198,636 research outputs found

    Deep Learning for Accelerated Ultrasound Imaging

    Full text link
    In portable, 3-D, or ultra-fast ultrasound (US) imaging systems, there is an increasing demand to reconstruct high quality images from limited number of data. However, the existing solutions require either hardware changes or computationally expansive algorithms. To overcome these limitations, here we propose a novel deep learning approach that interpolates the missing RF data by utilizing the sparsity of the RF data in the Fourier domain. Extensive experimental results from sub-sampled RF data from a real US system confirmed that the proposed method can effectively reduce the data rate without sacrificing the image quality.Comment: Invited paper for ICASSP 2018 Special Session for "Machine Learning in Medical Imaging: from Measurement to Diagnosis

    Compact dual-band implantable antenna for e-health monitoring

    Get PDF
    Single Molecule Spectroscopy and Superresolution Imaging XI 2018 -- 27 January 2018 through 28 January 2018 -- 136394This work presents a compact dual-band Planar Inverted F-antenna (PIFA) antenna useful for E-health monitoring and wireless sensors systems. The antenna operates in the Industrial Standard and Medical (ISM) and Wireless Medical Telemetry Service (WMTS) bands. It offers a compact size with dimensions 12.6 × 8.5 × 2.4 mm3. Two different simulators have been used to verify the results. The proposed antenna performs well in the presence of a bio-compatible insulator (BCI) material

    Peer review practices by medical imaging journals

    Get PDF
    ObjectiveTo investigate peer review practices by medical imaging journals.MethodsJournals in the category "radiology, nuclear medicine and medical imaging" of the 2018 Journal Citation Reports were included.ResultsOf 119 included journals, 62 (52.1%) used single-blinded peer review, 49 (41.2%) used double-blinded peer review, two (1.7%) used open peer review and one (0.8%) used both single-blinded and double-blinded peer reviews, while the peer review model of five journals (4.2%) remained unclear. The use of single-blinded peer review was significantly associated with a journal's impact factor (correlation coefficient of 0.218, P=0.022). On subgroup analysis, only subspecialty medical imaging journals had a significant association between the use of single-blinded peer review and a journal's impact factor (correlation coefficient of 0.354, P=0.025). Forty-eight journals (40.3%) had a reviewer preference option, 48 journals (40.3%) did not have a reviewer recommendation option, and 23 journals (19.3%) obliged authors to indicate reviewers on their manuscript submission systems. Sixty-four journals (53.8%) did not provide an explicit option on their manuscript submission Web site to indicate nonpreferred reviewers, whereas 55 (46.2%) did. There were no significant associations between the option or obligation to indicate preferred or nonpreferred reviewers and a journal's impact factor.ConclusionSingle-blinded peer review and the option or obligation to indicate preferred or nonpreferred reviewers are frequently employed by medical imaging journals. Single-blinded review is (weakly) associated with a higher impact factor, also for subspecialty journals. The option or obligation to indicate preferred or nonpreferred reviewers is evenly distributed among journals, regardless of impact factor

    A bioinformatics potpourri

    Full text link
    © 2018 The Author(s). The 16th International Conference on Bioinformatics (InCoB) was held at Tsinghua University, Shenzhen from September 20 to 22, 2017. The annual conference of the Asia-Pacific Bioinformatics Network featured six keynotes, two invited talks, a panel discussion on big data driven bioinformatics and precision medicine, and 66 oral presentations of accepted research articles or posters. Fifty-seven articles comprising a topic assortment of algorithms, biomolecular networks, cancer and disease informatics, drug-target interactions and drug efficacy, gene regulation and expression, imaging, immunoinformatics, metagenomics, next generation sequencing for genomics and transcriptomics, ontologies, post-translational modification, and structural bioinformatics are the subject of this editorial for the InCoB2017 supplement issues in BMC Genomics, BMC Bioinformatics, BMC Systems Biology and BMC Medical Genomics. New Delhi will be the location of InCoB2018, scheduled for September 26-28, 2018

    The Bionic Radiologist: avoiding blurry pictures and providing greater insights

    Get PDF
    Radiology images and reports have long been digitalized. However, the potential of the more than 3.6 billion radiology examinations performed annually worldwide has largely gone unused in the effort to digitally transform health care. The Bionic Radiologist is a concept that combines humanity and digitalization for better health care integration of radiology. At a practical level, this concept will achieve critical goals: (1) testing decisions being made scientifically on the basis of disease probabilities and patient preferences; (2) image analysis done consistently at any time and at any site; and (3) treatment suggestions that are closely linked to imaging results and are seamlessly integrated with other information. The Bionic Radiologist will thus help avoiding missed care opportunities, will provide continuous learning in the work process, and will also allow more time for radiologists’ primary roles: interacting with patients and referring physicians. To achieve that potential, one has to cope with many implementation barriers at both the individual and institutional levels. These include: reluctance to delegate decision making, a possible decrease in image interpretation knowledge and the perception that patient safety and trust are at stake. To facilitate implementation of the Bionic Radiologist the following will be helpful: uncertainty quantifications for suggestions, shared decision making, changes in organizational culture and leadership style, maintained expertise through continuous learning systems for training, and role development of the involved experts. With the support of the Bionic Radiologist, disparities are reduced and the delivery of care is provided in a humane and personalized fashion
    corecore