623 research outputs found

    Information technology for active ageing: A review of theory and practice

    Get PDF
    Active Ageing aims to foster a physically, mentally and socially active lifestyle as a person ages. It is a complex, multi-faceted problem that involves a variety of different actors, such as policy makers, doctors, care givers, family members, friends and, of course, older adults. This review aims to understand the role of a new actor, which increasingly plays the role of enabler and facilitator, i.e., that of the technology provider. The review specifically focuses on Information Technology (IT), with a particular emphasis on software applications, and on how IT can prevent decline, compensate for lost capabilities, aid care, and enhance existing capabilities. The analysis confirms the crucial role of IT in Active Ageing, shows that Active Ageing requires a multidisciplinary approach, and identifies the need for better integration of hardware, software, the environment and the involved actors

    Using non-invasive wearables for detecting emotions with intelligent agents

    Get PDF
    This paper proposes the use of intelligent wristbands for the automatic detection of emotional states in order to develop an application which allows to extract, analyze, represent and manage the social emotion of a group of entities. Nowadays, the detection of the joined emotion of an heterogeneous group of people is still an open issue. Most of the existing approaches are centered in the emotion detection and management of a single entity. Concretely, the application tries to detect how music can influence in a positive or negative way over individuals’ emotional states. The main goal of the proposed system is to play music that encourages the increase of happiness of the overall patrons.This work is partially supported by the MINECO/FEDER TIN2015-65515-C4-1-R and the FPI grant AP2013-01276 awarded to Jaime-Andres Rincon. This work is supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the projects UID/CEC/00319/2013 and Post-Doc scholarship SFRH/BPD/102696/2014 (A. Cost

    Personalized Health Assessment and Recommendations Through Iot and Mlp Classifier Algorithms

    Get PDF
    Procuring a healthy lifestyle involves a holistic approach of personalized dietary and exercise recommendations dependent on individual health statuses. In this study, we present a new paradigm for examining individual health statuses for easy self-assessment without specialist help. The heart is a full kit of assessing instruments that can align critical climacterics of body temperature, pulse rate, blood oxygen level, and body max index that could be run with minor medic assistance. The research abides a dataset obtained through a broad scope of volunteers aged 17 to 24 including both males and females. Vital signs such as SpO2, BPM, temperature, and BMI are mediated utilizing incorporated Internet of Things units. The dataset is then cautiously preprocessed and balanced using machine learning algorithms before examination. The basis of this model is a two-tier state classifier system that designs autonomous dietary and exercise responsibilities varying from examined health clots. It is exploited for adulthood healthcare systems across multiple machines learning techniques, including Decision Tree, KNN, and some classifiers with the MLP classifier being the exemplary worthy model. The MLP classifier demonstrates unbelievable outcomes through approximately 86% accuracy when the trainings and testing datasets are 70:30 ratios apart

    Using Wireless Sensor Networks for Aged Care: The Patient's Perspective

    Full text link
    This paper presents the findings of a qualitative study on the perceptions and thoughts of elderly people on the use of current sensor network technology for assisted aged care. Focus groups of elderly people were presented with examples of current sensor nodes and example scenarios of their use, and then invited to provide input on a range of issues surrounding the design and use of the technology. The focus group findings were verified with a health care professional as a control measure. This study examines sensing based interaction, implementation methodologies and user acceptance issues specifically for the elderly, and from the elderly's perspective. A significant finding of the study is that the two most important factors for elderly acceptance of sensor technology are cost and contro

    A Sensor-Based mHealth Platform for Remote Monitoring and Intervention of Frailty Patients at Home

    Get PDF
    Frailty syndrome is an independent risk factor for serious health episodes, disability, hospitalization, falls, loss of mobility, and cardiovascular disease. Its high reversibility demands personalized interventions among which exercise programs are highly efficient to contribute to its delay. Information technology-based solutions to support frailty have been recently approached, but most of them are focused on assessment and not on intervention. This paper describes a sensor-based mHealth platform integrated in a service-based architecture inside the FRAIL project towards the remote monitoring and intervention of pre-frail and frail patients at home. The aim of this platform is constituting an efficient and scalable system for reducing both the impact of aging and the advance of frailty syndrome. Among the results of this work are: (1) the development of elderly-focused sensors and platform; (2) a technical validation process of the sensor devices and the mHealth platform with young adults; and (3) an assessment of usability and acceptability of the devices with a set of pre-frail and frail patients. After the promising results obtained, future steps of this work involve performing a clinical validation in order to quantify the impact of the platform on health outcomes of frail patients.Consejería de Conocimiento, Investigación y Universidad P18-TPJ-307

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    Attitudes Toward the Adoption of Remote Patient Monitoring and Artificial Intelligence in Parkinson’s Disease Management:Perspectives of Patients and Neurologists

    Get PDF
    Objective: Early detection of Parkinson's Disease (PD) progression remains a challenge. As remote patient monitoring solutions (RMS) and artificial intelligence (AI) technologies emerge as potential aids for PD management, there's a gap in understanding how end users view these technologies. This research explores patient and neurologist perspectives on AI-assisted RMS. Methods: Qualitative interviews and focus-groups were conducted with 27 persons with PD (PwPD) and six neurologists from Finland and Italy. The discussions covered traditional disease progression detection and the prospects of integrating AI and RMS. Sessions were recorded, transcribed, and underwent thematic analysis. Results: The study involved five individual interviews (four Italian participants and one Finnish) and six focus-groups (four Finnish and two Italian) with PwPD. Additionally, six neurologists (three from each country) were interviewed. Both cohorts voiced frustration with current monitoring methods due to their limited real-time detection capabilities. However, there was enthusiasm for AI-assisted RMS, contingent upon its value addition, user-friendliness, and preservation of the doctor-patient bond. While some PwPD had privacy and trust concerns, the anticipated advantages in symptom regulation seemed to outweigh these apprehensions. Discussion: The study reveals a willingness among PwPD and neurologists to integrate RMS and AI into PD management. Widespread adoption requires these technologies to provide tangible clinical benefits, remain user-friendly, and uphold trust within the physician-patient relationship. Conclusion: This study offers insights into the potential drivers and barriers for adopting AI-assisted RMS in PD care. Recognizing these factors is pivotal for the successful integration of these digital health tools in PD management.</p

    Attitudes Toward the Adoption of Remote Patient Monitoring and Artificial Intelligence in Parkinson’s Disease Management:Perspectives of Patients and Neurologists

    Get PDF
    Objective: Early detection of Parkinson's Disease (PD) progression remains a challenge. As remote patient monitoring solutions (RMS) and artificial intelligence (AI) technologies emerge as potential aids for PD management, there's a gap in understanding how end users view these technologies. This research explores patient and neurologist perspectives on AI-assisted RMS. Methods: Qualitative interviews and focus-groups were conducted with 27 persons with PD (PwPD) and six neurologists from Finland and Italy. The discussions covered traditional disease progression detection and the prospects of integrating AI and RMS. Sessions were recorded, transcribed, and underwent thematic analysis. Results: The study involved five individual interviews (four Italian participants and one Finnish) and six focus-groups (four Finnish and two Italian) with PwPD. Additionally, six neurologists (three from each country) were interviewed. Both cohorts voiced frustration with current monitoring methods due to their limited real-time detection capabilities. However, there was enthusiasm for AI-assisted RMS, contingent upon its value addition, user-friendliness, and preservation of the doctor-patient bond. While some PwPD had privacy and trust concerns, the anticipated advantages in symptom regulation seemed to outweigh these apprehensions. Discussion: The study reveals a willingness among PwPD and neurologists to integrate RMS and AI into PD management. Widespread adoption requires these technologies to provide tangible clinical benefits, remain user-friendly, and uphold trust within the physician-patient relationship. Conclusion: This study offers insights into the potential drivers and barriers for adopting AI-assisted RMS in PD care. Recognizing these factors is pivotal for the successful integration of these digital health tools in PD management.</p

    Dispositivos médicos na abordagem de doentes com epilepsia

    Get PDF
    O número crescente de dispositivos médicos desenvolvidos e comercializados para melhorar a gestão de doentes com epilepsia reflete o crescente interesse em traduzir os avanços tecnológicos e o conhecimento sobre epilepsia numa melhor prestação de cuidados de saúde a esta população. O objetivo desta revisão narrativa da literatura é analisar as opções de dispositivos médicos disponíveis para deteção, tratamento e registo de crises epiléticas e a sua possível aplicação clínica. Os artigos incluídos foram selecionados através da base de dados PubMed, utilizando a query "(Epilepsy[MeSH Terms]) AND (SUDEP)) AND (Medical Device)) AND (English[Language])". A deteção de crises epiléticas é essencial para a intervenção precoce e para otimizar a terapêutica de cada doente. No ambulatório, essa deteção é um desafiado devido à sua imprevisibilidade. Tradicionalmente, o eletroencefalograma é o método direto de deteção utilizado em contexto hospitalar. Métodos indiretos de deteção, como eletrocardiograma, fotopletismografia, oxímetro, atividade eletrodérmica, acelerómetro e eletromiografia, mostraram potencial para detetar crises epiléticas em ambulatório. Vários dispositivos médicos foram desenvolvidos com base nos métodos mencionados, com o objetivo de fornecer aos doentes soluções que possam usar no seu dia-a-dia. Alguns dos designs disponíveis são o eletroencefalograma com elétrodos retroauriculares, pulseiras, braçadeiras e sensores de pressão na cama. Equipados com diferentes funções, esses dispositivos podem ajudar na deteção precoce de crises epiléticas e melhorar a qualidade de vida de doentes e cuidadores. Existem também dispositivos disponíveis para o tratamento de crises epiléticas. Por meio de técnicas de neuromodulação, como a estimulação do nervo vago, a estimulação cerebral profunda e a neuroestimulação responsiva, esses dispositivos são apresentados como soluções para doentes com epilepsias refratárias não elegíveis para cirurgia ressetiva. Os doentes com epilepsia têm várias aplicações disponíveis online para o registo adequado de crises epiléticas. Essas aplicações ajudam os médicos na otimização da terapêutica com base na evolução clínica. A ampla gama de dispositivos disponíveis cria a oportunidade de personalizar a abordagem às necessidades específicas do doente. O conhecimento das características de cada dispositivo pode ajudar os médicos a melhorar a abordagem dos doentes com epilepsia.The increasing number of medical devices developed and marketed towards management of patients with epilepsy reflects the growing interest in translating technological advances and knowledge about epilepsy into better healthcare for this population. The objective of this narrative literature review is to analyze the available options of medical devices for detecting, treating, and recording epileptic seizures, and their potential clinical application. The included articles were selected from the PubMed database using the query "(Epilepsy[MeSH Terms]) AND (SUDEP)) AND (Medical Device)) AND (English[Language])" The detection of epileptic seizures is essential for early intervention and to optimize the therapy for each patient. In outpatient settings, this detection is further challenging due to their unpredictability. Traditionally electroencephalography is the direct detection method used in a hospital environment. Indirect methods, such as electrocardiogram, photoplethysmography, oximeter, electrodermal activity, accelerometer, and electromyography, have shown potential for detecting seizures in the outpatient setting. Several medical devices have been developed based on the mentioned methods, with the aim of providing patients with solutions they can use in their daily lives. Behind-the-ear EEG, wristbands, armbands and bed sensors are some of the designs available. Equipped with different features, these devices can answer the need for early seizure detection and improve patients' and caregivers' quality of life. There are also devices available for the treatment of epileptic seizures. Through neuromodulation techniques such as vagus nerve stimulation, deep brain stimulation, and responsive neurostimulation, these devices are presented as solutions for patients with refractory epilepsy not eligible for ressective surgery. Patients with epilepsy have several apps available online for proper recording of seizures. These apps help doctors optimize therapy based on clinical evolution. The wide range of devices available creates the opportunity to personalize the approach to patient's specific needs. Understanding each device's characteristics can help clinicians improve management of patients with epilepsy

    Detecting emotions through non-invasive wearables

    Get PDF
    Current research on computational intelligence is being conducted in order to emulate and/or detect emotional states using specific devices such as wristbands or similar wearables. In this sense, this paper proposes the use of intelligent wristbands for the automatic detection of emotional states in order to develop an application which allows us to extract, analyse, represent and manage the social emotion of a group of entities. Nowadays, most of the existing approaches are centred in the emotion detection and management of a single entity. The designed system has been developed as a multi-agent system where each agent controls a wearable device and is in charge of detecting individual emotions based on bio-signals
    corecore