119 research outputs found

    A Few Remarks About Formal Development of Secure Systems

    Full text link
    Formal methods provide remarkable tools allowing for high levels of confidence in the correctness of developments. Their use is therefore encouraged, when not required, for the development of systems in which safety or security is mandatory. But effectively specifying a secure system or deriving a secure implementation can be tricky. We propose a review of some classical `gotchas' and other possible sources of concerns with the objective to improve the confidence in formal developments, or at least to better assess the actual confidence level.Comment: 10 page

    Transforming data by calculation

    Get PDF
    Thispaperaddressesthefoundationsofdata-modeltransformation.A catalog of data mappings is presented which includes abstraction and representa- tion relations and associated constraints. These are justified in an algebraic style via the pointfree-transform, a technique whereby predicates are lifted to binary relation terms (of the algebra of programming) in a two-level style encompassing both data and operations. This approach to data calculation, which also includes transformation of recursive data models into “flat” database schemes, is offered as alternative to standard database design from abstract models. The calculus is also used to establish a link between the proposed transformational style and bidi- rectional lenses developed in the context of the classical view-update problem.Fundação para a Ciência e a Tecnologia (FCT

    Ten Commandments Revisited: A Ten-Year Perspective on the Industrial Application of Formal Methods

    Get PDF
    Ten years ago, our 1995 paper Ten Commandments of Formal Methods suggested some guidelines to help ensure the success of a formal methods project. It proposed ten important requirements (or "commandments") for formal developers to consider and follow, based on our knowledge of several industrial application success stories, most of which have been reported in more detail in two books. The paper was surprisingly popular, is still widely referenced, and used as required reading in a number of formal methods courses. However, not all have agreed with some of our commandments, feeling that they may not be valid in the long-term. We re-examine the original commandments ten years on, and consider their validity in the light of a further decade of industrial best practice and experiences

    Aura: Programming with Authorization and Audit

    Get PDF
    Standard programming models do not provide direct ways of managing secret or untrusted data. This is a problem because programmers must use ad hoc methods to ensure that secrets are not leaked and, conversely, that tainted data is not used to make critical decisions. This dissertation advocates integrating cryptography and language-based analyses in order to build programming environments for declarative information security, in which high-level specifications of confidentiality and integrity constraints are automatically enforced in hostile execution environments. This dissertation describes Aura, a family of programing languages which integrate functional programming, access control via authorization logic, automatic audit logging, and confidentially via encryption. Aura\u27s programming model marries an expressive, principled way to specify security policies with a practical policy-enforcement methodology that is well suited for auditing access grants and protecting secrets. Aura security policies are expressed as propositions in an authorization logic. Such logics are suitable for discussing delegation, permission, and other security-relevant concepts. Aura\u27s (dependent) type system cleanly integrates standard data types, like integers, with proofs of authorization-logic propositions; this lets programs manipulate authorization proofs just like ordinary values. In addition, security-relevant implementation details---like the creation of audit trails or the cryptographic representation of language constructs---can be handled automatically with little or no programmer intervention

    Formal methods and digital systems validation for airborne systems

    Get PDF
    This report has been prepared to supplement a forthcoming chapter on formal methods in the FAA Digital Systems Validation Handbook. Its purpose is as follows: to outline the technical basis for formal methods in computer science; to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used on board aircraft; and to suggest factors for consideration when formal methods are offered in support of certification. These latter factors assume the context for software development and assurance described in RTCA document DO-178B, 'Software Considerations in Airborne Systems and Equipment Certification,' Dec. 1992

    LFTOP: An LF based approach to domain specific reasoning

    Get PDF
    Specialized vocabulary, notations and inference rules tailored for the description, analysis and reasoning of a domain is very important for the domain. For domain-specific issues researchers focus mainly on the design and implementation of domain-specific languages (DSL) and pay little attention to the reasoning aspects. We believe that domain-specific reasoning is very important to help the proofs of some properties of the domains and should be more concise, more reusable and more believable. It deserves to be investigated in an engineering way. Type theory provides good support for generic reasoning and verification. Many type theorists want to extend uses of type theory to more domains, and believe that the methods, ideas, and technology of type theory can have a beneficial effect for computer assisted reasoning in many domains. Proof assistants based on type theory are well known as effective tools to support reasoning. But these proof assistants have focused primarily on generic notations for representation of problems and are oriented towards helping expert type theorists build proofs efficiently. They are successful in this goal, but they are less suitable for use by non-specialists. In other words, one of the big barriers to limit the use of type theory and proof assistant in domain-specific areas is that it requires significant expertise to use it effectively. We present LFTOP ― a new approach to domain-specific reasoning that is based on a type-theoretic logical framework (LP) but does not require the user to be an expert in type theory. In this approach, users work on a domain-specific interface that is familiar to them. The interface presents a reasoning system of the domain through a user-oriented syntax. A middle layer provides translation between the user syntax and LF, and allows additional support for reasoning (e.g. model checking). Thus, the complexity of the logical framework is hidden but we also retain the benefits of using type theory and its related tools, such as precision and machine-checkable proofs. The approach is being investigated through a number of case studies. In each case study, the relevant domain-specific specification languages and logic are formalized in Plastic. The relevant reasoning system is designed and customized for the users of the corresponding specific domain. The corresponding lemmas are proved in Plastic. We analyze the advantages and shortcomings of this approach, define some new concepts related to the approach, especially discuss issues arising from the translation between the different levels. A prototype implementation is developed. We illustrate the approach through many concrete examples in the prototype implementation. The study of this thesis shows that the approach is feasible and promising, the relevant methods and technologies are useful and effective

    Extending and Relating Semantic Models of Compensating CSP

    No full text
    Business transactions involve multiple partners coordinating and interacting with each other. These transactions have hierarchies of activities which need to be orchestrated. Usual database approaches (e.g.,checkpoint, rollback) are not applicable to handle faults in a long running transaction due to interaction with multiple partners. The compensation mechanism handles faults that can arise in a long running transaction. Based on the framework of Hoare's CSP process algebra, Butler et al introduced Compensating CSP (cCSP), a language to model long-running transactions. The language introduces a method to declare a transaction as a process and it has constructs for orchestration of compensation. Butler et al also defines a trace semantics for cCSP. In this thesis, the semantic models of compensating CSP are extended by defining an operational semantics, describing how the state of a program changes during its execution. The semantics is encoded into Prolog to animate the specification. The semantic models are further extended to define the synchronisation of processes. The notion of partial behaviour is defined to model the behaviour of deadlock that arises during process synchronisation. A correspondence relationship is then defined between the semantic models and proved by using structural induction. Proving the correspondence means that any of the presentation can be accepted as a primary definition of the meaning of the language and each definition can be used correctly at different times, and for different purposes. The semantic models and their relationships are mechanised by using the theorem prover PVS. The semantic models are embedded in PVS by using Shallow embedding. The relationships between semantic models are proved by mutual structural induction. The mechanisation overcomes the problems in hand proofs and improves the scalability of the approach
    corecore