose multiple algorithmic contributions in the field of (hyper)graph decomposi
tion, which utilize various techniques like buffered streaming, sharedmemory parallelism,
and efficient data structures to enhance the performance and quality of solutions. We provide
a thourough description for each algorithm along with experimental results that demonstrate
their superiority over existing stateoftheart algorithms.

The first algorithm we propose is a buffered streaming algorithm for graph partitioning,
which loads a batch of nodes and builds a model representing the loaded subgraph and al
ready present partition structure. This model allows us to apply multilevel algorithms and
compute highquality solutions of massive graphs on inexpensive machines. We develop a
multilevel algorithm to partition the model that optimizes an objective function, which im
proves on the previous stateoftheart by removing the dependence on the number of blocks
from the running time. Our algorithm computes better solutions than stateoftheart using
a small buffer size, and for larger numbers of blocks, it becomes faster than stateoftheart.

The second algorithm is a sharedmemory parallel streaming algorithm for the process
mapping problem, which maps a streamed communication graph onto a hierarchical topol
ogy by performing recursive multisections onthefly. This algorithm can also be used
to solve the graph partitioning problem as a general tool. Our algorithm has considerably
lower running time complexity than existing stateoftheart techniques and produces better
process mappings.

125

126 7.2. Future Work

The third algorithm is a streaming algorithm for hypergraph partitioning, which adapts
the stateoftheart streaming algorithm for graph partitioning by using an efficient data
structure that makes the overall running time linearly dependent on the pincount of the
hypergraph and the memory consumption linearly dependent on the numbers of nets and
blocks. Our algorithm outperforms all existing (buffered) streaming algorithms and even an
inmemory algorithm with respect to both weighted number of cut hyperedges and connec
tivity measures.

Next, we propose algorithms for the local motif clustering problem, which builds a (hy
per)graph model representing the motifdistribution around the seed node on the original
graph. The first algorithm partitions the (hyper)graph model using a multilevel hypergraph
or graph partitioner to minimize the motif conductance of the corresponding partition in the
original graph. The second algorithm transforms the hypergraph model into a flow model
based on the maxflow quotientcut improvement algorithm to obtain a superior solution
automatically. Our algorithms produce better communities than existing stateoftheart
techniques, while being up to multiple orders of magnitude faster.

We also propose multilevel algorithms for the process mapping problem, which include
fast label propagation, more localized local search, initial partitioning, and a compressed
data structure to compute processor distances without storing a distance matrix. Our al
gorithms are able to exploit a given hierarchical structure of the distributed system under
consideration and obtain better solutions than existing stateoftheart techniques.

Finally, we propose algorithms to solve the signed graph clustering problem by using
some of the most effective techniques from graph partitioning that minimize edgecut. Our
multilevel algorithm includes a coarseninguncoarsening process and efficient local search
methods. We also introduce a distributedmemetic algorithm that utilizes our multilevel algo
rithm and further enhances it with natural multilevel recombination and mutation operations.
Experimental results demonstrate that our memetic algorithm outperforms the stateofthe
art with respect to edgecut, producing significantly better solutions.

Overall, our contributions demonstrate the effectiveness of various algorithmic tech
niques, such as buffered streaming, sharedmemory parallelism, and efficient data structures,
in solving a range of important problems in graph and hypergraph decomposition. Our al
gorithms achieve improved performance and better solutions compared to stateoftheart
methods in various metrics, making them highly promising for practical applications.

7.2 Future Work

We have included specific future work in Chapters 4, 5, and 6. To enhance the performance
of our algorithms, a general approach that could be beneficial is to parallelize them using

7.2. Future Work 127

shared and/or distributed memory. This would lead to faster execution and enable them
to handle even larger instances. In addition, it would be desirable to conduct experiments
with more specialized benchmark sets. In particular, it would be worthwhile to verify the ef
fectiveness of our streaming, local, and multilevel (hyper)graph decomposition algorithms
within specific classes of (hyper)graphs, such as those that are used to model physical simu
lations, social networks, road networks, and other related phenomena. For motif clustering,
more extensive experiments could be conducted, including larger and more diverse motifs,
which could provide new insights into the structure of the problem. Another important objec
tive is to investigate the impact of our algorithms on realworld applications. For example,
our processmapping and (hyper)graph partitioning algorithms can be tested as preprocessing
steps for the distributed computation of sparse matrix vector multiplication. Furthermore,
extending our algorithms to dynamic (hyper)graphs, which is a current trend in the literature,
could be accomplished in an easymanner, particularly for streaming algorithms. Finally, ma
chine learning techniques could be applied to (hyper)graph decomposition problems, given
their successful implementation in literature to solve other combinatorial problems.

Bibliography

[1] Michael R. Garey, David S. Johnson, and Larry Stockmeyer. Some Simplified NP
Complete Problems. In Proc. of the 6th ACM Sym. on Theory of Computing, (STOC),
pages 47–63. ACM, 1974. doi:10.1145/800119.803884.

[2] Thang Nguyen Bui and Curt Jones. Finding Good Approximate Vertex and
Edge Partitions is NPHard. Information Processing Letters, 42(3):153–159, 1992.
doi:10.1016/00200190(92)90140Q.

[3] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vo
jnovic. Fennel: Streaming graph partitioning for massive scale graphs. In Proc. of
the 7th ACM international conference on Web search and data mining, pages 333–
342, 2014. doi:10.1145/2556195.2556213.

[4] Amel Awadelkarim and Johan Ugander. Prioritized restreaming algorithms for bal
anced graph partitioning. InProc. of the 26th ACMSIGKDD Intl. Conf. on Knowledge
Discovery & Data Mining, pages 1877–1887, 2020. doi:10.1145/3394486.3403239.

[5] Nazanin Jafari, Oguz Selvitopi, and Cevdet Aykanat. Fast sharedmemory streaming
multilevel graph partitioning. Journal of Parallel and Distributed Computing, 147:
140–151, 2021. doi:10.1016/j.jpdc.2020.09.004.

[6] Christian Mayer, Ruben Mayer, Muhammad Adnan Tariq, Heiko Geppert, Larissa
Laich, Lukas Rieger, and Kurt Rothermel. Adwise: Adaptive windowbased stream
ing edge partitioning for highspeed graph processing. In 2018 IEEE 38th Intl.
Conf. on Distributed Computing Systems (ICDCS), pages 685–695. IEEE, 2018.
doi:10.1109/ICDCS.2018.00072.

[7] Loc Hoang, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. Cusp: A cus
tomizable streaming edge partitioner for distributed graph analytics. In 2019 IEEE
Intl. Parallel and Distributed Processing Sym. (IPDPS), pages 439–450. IEEE, 2019.
doi:10.1109/IPDPS.2019.00054.

129

https://doi.org/10.1145/800119.803884
https://doi.org/10.1016/0020-0190(92)90140-Q
https://doi.org/10.1145/2556195.2556213
https://doi.org/10.1145/3394486.3403239
https://doi.org/10.1016/j.jpdc.2020.09.004
https://doi.org/10.1109/ICDCS.2018.00072
https://doi.org/10.1109/IPDPS.2019.00054

130 Bibliography

[8] Dan Alistarh, Jennifer Iglesias, and Milan Vojnovic. Streaming minmax hypergraph
partitioning. In Advances in Neural Information Processing Systems, pages 1900–
1908, 2015. doi:10.5555/2969442.2969452.

[9] Fatih Taşyaran, Berkay Demireller, Kamer Kaya, and Bora Uçar. Streaming Hyper
graph Partitioning Algorithms on Limited Memory Environments. In HPCS 2020
Intl. Conf. on High Performance Computing & Simulation, pages 1–8. IEEE, 2021.
URL https://hal.archives-ouvertes.fr/hal-03182122.

[10] Marcelo Fonseca Faraj and Christian Schulz. Buffered streaming graph partitioning.
ACM J. Exp. Algorithmics, 27:1.10:1–1.10:26, 2022. doi:10.1145/3546911. URL
https://doi.org/10.1145/3546911.

[11] Marcelo Fonseca Faraj and Christian Schulz. Recursive multisection on the fly:
Sharedmemory streaming algorithms for hierarchical graph partitioning and process
mapping. In 2022 IEEE Intl. Conf. on Cluster Computing (CLUSTER), pages 473–
483, 2022. doi:10.1109/CLUSTER51413.2022.00057. URL https://ieeexplore.
ieee.org/document/9912716.

[12] Kamal Eyubov, Marcelo Fonseca Faraj, and Christian Schulz. FREIGHT: Fast
Streaming Hypergraph Partitioning. In Intl. Sym. on Experimental Algorithms (SEA),
volume 265 of LNCS. Springer, to appear.

[13] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and
spectral. JACM, 51(3):497–515, 2004. doi:10.1145/990308.990313. URL https:
//doi.org/10.1145/990308.990313.

[14] Alessandro Epasto, Jon Feldman, Silvio Lattanzi, Stefano Leonardi, and Vahab
Mirrokni. Reduce and aggregate: similarity ranking in multicategorical bipartite
graphs. In WWW, pages 349–360, 2014. doi:10.1145/2566486.2568025. URL
https://doi.org/10.1145/2566486.2568025.

[15] Lucas G. S. Jeub, Prakash Balachandran, Mason A. Porter, Peter J. Mucha, and
Michael W. Mahoney. Think locally, act locally: Detection of small, medium
sized, and large communities in large networks. Phys. Rev. E, 91:012821, Jan 2015.
doi:10.1103/PhysRevE.91.012821. URL https://link.aps.org/doi/10.1103/
PhysRevE.91.012821.

[16] Konstantin Voevodski, ShangHua Teng, and Yu Xia. Spectral affinity in protein
networks. BMC systems biology, 3(1):1–13, 2009. doi:10.1186/175205093112.
URL https://doi.org/10.1186/1752-0509-3-112.

https://doi.org/10.5555/2969442.2969452
https://hal.archives-ouvertes.fr/hal-03182122
https://doi.org/10.1145/3546911
https://doi.org/10.1145/3546911
https://doi.org/10.1109/CLUSTER51413.2022.00057
https://ieeexplore.ieee.org/document/9912716
https://ieeexplore.ieee.org/document/9912716
https://doi.org/10.1145/990308.990313
https://doi.org/10.1145/990308.990313
https://doi.org/10.1145/990308.990313
https://doi.org/10.1145/2566486.2568025
https://doi.org/10.1145/2566486.2568025
https://doi.org/10.1103/PhysRevE.91.012821
https://link.aps.org/doi/10.1103/PhysRevE.91.012821
https://link.aps.org/doi/10.1103/PhysRevE.91.012821
https://doi.org/10.1186/1752-0509-3-112
https://doi.org/10.1186/1752-0509-3-112

Bibliography 131

[17] DorotheaWagner and FrankWagner. BetweenMin Cut and Graph Bisection. In Proc.
of the 18th Intl. Sym. on Mathematical Foundations of Computer Science, pages 744–
750. Springer, 1993. doi:10.1007/3540571825_65.

[18] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank
vectors. In FOCS, pages 475–486, 2006. doi:10.1109/FOCS.2006.44. URL https:
//doi.org/10.1109/FOCS.2006.44.

[19] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Ma
honey. Community structure in large networks: Natural cluster sizes and
the absence of large welldefined clusters. Internet Mathematics, 6(1):29–123,
2009. doi:10.1080/15427951.2009.10129177. URL https://doi.org/10.1080/
15427951.2009.10129177.

[20] Fan Chung and Olivia Simpson. Solving linear systems with boundary conditions
using heat kernel pagerank. In Intl. Workshop on Algorithms and Models for the Web
Graph, pages 203–219. Springer, 2013. doi:10.1007/9783319035369_16. URL
https://doi.org/10.1007/978-3-319-03536-9_16.

[21] Yixuan Li, Kun He, David Bindel, and John E. Hopcroft. Uncovering the small
community structure in large networks: A local spectral approach. In WWW, pages
658–668, 2015. doi:10.1145/2736277.2741676. URL https://doi.org/10.1145/
2736277.2741676.

[22] Kimon Fountoulakis, Meng Liu, David F. Gleich, and Michael W. Mahoney. Flow
based algorithms for improving clusters: A unifying framework, software, and per
formance. SIAM Rev., 65(1):59–143, 2023. doi:10.1137/20m1333055. URL https:
//doi.org/10.1137/20m1333055.

[23] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local higherorder
graph clustering. InProc. of the 23rd ACMSIGKDD Intl. Conf. on KnowledgeDiscov
ery and Data Mining, pages 555–564. ACM, 2017. doi:10.1145/3097983.3098069.
URL https://doi.org/10.1145/3097983.3098069.

[24] Yunlei Zhang, Bin Wu, Yu Liu, and Jinna Lv. Local community detection based
on network motifs. Tsinghua Science and Technology, 24(6):716–727, 2019.
doi:10.26599/TST.2018.9010106. URL https://doi.org/10.26599/TST.2018.
9010106.

[25] Tao Meng, Lijun Cai, Tingqin He, Lei Chen, and Ziyun Deng. Local higherorder
community detection based on fuzzymembership functions. IEEE Access, 7:128510–

https://doi.org/10.1007/3-540-57182-5_65
https://doi.org/10.1109/FOCS.2006.44
https://doi.org/10.1109/FOCS.2006.44
https://doi.org/10.1109/FOCS.2006.44
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1007/978-3-319-03536-9_16
https://doi.org/10.1007/978-3-319-03536-9_16
https://doi.org/10.1145/2736277.2741676
https://doi.org/10.1145/2736277.2741676
https://doi.org/10.1145/2736277.2741676
https://doi.org/10.1137/20m1333055
https://doi.org/10.1137/20m1333055
https://doi.org/10.1137/20m1333055
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.26599/TST.2018.9010106
https://doi.org/10.26599/TST.2018.9010106
https://doi.org/10.26599/TST.2018.9010106

132 Bibliography

128525, 2019. doi:10.1109/ACCESS.2019.2939535. URL https://doi.org/10.
1109/ACCESS.2019.2939535.

[26] Mrudula Murali, Katerina Potika, and Chris Pollett. Online local communities with
motifs. In 2020 Second Intl. Conf. on Transdisciplinary AI (TransAI), pages 59–66.
IEEE Computer Society, sep 2020. doi:10.1109/TransAI49837.2020.00014.

[27] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoe
fer, Zoran Nikoloski, and Dorothea Wagner. On modularity clustering.
IEEE transactions on knowledge and data engineering, 20(2):172–188, 2007.
doi:10.1109/TKDE.2007.190689.

[28] ArzumKarataş and Serap Şahin. Application areas of community detection: A review.
In 2018 Intl. Congress on Big Data, Deep Learning and Fighting Cyber Terrorism
(IBIGDELFT), pages 65–70, 2018. doi:10.1109/IBIGDELFT.2018.8625349.

[29] Yoshiko Wakabayashi. Aggregation of binary relations: algorithmic and polyhedral
investigations. PhD thesis, University of Augsburg, Germany, 1986. URL https:
//d-nb.info/870902490.

[30] Kevin J. Lang and Satish Rao. A flowbased method for improving the expansion
or conductance of graph cuts. In Integer Programming and Combinatorial Opti
mization, 10th Intl. IPCO Conf., volume 3064 of LNCS, pages 325–337. Springer,
2004. doi:10.1007/9783540259602_25. URL https://doi.org/10.1007/
978-3-540-25960-2_25.

[31] Austin R. Benson, David F. Gleich, and Jure Leskovec. Higherorder
organization of complex networks. Science, 353(6295):163–166, 2016.
doi:10.1126/science.aad9029. URL https://ui.adsabs.harvard.edu/abs/
2016Sci...353..163B/abstract.

[32] Barbara. Brandfass, Thomas Alrutz, and Thomas Gerhold. Rank reordering for MPI
communication optimization. Computers & Fluids, 80:372–380, 2013. URL https:
//doi.org/10.1016/j.compfluid.2012.01.019.

[33] Lester Randolph Ford and Delbert Ray Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956. doi:10.4153/CJM19560455.

[34] AndrewV. Goldberg and Robert Endre Tarjan. A new approach to the maximumflow
problem. J. ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051. URL https:
//doi.org/10.1145/48014.61051.

https://doi.org/10.1109/ACCESS.2019.2939535
https://doi.org/10.1109/ACCESS.2019.2939535
https://doi.org/10.1109/ACCESS.2019.2939535
https://doi.org/10.1109/TransAI49837.2020.00014
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1109/IBIGDELFT.2018.8625349
https://d-nb.info/870902490
https://d-nb.info/870902490
https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1126/science.aad9029
https://ui.adsabs.harvard.edu/abs/2016Sci...353..163B/abstract
https://ui.adsabs.harvard.edu/abs/2016Sci...353..163B/abstract
https://doi.org/10.1016/j.compfluid.2012.01.019
https://doi.org/10.1016/j.compfluid.2012.01.019
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051

Bibliography 133

[35] Nate Veldt, Austin R. Benson, and Jon Kleinberg. Hypergraph cuts with general
splitting functions. SIAM Review, 64(3):650–685, 2022. doi:10.1137/20M1321048.
URL https://doi.org/10.1137/20M1321048.

[36] Eugene L. Lawler. Cutsets and partitions of hypergraphs. Networks, 3(3):275–
285, 1973. doi:10.1002/net.3230030306. URL https://doi.org/10.1002/net.
3230030306.

[37] Peter Sanders and Christian Schulz. Engineering Multilevel Graph Partitioning Algo
rithms. In Proc. of the 19th European Symp. on Algorithms, volume 6942 of LNCS,
pages 469–480. Springer, 2011. doi:10.1007/9783642237195_40.

[38] Henning Meyerhenke, Peter Sanders, and Christian Schulz. Partitioning complex
networks via sizeconstrained clustering. In Experimental Algorithms 13th In
ternational Symposium, SEA, volume 8504 of LNCS, pages 351–363. Springer,
2014. doi:10.1007/9783319079592_30. URL https://doi.org/10.1007/
978-3-319-07959-2_30.

[39] Efrén MezuraMontes. Evolutionary Computation. A Unified Approach. kenneth
a. de jong. (2006, MIT press.) 256 pages. Artif. Life, 13(4):423–426, 2007.
doi:10.1162/artl.2007.13.4.423. URL https://doi.org/10.1162/artl.2007.
13.4.423.

[40] Kumara Sastry, David E. Goldberg, and Graham Kendall. Genetic algorithms.
In Search methodologies, pages 93–117. 2014. URL http://eprints.ukh.
ac.id/id/eprint/271/1/2014_Book_SearchMethodologies.pdf#page=106.
Springer.

[41] David E. Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic algorithms:
Motivation, analysis, and first results. Complex Syst., 3(5), 1989. URL http://www.
complex-systems.com/abstracts/v03_i05_a05.html.

[42] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro
grams, Third Revised and Extended Edition. Springer, 1996. ISBN 9783540
606765. doi:10.1007/9783662033159. URL https://doi.org/10.1007/
978-3-662-03315-9.

[43] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[44] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive
graph analytics and visualization. http://networkrepository.com, 2015.

https://doi.org/10.1137/20M1321048
https://doi.org/10.1137/20M1321048
https://doi.org/10.1002/net.3230030306
https://doi.org/10.1002/net.3230030306
https://doi.org/10.1002/net.3230030306
https://doi.org/10.1007/978-3-642-23719-5_40
https://doi.org/10.1007/978-3-319-07959-2_30
https://doi.org/10.1007/978-3-319-07959-2_30
https://doi.org/10.1007/978-3-319-07959-2_30
https://doi.org/10.1162/artl.2007.13.4.423
https://doi.org/10.1162/artl.2007.13.4.423
https://doi.org/10.1162/artl.2007.13.4.423
http://eprints.ukh.ac.id/id/eprint/271/1/2014_Book_SearchMethodologies.pdf#page=106
http://eprints.ukh.ac.id/id/eprint/271/1/2014_Book_SearchMethodologies.pdf#page=106
http://www.complex-systems.com/abstracts/v03_i05_a05.html
http://www.complex-systems.com/abstracts/v03_i05_a05.html
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-662-03315-9
http://snap.stanford.edu/data
http://networkrepository.com

134 Bibliography

[45] David A. Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea
Kappes, and Dorothea Wagner. Benchmarking for graph clustering and parti
tioning. In Encyclopedia of Social Network Analysis and Mining, pages 73–82.
2014. doi:10.1007/9781461461708_23. URL https://doi.org/10.1007/
978-1-4614-6170-8_23.

[46] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. Engineering a
scalable high quality graph partitioner. In 24th IEEE International Sympo
sium on Parallel and Distributed Processing, IPDPS, pages 1–12. IEEE, 2010.
doi:10.1109/IPDPS.2010.5470485. URL https://doi.org/10.1109/IPDPS.
2010.5470485.

[47] Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck, Peter Sanders,
Christian Schulz, Darren Strash, and Moritz von Looz. Communicationfree mas
sively distributed graph generation. Journal of Parallel and Distributed Computing,
131:200–217, 2019.

[48] Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich
Meyer, Ilya Safro, Peter Sanders, and Christian Schulz. Recent advances in scalable
network generation. In David A. Bader, editor, Massive Graph Analytics. Chapman
and Hall/CRC, 2022.

[49] Alan J. Soper, Chris Walshaw, and Mark Cross. A combined evolutionary search and
multilevel optimisation approach to graphpartitioning. J. Glob. Optim., 29(2):225–
241, 2004. doi:10.1023/B:JOGO.0000042115.44455.f3. URL https://doi.org/
10.1023/B:JOGO.0000042115.44455.f3.

[50] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collec
tion. ACMTrans.Math. Softw., 38(1):1:1–1:25, 2011. doi:10.1145/2049662.2049663.
URL https://doi.org/10.1145/2049662.2049663.

[51] Daniel Delling, Peter Sanders, Dominik Schultes, and DorotheaWagner. Engineering
route planning algorithms. In Algorithmics of Large and Complex Networks Design,
Analysis, and Simulation [DFG priority program 1126], volume 5515 of LNCS, pages
117–139. Springer, 2009. doi:10.1007/9783642020940_7. URL https://doi.
org/10.1007/978-3-642-02094-0_7.

[52] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders,
and Christian Schulz. kway hypergraph partitioning via nlevel recursive bisection.

https://doi.org/10.1007/978-1-4614-6170-8_23
https://doi.org/10.1007/978-1-4614-6170-8_23
https://doi.org/10.1007/978-1-4614-6170-8_23
https://doi.org/10.1109/IPDPS.2010.5470485
https://doi.org/10.1109/IPDPS.2010.5470485
https://doi.org/10.1109/IPDPS.2010.5470485
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1007/978-3-642-02094-0_7

Bibliography 135

In Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experi
ments, ALENEX, pages 53–67. SIAM, 2016. doi:10.1137/1.9781611974317.5. URL
https://doi.org/10.1137/1.9781611974317.5.

[53] Charles J. Alpert. The ISPD98 circuit benchmark suite. In Proc. of the 1998 Intl.
Sym. on Physical Design, ISPD 1998, Monterey, CA, USA, April 68, 1998, pages 80–
85. ACM, 1998. doi:10.1145/274535.274546. URL https://doi.org/10.1145/
274535.274546.

[54] Anton Belov, Daniel Diepold, Marijn Heule, andMatti Järvisalo. The sat competition
2014. http://www.satcompetition.org/2014/, 2014.

[55] Jure Leskovec. Stanford Network Analysis Package (SNAP), 2013.

[56] Jérôme Kunegis. KONECT: the koblenz network collection. In 22nd Intl. World
Wide Web Conf., WWW ’13, Rio de Janeiro, Brazil, May 1317, 2013, Companion
Volume, pages 1343–1350. Intl. World Wide Web Conferences Steering Committee
/ ACM, 2013. doi:10.1145/2487788.2488173. URL https://doi.org/10.1145/
2487788.2488173.

[57] Ümit V. Çatalyürek and Cevdet Aykanat. Patoh (partitioning tool for hyper
graphs). In Encyclopedia of Parallel Computing, pages 1479–1487. Springer,
2011. doi:10.1007/9780387097664_93. URL https://doi.org/10.1007/
978-0-387-09766-4_93.

[58] George Karypis and Vipin Kumar. Parallel multilevel kway partitioning scheme for
irregular graphs. In Proc. of the 1996 ACM/IEEE Conf. on Supercomputing, Super
computing ’96. IEEE Computer Society, 1996. doi:10.1145/369028.369103.

[59] George Karypis and Vipin Kumar. Multilevel kway hypergraph partitioning. In Pro
ceedings of the 36th Conference on Design Automation, pages 343–348. ACM Press,
1999. doi:10.1145/309847.309954. URL https://doi.org/10.1145/309847.
309954.

[60] François Pellegrini and Jean Roman. Experimental analysis of the dual recursive
bipartitioning algorithm for static mapping. Technical report, TR 103896, LaBRI,
URA CNRS 1304, Univ. Bordeaux I, 1996.

[61] Christian Mayer, Ruben Mayer, Sukanya Bhowmik, Lukas Epple, and Kurt Rother
mel. HYPE: massive hypergraph partitioning with neighborhood expansion. In
IEEE Intl. Conf. on Big Data (IEEE BigData 2018), pages 458–467. IEEE, 2018.

https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1145/274535.274546
https://doi.org/10.1145/274535.274546
https://doi.org/10.1145/274535.274546
http://www.satcompetition.org/2014/
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1007/978-0-387-09766-4_93
https://doi.org/10.1007/978-0-387-09766-4_93
https://doi.org/10.1007/978-0-387-09766-4_93
https://doi.org/10.1145/369028.369103
https://doi.org/10.1145/309847.309954
https://doi.org/10.1145/309847.309954
https://doi.org/10.1145/309847.309954

136 Bibliography

doi:10.1109/BigData.2018.8621968. URL https://doi.org/10.1109/BigData.
2018.8621968.

[62] Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly Balanced
Graph Partitioning. In 12th Intl. Sym. on Experimental Algorithms (SEA), LNCS.
Springer, 2013. doi:10.1007/9783642385278_16.

[63] Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel
Seemaier. Deep multilevel graph partitioning. In 29th Annual European Sym. on
Algorithms, ESA 2021, September 68, 2021, Lisbon, Portugal (Virtual Conf.), vol
ume 204 of LIPIcs, pages 48:1–48:17. Schloss Dagstuhl LeibnizZentrum für Infor
matik, 2021. doi:10.4230/LIPIcs.ESA.2021.48. URL https://doi.org/10.4230/
LIPIcs.ESA.2021.48.

[64] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Scal
able SharedMemory Hypergraph Partitioning. In Proc. of the Sym. on
Algorithm Engineering and Experiments ALENEX, pages 16–30, 2021.
doi:10.1137/1.9781611976472.2.

[65] Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. Highquality shared
memory graph partitioning. In EuroPar 2018: Parallel Processing 24th Intl. Conf.
on Parallel and Distributed Computing, pages 659–671, 2018. doi:10.1007/9783
319969831_47. URL https://doi.org/10.1007/978-3-319-96983-1_47.

[66] Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren, To
bias Heuer, Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz,
Daniel Seemaier, and Dorothea Wagner. More recent advances in (hyper)graph par
titioning. ACM Computing Surveys, 55:1–38, 2023. doi:doi.org/10.1145/3571808.

[67] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
Recent Advances in Graph Partitioning, pages 117–158. Springer Intl. Publishing,
Cham, 2016. doi:10.1007/9783319494876_4.

[68] Christian Schulz and Darren Strash. Graph partitioning: Formulations and ap
plications to big data. In Encyclopedia of Big Data Technologies. Springer,
2019. doi:10.1007/9783319639628_3122. URL https://doi.org/10.1007/
978-3-319-63962-8_312-2.

[69] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large
distributed graphs. In Proc. of the 18th ACM SIGKDD international con
ference on Knowledge discovery and data mining, pages 1222–1230, 2012.
doi:https://doi.org/10.1145/2339530.2339722.

https://doi.org/10.1109/BigData.2018.8621968
https://doi.org/10.1109/BigData.2018.8621968
https://doi.org/10.1109/BigData.2018.8621968
https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/doi.org/10.1145/3571808
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-63962-8_312-2
https://doi.org/10.1007/978-3-319-63962-8_312-2
https://doi.org/10.1007/978-3-319-63962-8_312-2
https://doi.org/https://doi.org/10.1145/2339530.2339722

Bibliography 137

[70] Isabelle Stanton. Streaming balanced graph partitioning algorithms for random
graphs. In Proc. of the twentyfifth annual ACMSIAM symposium on Discrete al
gorithms, pages 1287–1301. SIAM, 2014. doi:10.1137/1.9781611973402.95.

[71] Fan Chung, Shirin Handjani, and Doug Jungreis. Generalizations of polya’s urn prob
lem. Annals of combinatorics, 7(2):141–153, 2003. URL https://link.springer.
com/content/pdf/10.1007/s00026-003-0178-y.pdf.

[72] Wei Zhang, Yong Chen, and Dong Dai. Akin: A streaming graph partitioning al
gorithm for distributed graph storage systems. In 2018 18th IEEE/ACM Intl. Sym.
on Cluster, Cloud and Grid Computing (CCGRID), pages 183–192. IEEE, 2018.
doi:10.1109/CCGRID.2018.00033.

[73] Lieve Hamers et al. Similarity measures in scientometric research: The jaccard index
versus salton’s cosine formula. Information Processing andManagement, 25(3):315–
18, 1989.

[74] Joel Nishimura and Johan Ugander. Restreaming graph partitioning: simple versa
tile algorithms for advanced balancing. In Proc. of the 19th ACM SIGKDD interna
tional conference on Knowledge discovery and data mining, pages 1106–1114, 2013.
doi:10.1145/2487575.2487696.

[75] Md Anwarul Kaium Patwary, Saurabh Garg, and Byeong Kang. Windowbased
streaming graph partitioning algorithm. In Proc. of the Australasian Computer Sci
ence Week Multiconference, pages 1–10, 2019. doi:10.1145/3290688.3290711.

[76] Austin R. Benson, David F. Gleich, and Jure Leskovec. Tensor spectral clustering for
partitioning higherorder network structures. In Proc. of the 2015 SIAM Intl. Conf. on
Data Mining, pages 118–126. SIAM, 2015. doi:10.1137/1.9781611974010.14. URL
https://doi.org/10.1137/1.9781611974010.14.

[77] Christine Klymko, David Gleich, and Tamara G Kolda. Using triangles to improve
community detection in directed networks. arXiv preprint arXiv:1404.5874, 2014.
URL https://arxiv.org/abs/1404.5874.

[78] Natasa Przulj. Biological network comparison using graphlet degree distribu
tion. Bioinformatics, 23(2):e177–e183, 2007. URL https://doi.org/10.1093/
bioinformatics/btl301.

[79] Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher.
Scalable motifaware graph clustering. In WWW, pages 1451–1460, 2017.

https://doi.org/10.1137/1.9781611973402.95
https://link.springer.com/content/pdf/10.1007/s00026-003-0178-y.pdf
https://link.springer.com/content/pdf/10.1007/s00026-003-0178-y.pdf
https://doi.org/10.1109/CCGRID.2018.00033
https://doi.org/10.1145/2487575.2487696
https://doi.org/10.1145/3290688.3290711
https://doi.org/10.1137/1.9781611974010.14
https://doi.org/10.1137/1.9781611974010.14
https://arxiv.org/abs/1404.5874
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1093/bioinformatics/btl301

138 Bibliography

doi:10.1145/3038912.3052653. URL https://doi.org/10.1145/3038912.
3052653.

[80] Kyle Kloster and David F. Gleich. Heat kernel based community detection. In ACM
SIGKDD, pages 1386–1395, 2014. doi:10.1145/2623330.2623706. URL https:
//doi.org/10.1145/2623330.2623706.

[81] Michael W. Mahoney, Lorenzo Orecchia, and Nisheeth K. Vishnoi. A local spectral
method for graphs: With applications to improving graph partitions and exploring
data graphs locally. Journal of Machine Learning Research, 13(1):2339–2365, 2012.
URL http://jmlr.org/papers/v13/mahoney12a.html.

[82] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. Local search of com
munities in large graphs. In ACM SIGMOD Intl. Conf. on Management of data,
pages 991–1002, 2014. doi:10.1145/2588555.2612179. URL https://doi.org/
10.1145/2588555.2612179.

[83] Mauro Sozio and Aristides Gionis. The communitysearch problem and how
to plan a successful cocktail party. In ACM SIGKDD, pages 939–948,
2010. doi:10.1145/1835804.1835923. URL https://doi.org/10.1145/1835804.
1835923.

[84] Karl Rohe and Tai Qin. The blessing of transitivity in sparse and stochastic net
works. arXiv preprint arXiv:1307.2302, 2013. URL https://arxiv.org/abs/
1307.2302.

[85] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. Querying k
truss community in large and dynamic graphs. In ACM SIGMOD, pages 1311–1322,
2014. doi:10.1145/2588555.2610495. URL https://doi.org/10.1145/2588555.
2610495.

[86] Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis. National
security agency Tech. report, 16(3.1), 2008. URL https://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.505.7006&rep=rep1&type=pdf.

[87] Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong, Hasan
Davulcu, and Jingrui He. Highorder structure exploration onmassive graphs: A local
graph clustering perspective. ACM TKDD, 15(2):1–26, 2021. doi:10.1145/3425637.
URL https://doi.org/10.1145/3425637.

[88] Daniel A. Spielman and ShangHua Teng. A local clustering algorithm for massive
graphs and its application to nearly linear time graph partitioning. SIAM J. Comp.,

https://doi.org/10.1145/3038912.3052653
https://doi.org/10.1145/3038912.3052653
https://doi.org/10.1145/3038912.3052653
https://doi.org/10.1145/2623330.2623706
https://doi.org/10.1145/2623330.2623706
https://doi.org/10.1145/2623330.2623706
http://jmlr.org/papers/v13/mahoney12a.html
https://doi.org/10.1145/2588555.2612179
https://doi.org/10.1145/2588555.2612179
https://doi.org/10.1145/2588555.2612179
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1145/1835804.1835923
https://arxiv.org/abs/1307.2302
https://arxiv.org/abs/1307.2302
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1145/2588555.2610495
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.505.7006&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.505.7006&rep=rep1&type=pdf
https://doi.org/10.1145/3425637
https://doi.org/10.1145/3425637

Bibliography 139

42(1):1–26, 2013. doi:10.1137/080744888. URL https://doi.org/10.1137/
080744888.

[89] Ronghua Shang, Weitong Zhang, Jingwen Zhang, Jie Feng, and Licheng Jiao.
Local community detection based on higherorder structure and edge informa
tion. Physica A: Statistical Mechanics and its Applications, 587:126513, 2022.
doi:10.1016/j.physa.2021.126513. URL https://doi.org/10.1016/j.physa.
2021.126513.

[90] Chris Walshaw and Mark Cross. Multilevel mesh partitioning for heteroge
neous communication networks. Future Gener. Comput. Syst., 17(5):601–623,
2001. doi:10.1016/S0167739X(00)001072. URL https://doi.org/10.1016/
S0167-739X(00)00107-2.

[91] François Pellegrini and Jean Roman. SCOTCH: A software package for static map
ping by dual recursive bipartitioning of process and architecture graphs. In High
Performance Computing and Networking, volume 1067 of LNCS, pages 493–498.
Springer, 1996. doi:10.1007/3540611428_588.

[92] Christian Schulz and Jesper Larsson Träff. Better process mapping and sparse
quadratic assignment. In 16th Intl. Sym. on Experimental Algorithms, volume 75
of LIPIcs, pages 4:1–4:15, 2017. doi:10.4230/LIPIcs.SEA.2017.4.

[93] Charles H. Heider. A computationally simplified pairexchange algorithm for the
quadratic assignment problem. Technical report, DTIC Document, 1972.

[94] Heiner MüllerMerbach. Optimale reihenfolgen, volume 15 of Ökonometrie und Un
ternehmensforschung. SpringerVerlag, 1970.

[95] Roland Glantz, Hening Meyerhenke, and Alexander Noe. Algorithms for map
ping parallel processes onto grid and torus architectures. In 2015 23rd Euromicro
Intl. Conf. on Parallel, Distributed, and NetworkBased Processing, pages 236–243.
IEEE, 2015. doi:10.1109/PDP.2015.21.

[96] CharlesEdmond Bichot and Patrick Siarry, editors. Graph Partitioning. Wiley, 2013.
doi:10.1002/9781118601181.

[97] Mehmet Deveci, Kamer Kaya, Bora Uçar, and Ümit V. Çatalyürek. Fast and high
quality topologyaware task mapping. In 2015 IEEE Intl. Parallel and Distributed
Processing Sym., IPDPS 2015, Hyderabad, India, May 2529, 2015, pages 197–206.
IEEE Computer Society, 2015. doi:10.1109/IPDPS.2015.93. URL https://doi.
org/10.1109/IPDPS.2015.93.

https://doi.org/10.1137/080744888
https://doi.org/10.1137/080744888
https://doi.org/10.1137/080744888
https://doi.org/10.1016/j.physa.2021.126513
https://doi.org/10.1016/j.physa.2021.126513
https://doi.org/10.1016/j.physa.2021.126513
https://doi.org/10.1016/S0167-739X(00)00107-2
https://doi.org/10.1016/S0167-739X(00)00107-2
https://doi.org/10.1016/S0167-739X(00)00107-2
https://doi.org/10.1007/3-540-61142-8_588
https://doi.org/10.4230/LIPIcs.SEA.2017.4
https://doi.org/10.1109/PDP.2015.21
https://doi.org/10.1002/9781118601181
https://doi.org/10.1109/IPDPS.2015.93
https://doi.org/10.1109/IPDPS.2015.93
https://doi.org/10.1109/IPDPS.2015.93

140 Bibliography

[98] François Pellegrini. Scotch Home Page. http://www.labri.fr/pelegrin/
scotch.

[99] Chris Walshaw and Mark Cross. JOSTLE: Parallel Multilevel GraphPartitioning
Software – An Overview. InMesh Partitioning Techniques and Domain Decomposi
tion Techniques, pages 27–58. 2007. ISBN 9781874672296.

[100] Mehmet Deveci, Karen D. Devine, Kevin Pedretti, Mark A. Taylor, Sivasankaran
Rajamanickam, and Ümit V. Çatalyürek. Geometric mapping of tasks to processors
on parallel computers with mesh or torus networks. IEEE Transactions on Parallel
and Distributed Systems, 30(9):2018–2032, 2019. doi:10.1109/TPDS.2019.2900043.

[101] Mehmet Deveci, Sivasankaran Rajamanickam, Karen D. Devine, and
Ümit V. Çatalyürek. Multijagged: A scalable parallel spatial partitioning
algorithm. IEEE Trans. Parallel Distributed Syst., 27(3):803–817, 2016.
doi:10.1109/TPDS.2015.2412545. URL https://doi.org/10.1109/TPDS.
2015.2412545.

[102] Joshua T. Vogelstein, John M. Conroy, Vince Lyzinski, Louis J. Podrazik, Steven G.
Kratzer, Eric T. Harley, Donniell E. Fishkind, R. Jacob Vogelstein, and Carey E.
Priebe. Fast approximate quadratic programming for graph matching. PLOS one,
10(4):e0121002, 2015. doi:10.1371/journal.pone.0121002.

[103] Shinji Umeyama. An eigendecomposition approach to weighted graph matching
problems. IEEE transactions on pattern analysis and machine intelligence, 10(5):
695–703, 1988. doi:10.1109/34.6778.

[104] Rohit Singh, Jinbo Xu, and Bonnie Berger. Pairwise global alignment of pro
tein interaction networks by matching neighborhood topology. In Annual interna
tional conference on research in computational molecular biology, pages 16–31.
Springer, 2007. doi:10.1007/9783540716815_2. URL https://doi.org/10.
1007/978-3-540-71681-5_2.

[105] Mikhail Zaslavskiy, Francis Bach, and JeanPhilippe Vert. A path following algo
rithm for the graph matching problem. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(12):2227–2242, 2008. doi:10.1109/TPAMI.2008.245.

[106] Rainer E Burkard, Stefan E Karisch, and Franz Rendl. Qaplib–a quadratic
assignment problem library. Journal of Global optimization, 10(4):391–403,
1997. doi:10.1023/A:1008293323270. URL https://doi.org/10.1023/A:
1008293323270.

http://www.labri.fr/pelegrin/scotch
http://www.labri.fr/pelegrin/scotch
https://doi.org/10.1109/TPDS.2019.2900043
https://doi.org/10.1109/TPDS.2015.2412545
https://doi.org/10.1109/TPDS.2015.2412545
https://doi.org/10.1109/TPDS.2015.2412545
https://doi.org/10.1371/journal.pone.0121002
https://doi.org/10.1109/34.6778
https://doi.org/10.1007/978-3-540-71681-5_2
https://doi.org/10.1007/978-3-540-71681-5_2
https://doi.org/10.1007/978-3-540-71681-5_2
https://doi.org/10.1109/TPAMI.2008.245
https://doi.org/10.1023/A:1008293323270
https://doi.org/10.1023/A:1008293323270
https://doi.org/10.1023/A:1008293323270

Bibliography 141

[107] RolandGlantz, Maria Predari, andHenningMeyerhenke. Topologyinduced enhance
ment of mappings. In Proc. of the 47th Intl. Conf. on Parallel Processing, pages 1–10,
2018. doi:10.1145/3225058.3225117.

[108] Peter Sanders and Christian Schulz. KaHIP – Karlsruhe High Qualtity Partitioning
Homepage. http://algo2.iti.kit.edu/documents/kahip/index.html.

[109] Konrad Von Kirchbach, Christian Schulz, and Jesper Larsson Träff. Better process
mapping and sparse quadratic assignment. Journal of Experimental Algorithmics
(JEA), 25:1–19, 2020. doi:10.1145/3409667.

[110] Maria Predari, Charilaos Tzovas, Christian Schulz, and Henning Meyerhenke. An
mpibased algorithm for mapping complex networks onto hierarchical architectures.
In EuroPar 2021: Parallel Processing 27th Intl. Conf. on Parallel and Distributed
Computing, Lisbon, Portugal, September 13, 2021, Proc., volume 12820 of LNCS,
pages 167–182. Springer, 2021. doi:10.1007/9783030856656_11. URL https:
//doi.org/10.1007/978-3-030-85665-6_11.

[111] Henning Meyerhenke, Peter Sanders, and Christian Schulz. Parallel graph partition
ing for complex networks. IEEE Trans. Parallel Distrib. Syst., 28(9):2625–2638,
2017. doi:10.1109/TPDS.2017.2671868. URL https://doi.org/10.1109/TPDS.
2017.2671868.

[112] Konrad von Kirchbach, Markus Lehr, Sascha Hunold, Christian Schulz, and Jes
per Larsson Träff. Efficient processtonode mapping algorithms for stencil com
putations. In IEEE Intl. Conf. on Cluster Computing (CLUSTER), pages 1–11. IEEE,
2020. doi:10.1109/CLUSTER49012.2020.00011.

[113] Christian Schulz and Jesper Larsson Träff. VieM – Vienna Process Mapping and
Sparse Quadratic Assignment. http://viem.taa.univie.ac.at/.

[114] Bo Yang, William K. Cheung, and Jiming Liu. Community mining from signed
social networks. IEEE Trans. Knowl. Data Eng., 19(10):1333–1348, 2007.
doi:10.1109/TKDE.2007.1061. URL https://doi.org/10.1109/TKDE.2007.
1061.

[115] Shiwei Che, Wu Yang, and Wei Wang. A memetic algorithm for commu
nity detection in signed networks. IEEE Access, 8:123585–123602, 2020.
doi:10.1109/ACCESS.2020.3006108. URL https://doi.org/10.1109/ACCESS.
2020.3006108.

https://doi.org/10.1145/3225058.3225117
http://algo2.iti.kit.edu/documents/kahip/index.html
https://doi.org/10.1145/3409667
https://doi.org/10.1007/978-3-030-85665-6_11
https://doi.org/10.1007/978-3-030-85665-6_11
https://doi.org/10.1007/978-3-030-85665-6_11
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1109/CLUSTER49012.2020.00011
http://viem.taa.univie.ac.at/
https://doi.org/10.1109/TKDE.2007.1061
https://doi.org/10.1109/TKDE.2007.1061
https://doi.org/10.1109/TKDE.2007.1061
https://doi.org/10.1109/ACCESS.2020.3006108
https://doi.org/10.1109/ACCESS.2020.3006108
https://doi.org/10.1109/ACCESS.2020.3006108

142 Bibliography

[116] Vincent A Traag and Jeroen Bruggeman. Community detection in networks
with positive and negative links. Physical Review E, 80(3):036115, 2009.
doi:10.1103/PhysRevE.80.036115. URL https://doi.org/10.1103/PhysRevE.
80.036115.

[117] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Mach.
Learn., 56(13):89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95. URL
https://doi.org/10.1023/B:MACH.0000033116.57574.95.

[118] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correla
tion clustering in general weighted graphs. Theor. Comput. Sci., 361(23):172–187,
2006. doi:10.1016/j.tcs.2006.05.008. URL https://doi.org/10.1016/j.tcs.
2006.05.008.

[119] Martin Grötschel and Yoshiko Wakabayashi. A cutting plane algorithm for a cluster
ing problem. Math. Program., 45(13):59–96, 1989. doi:10.1007/BF01589097. URL
https://doi.org/10.1007/BF01589097.

[120] Thang N. Dinh and My T. Thai. Toward optimal community detection:
From trees to general weighted networks. Internet Math., 11(3):181–200,
2015. doi:10.1080/15427951.2014.950875. URL https://doi.org/10.1080/
15427951.2014.950875.

[121] Atsushi Miyauchi and Noriyoshi Sukegawa. Redundant constraints in the stan
dard formulation for the clique partitioning problem. Optim. Lett., 9(1):199–
207, 2015. doi:10.1007/s1159001407546. URL https://doi.org/10.1007/
s11590-014-0754-6.

[122] Atsushi Miyauchi, Tomohiro Sonobe, and Noriyoshi Sukegawa. Exact clustering
via integer programming and maximum satisfiability. In Proc. of the ThirtySecond
AAAI Conf. on Artificial Intelligence, (AAAI18), the 30th innovative Applications of
Artificial Intelligence (IAAI18), and the 8th AAAI Sym. on Educational Advances in
Artificial Intelligence (EAAI18), New Orleans, Louisiana, USA, February 27, 2018,
pages 1387–1394. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/16176.

[123] Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner, Ernesto
William De Luca, and Sahin Albayrak. Spectral analysis of signed graphs for clus
tering, prediction and visualization. In Proc. of the SIAM Intl. Conf. on Data Mining,
SDM 2010, April 29 May 1, 2010, Columbus, Ohio, USA, pages 559–570. SIAM,

https://doi.org/10.1103/PhysRevE.80.036115
https://doi.org/10.1103/PhysRevE.80.036115
https://doi.org/10.1103/PhysRevE.80.036115
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1016/j.tcs.2006.05.008
https://doi.org/10.1016/j.tcs.2006.05.008
https://doi.org/10.1016/j.tcs.2006.05.008
https://doi.org/10.1007/BF01589097
https://doi.org/10.1007/BF01589097
https://doi.org/10.1080/15427951.2014.950875
https://doi.org/10.1080/15427951.2014.950875
https://doi.org/10.1080/15427951.2014.950875
https://doi.org/10.1007/s11590-014-0754-6
https://doi.org/10.1007/s11590-014-0754-6
https://doi.org/10.1007/s11590-014-0754-6
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16176
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16176

Bibliography 143

2010. doi:10.1137/1.9781611972801.49. URL https://doi.org/10.1137/1.
9781611972801.49.

[124] Jean Gallier. Spectral theory of unsigned and signed graphs. applications to graph
clustering: a survey. CoRR, abs/1601.04692, 2016. URL http://arxiv.org/abs/
1601.04692.

[125] Andrew Knyazev. On spectral partitioning of signed graphs. In Proc. of the Eighth
SIAMWorkshop on Combinatorial Scientific Computing, CSC 2018, Bergen, Norway,
June 68, 2018, pages 11–22. SIAM, 2018. doi:10.1137/1.9781611975215.2. URL
https://doi.org/10.1137/1.9781611975215.2.

[126] Pedro Mercado, Francesco Tudisco, and Matthias Hein. Spectral clustering of
signed graphs via matrix power means. In Proc. of the 36th Intl. Conf. on Machine
Learning, ICML 2019, 915 June 2019, Long Beach, California, USA, volume 97
of Proc. of Machine Learning Research, pages 4526–4536. PMLR, 2019. URL
http://proceedings.mlr.press/v97/mercado19a.html.

[127] Dongxiao He, Jie Liu, Dayou Liu, Di Jin, and Zhengxue Jia. Ant colony optimization
for community detection in largescale complex networks. In Seventh Intl. Conf. on
Natural Computation, ICNC 2011, Shanghai, China, 2628 July, 2011, pages 1151–
1155. IEEE, 2011. doi:10.1109/ICNC.2011.6022234. URL https://doi.org/10.
1109/ICNC.2011.6022234.

[128] Xiaoyu Zhu, Yinghong Ma, and Zhiyuan Liu. A novel evolutionary algorithm on
communities detection in signed networks. Physica A: Statistical Mechanics and its
Applications, 503:938–946, 2018. doi:10.1016/j.physa.2018.08.112. URL https:
//doi.org/10.1016/j.physa.2018.08.112.

[129] Michael J. Brusco and Patrick Doreian. Partitioning signed networks using relocation
heuristics, tabu search, and variable neighborhood search. Soc. Networks, 56:70–
80, 2019. doi:10.1016/j.socnet.2018.08.007. URL https://doi.org/10.1016/j.
socnet.2018.08.007.

[130] Mayasa M Abdulrahman, Amenah Dahim Abood, and Baraa A Attea. An enhanced
multiobjective evolutionary algorithm with decomposition for signed community
detection problem. In 2020 2nd Annual Intl. Conf. on Information and Sciences
(AiCIS), pages 45–50. IEEE, 2020. doi:10.1109/AiCIS51645.2020.00017. URL
https://doi.org/10.1109/AiCIS51645.2020.00017.

https://doi.org/10.1137/1.9781611972801.49
https://doi.org/10.1137/1.9781611972801.49
https://doi.org/10.1137/1.9781611972801.49
http://arxiv.org/abs/1601.04692
http://arxiv.org/abs/1601.04692
https://doi.org/10.1137/1.9781611975215.2
https://doi.org/10.1137/1.9781611975215.2
http://proceedings.mlr.press/v97/mercado19a.html
https://doi.org/10.1109/ICNC.2011.6022234
https://doi.org/10.1109/ICNC.2011.6022234
https://doi.org/10.1109/ICNC.2011.6022234
https://doi.org/10.1016/j.physa.2018.08.112
https://doi.org/10.1016/j.physa.2018.08.112
https://doi.org/10.1016/j.physa.2018.08.112
https://doi.org/10.1016/j.socnet.2018.08.007
https://doi.org/10.1016/j.socnet.2018.08.007
https://doi.org/10.1016/j.socnet.2018.08.007
https://doi.org/10.1109/AiCIS51645.2020.00017
https://doi.org/10.1109/AiCIS51645.2020.00017

144 Bibliography

[131] Yiran Chen, Qinma Kang, Wenqiang Duan, Yunfan Shan, Ran Xiao, and
Yunfan Kang. An iterated local search algorithm for community detection
in signed networks. Intl. Journal of Modern Physics C, page 2250105,
2022. doi:10.1142/S0129183122501054. URL https://doi.org/10.1142/
S0129183122501054.

[132] Jiliang Tang, Yi Chang, Charu C. Aggarwal, and Huan Liu. A survey of signed
network mining in social media. ACM Comput. Surv., 49(3):42:1–42:37, 2016.
doi:10.1145/2956185. URL https://doi.org/10.1145/2956185.

[133] Maria Tomasso, Lucas J. Rusnak, and Jelena Tesic. Advances in scaling commu
nity discovery methods for signed graph networks. J. Complex Networks, 10(3),
2022. doi:10.1093/comnet/cnac013. URL https://doi.org/10.1093/comnet/
cnac013.

[134] Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guillaume Lavoué, Thomas
Brox, and Bjoern Andres. Efficient decomposition of image and mesh graphs by
lifted multicuts. In 2015 IEEE Intl. Conf. on Computer Vision, ICCV 2015, Santi
ago, Chile, December 713, 2015, pages 1751–1759. IEEE Computer Society, 2015.
doi:10.1109/ICCV.2015.204. URL https://doi.org/10.1109/ICCV.2015.204.

[135] Alberto Bailoni, Constantin Pape, Nathan Hütsch, Steffen Wolf, Thorsten Beier,
Anna Kreshuk, and Fred A. Hamprecht. GASP, a generalized framework for ag
glomerative clustering of signed graphs and its application to instance segmen
tation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 1824, 2022, pages 11635–11645. IEEE,
2022. doi:10.1109/CVPR52688.2022.01135. URL https://doi.org/10.1109/
CVPR52688.2022.01135.

[136] Jialin Hua, Jian Yu, and MiinShen Yang. Fast clustering for signed
graphs based on random walk gap. Soc. Networks, 60:113–128, 2020.
doi:10.1016/j.socnet.2018.08.008. URL https://doi.org/10.1016/j.socnet.
2018.08.008.

[137] Sergio Gómez, Pablo Jensen, and Alex Arenas. Analysis of community struc
ture in networks of correlated data. Physical Review E, 80(1):016114, 2009.
doi:10.1103/PhysRevE.80.016114. URL https://doi.org/10.1103/PhysRevE.
80.016114.

[138] Miyuki Koshimura, Emi Watanabe, Yuko Sakurai, and Makoto Yokoo. Concise inte
ger linear programming formulation for clique partitioning problems. Constraints

https://doi.org/10.1142/S0129183122501054
https://doi.org/10.1142/S0129183122501054
https://doi.org/10.1142/S0129183122501054
https://doi.org/10.1145/2956185
https://doi.org/10.1145/2956185
https://doi.org/10.1093/comnet/cnac013
https://doi.org/10.1093/comnet/cnac013
https://doi.org/10.1093/comnet/cnac013
https://doi.org/10.1109/ICCV.2015.204
https://doi.org/10.1109/ICCV.2015.204
https://doi.org/10.1109/CVPR52688.2022.01135
https://doi.org/10.1109/CVPR52688.2022.01135
https://doi.org/10.1109/CVPR52688.2022.01135
https://doi.org/10.1016/j.socnet.2018.08.008
https://doi.org/10.1016/j.socnet.2018.08.008
https://doi.org/10.1016/j.socnet.2018.08.008
https://doi.org/10.1103/PhysRevE.80.016114
https://doi.org/10.1103/PhysRevE.80.016114
https://doi.org/10.1103/PhysRevE.80.016114

Bibliography 145

An Int. J., 27(1):99–115, 2022. doi:10.1007/s1060102209326z. URL https:
//doi.org/10.1007/s10601-022-09326-z.

[139] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392,
1998. doi:10.1137/S1064827595287997. URL https://doi.org/10.1137/
S1064827595287997.

[140] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time al
gorithm to detect community structures in largescale networks. Phys. Rev. E, 76:
036106, Sep 2007. doi:10.1103/PhysRevE.76.036106. URL https://link.aps.
org/doi/10.1103/PhysRevE.76.036106.

[141] Sebastian Schlag, Tobias Heuer, Lars Gottesbüren, Yaroslav Akhremtsev, Christian
Schulz, and Peter Sanders. Highquality hypergraph partitioning. ACM Journal of
Experimental Algorithms (JEA), 2022. doi:10.1145/3529090. URL https://doi.
org/10.1145/3529090.

[142] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Local motif clustering
via (hyper)graph partitioning. In 2023 Proc. of the Sym. on Algorithm Engineer
ing and Experiments (ALENEX), pages 96–109. doi:10.1137/1.9781611977561.ch9.
URL https://epubs.siam.org/doi/abs/10.1137/1.9781611977561.ch9.

[143] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Local motif clustering
via (hyper)graph partitioning (extended abstract). In Proc. of the Fifteenth Intl. Sym.
on Combinatorial Search, SOCS 2022, Vienna, Austria, July 2123, 2022, pages 261–
263. AAAI Press, 2022. doi:10.1609/socs.v15i1.21779. URL https://ojs.aaai.
org/index.php/SOCS/article/view/21779.

[144] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Faster lo
cal motif clustering via maximum flows. CoRR, abs/2301.07145, 2023.
doi:10.48550/arXiv.2301.07145. URL https://doi.org/10.48550/arXiv.2301.
07145.

[145] Ronald C Read and Derek G Corneil. The graph isomorphism disease. Journal
of graph theory, 1(4):339–363, 1977. doi:10.1002/jgt.3190010410. URL https:
//doi.org/10.1002/jgt.3190010410.

[146] Mark Ortmann and Ulrik Brandes. Triangle listing algorithms: Back from the diver
sion. In ALENEX, pages 1–8. SIAM, 2014. doi:10.1137/1.9781611973198.1. URL
https://doi.org/10.1137/1.9781611973198.1.

https://doi.org/10.1007/s10601-022-09326-z
https://doi.org/10.1007/s10601-022-09326-z
https://doi.org/10.1007/s10601-022-09326-z
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1103/PhysRevE.76.036106
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://doi.org/10.1145/3529090
https://doi.org/10.1145/3529090
https://doi.org/10.1145/3529090
https://doi.org/10.1137/1.9781611977561.ch9
https://epubs.siam.org/doi/abs/10.1137/1.9781611977561.ch9
https://doi.org/10.1609/socs.v15i1.21779
https://ojs.aaai.org/index.php/SOCS/article/view/21779
https://ojs.aaai.org/index.php/SOCS/article/view/21779
https://doi.org/10.48550/arXiv.2301.07145
https://doi.org/10.48550/arXiv.2301.07145
https://doi.org/10.48550/arXiv.2301.07145
https://doi.org/10.1002/jgt.3190010410
https://doi.org/10.1002/jgt.3190010410
https://doi.org/10.1002/jgt.3190010410
https://doi.org/10.1137/1.9781611973198.1
https://doi.org/10.1137/1.9781611973198.1

146 Bibliography

[147] Petter Holme and Beom Jun Kim. Growing scalefree networks with tunable clus
tering. Physical review E, 65(2):026107, 2002. doi:10.1103/PhysRevE.65.026107.
URL https://doi.org/10.1103/PhysRevE.65.026107.

[148] Vladimir Batagelj and Matjaž Zaveršnik. Short cycle connectivity. Discrete Math
ematics, 307(35):310–318, 2007. doi:10.1016/j.disc.2005.09.051. URL https:
//doi.org/10.1016/j.disc.2005.09.051.

[149] Arnau PratPérez, David DominguezSal, Josep M Brunat, and JosepLluis
LarribaPey. Shaping communities out of triangles. In Proc. of the 21st
ACM Intl. Conf. on Information and knowledge management, pages 1677–1681,
2012. doi:10.1145/2396761.2398496. URL https://doi.org/10.1145/2396761.
2398496.

[150] Raphael Kimmig, Henning Meyerhenke, and Darren Strash. Shared mem
ory parallel subgraph enumeration. In IPDPSW, pages 519–529. IEEE, 2017.
doi:10.1109/IPDPSW.2017.133. URL https://doi.org/10.1109/IPDPSW.2017.
133.

[151] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms.
SIAM J. Comp., 14(1):210–223, 1985. doi:10.1137/0214017. URL https://doi.
org/10.1137/0214017.

[152] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Scal
able sharedmemory hypergraph partitioning. In 2021 Proc. of the Workshop
on Algorithm Engineering and Experiments (ALENEX), pages 16–30. SIAM,
2021. doi:10.1137/1.9781611976472.2. URL https://doi.org/10.1137/1.
9781611976472.2.

[153] Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel
Seemaier. Deep multilevel graph partitioning. In 29th Annual European Symp.
on Algorithms, ESA 2021, Sep. 68, 2021, Lisbon, Portugal, volume 204 of
LIPIcs, pages 48:1–48:17. Schloss Dagstuhl LeibnizZentrum für Informatik,
2021. doi:10.4230/LIPIcs.ESA.2021.48. URL https://doi.org/10.4230/
LIPIcs.ESA.2021.48.

[154] Marcelo Fonseca Faraj, Alexander van der Grinten, Henning Meyerhenke, Jes
per Larsson Träff, and Christian Schulz. Highquality hierarchical process map
ping. In 18th Intl. Sym. on Experimental Algorithms, SEA, volume 160 of
LIPIcs, pages 4:1–4:15. Schloss Dagstuhl LeibnizZentrum für Informatik, 2020.

https://doi.org/10.1103/PhysRevE.65.026107
https://doi.org/10.1103/PhysRevE.65.026107
https://doi.org/10.1016/j.disc.2005.09.051
https://doi.org/10.1016/j.disc.2005.09.051
https://doi.org/10.1016/j.disc.2005.09.051
https://doi.org/10.1145/2396761.2398496
https://doi.org/10.1145/2396761.2398496
https://doi.org/10.1145/2396761.2398496
https://doi.org/10.1109/IPDPSW.2017.133
https://doi.org/10.1109/IPDPSW.2017.133
https://doi.org/10.1109/IPDPSW.2017.133
https://doi.org/10.1137/0214017
https://doi.org/10.1137/0214017
https://doi.org/10.1137/0214017
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.4230/LIPIcs.ESA.2021.48

Bibliography 147

doi:10.4230/LIPIcs.SEA.2020.4. URL https://doi.org/10.4230/LIPIcs.SEA.
2020.4.

[155] Felix Hausberger, Marcelo Fonseca Faraj, and Christian Schulz. A distributed
multilevel memetic algorithm for signed graph clustering [short paper]. In
Genetic and Evolutionary Computation Conf. Companion, (GECCO), to appear.
doi:10.1145/3583133.3590537.

[156] Felix Hausberger, Marcelo Fonseca Faraj, and Christian Schulz. A distributed mul
tilevel memetic algorithm for signed graph clustering. CoRR, abs/2208.13618, 2022.
doi:10.48550/arXiv.2208.13618. URL https://doi.org/10.48550/arXiv.2208.
13618.

[157] CharlesM. Fiduccia and RobertM.Mattheyses. A lineartime heuristic for improving
network partitions. In Proceedings of the 19th Design Automation Conference, DAC,
pages 175–181. ACM/IEEE, 1982. doi:10.1145/800263.809204. URL https://
doi.org/10.1145/800263.809204.

[158] Chris Walshaw and Mark Cross. Mesh partitioning: A multilevel bal
ancing and refinement algorithm. SIAM J. Sci. Comput., 22(1):63–80,
2000. doi:10.1137/S1064827598337373. URL https://doi.org/10.1137/
S1064827598337373.

[159] Chris Walshaw. Multilevel refinement for combinatorial optimisation problems. Ann.
Oper. Res., 131(14):325–372, 2004. doi:10.1023/B:ANOR.0000039525.80601.15.
URL https://doi.org/10.1023/B:ANOR.0000039525.80601.15.

[160] Peter Sanders and Christian Schulz. Distributed evolutionary graph partitioning. In
Proc. of the 14th Meeting on Algorithm Engineering & Experiments, ALENEX 2012,
The Westin Miyako, Kyoto, Japan, January 16, 2012, pages 16–29. SIAM / Omni
press, 2012. doi:10.1137/1.9781611972924.2. URL https://doi.org/10.1137/
1.9781611972924.2.

[161] Brad L. Miller and David E. Goldberg. Genetic algorithms, tournament selec
tion, and the effects of noise. Complex Syst., 9(3), 1995. URL http://www.
complex-systems.com/abstracts/v09_i03_a02.html.

[162] Benjamin Doerr and Mahmoud Fouz. Asymptotically optimal randomized rumor
spreading. In Automata, Languages and Programming 38th Intl. Colloquium,
ICALP, volume 6756 of LNCS, pages 502–513. Springer, 2011. doi:10.1007/978
3642220128_40. URL https://doi.org/10.1007/978-3-642-22012-8_40.

https://doi.org/10.4230/LIPIcs.SEA.2020.4
https://doi.org/10.4230/LIPIcs.SEA.2020.4
https://doi.org/10.4230/LIPIcs.SEA.2020.4
https://doi.org/10.1145/3583133.3590537
https://doi.org/10.48550/arXiv.2208.13618
https://doi.org/10.48550/arXiv.2208.13618
https://doi.org/10.48550/arXiv.2208.13618
https://doi.org/10.1145/800263.809204
https://doi.org/10.1145/800263.809204
https://doi.org/10.1145/800263.809204
https://doi.org/10.1137/S1064827598337373
https://doi.org/10.1137/S1064827598337373
https://doi.org/10.1137/S1064827598337373
https://doi.org/10.1023/B:ANOR.0000039525.80601.15
https://doi.org/10.1023/B:ANOR.0000039525.80601.15
https://doi.org/10.1137/1.9781611972924.2
https://doi.org/10.1137/1.9781611972924.2
https://doi.org/10.1137/1.9781611972924.2
http://www.complex-systems.com/abstracts/v09_i03_a02.html
http://www.complex-systems.com/abstracts/v09_i03_a02.html
https://doi.org/10.1007/978-3-642-22012-8_40
https://doi.org/10.1007/978-3-642-22012-8_40
https://doi.org/10.1007/978-3-642-22012-8_40

Curriculum Vitae

Education
20112017 Bachelor, Computer Engineering

Federal Center of Technological Education of Minas Gerais, Brazil
Thesis: A Local Search Genetic Algorithm Approach to Optimize
Roadside Unit Placement in Vehicular Networks based on Gamma
Depployment Metric

20142015 Nondegree International Visiting Program
Colorado State University, United States

20172019 Master, Computer Science
Federal University of Minas Gerais, Brazil
Thesis: Gamma Deployment Problem in Grids: Complexity and a
new Integer Linear Programming Formulation

149

150 Curriculum Vitae

Work Experience

20132014 Intern, Technological Initiation
Federal Center of Technological Education of Minas Gerais, Brazil

2017 Intern, Software Engineer
LYNX Process, Brazil

20192020 Academic Employee
University of Vienna, Austria

2020 Academic Employee
Heidelberg University, Germany

Honors
2010 Silver Medal in Mathematics

Brazilian Olympics of Mathematics of Public High School, Brazil

2014 Scholarship at Colorado State University
CAPES Foundation, Brazil

2017 Honorable Mention for Best Final Bachelor GPA
Federal Center of Technological Education of Minas Gerais, Brazil

List of Publications

Journal Papers

[1] Marcelo Fonseca Faraj, Sebastián Urrutia, and João F. M. Sarubbi. Gamma Deploy
ment Problem in Grids: Hardness and New Integer Linear Programming Formulation.
International Transactions in Operational Research, Volume 27, Article No 6, pages
2740–2759, 2020.

[2] Marcelo Fonseca Faraj and Christian Schulz. Buffered Streaming Graph Partitioning.
ACM Journal of Experimental Algorithmics, Volume 27, pages 1.10:1–1.10:26, 2022.

[3] Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren, To
bias Heuer, Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz,
Daniel Seemaier, and Dorothea Wagner More Recent Advances in (Hyper)Graph
Partitioning. ACM Computing Surveys, Volume 55, Issue 12, Article No 253, pages
1–38, 2022.

Conference Full Papers

[1] Marcelo Fonseca Faraj, João F. M. Sarubbi, Cristiano M. Silva, Marcelo F. Porto,
and Nilson T. R. Nunes Estudo de Caso: o Problema do Transporte Escolar Rural
em Minas Gerais. In Simpósio Brasileiro de Pesquisa Operacional (SBPO), pages
1889–1900, 2014.

[2] Marcelo Fonseca Faraj, João F. M. Sarubbi, Cristiano M. Silva, Marcelo F. Porto, and
Nilson T. R. Nunes A Real Geographical Application for the School Bus Routing
Problem. In IEEE Conference on Intelligent Transportation Systems (ITSC), pages
2762–2767, 2014.

[3] Marcelo Fonseca Faraj, Sebastián Urrutia, and João F. M. Sarubbi. Problema da
Deposição Gamma: Prova de NPCompletude e um Novo Modelo de Programação
Linear Inteira. In Simpósio Brasileiro de Pesquisa Operacional (SBPO), 2018.

151

152 List of Publications

[4] Marcelo Fonseca Faraj, João F. M. Sarubbi, Cristiano M. Silva, and Flávio V. C.
Martins. A Memetic Algorithm Approach to Deploy RSU s Based on the Gamma
Deployment Metric. In IEEE Congress on Evolutionary Computation (CEC), pages
1–8, 2018.

[5] Marcelo Fonseca Faraj, Alexander van der Grinten, Henning Meyerhenke, Jesper L.
Träff, and Christian Schulz. HighQuality Hierarchical Process Mapping. In Pro
ceedings of the 18th Symposium on Experimental Algorithms (SEA), volume 160 of
LIPIcs, pages 4:1–4:15, 2020.

[6] Marcelo Fonseca Faraj and Christian Schulz. Recursive MultiSection on the Fly:
SharedMemory Streaming Algorithms for Hierarchical Graph Partitioning and Pro
cess Mapping. In IEEE International Conference on Cluster Computing (CLUSTER),
volume 9411, pages 473–483, 2022.

[7] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Local Motif Cluster
ing via (Hyper)Graph Partitioning. In Proceedings of the Symposium on Algorithm
Engineering and Experiments (ALENEX), pages 96–109. SIAM, 2023.

[8] Kamal Eyubov, Marcelo Fonseca Faraj, and Christian Schulz. FREIGHT: Fast
Streaming Hypergraph Partitioning. In Proceedings of the 21st Symposium on Ex
perimental Algorithms (SEA), to appear, 2023.

Conference Short Papers and Poster Papers

[1] Marcelo Fonseca Faraj, João F. M. Sarubbi, Cristiano M. Silva, and Flávio V. C.
Martins. A Hybrid Genetic Algorithm for Deploying RSUs in VANETs based on
InterContact Time (Extended Abstract). In Genetic and Evolutionary Computation
Conference Companion (GECCO ’17 Companion), pages 193–194, 2017.

[2] Marcelo Fonseca Faraj, Sebastián Urrutia, and João F. M. Sarubbi. O Problema da
Deposição Gamma é NPCompleto (Extended Abstract). In Encontro de Teoria da
Computação (ETC), 2018.

[3] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Local Motif Cluster
ing via (Hyper)Graph Partitioning (Extended Abstract). In Proceedings of the 15th
International Symposium on Combinatorial Search (SoCS), pages 261–263, AAAI
Press, 2022.

[4] Felix Hausberger, Marcelo Fonseca Faraj, and Christian Schulz. A Distributed Mul
tilevel Memetic Algorithm for Signed Graph Clustering (Short Paper). In Genetic

List of Publications 153

and Evolutionary Computation Conference Companion (GECCO ’23 Companion),
to appear, 2023.

Technical Reports

[1] Marcelo Fonseca Faraj, Alexander van der Grinten, Henning Meyerhenke, Jesper L.
Träff, and Christian Schulz. HighQuality Hierarchical Process Mapping. Technical
Report, University of Vienna, Humboldt Universtät zu Berlin, and Technical Univer
sity of Vienna, 2020. (arXiv:2001.07134v2)

[2] Marcelo Fonseca Faraj and Christian Schulz. Buffered Streaming Graph Partitioning.
Technical Report, Heidelberg University, 2021. (arXiv:2102.09384)

[3] Marcelo Fonseca Faraj and Christian Schulz. Recursive MultiSection on the Fly:
SharedMemory Streaming Algorithms for Hierarchical Graph Partitioning and Pro
cess Mapping. Technical Report, Heidelberg University, 2021. (arXiv:2202.00394)

[4] Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren, To
bias Heuer, Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz,
Daniel Seemaier, and Dorothea Wagner More Recent Advances in (Hyper)Graph
Partitioning. Technical Report, 2022. (arXiv:2205.13202)

[5] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Local Motif Cluster
ing via (Hyper)Graph Partitioning. Technical Report, Heidelberg University, 2022.
(arXiv:2205.06176)

[6] Felix Hausberger, Marcelo Fonseca Faraj, and Christian Schulz. A Distributed Multi
level Memetic Algorithm for Signed Graph Clustering. Technical Report, Heidelberg
University, 2022. (arXiv:2208.13618)

[7] Kamal Eyubov, Marcelo Fonseca Faraj, and Christian Schulz. FREIGHT: Fast
Streaming Hypergraph Partitioning. Technical Report, Heidelberg University, 2023.
(arXiv:2302.06259)

[8] Adil Chhabra, Marcelo Fonseca Faraj, and Christian Schulz. Faster Local Motif
Clustering via Maximum Flows. Technical Report, Heidelberg University, 2023.
(arXiv:2301.07145)

	Abstract
	Zusammenfassung
	Acknowledgements
	Related Publications
	Contents
	Introduction
	Motivation
	Main Contributions
	Streaming Algorithms
	Local Algorithms
	Multilevel Algorithms

	Outline

	Preliminaries
	Graphs and Hypergraphs
	Partitions and Clusterings
	Process Mapping
	Flows
	Multilevel Scheme
	Evolutionary Algorithms
	Computational Models
	Instances
	Graphs
	Hypergraphs
	Signed Graphs

	Machines
	Methodology

	Related Work
	(Hyper)Graph Partitioning
	Streaming Graph Partitioning
	Restreaming Graph Partitioning
	Buffered Streaming Graph Partitioning
	Streaming Hypergraph Partitioning

	Local Motif Clustering
	Process Mapping
	Signed Graph Clustering
	Contraction-Based
	Evolutionary
	Integer Linear Programming

	Streaming Algorithms
	Buffered Streaming Graph Partitioning
	HeiStream
	Experimental Evaluation

	Streaming Process Mapping
	Online Recursive Multi-Section
	Experimental Evaluation

	Streaming Hypergraph Partitioning
	FREIGHT
	Experimental Evaluation

	Experimental Comparison
	Conclusion

	Local Algorithms
	Local Motif Clustering
	LMCHGP
	SOCIAL
	Experimental Evaluation

	Conclusion

	Multilevel Algorithms
	Multilevel Process Mapping
	Integrated Mapping
	Experimental Evaluation

	Multilevel Signed Graph Clustering
	Multilevel Algorithm
	Distributed Evolutionary Algorithm
	Experimental Evaluation

	Conclusion

	Discussion
	Conclusion
	Future Work

	Bibliography
	Curriculum Vitae
	List of Publications

