
Checking Cryptographic
API Specifications in JavaScript

Duncan Mitchell

Submitted in fulfillment for the degree of
Doctor of Philosophy

Department of Computer Science
Royal Holloway, University of London

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/326519548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration of Authorship

The work presented in this thesis is the result of original research carried
out by myself, in collaboration with others, whilst enrolled in the Depart-
ment of Computer Science as a candidate for the degree of Doctor of Phi-
losophy. This work has not been submitted for any other degree or award
in any other university or educational establishment.

Duncan Mitchell
September 2019

i

Acknowledgments

I would like to thank my supervisor and academic mentor Johannes Kinder
for his advice and guidance throughout this journey. His faith in me and
drive for me to succeed have been an invaluable source of encouragement.

I would like to thank all my lab mates for creating an enjoyable and con-
genial place to undertake this PhD. In particular, to Blake Loring for our
fruitful collaborations and his work on ExpoSE, and to Thomas van Bins-
bergen for being so welcoming and generous with his time. I would also
like to thank Claudio Rizzo and James Patrick-Evans for proof-reading
and technical discussions, but most importantly good company.

To Dave Cohen, Carlos Matos, Jasper Lyons and Matthew Hague: thank
you for the opportunity to enrich my research life through teaching. I
would like to thank Calum and Dan for taking a close interest in my work
and their enthusiasm for my future.

To my parents, for fostering my love of science, technology and mathe-
matics, for their unfailing support and for every opportunity that bought
me to this point. Finally, to Holly, my rock: without you, I would not be
writing this.

iii

Abstract

Increased awareness of privacy concerns on the Internet has encouraged
developers towards implementing strong cryptography by default, in a
trend dubbed “ubiquitous encryption”. For instance, web applications
for messaging platforms routinely implement client-side cryptography in
JavaScript for true end-to-end encryption. The standardization of cryp-
tographic APIs in JavaScript through the W3C Web Cryptography API,
WebCrypto, has made strong cryptography available to non-expert web
developers. However, cryptographic APIs are often hard to use correctly;
the clash between the agile mindset of JavaScript developers and the re-
quirements of secure software engineering leads to lingering problems.
Further, JavaScript’s dynamic types and often surprising semantics make
it difficult to spot subtle security bugs, and such errors do not lead to fail-
ing test cases or visible errors.

In this thesis, we propose an automatic mechanism for the detection of
incorrect usage of cryptographic APIs in JavaScript. We introduce a sys-
tem of Security Annotations: type-like tags which express security proper-
ties of values, e.g., whether a value is a ciphertext, or a cryptographically
secure random value. Security Annotations are transparent to client code
until they encounter an error, in which case the program under test fails.
We formalize the notion of Security Annotations in a small lambda calcu-
lus, and use this to motivate the design of Security Annotations within an
executable formal semantics for JavaScript. We construct a specification of

v

the WebCrypto API and prove security guarantees in this setting. Finally,
we implement Security Annotations within full JavaScript via source code
instrumentation and use this to analyze both hand-crafted examples and
real-world JavaScript applications.

vi

Contents

1 Introduction 1

1.1 Context . 1
1.1.1 Cryptography . 1
1.1.2 Implementing Cryptography 2
1.1.3 Detecting Cryptographic Errors 4
1.1.4 JavaScript and Cryptography 5

1.2 The Problem . 7
1.3 The Approach . 8
1.4 Analyzing String Manipulating Programs 10
1.5 Contributions . 12

2 Background 15

2.1 Analyzing Cryptographic Implementations 15
2.2 Analyzing JavaScript Programs 18
2.3 JavaScript and Cryptography 22
2.4 Test Generation for JavaScript 27

2.4.1 A Primer on Dynamic Symbolic Execution 28
2.4.2 ExpoSE: Practical DSE for JavaScript 30

3 Structure of Security Annotations 33

3.1 What are Security Annotations? 34
3.2 Formalizing Security Annotations 39
3.3 The cut Operator . 47

vii

Contents

3.4 Related Work . 49

4 A Lambda Calculus of Security Annotations 51

4.1 Design Decisions for λSA . 51

4.2 Syntax of λSA . 55

4.3 Dynamics . 57

4.4 Statics . 59

4.4.1 A Subtyping Relation 59

4.4.2 Annotated typing rules for λSA 61

4.5 Manipulating Security Annotations in λSA 63

4.6 Annotated Type Safety for λSA 68

4.6.1 Preservation for λSA 68

4.6.2 Progress for λSA . 76

4.6.3 Discussion . 78

4.7 Related Work . 80

5 A Semantics for Security Annotations in JavaScript 81

5.1 Working with a semantics for JavaScript 82

5.2 A More Complex Language 83

5.3 Syntax of S5SA . 87

5.4 Semantics for S5SA . 88

5.4.1 Coercing Security Annotations 88

5.4.2 Checking Security Annotations 90

5.4.3 Completing S5SA . 91

5.5 Implementing S5SA . 93

5.5.1 Declaring Annotations 93

5.5.2 Deciding ≺:. 96

5.5.3 Adapting The Semantics of S5SA 96

5.5.4 Mechanizing Functions 98

5.6 Executing JavaScript in S5SA 99

viii

Contents

5.7 Using S5SA: A Case Study . 102

5.8 Properties of S5SA Programs 106

5.8.1 Safety Guarantees . 106

5.8.2 Security Guarantees 109

5.8.3 Security Guarantees in Practice 110

5.8.4 Limitations . 112

5.9 Related Work . 115

6 Sound Regular Expression Semantics for the Dynamic Sym-

bolic Execution of JavaScript 117

6.1 ECMAScript Regex . 119

6.2 Approach . 122

6.3 Modeling ES6 Regex . 127

6.3.1 Preprocessing . 127

6.3.2 Operators and Capture Groups 129

6.3.3 Backreferences . 131

6.3.4 Modeling Non-membership 134

6.4 Matching Precedence Refinement 135

6.4.1 Matching Precedence 135

6.4.2 Termination of the Scheme 138

6.4.3 Soundness of the Model 138

6.5 Modeling the ES6 Regex API 139

6.6 Consequences of this Model 140

6.7 Related Work . 141

7 Security Annotations for JavaScript 145

7.1 Implementation . 145

7.1.1 Security Annotations 146

7.1.2 Attaching Annotations 147

7.1.3 Complications: Annotating Objects. 148

ix

Contents

7.1.4 Manipulating Annotations 151
7.2 Establishing Faithfulness . 153
7.3 A Testing Strategy for the Detection of Cryptographic Errors 155
7.4 From S5SA to ExpoSESA . 156
7.5 Case Studies . 162

7.5.1 secret-notes . 162
7.5.2 hat.sh: A File Encryption Serivce 167

8 Conclusions 173

Bibliography 177

x

List of Figures

2.1 The ExpoSE architecture [60]. 31

3.1 The atomic Security Annotation hierarchy for Listing 3.1. . . 41

4.1 Syntax of λSA: programs, terms, values and prevalues. 56
4.2 Syntax of λSA: types, environments and Security Annotations. 57
4.3 Runtime semantics for λSA. 59
4.4 Annotated subtyping rules for λSA. 60
4.5 Static semantics for λSA. 61
4.6 Adding Security Annotations within λSA. 64
4.7 Removing Security Annotations within λSA. 65
4.8 Copying Security Annotations within λSA. 66

5.1 The reduction relations for S5 [81]. 82
5.2 The syntax of S5 [81]. 84
5.3 Syntax modifications to add Security Annotations to S5. . . . 86
5.4 Judgments for coercing annotations: as, drop and cpAnn. . . 89
5.5 Function application with Security Annotation enforcement. 90
5.6 Judgments for setting, deleting and adding fields. 92
5.7 Judgments for SecAnn. 94
5.8 Judgments for SecAnn Extends. 95
5.9 Reduction relations enriched with the annotation store. . . . 98
5.10 Judgments for as enriched with the annotation store. 99

xi

List of Figures

5.11 Function application enriched with an annotation store. . . . 100

xii

List of Listings

2.1 A program using async/await 25

2.2 A simple branching JavaScript program. 29

3.1 An annotated shim of WebCrypto’s encrypt API. 38

4.1 Typing the if construct. 63

4.2 Typing the drop operator. 65

4.3 Typing the cpAnn operator. 66

5.1 A simple JavaScript program using Security Annotations. . . 85

5.2 The S5SA program corresponding to Listing 5.1. 85

5.3 An annotated shim for a fragment of the WebCrypto API. . . 104

5.4 Case Study: constructing the IV. 105

5.5 Case Study: the developer’s encrypt function. 105

6.1 Using complex regex features to match an XML tag. 124

7.1 Annotating a JavaScript Value. 148

7.2 Annotating objects vs. their references. 149

7.3 A mock for WebCrypto’s decrypt method. 158

7.4 A shim for WebCrypto’s decrypt method. 159

7.5 Modifications to test an application in ExpoSESA. 160

7.6 Processing the message to be sent. 161

xiii

List of Listings

7.7 A testing harness for the integrity tutorial in secret-notes. . . 164
7.8 Shims for digest and verify. 165
7.9 Extending the shim for deriveKey. 166
7.10 Deriving a key from a password in hat.sh [93]. 169
7.11 Automatically generating a password in hat.sh [93]. 170

xiv

List of Tables

2.1 Cryptographic algorithms supported by WebCrypto. 26

6.1 Regular expression operators, separated by classes of prece-
dence. 122

6.2 Models for regex operators. 130
6.3 Modeling backreferences. 132
6.4 Contribution of different components of the model to test-

ing 1, 131NPM packages, showing number (#) and fraction
(%) of packages with line coverage improvements. 141

xv

Introduction 1
1.1 Context

1.1.1 Cryptography

In the modern world, cryptography is ubiquitous. Even unawares, almost
every individual encounters it every day—from instant messaging to baby
monitors or nuclear power plant control systems. Cryptography itself en-
compasses a diverse range of use cases: despite its root as simply “secret
writing” (from the ancient Greek), cryptography has grown to encompass
all elements of secure communication, and is even used further afield, e.g.,
in database integrity.

Within this thesis, we consider a cryptographic mechanism to be any
mechanism which aims to ensure that two (or more) parties can communi-
cate information without an adversary gaining knowledge about (or suc-
cessfully manipulating) the information itself. These mechanisms com-
prise primitives, which describe low-level algorithms (e.g., the AES sym-
metric key encryption function [74]), and protocols, which use these prim-
itives as building blocks to describe how to enable secure communication
within particular settings (e.g., TLS [84]).

In the most abstract setting, cryptography protects messages Alice wishes
to send to Bob, without an adversary, Eve, gaining information about (or

1

1 Introduction

tampering with) these messages. Cryptographic mechanisms for authenti-
cation seek to ensure that Bob can verify any message received is indeed
from Alice, and not from Eve masquerading as Alice. Second, confiden-
tiality ensures any message sent by Alice to Bob cannot be read by Eve.
Finally, integrity ensures any message sent by Alice to Bob has not been
tampered with by Eve.

The Snowden revelations [101] were a watershed moment in public un-
derstanding of, and demand for, privacy online. Between the diverse set-
tings for applications requiring cryptography, and the constant evolution
of cryptographic mechanisms to meet increasing security requirements,
there is an ever-changing range of available cryptographic primitives and
protocols. However, as computation power increases, old primitives be-
come insecure [109, 96, 63], and over time, new attacks are found against
systems thought secure [15, 4, 8]. To the average developer, selecting the
correct primitive can be challenging; beyond that, they can be even more
challenging to implement correctly.

1.1.2 Implementing Cryptography

The addition of cryptography to an application does not automatically
make it safer or more secure for users. For example, in certain safety-
critical systems, increased computation times involved with cryptographic
operations may construct latency issues [111]. Cryptography itself can be
circumvented by insecure system design: for example, TLS protects data
in transit but, upon data sent by a client to a server being received, weak-
nesses in the server could reveal the data to an attacker. Importantly, the
introduction of cryptography to an application requires that the developer
attempting to enable privacy-as-a-feature for end users must utilize safe
primitives and correctly implement trusted protocols in order to offer real
security gains.

2

1.1 Context

Developers are prone to mistakes, and errors in the implementation
of cryptographic routines can fundamentally undermine their best inten-
tions, introducing critical security weaknesses. For example, the end-to-
end encrypted open source chat client Cryptocat suffered from critically
weak security for over a year due to a type coercion bug in the use of pri-
vate keys [102]. Where the protocol required an array of 15-bit random
integers, the implementation instead provided a string of decimal charac-
ters, which was quietly coerced into the correct type by the JavaScript in-
terpreter, leading to a vastly reduced key space of just 27.1 bits, down from
128 bits. Attacks such as FREAK [9] have demonstrated that even when
individual components of an application are correct, the combination of
these could introduce critical security weaknesses—or allow attackers to
bypass this security entirely.

In order to rule out common errors in the implementation of cryptog-
raphy, modern programming languages offer APIs (application program-
ming interfaces) for primitives, and in some cases, protocols. They vary
from comprehensive APIs written and verified by cryptographic experts
(e.g., HACL* [116]) to smaller APIs are written by developers for specific
purposes (e.g., bcrypt, a JavaScript library for password hashing [23]).
These APIs prevent developers from handling the inner workings of low-
level primitives, reducing the risk of developers incorrectly translating
these algorithms to code. However, these APIs do not guarantee correct
implementation: they are often flexible and many allow the use of insecure
algorithms. For example, the Java Cryptography Architecture supports
the insecure ECB (Electronic Codebook) mode of encryption [76]. Further,
these APIs are flexible to allow for a myriad of use cases, which enables
the introduction of misuse bugs. For example, in JavaScript’s WebCrypto
API [110], it is possible to use a constant, non-random value as the IV (ini-
tialization vector) for encryption. For AES-CBC (the AES cipher in Cipher
Block Chaining mode, which is a mechanism allowing multiple blocks of

3

1 Introduction

data to be encrypted together), this could reveal that two messages carry
the same prefix, potentially leading to more damaging attacks. Indeed,
it has been suggested that cryptographic APIs are still too low-level and
present developers with challenges in correctly implementing secure cryp-
tography in their application [68, 54].

Security weaknesses in applications built using cryptographic APIs are
still widespread. A study of Android applications found large-scale fail-
ure of implementations to correctly implement cryptography: 88% of an-
alyzed applications were found to violate core cryptographic tenants by
misusing APIs, e.g., using constant encryption keys [32]. Such studies
have been extended, and the problem of insecure implementations due to
cryptographic misuse persists [53].

1.1.3 Detecting Cryptographic Errors

The core challenge addressed in this thesis is that cryptographic imple-
mentations, traditionally, have proved difficult to analyze. This means
that bugs within both these implementations, and applications which use
cryptography, are difficult to detect. Importantly, to a developer, such
bugs also have no visible effect on runtime. For example, ciphertexts are
designed to, on inspection, appear indistinguishable from random no mat-
ter the underlying keying material. This means that simple inspection by
a developer will not reveal if the encryption is correctly implemented in
general. Similarly, fixed test inputs (e.g., checking the ciphertext for a fixed
plaintext input) check only that the encryption is correct on a single test
vector. These tests are necessarily limited; they will not reveal, for exam-
ple, that initialization vectors are not reused.

Bugs in cryptographic implementations often have subtle causes. This
is exacerbated by the gap between theory and practice; developers us-
ing cryptography are not experts in underlying security proofs for pro-

4

1.1 Context

tocols [68]. The core issue here is that security proofs are often heavily
caveatted to specific (even idealized) settings or require specific precondi-
tions on inputs. Such assumptions are often highly technical in nature and
limit the applicability of the protocol. Since developers using these pro-
tocols are not experts—and indeed, should not be expected to be—these
caveats and preconditions may be violated, leading to potential security
bugs. Although efforts have been made to construct standardized crypto-
graphic APIs which limit the extent to which developers can violate these
assumptions [76, 116, 110], these errors often involve subtle requirements
which cannot be ruled out by the API alone, e.g., the correct chaining to-
gether of specific API calls in a specific sequence. When developers make
such errors, and if the program still executes, there is no obvious way to
detect such an error.

The causes of these cryptographic bugs are therefore largely orthogonal
to the observable outputs of a program. Since it is intimately related to
the preconditions of cryptographic primitives, a core challenge of detect-
ing cryptographic misuse is that we must distinguish between the origin
of values in a program. For example, a cryptographic primitive may re-
quire that a key be the output of a cryptographically secure pseudoran-
dom number generator (CSPRNG). We must distinguish such a key from
another arbitrary string in the program. In general, for a single value,
one cannot reason about how such a value was created. In this thesis we
are interested in constructing mechanisms to establish the provenance of
a value and therefore whether it satisfies the preconditions of a crypto-
graphic primitive or protocol.

1.1.4 JavaScript and Cryptography

In this thesis, we are principally concerned with the application of cryp-
tographic misuse detection to JavaScript programs. Despite its often cited

5

1 Introduction

quirks, shortcomings, and outright design flaws, the popularity of Java-
Script is unwavering [112]. It has long been an important building block
of the world-wide web; but developments, like Node.js [73], have broken
new ground by allowing its use as a general purpose programming lan-
guage outside the web browser. The rise of major frameworks, such as
Electron [40], has allowed the deployment of JavaScript for client-side ap-
plications, including mainstream communication applications, e.g., Slack1,
Discord2 and Skype3. Over time, JavaScript’s application domain has ex-
panded from simple interactive web content to complex web applications,
server-side frameworks, and embedded devices.

As a consequence, JavaScript code routinely handles security-sensitive
data, such as financial or health details, even implementing cryptographic
protocols. JavaScript cryptography has long been frowned upon [82, 5];
however, it has become increasingly popular—with a range of developer-
led APIs [29, 66] and academic projects [94]. Cryptographic APIs have
been used in JavaScript for end-to-end encryption in payment systems [75],
off-the-record messaging4, or to manage server certificates [97].

The demand for cryptography in JavaScript has led to standardization
in the form of the W3C WebCryptography API [110] (henceforth, Web-
Crypto) and the Node.js module, crypto [70]. However, neither of these
APIs provide any formal security guarantees, nor do they rule out unsafe
usage patterns. Historical approaches to verifying cryptography in Java-
Script predominantly rely on restriction to subsets of the language [52,
12]. Such languages are designed to enable the implementation of cryp-
tographic protocols, and forbid access to external APIs, e.g., WebCrypto.
In this thesis, we aim to address the challenge of checking existing crypto-

1https://slack.com/
2https://discordapp.com/
3https://www.skype.com/
4https://github.com/arlolra/otr

6

https://slack.com/
https://discordapp.com/
https://www.skype.com/
https://github.com/arlolra/otr

1.2 The Problem

graphic implementations which use these standardized APIs.

1.2 The Problem

In this section we describe the scope of this thesis and give a problem state-
ment. Given a program P, which utilizes some cryptographic API or li-
brary, L, we seek to automatically determine if P is secure. Of course, such
a statement is very broad, and the notion of secure is vague. As such, we
narrow our scope to a more tractable problem, which allows us to check
that usage of L does not violate the underlying assumptions of the API
(e.g., preconditions of cryptographic primitives).

The first restriction is to require that P is a JavaScript program. This pro-
vides a natural target for checking usage of recently standardized crypto-
graphic APIs. In addition, JavaScript’s dynamic type system and often
surprising semantics make it difficult to spot subtle security bugs as long
as they do not directly impact functionality. This means that JavaScript
poses an interesting target for security-centric program analysis. How-
ever, we believe the approach described in this thesis to be applicable to
languages beyond JavaScript; for example, Chapter 4 describes the appli-
cation of the approach to a functional language.

Second, we assume that L is, in some sense, trusted. Both WebCrypto
and the node.js library crypto provide access to cryptographic primitives,
e.g., AES and SHA-256. Within this context, we assume that the imple-
mentation of these primitives is correct and without implementation bugs.
From these correct primitives, we construct specifications for safe usage of
these API functions, S, which describes the pre- and postconditions of safe
usage for L.

Given these restrictions, this thesis seeks to address the problem of auto-
matically checking that given a specification S of L, a JavaScript program

7

1 Introduction

P obeys S. We have not defined how S is obtained; in practice, we will
describe the form of these specifications, and explain how cryptographic
experts can describe one for an arbitrary cryptographic API. This restric-
tion of the scope means that we no longer seek full program verification;
instead, we check that implementation bugs in the usage of L are ruled
out.

In particular, we seek an analysis which encapsulates the following prop-
erties:

• The analysis should be automatic; this allows developers to obtain
feedback on their use of cryptographic without needing to be an ex-
pert in the interplay between cryptographic primitives.

• The analysis should be, in some sense, agnostic. By this, we mean
that the mechanisms by which we perform the analysis should be
applicable to distinct APIs (and languages). Further, in the case of
APIs, it should be easily extensible to new APIs as they are developed.

• The analysis should be independent of the implementation. That is,
the developer should not have to modify their existing codebase
(e.g., by writing in a strict subset of the language) to benefit.

1.3 The Approach

Despite several initiatives to verify not just cryptographic protocols but
reference implementations in software [7, 14], it is not yet feasible to prove
the correctness of mainstream implementations. Dynamic languages like
JavaScript are notoriously difficult to formally reason about: the dynamic
type system and extensive use of reflection thwart the application of ex-
pressive type systems or theorem provers without significant manual in-
tervention by cryptographic experts [52, 10].

8

1.3 The Approach

There is currently little support to help non-expert developers avoid in-
troducing critical security bugs into applications built on full JavaScript.
In this thesis, we describe a new approach for checking the use of cryp-
tographic APIs in client code that is compatible with the dynamic type
system and common design patterns of JavaScript. Our goal is to arrive at
an automatic testing methodology that does not require manual analysis
by cryptographic experts.

In this thesis, we introduce a mechanism which rules out misuse of
trusted APIs in JavaScript code through runtime enforcement. Our core
contribution is to introduce a system of Security Annotations that is or-
thogonal to the existing type system. Security Annotations themselves are
described in detail in Chapter 3. Security Annotations express security
properties of values, e.g., whether a value is a key of a certain length, or
a cryptographically secure random value. They are propagated alongside
regular type tags but follow their own semantics. Security Annotations
are enforced at the boundaries of function calls, and are transparent to
client code until they encounter an error (e.g., failing this enforcement),
in which case the test program fails. This allows for the specification of
trusted cryptographic APIs via Security Annotations, e.g., a specification
for the WebCrypto API is given in Section 5.7. These specifications can
then be checked in a system which supports Security Annotations.

We break down the research program described in this thesis into three
phases. This ensures that the design of Security Annotations is sensible
and correct, by providing first formal systems within smaller languages
and security guarantees within those settings before full implementation.
First, we demonstrate the type safety of our approach within a lambda cal-
culus, which avoids the complexities of JavaScript but allows us to ensure
the underlying mechanisms allow for checking of the intended proper-
ties (Chapter 4). Second, we extend a partial runtime semantics for Java-
Script [81] with Security Annotations (Chapter 5). This allows us to ex-

9

1 Introduction

plore the relationship between Security Annotations and many complex
features of JavaScript and solve the natural problems that arise within this
formal setting. Alongside this, we are able to provide limited security
guarantees for a given API specification and program for which no con-
trol flow path results in a function contract violation.

Finally, this thesis describes an automatic testing methodology for Java-
Script programs which utilize Security Annotations (Chapter 7). We im-
plement Security Annotations for full JavaScript using code instrumenta-
tion [92] within the dynamic symbolic execution (DSE) engine ExpoSE [60,
61]. DSE is an effective strategy for test generation allowing the system-
atic enumeration of feasible control flow paths in a program, which has
been successful for generating tests and finding crash bugs in real-world
C and machine code [22, 42]. On one hand, the dynamic nature of DSE
means that we will not obtain any security proofs over the entire program
unless DSE terminates and all paths are explored; on the other hand, all
paths executed are guaranteed to be real (feasible) paths with respect to
the execution environment. Along each feasible control flow path, Secu-
rity Annotations are either respected or we have found a possible security
bug.

1.4 Analyzing String Manipulating Programs

Many programs which utilize cryptography must also necessarily perform
string manipulations. In JavaScript it is most idiomatic to do this through
regular expressions, e.g., for processing signed ciphertexts received across
a network. It is therefore a core requirement for any JavaScript analysis
targeted at cryptographic code to support regular expressions. Regular
expressions are popular with developers for matching and substituting
strings and are supported by many programming languages. For instance,

10

1.4 Analyzing String Manipulating Programs

in JavaScript, one can write /goo+d/.test(s) to test whether the string
value of s contains "go", followed by one or more occurrences of "o" and a
final "d". Similarly, s.replace(/goo+d/,"better") evaluates to a new
string where the first such occurrence in s is replaced with the string "

better".
Several testing and verification tools include some degree of support for

regular expressions because they are so common [57, 107, 90, 104, 60]. In
particular, SMT (satisfiability modulo theory) solvers now often support
theories for strings and classical regular expressions [58, 59, 1, 2, 104, 115,
113, 16, 114, 38], which allow expressing constraints such as s ∈ L(goo+d)
for the test example above. Although any general theory of strings is
undecidable [17], many string constraints are efficiently solved by modern
SMT solvers.

SMT solvers support regular expressions in the language-theoretic sense,
but “regular expressions” in languages like Perl or JavaScript—often called
regex, a term we also adopt in the remainder of this thesis—are not lim-
ited to representing regular languages [3]. For instance, the expression
/<(\w+)>.*?<\/\1>/ parses any pair of matching XML tags, which is a
context-sensitive language (because the tag is an arbitrary string that must
appear twice). Problematic features that prevent a translation of regexes to
the word problem in regular languages include capture groups (the paren-
theses around \w+ in the previous example), backreferences (the \1, which
refers to the capture group), and greedy/non-greedy matching precedence
of subexpressions (the .*? is non-greedy). In addition, any such expres-
sion could also be included in a lookahead (?=), which effectively en-
codes intersection of context sensitive languages. In tools reasoning about
string-manipulating programs, these features are usually ignored or im-
precisely approximated.

In the context of dynamic symbolic execution (DSE)—which, as dis-
cussed in Section 1.3, we intend to use for test case generation—this lack

11

1 Introduction

of support can lead to loss of coverage or missed bugs where constraints
would have to include membership in non-regular languages. The dif-
ficulty arises from the typical mixing of constraints in path conditions—
simply generating a matching word for a standalone regex is easy (with-
out lookaheads). To date, there has been only limited progress on this
problem, mostly addressing immediate needs of implementations with
approximate solutions [90, 91]. In this thesis, we present a comprehen-
sive model for the specification of regexes as described in ECMAScript
2015 (ES6) [31], which enables the analysis of JavaScript programs featur-
ing string manipulation (Chapter 6).

1.5 Contributions

In this thesis, we first discuss the necessary background (Chapter 2) then
make the following contributions:

• We present a system of Security Annotations and design operators
on them which allow for the expression of cryptographic API spec-
ifications (Chapter 3). This chapter provides an extended look at
the underlying structure of Security Annotations discussed in PEPM
2018 [65] and ESORICS 2019 [64].

• We formalize a statically-checked mechanism for Security Annota-
tions within a small lambda calculus, λSA, and provide safety guar-
antees (Chapter 4). This chapter comprises an extended version of
work first published in PEPM 2018 [65].

• We define a runtime semantics for Security Annotations within an
existing partial formal semantics for JavaScript, S5SA and provide
security guarantees for a particular API with a Security Annotation

12

1.5 Contributions

specification (Chapter 5). This chapter comprises an extended ver-
sion of work first published in ESORICS 2019 [64].

• We discuss a particular challenge involved in the dynamic symbolic
execution of JavaScript, providing a sound semantics for the model-
ing real-world regular expressions (Chapter 6). This chapter is based
on work published in SPIN 2017 [60] and PLDI 2019 [61].

• Finally, we implement Security Annotations in full JavaScript, de-
scribe how it relates to the guarantees provided for formal seman-
tics, and demonstrate its usage through case study (Chapter 7).

13

Background 2
In this chapter we outline the necessary background information and sur-
vey related literature to the project. We begin by describing state-of-the-art
approaches to cryptographic verification in general (Section 2.1). We dis-
cuss work on the analysis of JavaScript code (Section 2.2) and then narrow
this to current approaches to JavaScript security analysis (Section 2.3). Fi-
nally, we give an overview of Dynamic Symbolic Execution (DSE) as a
method for test generation and describe one such DSE engine for Java-
Script, ExpoSE (Section 2.4).

This chapter draws on the related work discussed in the author’s pub-
lished work as a first author [65, 64]. Section 2.4 draws on the author’s
other published work [60, 61] to describe ExpoSE, a dynamic symbolic
execution engine for JavaScript designed by Blake Loring and Johannes
Kinder.

2.1 Analyzing Cryptographic Implementations

Here, we describe the analytical toolbox for generic cryptographic appli-
cations. We begin by discussing generic typing approaches to program
analysis and their relation to this thesis. We then discuss approaches to
the checking of security properties and explain their relationship to cryp-
tographic applications. Next, we describe cryptographic protocol verifi-

15

2 Background

cation. Finally, we discuss the most closely related work to this thesis:
checking cryptographic API usage—which until now has focused primar-
ily on Java code and Android applications.

Type qualifiers. Type qualifiers [34] extend a language’s base type sys-
tem via composable qualifiers representing properties of the program terms.
The canonical example of a type qualifier is the ANSI C qualifier const,
which indicates that a variable may be initialized but never updated. Type
qualifiers support the qualification of types in the manner of initial type
declarations, and this qualification is fixed for the runtime of the program.

Security property checking. We discuss approaches for analyzing pro-
grams to check security properties which are influential to this thesis. Type
systems for F#, such as F7 [7, 13, 14] and F* [98], allow for the description of
security properties of terms via dependent types which are checked stati-
cally. These systems utilize type refinement [37] to encode disjoint security
properties in terms of complex logical expressions. Their work demon-
strates the applicability of type-based approaches towards static verifica-
tion of security properties in implementations.

Security type systems designed to enforce secure information flow have
proved influential; we refer to the work of Sabelfeld and Myers for a com-
prehensive survey [86]. In these systems, types of terms in the language
are augmented with information describing policies for safe usage of the
term. The canonical example is to describe two policies: a term has a sen-
sitivity level that is either high or low. A security type system seeks to
eliminate both explicit flows from terms labeled high to those labeled low
(e.g., by assigning data labeled high to a variable labeled low), but also
implicit flows. To understand these, consider the simple program h := i

; l := false; if (h) { l := true }. In this example, i is some pro-
gram input stored in a high-security variable h. Depending on this input,

16

2.1 Analyzing Cryptographic Implementations

the value of l may be changed: this is an implicit flow of high-security in-
formation to a low-security variable. This line of work seeks to detect such
violations, and use of these systems can offer strong guarantees; unfortu-
nately they have proved impractical in the JavaScript setting. We discuss
the related concept of dynamic information flow monitoring, which has
seen success in the setting of JavaScript, in Section 2.2.

Cryptographic protocol verification. There is a strong strand of work on
cryptographic protocol verification in the literature; tools such as Easy-
Crypt [6] or FCF [79] seek to construct frameworks which allow for the
construction of provably secure protocols through proof assistants. Such
tools are targeted specifically towards protocol verification rather than im-
plementations written by developers. This work is therefore orthogonal to
the approach of this thesis, where we seek to check developer implemen-
tations.

Checking cryptographic API usage. We discuss the current state-of-the-
art in checking developer use of cryptographic APIs; similar to this thesis,
these works seek to rule out developer misuse. In pursuit of this aim,
Lazar et al. sought to identify the origins of bugs in cryptographic soft-
ware [54]. Across a survey of 269 CVEs related to cryptographic vulnera-
bilities, they found that 83% were due to misuse of cryptographic libraries.
In another survey of the state of cryptographic APIs, Nadi et al. [68] argue
that Java APIs are too low-level, expecting developers to possess an im-
plicit understanding of the underlying cryptographic protocols.

In a foundational work, Egele et al. introduced CryptoLint [32], a light-
weight static analyzer for Android applications which to detect crypto-
graphic misuse. They found that of 11, 748 applications analyzed, 88%
violated at least one of six identified cryptographic rules [32]:

17

2 Background

(i) Do not use ECB mode for encryption.

(ii) Do not use a non-random initialization vector (IV) for CBC encryp-
tion.

(iii) Do not use constant encryption keys.

(iv) Do not use constant salts for Password-based encryption (PBE).

(v) Do not use fewer than 1,000 iterations for PBE.

(vi) Do not use static seeds to seed SecureRandom(seed).

The first two of these cover encryption modes to rule out deterministic
ciphers: the former mode is known to be insecure, and in the latter the
chaining mechanism of the blocks in CBC mode is undermined by using
a deterministic IV [50]. Rules (iii) and (iv) ensure that it is not trivially
easy to recover secret keys; (v) is a heuristic for secure PBE as defined in
the standard [49]. Finally, rule (vi) is specific to Android’s SecureRandom
pseudo-random number generator. In this thesis, we go beyond these

types of rules and develop specifications which rule out deeper classes of
cryptographic failure, e.g., rule (iii) is extended to ensure keys have been
properly generated by a trusted API.

In research contemporaneous with this thesis, Krüger et al. present
CrySL, a domain specific language (DSL) for the specification of correct
usage of cryptographic APIs, focusing on the Java Cryptography Archi-
tecture [53]. These specifications are used to statically analyze applications
deploying these cryptographic APIs.

2.2 Analyzing JavaScript Programs

In this section we describe approaches from the literature to analyzing
JavaScript code and making it safe. We start by discussing efforts to de-

18

2.2 Analyzing JavaScript Programs

velop formal semantics for JavaScript and the application of these to pro-
gram verification. We then discuss existing typing approaches for Java-
Script, and dynamic contract enforcement mechanisms for the language.
At each step, we describe the relationship of these to the approach de-
scribed in this thesis.

Formal Semantics for JavaScript. There is a plethora of work in the
space of formal semantics for JavaScript [88, 77, 43, 81], taking differing
approaches towards describing the language. λJS [43] and its successor
S5 [81] provide small languages which model the key features of Java-
Script. S5 targets EcmaScript 5.1 (ES5) [31], while λJS targets the older
EcmaScript 3. Both languages remain close to the standard lambda cal-
culus in order to make them amenable to extension [62] and analysis: for
instance, Guha et al. describe an analysis to disallow use of the object
XMLHttpRequest [43].

JSIL [88] aims to follow the standard line-by-line, designed for symbolic
verification of JavaScript programs. By the authors’ admission, it is ill-
suited to high-level analyses of JavaScript programs like those of examin-
ing cryptographic API usage. KJS [77] is an executable formal semantics
for JavaScript based on the K framework [85]. Formal semantics for frag-
ments of JavaScript have also been constructed in order to demonstrate
the static type-checking of popular tools Flow [25] and TypeScript [83].
However, these small fragments are incomplete and make no attempt to
represent themselves as tested semantics aiming to construct JavaScript-
like languages.

Verification of generic JavaScript programs We discuss the state-of-the-
art for formal verification of JavaScript programs: if current verification
approaches suffice to precisely ensure the correctness of programs then
it would follow that there is no requirement to design a custom testing

19

2 Background

framework for JavaScript cryptography.
Recent work has demonstrated the tractability of logic-based symbolic

verification techniques towards JavaScript [87, 36]. Building upon previ-
ous work [39], the authors propose a toolchain for semi-automatic verifi-
cation of JavaScript programs; this comprises an intermediate language
along with a JavaScript-to-intermediate language compiler, and logical
specifications of JavaScript internal functions. To verify individual pro-
grams, a user must manually write precise logical specifications for each
function: this can provide strong guarantees at the cost of requiring sig-
nificant manual intervention by developers.

Verifying the cryptographic properties of a program using this frame-
work would require the developer to manually write the cryptographic
specifications themselves for each function used in the program.

Type systems for JavaScript. There is a plethora of existing work on
expressive type systems for JavaScript: both research tools [27, 108] and
industry languages such as Flow [25] and TypeScript [83]. All of these
approaches require the application developer to write within this dialect
to leverage the benefits enabled by static checking. In this thesis, we aim
to avoid such a requirement to enable the testing of existing implementa-
tions. Such approaches suffer the disadvantages inherent to static typing-
based approaches, e.g., false positives.

Design-by-Contract systems. Contracts traditionally specify the pre- and
postconditions of individual methods in a program, along with invariants
about individual objects. Contracts are designed for runtime enforcement
to ensure that programs behave correctly in their deployed environment;
recent work has extended this concept to JavaScript [51, 30]. TreatJS [51] is
a language-embedded higher-order contract system which works by en-
forcing these contracts via run-time monitoring; predicates (e.g. TypeStr

20

2.2 Analyzing JavaScript Programs

) are checked by custom JavaScript functions. This approach allows for
the checking of simple properties, ones which can be checked inline by
native JavaScript: the properties we wish to check - such as checking
a key has been properly generated as a precondition - cannot be easily
expressed in such an extension. Further, contracts specify invariants of
objects and pre- and postconditions of functions, which mean they can-
not express the relationships between values within control flows (e.g. a
key generated by a proper function followed by an encrypt function). En-
coding security properties within contracts would require a mechanism to
check such meta-properties: one could naturally encode these properties
between functions in JavaScript by adding additional type-like informa-
tion to values—this is the approach described within this thesis. Alterna-
tively, one could achieve a similar aim by introducing additional shadow
variables. Ultimately, in the dynamic setting of JavaScript, this approach
would be equivalent to a system of dynamic typing such as that intro-
duced in this thesis.

Information-flow monitors. Work on monitors [44, 89] provide mecha-
nisms for dynamic enforcement of information flow in JavaScript; work
on information flow monitoring in the presence of libraries [45] extends
the applicability of monitor-based approaches. COWL [95, 46] is an in-
formation flow control system for web browsers preventing third-party
library code from leaking sensitive information, achieved via the label-
ing of browser contexts. This dynamic approach bears much similarity to
the static approaches advocated by Security Type Systems as discussed in
Section 2.1. These systems utilize a dynamic tag-based approach (e.g., the
work of Hedin et. al. [44]). Values are labeled with security labels represent-
ing a security classification. At runtime, labels are propagated through
the program and checked against particular security policies, e.g., that a
high-security value is not leaked to the user. As the program runs, when

21

2 Background

a computation involves (directly or indirectly) a high-security value, the
result is also high-security. However, values can never have their security
labels declassified (or lowered) by this approach: as such, high security
values cannot become low security. Unfortunately, this is not true of all
security properties, and particularly those discussed in this thesis, which
require declassification. For example, consider a Uint32Array represent-
ing a cryptographic key: the alteration of a single element means the entire
array can no longer be considered a valid key. Further, rather than general
security policies, we wish to enforce specific properties on values at the
boundaries of APIs; natural mechanisms for this are discussed in detail in
Section 4.4.2 and Section 5.4.2.

2.3 JavaScript and Cryptography

We describe the relationship between JavaScript and cryptography. First,
we give a brief overview of the cryptographic APIs in JavaScript. Second,
we discuss the current state-of-the-art in cryptographic analysis for Java-
Script, which focuses on verification of protocol implementations.

Cryptographic APIs for JavaScript There is a plethora of established
cryptographic APIs available for client-side JavaScript. This diverse col-
lection of APIs ranges from those written by experts (e.g. SJCL [94]) to
those written by developers (e.g. CryptoJS [66]). However, the need for
an established standard for cryptography in JavaScript led to the devel-
opment of the W3C specification for the Web Cryptography API, or Web-
Crypto [110]. Although previous libraries remain in use (particularly in
legacy applications), WebCrypto is now the de-facto standard for client-
side applications.

We describe in more detail the WebCrypto API, which is the principal

22

2.3 JavaScript and Cryptography

example throughout this thesis. The API is available within web browsers
through the crypto property of the Window object. This API provides both
a SubtleCrypto interface for access to cryptographic primitives, accessed
via crypto.subtle (so named because the use of these primitives is subtle
and requires careful use), and a source of randomness through crypto.

getRandomValues. The method getRandomValues takes as argument a
JavaScript TypedArray object, e.g., an array of unsigned 16-bit integers,
Uint16Array. The method overwrites the elements of the array with val-
ues which are considered to be random for cryptographic purposes, and
returns this array.

The SubtleCrypto interface exposes a series of methods to the devel-
oper allowing the use of cryptographic primitives. They make extensive
use of objects representing keys, CryptoKey and CryptoKeyPair. The lat-
ter of these describes a key pairing simply as an object with two proper-
ties, privateKey and publicKey, each of which is a CryptoKey object.
The CryptoKey object itself allows for interaction with the key but does
not directly expose the raw key to the developer. It has four accessible
properties:

• type, which is either "secret" (in the case of symmetric algorithms),
"private" or "public" (in the case that the key is stored as part of
a CryptoKeyPair object).

• extractable, which is true if the key can be extracted using the
API and false otherwise. That is, if this is true, the developer is
able to directly access the raw bytes of the key. Otherwise, the key is
only accessible through the CryptoKey object.

• usages, an array of strings governing what the key can be used for.
Possible elements are "encrypt", "decrypt", "sign", "verify",
"deriveKey", "deriveBits", "wrapKey", "unwrapKey". If a key is

23

2 Background

passed to a method not in this list, the use of the key is considered
invalid.

• algorithm, which is an object describing the parameters of the algo-
rithm the key is valid for.

Table 2.1 describes the algorithms supported by the various WebCrypto
APIs exposed by SubtleCrypto. We note that WebCrypto does not sup-
port certain known insecure encryption modes (e.g., ECB mode as dis-
cussed in Section 2.1), in a move that demonstrates progress in API de-
sign since the work of Egele et al. [32]. When specifying the algorithm as
an argument to any of these API calls, one must provide an object which
specifies both the argument and any special parameters required for use
of the primitive. For example, to encrypt a message with AES-GCM, one
must provide an object with a name property (the string "AES-GCM"), and
an iv property (which should be distinct for each encryption). We do not
describe the individual methods in Table 2.1 in detail.

All SubtleCrypto APIs return JavaScript Promise objects. A promise,
first introduced in ES5, is “an object that is used as a placeholder for the
results of a deferred (and possibly asynchronous) computation” [31]. For
example, calling encrypt returns a promise to a buffer of the resulting ci-
phertext. In this way, WebCrypto makes extensive use of asynchronous
code to defer cryptographic routines, only executing them when neces-
sary. The handling of the result of a promise p is achieved through the
syntax p.then(f, r): if the computation succeeds, f is called. If it fails,
r is called. A promise is considered to be in one of the following states:

(i) fulfilled if the computation succeeds, and f is called.

(ii) rejected if the computation fails, and r is called.

(iii) pending, otherwise.

24

2.3 JavaScript and Cryptography

1 let p = function() {
2 return new Promise(function(f, r){
3 setTimeout(function() { f(’resolved’); }, 5000)
4 });
5 };
6
7 let g = async function() {
8 console.log(’entering g’);
9 let res = await p();

10 return res;
11 }
12
13 console.log(g());

Listing 2.1: A program using async/await

A promise is resolved if it is either fulfilled or rejected. Promises provide the
important guarantee that neither f nor r will be called until p is resolved.
Throughout this thesis, we use the async/await syntax to abstract the
complexity of chaining multiple promises together. Consider the example
in Listing 2.1: first, g is marked async. This allows await expression on
line 9 inside the function. Here, execution is paused until this promise
is resolved; execution of g is then resumed. In this case, the function p

returns a promise which waits for 5 seconds before resolving to the string
’resolved’. As a result, this program prints ’entering f’ and then
prints ’resolved’ five seconds later.

Finally, we discuss those APIs which allow for extracting and generat-
ing keys. The generateKey allows the user to specify the valid usages
of the key to be generated: first, the user specifies which algorithm the
key is for, and the parameters of this algorithm, e.g., the name of the el-
liptic curve to use in Elliptic Curve-based Diffie Hellman Key Exchange
(ECDH). Second, the user declares whether the raw bytes of the key can

25

2 Background

Table 2.1: Cryptographic algorithms supported by WebCrypto.

WebCrypto API Call Supported Algorithms

sign(), verify() RSASSA-PKCS1-v1_5, RSA-PSS,
ECDSA, HMAC

encrypt(), decrypt() RSA-OAEP, AES-CTR, AES-GCM,
AES-CBC

wrapKey(), unwrapKey() RSA-OAEP, AES-CTR, AES-GCM,
AES-CBC, AES-KW

digest() SHA-1, SHA-256, SHA-384, SHA-512
deriveKey(), deriveBits() ECDH, HKDF, PBKDF2

be extracted; third, the user declares possible uses of the key. As with the
other methods of WebCrypto, this returns a promise to a CryptoKey object
containing the new key. The exportKey API takes as argument a data for-
mat (e.g., jwk, for a JSON web key), and a CryptoKey argument. It then
returns a promise to a buffer containing the key stored in the specified
format. In this way, for example, a public key can be broadcast across a
network. The dual of this method, importKey, allows data to be stored in
a CryptoKey object so that it can be used as a cryptographic key in future
WebCrypto API calls.

Analyzing cryptographic implementations. There is a strong line of work
involving the restriction of JavaScript to subsets in order to analyze crypto-
graphic implementations. In particular, this work seeks to leverage cryp-
tographic experts for semi-automatic verification of protocol implementa-
tions.

Bhargavan et al. proposed a statically typed subset of JavaScript for the
protection of cryptographic protocols, Defensive JavaScript (DJS) [11, 12].
The core aim of DJS is to guarantee behavioral integrity of JavaScript even
when loaded in a hostile environment. DJS is designed for use by crypto-
graphic experts: guarantees of security properties are governed by proofs

26

2.4 Test Generation for JavaScript

in the ProVerif protocol analyzer [19]. This analysis requires the devel-
oper to hand-write models and the automated extraction of these models
from DJS also requires the program be loop-free. Further, DJS itself is a re-
strictive subset of JavaScript which heavily limits developer freedom. For
instance, DJS forbids access to methods of native objects, such as String
.length, or access to DOM variables, such as document.location. Such
restrictions greatly limit the practicality of DJS for developers.

ProScript [52] is a DSL for the development of verified protocol imple-
mentations which can be executed within JavaScript applications, and also
compiles to a formal model which allows for symbolic analysis. With in-
tervention from a cryptographic expert, this in turn can be used to con-
struct computational proofs in CryptoVerif [18]. This has been successfully
used to verify implementations of both TLS 1.3 Draft-18 [10] and a vari-
ant of the Signal protocol [52]. This line of work is complementary to this
thesis; in describing a new language allowing for verification, developers
are able to partner with experts to fully verify new implementations. Our
work focuses on existing implementations written in full JavaScript and
does not require cryptographic expert intervention to detect many classes
of cryptographic errors.

2.4 Test Generation for JavaScript

In this section we outline a particularly effective strategy for test gener-
ation which allows us to systematically enumerate feasible control flow
paths of a program. We first provide a primer on the technique of dy-
namic symbolic execution (Section 2.4.1). We then describe the architec-
ture of ExpoSE (Section 2.4.2), a dynamic symbolic execution engine for
JavaScript.

27

2 Background

2.4.1 A Primer on Dynamic Symbolic Execution

Dynamic Symbolic Execution (DSE) has proved a successful technique for
automatically finding bugs in real world software. Traditionally, DSE en-
gines mostly targeted C, Java, or binary code [42, 78]. However, imple-
mentations of DSE for JavaScript have shown promising results for testing
of JavaScript code [90, 55, 60].

In DSE, some inputs to the program under test are made symbolic while
the rest are fixed. Starting with an initial concrete assignment to the sym-
bolic inputs, the DSE engine executes the program both concretely and
symbolically and maintains a symbolic state that maps program variables
to expressions over the symbolic inputs. Whenever the symbolic execu-
tion encounters a conditional operation, the symbolic state’s evaluation of
the condition, or its negation, are added to the path condition, depending
on the concrete result of the operation. Once the execution finishes, the
path condition uniquely characterizes the executed control flow path. By
negating the last constraint of the path condition (or one of its prefixes),
the DSE engine generates a constraint for a different path. A constraint
solver is then called to check feasibility of that path; if this path is feasible,
a satisfying assignment for the symbolic input variables is returned. This
satisfying assignment can then be used as a new test case for the program,
executing a distinct control flow path.

An example. Consider the artificial example in Listing 2.2. We want to
analyze this function with DSE to see if a combination of inputs can re-
sult in an error. To do this, we first mark both inputs (line 1), x and y

as symbolic—with symbols X and Y respectively—and provide an initial
concrete input for each, say x=0 and y="a". The program is then run with
these concrete inputs, and at each program branching point, we record
and add the constraint to the path condition.

28

2.4 Test Generation for JavaScript

1 function f(x, y) {
2 var z = x + 2;
3 if (z > 10) {
4 if (y == "err") {
5 throw "Error";
6 } else {
7 console.log("Success");
8 }
9 } else {

10 console.log("Success");
11 }
12 }

Listing 2.2: A simple branching JavaScript program.

For these concrete inputs, at line 3, z=2, so z>10 is false, and we instead
enter the else branch (line 9). Collecting up the path constraint and sim-
plifying it in terms of our symbolic program input variables, this control
flow path is characterized via the path constraint pc1 = X + 2 ≤ 10, since
this is equivalent, after simplifying and describing in terms of our sym-
bols, to ¬(z > 10). We then negate the final (in this case only) constraint of
pc1, obtaining X > 8, and pass this to a constraint solver, which finds that
this is satisfiable and returns a satisfying model, say x=9, y="a". There
are no constraints on y, so the constraint solver could offer any string as a
valid assignment; in this case, the assignment is unmodified.

We then execute our function again with this new satisfying model as
input, again collecting the constraints as we go: this time z>10 is true,
so we take this branch (line 3) and then perform an equality check on y

(line 4). This fails, so we execute the else branch (line 6) and the program
terminates. We collect up constraints in terms of our symbols as before and
obtain pc2 = X > 8∧ Y 6= "err". Negating the final constraint of pc2, and

29

2 Background

passing this to a constraint solver yields a satisfying model x=9, y="err".
Using these as concrete inputs reaches line 5, triggering the bug. Since the
negating constraints within the path condition for this execution results
in a path we have already triggered, we also know we have covered all
control flow paths within the function.

Concretization. The joint symbolic and concrete execution is a core ad-
vantage of DSE: when an external function cannot be analyzed, or an op-
eration lies outside the constraint solver’s theory, the DSE engine can con-
cretize parts of the symbolic state without sacrificing soundness, at the
cost of reducing the search space. Nevertheless, avoiding excessive con-
cretization is important to allow effective test generation. This is one of
the reasons why low-level or byte-code languages are popular DSE tar-
gets, while keyword-rich languages with large standard libraries are sup-
ported less frequently [21]. In order to avoid excessive concretization in
JavaScript, constructing robust models for such standard libraries is im-
portant. In Chapter 6 we describe the construction of a model for a par-
ticularly complex part of the ECMAScript 2015 standard [31]: the regular
expression API (see Section 6.1 for details of this API).

2.4.2 ExpoSE: Practical DSE for JavaScript

ExpoSE [60, 61] is a DSE engine for JavaScript programs. In this section
we give an overview of ExpoSE, describing both its general architecture
and approach to test case selection.

Architecture ExpoSE takes a JavaScript program and a symbolic unit test
(a test harness) and generates test cases until it has explored all feasible
paths or exceeds a time bound. ExpoSE consists of two main components,
the test executor and the test distributor, as shown in the overview in Fig-

30

2.4 Test Generation for JavaScript

Distributor Executor

Program
Under Test

Input TraceInput

Alternative
Inputs

SMT Solver

Models Path Condition

M
ul

tip
le

C
on

cu
rr

en
tI

ns
ta

nc
es

Figure 2.1: The ExpoSE architecture [60].

ure 2.1. The distributor manages the global state of the exploration, ag-
gregates statistics, and schedules test cases for symbolic execution. The
ExpoSE framework allows for the parallel execution of individual test
cases in separate test executor processes, aggregating coverage and alter-
native path information as each test case terminates. This parallelization
is achieved by executing each test case as a unique process allocated to a
dedicated single core; as such the analysis is highly scalable.

The test case executor instruments the program under test to perform
DSE and detect any bugs during execution. ExpoSE uses the Jalangi2 [92]
framework for instrumentation of JavaScript software in order to create a
program trace. It inserts callbacks for all JavaScript syntax, including in
code dynamically created by eval and require. As the program termi-
nates, ExpoSE calls the SMT solver Z3 [28] to identify all feasible alternate
test-cases, in the form of models, from the trace. These models are then
added to a queue of test cases.

Test case selection. The next test case to be executed is selected from
the queue for execution in the manner of generational search [42]. The
strategy for test case selection is similar to the CUPA strategy proposed

31

2 Background

by Bucur et al. [21]. Program fork points are used to prioritize unexplored
code: each expression is given a unique identifier and scheduled test cases
are sorted into buckets based upon which expression was being executed
when they were created. The next test case is selected by choosing a ran-
dom test case from the bucket that has been accessed least during the anal-
ysis; this prioritizes test cases triggered by less common expressions.

32

Structure of Security Annotations 3
We describe the mathematical structure underpinning Security Annota-
tions. In order to avoid obscuring this presentation with the complications
of language mechanisms, in this chapter we divorce Security Annotations
from the context of a single language. We begin by describing their design
and the types of security properties that can be modeled in this setting; we
explore the necessity of hierarchical Security Annotations and their combi-
nation via composition through example (Section 3.1). Next, we formalize
these notions: we first define a mechanism for the declaration of Security
Annotations for a given program, and we describe the partial ordering
on Security Annotations induced by combining security properties. We
discuss a novel cut operator for the removal of Security Annotations (Sec-
tion 3.3). Finally, we discuss related work (Section 3.4).

This chapter details the underlying foundations of Security Annota-
tions. Some results and definitions contained in this chapter (e.g., the def-
inition of cut in Section 3.3) have been previously discussed in work for
which the author of this thesis was first author [65]. However, the full pre-
sentation of the concept of Security Annotations and accompanying proofs
are unique to this thesis.

33

3 Structure of Security Annotations

3.1 What are Security Annotations?

Following their introduction in Chapter 1, we delve further into what Se-
curity Annotations are, and the security properties they represent. Through
example, we illustrate the relationship between Security Annotations and
programs.

Security properties. The notion of a security property is somewhat vague
but we use it to ground the more concrete notion of Security Annotations.
For a given program (or program term), a security property is simply any
property relating to the security of the program (term). Of course, we have
not defined what we mean by security: within the context of this thesis we
confine ourselves to properties underpinning secure and verified commu-
nication. In this sense, we consider predominantly cryptographic proper-
ties of programs and terms.

Security properties can be considered as preconditions for cryptographic
functions and are then valid properties of results of evaluation of these
functions (postconditions). For example, negotiating a Diffie-Hellman Key
Exchange with another party allows us to establish clear security guaran-
tees about encryption performed with the resulting secret key, under the
assumption that the secret keys were properly generated and sufficiently
large, and that the underlying group and corresponding generator for that
group are chosen properly. If this is the case, we can say that the resulting
shared secret is indeed known only to these two parties.

Such properties allow us to make specific security guarantees about
overall programs: for example, if a secure key exchange was combined
with encryption via AES-CBC with a sufficient block size, one can argue
that the resulting messages can be read only by the intended recipient.
However, in order to express these relationships between different crypto-
graphic primitives, we need a mechanism for describing the properties of

34

3.1 What are Security Annotations?

a program term—either statically or during program evaluation. Other-
wise, we cannot ensure these implicit contracts are respected: encryption
may be correctly performed, but if the key exchange was undermined in
some way, then the resulting encryption does not offer any meaningful
security guarantees.

Defining Security Annotations. Security Annotations represent the se-
curity properties which are valid on program terms (or, in the case of dy-
namic languages, individual objects and values). For example, the return
value of a trusted key generation API is a valid cryptographic key, so could
carry an annotation CryptKey. Such Security Annotations, which repre-
sent only a single security property are atomic. Annotations are compos-
able to represent multiple distinct properties: for example, if a value is a
key and has been generated as a cryptographically secure random value
(CSRV), then it must be associated to both the corresponding annotations
since it can be used in operations requiring either of these. The compo-
sition of these, via the operator ∗, is written CSRV * CryptKey. Security
properties are also hierarchical: for example, PrivKey is more specific than
CryptKey. Security Annotations therefore have a notion of subannotation
judgments, e.g., PrivKey ≺: CryptKey.

Different libraries have different security properties, and to prevent rea-
soning about unused security annotations, we propose that each library
declare the Security Annotations used. This avoids reasoning about every
possible annotation in each program, and also allows for the construction
of new Security Annotations within a library when required.

A concrete set of Security Annotations. We describe a set of Security
Annotations which allow us to express the security properties required
for the JavaScript WebCrypto encrypt API to produce a secure ciphertext.
Listing 3.1 describes a specification for this API in terms of Security An-

35

3 Structure of Security Annotations

notations. In particular—and most importantly for illustrating the struc-
ture of security annotations—lines 1-3 describe the Security Annotations
required to construct this specification. Line 1 defines the base Security
Annotations used in the specification. Line 2 defines the subannotations
of CryptKey and line 3 the subannotations of Message. These Security
Annotations represent the following underlying security properties:

• CSRV represents cryptographically secure randomly generated val-
ues: any value or term annotated with this is assumed to have been
generated by a random number generator with sufficient entropy
that it can be used in cryptographic operations.

• Message is a Security Annotation on values which, in of itself, does
not have any specific notions of security. However, it has two suban-
notations, Plaintext and Ciphertext. The former is used to rep-
resent unencrypted values, and the latter represents values which
have been encrypted.

• CryptKey represents the security property that a value is a valid
cryptographic key. The subannotations PrivKey, PubKey and SymKey

represent specific types of cryptographic key: public, private and
symmetric, respectively, which are utilized for different cryptographic
algorithms.

In this chapter we will not describe in detail how the actual enforcement
mechanisms work to define a specification for encrypt API; details of the
runtime manipulations of Security Annotations in JavaScript are deferred
to Chapter 5. However, we describe how the structural features of Security
Annotations are used to define this specification. First, lines 6-8 describe a
check of an atomic Security Annotation—namely, that the first argument
to the API is an object containing a property "iv", which is annotated

36

3.1 What are Security Annotations?

with CSRV—that is, the initialization vector to be used for the encryption
has been generated from an API providing a sufficient source of entropy.

We seek to check that the key provided for the encryption has been
properly generated and is of the correct type. The check that the key argu-
ment is properly generated is performed on line 7—we simply check the
argument is a valid cryptographic key. WebCrypto supports both sym-
metric encryption schemes (via AES) and asymmetric encryption schmes
(via RSA); we differentiate between these two cases. In order to do this,
we recall the encoded hierarchy of Security Annotations relating to keys
(line 2); this enables us to perform a more granular analysis of the sup-
plied key. Line 10 ensures that when a symmetric algorithm is chosen,
the supplied key is derived from a valid key derivation scheme producing
a shared symmetric key (SymKey). This prevents, for example, the user
mistakenly using a private key to encrypt the data rather than the shared
secret. Similarly, line 12 ensures that when an asymmetric algorithm is
selected, the key argument is a public key, per the requirements of RSA.

Finally, lines 18-19 encodes the security postconditions of the API in
terms of Security Annotations. First, we remark that any security prop-
erty of the original data to be encrypted remains true of the ciphertext, so
we use cpAnn expression to duplicate these annotations onto the return
value. The result is a valid encrypted message, so we describe this via
the Ciphertext annotation (added to the annotations on the value via the
as expression), and because of this, we must discard the dual of this an-
notation, Plaintext, if it was valid security property of the original data
copied across (via the drop expression).

37

3 Structure of Security Annotations

1 SecAnn <CSRV * Message * CryptKey>;
2 SecAnn <PrivKey * PubKey * SymKey> Extends <CryptKey>;
3 SecAnn <Plaintext * Ciphertext> Extends <Message>;
4
5 window.oldCrypto = window.crypto;
6 const encShim = async function(alg :S ["iv", <CSRV>],
7 key : <CryptKey>,
8 data) {
9 if (/AES/.test(alg.name)) {

10 (function(arg : <SymKey>) {})(key);
11 } else if (/RSA/.test(alg.name)) {
12 (function(arg : <PubKey>) {})(key);
13 } else {
14 throw FailedSecurityCheck;
15 }
16 var res = await
17 window.oldCrypto.subtle.encrypt(alg, key, data);
18 return (cpAnn(data, res) drop <Plaintext>)
19 as <Ciphertext>;
20 }
21 Object.defineProperty(window.crypto.subtle,
22 "encrypt",
23 {value: encShim});

Listing 3.1: An annotated shim of WebCrypto’s encrypt API.

38

3.2 Formalizing Security Annotations

3.2 Formalizing Security Annotations

In this section we describe a lattice of Security Annotations, which pro-
vide a natural structure for the security properties in this thesis. We define
a mechanism for introducing atomic annotations and their composition of
these annotations, and then describe their lattice structure. We general-
ize this definition to allow for user-defined hierarchies of atomic Security
Annotations and describe the construction of a lattice for this generic ap-
proach to defining Security Annotations.

Defining atomic Security Annotations. Security Annotations represent-
ing a single security property are defined on a per program basis. Across
languages, the statement SecAnn a defines a Security Annotation with the
name a. We call annotations defined in this way atomic since they encode
only a single property. Let A = {a1, . . . , an} be the set of all names of
atomic Security Annotations defined in this way in a program P. Through-
out this thesis, we assumeA is finite. We will frequently abuse notation in
this thesis and write SecAnn a1 * ... * an, to represent the sequence
of statements SecAnn a1; ... SecAnn an.

Composition of annotations. As discussed in Section 3.1, program terms
may possess multiple Security Annotations, composed via an operator ∗.
To describe this composition, we first describe a structure for Security An-
notations which allows for a natural ordering of composed annotations.
Recall that the set A describes the names of all atomic Security Annota-
tions in a program. The set of all possible annotations in the program is
therefore P(A), the power set of A. In this way, for A defined as above,
the atomic annotations are simply the singleton sets {ai} for i ∈ {1, . . . , n}.
Throughout this thesis we will frequently drop this singleton set from no-
tation and simply write ai for these annotations. Since Security Annota-

39

3 Structure of Security Annotations

tions are more specific when they describe more security properties, we
order P(A) by reverse inclusion, i.e., if S, S ′ ∈ P(A), S ≺: S ′ whenever
S ′ ⊆ S. This structure gives a natural lattice on (P(A),≺:) with:

• Greatest lower bound (denoted u): set union (∪)

• Least upper bound (t): set intersection (∩)

• Top element (Top or >): ∅

• Bottom element (Bot or ⊥): P(A).

This structure is a variation of the standard powerset lattice where we
have reversed the ordering (Example A.1, [69]), and gives us a practical
ordering of Security Annotations. The composition of two annotations, S
and S ′ is simply greatest lower bound, i.e., a ∗ b is simply syntactic sugar
for {a} u {b}.

Hierarchies of atomic annotations. Unfortunately, the notion of our Se-
curity Annotation lattice is not quite so simple in practice. As illustrated in
Listing 3.1, atomic annotations may be ordered into atomic hierarchies. To
encode this, we introduce a new ordering ≺:A on A with an initial axiom
that for all a ∈ A, a ≺:A a.

We introduce hierarchies in programs through the language-agnostic
statement SecAnn a Extends b, which first defines a by adding it to A
and then constructs the axiom a ≺:A b which orders a and b1. We extend
this relation to its transitive closure, i.e., if a ≺:A b and b ≺:A we add the
axiom a ≺:A c. By definition, ≺:A is a partial order on A.

We abuse notation and write SecAnn a1* . . . *an Extends b to represent
SecAnna1 Extendsb; . . . SecAnnan Extendsb. Motivated by our concrete

1We forbid declarations of the form SecAnn a Extends b where a is already defined,
which ensures that the resulting ordering is antisymmetric (i.e., one cannot construct a
circular ordering a ≺:A b ≺:A a).

40

3.2 Formalizing Security Annotations

CryptKey

PrivKeyPubKey SymKey

CSRV Message

Plaintext Ciphertext

Figure 3.1: The atomic Security Annotation hierarchy for Listing 3.1.

link to security properties, we do not allow the definition of atomic anno-
tations to be subannotations of multiple atomic annotations: this would
not make sense. Similarly, we do not allow an atomic annotation to be de-
fined as a subannotation of the composition of annotations, since it is not
clear what this would mean for the underlying security properties.

An illustrative atomic hierarchy. The atomic Security Annotation hierar-
chy for the program in Listing 3.1 is given concretely in Figure 3.1. The
atomic hierarchy in this program is governed by three distinct trees of an-
notations, note that CSRV has no parent or child annotation. The set A
comprises all annotations given in the diagram.

The set of Security Annotations. From our partial ordering on A, we
construct a new, smaller, lattice of Security Annotations, with natural or-
dering and composition operator. We consider our set of annotations to
be the power set ofAwithout any annotations which would contain more
than one member of an atomic hierarchy. Explicitly, we define the set of
annotations as:

L := P(A) \ {S | {a, b} ⊆ S∧ a ≺:A b}.

A partial ordering on Security Annotations. Since this is simply a sub-
set of the power set of A, we inherit its partial ordering of reverse subset
inclusion. However, we extend this definition to incorporate our partial

41

3 Structure of Security Annotations

ordering on atomic hierarchies. We say that S1 ≺: S2 whenever:

(i) S2 ⊆ S1, or

(ii) ∀b ∈ S2, ∃a ∈ S1 such that a ≺:A b.

That is, we check first if the elements are ordered by reverse set inclusion.
If not, intuitively, S ≺: S ′ only if S is more specific than each singleton {b}

for each b ∈ S ′. This is true if we can find an a ∈ S such that a and b are
ordered by our partial ordering on atomic annotations.

Lemma 3.1. The relation ≺: as defined above is a partial order on L.

Proof. Reflexivity is immediate since S ⊆ S. Next, we prove transitivity,
i.e., that if S1 ≺: S2 and S2 ≺: S3 then S1 ≺: S3. There are four cases:

(i) Suppose both S2 ⊆ S1 and S3 ⊆ S2, then we are done immediately
since reverse set inclusion is a partial order.

(ii) Suppose S2 ⊆ S1 and ∀c ∈ S3, ∃b ∈ S2 such that b ≺:A c. Then since
S2 ⊆ S1 we know that each b ∈ S2 is also in S1 and so we are done.

(iii) Suppose S3 ⊆ S2 and ∀b ∈ S2, ∃a ∈ S1 such that a ≺:A b. Then since
all b ∈ S2 are in S3 and there are no other elements of S3, we have
that ∀b ∈ S3, ∃a ∈ S1 such that a ≺:A b and we are done.

(iv) Suppose ∀b ∈ S2, ∃a ∈ S1 such that a ≺:A b and ∀c ∈ S3, ∃b ∈ S2
such that b ≺:A c. Then, for all c ∈ S3, we can chose some b in S2
with b ≺:A c, and for that b, there is some a ∈ S1 such that a ≺:A b.
Since ≺:A is a partial order, we have a ≺:A c and are done.

Finally, we prove antisymmetry, i.e., that whenever S1 ≺: S2 and S2 ≺: S1
we must have S1 = S2. There are three cases:

42

3.2 Formalizing Security Annotations

(i) Suppose both S2 ⊆ S1 and S1 ⊆ S2, then we are done immediately
since reverse set inclusion is a partial order.

(ii) Suppose ∀b ∈ S2,∃a ∈ S1 such that a ≺:A b and ∀a ∈ S1, ∃b ′ ∈ S2
such that b ′ ≺:A a. Chaining these definitions, we get that for all
b ∈ S2 b ′ ≺:A a ≺:A b for some b ′ ∈ S2 and a ∈ S1. But since S2 ∈ L,
b = b ′ and then since≺:A is a partial order, a = b. Therefore S1 ⊆ S2.
The other inclusion is identical, and so we have S1 = S2.

(iii) Finally, suppose S1 ⊆ S2 and ∀b ∈ S2, ∃a ∈ S1 such that a ≺:A b.
Then since S1 ⊆ S2, we know that the a ∈ S1 with a ≺:A b is also in
S2, but since S2 ∈ L we must have a = b. But then S2 ⊆ S1 and we
are done since reverse set inclusion is a partial order.

The greatest lower bound, u. The greatest lower bound operator re-
quires similar modification. We define u for (L,≺:) as follows:

S1 u S2 := (S1 ∪ S2) \ {b | {a, b} ⊆ S1 ∪ S2 ∧ a ≺:A b}.

Intuitively, we compose Security Annotations, constructing a more ex-
pressive annotation, and prune those atomic annotations which are repre-
sented by more expressive subannotations. Considering again Figure 3.1,
the greatest lower bound of {PubKey, CSRV} and {CryptKey, CSRV} is
{PubKey, CSRV} since PubKey ≺:A CryptKey.

Lemma 3.2. The definition of u above coincides with the greatest lower
bound for (L,≺:).

Proof. For S1, S2, let R = (S1 ∪ S2) \ {b | {a, b} ⊆ S1 ∪ S2∧a ≺:A b}. We first
prove that R ≺: S1, the case that R ≺: S2 is similar. Suppose b ∈ S1, then
either b ∈ R (since R ⊂ S1 ∪ S2), or there is some a such that a ≺:A b and

43

3 Structure of Security Annotations

a ∈ R. In either case, there is some c ∈ R (either a or B) with c ≺:A b. But
this is precisely clause (ii) of the definition of ≺: and therefore u is a lower
bound.

Second, we prove that for any T ∈ L with T ≺: S1 and T ≺: S2 then
T ≺: R. Suppose, for contradiction, that T 6≺: R. Then r ∈ R such that there
is no t ∈ T with t ≺:A r. Pick any x ∈ R which is not in T (this must exist
otherwise T ≺: R), since R ⊆ S1 ∪ S2, suppose without loss of generality
that x ∈ S1. Given x 6∈ T , we know S1 6⊆ T . But T ≺: S1, so ∀b ∈ S1, ∃t ∈ T
such that t ≺:A b. But then there is some t ∈ T with t ≺:A x, which is a
contradiction.

The least upper bound operator, t. Our least upper bound is consid-
erably more complex. Note that in this thesis, we will not regularly use
the least upper bound, preferring instead an operation that allows to re-
move invalid Security Annotations (Section 3.3). Intuitively, the least up-
per bound of two annotations is the intersection of the two sets (as in
a standard powerset lattice ordered by reverse inclusion). However, we
must account for our atomic hierarchies: where two distinct annotations
of the same hierarchy are present in this intersection, we should ‘traverse
up’ the tree induced by ≺:A to find an atomic annotation which has both
as common children. For example, considering Figure 3.1, the least up-
per bound of the singletons {SymKey} and {PrivKey} is their immediate
parent {CryptKey}. However, since our annotations do not contain multi-
ple elements of the same atomic hierarchy we must reincorporate them to
compute the least upper bound. For S1, S2 ∈ L, let

R1 := S1 ∪ {c | c ∈ A∧ ∃a ∈ S1 : a ≺:A c}

R2 := S2 ∪ {c | c ∈ A∧ ∃b ∈ S2 : b ≺:A c}.

44

3.2 Formalizing Security Annotations

Intuitively, these sets are the Security Annotations, along with all atomic
parents of members the Security Annotation. For example, for S1 = {SymKey},
this extended set is given by R1 = {SymKey, CryptKey}. Clearly, in gen-
eral, R1, R2 6∈ L; however, we will correct this in our definition of t for
(L,≺:) as follows:

S1 t S2 := (R1 ∩ R2) \ {d | {c, d} ⊆ (R1 ∩ R2)∧ c ≺:A d}.

Here, we take the intersection of these two extended sets, in the manner of
the least upper bound for a powerset lattice order by reverse set inclusion,
but then we must ensure that the resulting set is in L. To do this we take all
pairs in this set and, whenever they are ordered hierarchically, keep only
the atomic subannotation. We first prove that this is indeed a member of
L.

Lemma 3.3. S1 t S2 ∈ L.

Proof. Let R = (R1 ∩ R2) \ {d | {c, d} ∈ (R1 ∩ R2) ∧ c ≺:A d} with R1, R2 as
defined previously. Suppose otherwise, then ∃a, b ∈ R : a ≺:A b. Then
a, b ∈ R1 ∩ R2 but a, b 6∈ {d | {c, d} ∈ (R1 ∩ R2) ∧ c ≺:A d}. But this a
contradiction, since {a, b} ∈ R1 ∩ R2 and a ≺:A b.

Second, we prove that this is indeed the least upper bound.

Lemma 3.4. The definition of t coincides with the least upper bound for
(L,≺:).

Proof. Let R = (R1 ∩ R2) \ {d | {c, d} ∈ (R1 ∩ R2) ∧ c ≺:A d} with R1, R2 as
defined previously. We first show R is an upper bound. We show S1 ≺: R,
the case where S2 ≺: R is similar. It suffices to show that ∀r ∈ R, ∃a ∈ S1 :
a ≺:A r. Since by definition R ≺: R1 ∩ R2, for all r ∈ R, r ∈ R1. This means
that r ∈ S1 or r ∈ {c | c ∈ A ∧ ∃a ∈ S1 : a ≺:A c}. In either case, there is
some a ∈ S1 with a ≺:A r, but then we are done.

45

3 Structure of Security Annotations

Second, we show R is the least upper bound. We want to show that if
T ∈ L and S1 ≺: T, S2 ≺: T then R ≺: T . Since S1 ≺: T , pick any t ∈ T , then
there is an a ∈ S1 with a ≺:A t. Therefore, t ∈ R1 by definition; similarly,
t ∈ R2, so T ⊆ R1 ∩ R2. Since t ∈ R1 ∩ R2, we know that either t ∈ R or
t ∈ {d | {c, d} ⊆ (R1 ∩ R2)∧ c ≺:A d}. But then in either case there must be
some r ∈ Rwith r ≺:A t, so R ≺: T as required.

A lattice for Security Annotations. Now that we have bounds operators
on Lwe can define top and bottom elements, which follow naturally from
the annotation lattice without atomic hierarchies. Since the ∅ ≺: S for any
S, the top element remains ∅. The bottom element of this lattice, ⊥, is not
simply A—from our definition of L, we must keep only the most specific
annotation in each disjoint atomic hierarchy, i.e., if a ≺:A b, then b 6∈ ⊥.
We therefore obtain

⊥ := A \ {b | {a, b} ⊆ A∧ a ≺:A b}.

For example, considering the atomic hierarchy in Figure 3.1. In this case,

⊥ = {PubKey, PrivKey, SymKey, CSRV, Plaintext, Ciphertext}.

Although a value may possess a Security Annotation with such seemingly
inconsistent atomic annotations, such annotations may still make sense
under certain contexts, allowing the value to satisfy either requirement
(through subtyping).

Putting the results of this section together we obtain a lattice of Security
Annotations. As before, the composition of annotations, ∗, coincides with
the greatest lower bound of L.

Theorem 3.5. The tuple (L,≺:,u,t, ∅,⊥) is a lattice.

46

3.3 The cut Operator

3.3 The cut Operator

In this section, we describe an additional operator on Security Annota-
tions, cut, which allows the removal of specified Security Annotations
without removing superannotations. Recall that we use the composition
operator ∗ to simplify presentation and that a ∗ b is syntactic sugar for
{a} u {b}.

The cut operator is motivated by the situation where as a result of an
API call, a security property which previously held is no longer valid.
For example, after a value is decrypted, it can no longer be considered
ciphertext. We therefore require an operator which allows us to discard
annotations from values or terms. Unfortunately this operator does not
coincide with the least upper bound, since none of the underlying dis-
carded security properties should remain valid. For example, consider
the lattice in Figure 3.1. The result of cut(PrivKey * CSRV, PrivKey) is
CryptKey * CSRV: the most specific annotation such that PrivKey is no
longer valid. However, there is one key subtlety here: when pruning a
Security Annotation, any superannotations of this annotation should re-
main valid, e.g., CryptKey should remain valid: it has not been explicitly
discarded. For the general case, with arbitrary annotations, we ensure that
none of the atomic annotations discarded are subannotations of the result-
ing Security Annotation; this is because the intuition here is that we are
arguing none of the discarded properties remain valid.

Recall that we assume A is finite; the finiteness of this lattice allows us
to define cut as follows:

Definition 3.6 (The cut operator). cut(S1, S2) is the annotation R such
that2:

2 This definition is adapted from the work of Mitchell et al. [65] in two ways: first, an ad-
ditional clause clarifies the definition when S2 is the empty set. Second, in case (ii), we
clarify the condition when S2 is non-singleton, and the clause stipulating minimality

47

3 Structure of Security Annotations

(i) if S2 = >, then cut(S1,>) = >;

(ii) otherwise, R is the annotation with S1 ≺: R and R 6≺: {b} for all b ∈ S2
such that for any other T satisfying these properties, R ≺: T .

Armed with a formal definition of this we define an explicit procedure for
this operator and demonstrate that it satisfies the definition. This illus-
trates that this operator both exists for any two annotations, and also that
it is uniquely defined. To do this, we use a similar trick to the description
of a least upper bound operator: our base Security Annotation, S1, is en-
larged with all parent atomic annotations, and the annotation we want to
remove, S2 is enlarged with all the atomic children. We then remove this
extended S2 from the extended S1, and then add a correction to ensure that
the result is a member of L.

Proposition 3.7. Let S1, S2 ∈ L be Security Annotations, and S2 6= >. Let:

R1 := S1 ∪ {c | c ∈ A∧ ∃a ∈ S1 : a ≺:A c}

R2 := S2 ∪ {d | d ∈ A∧ ∃b ∈ S2 : d ≺:A b}

R ′ := R1 \ R2

Then R := R ′ \ {f | {e, f} ⊆ R ′ ∧ e ≺:A f} coincides with cut(S1, S2).

Proof. We need to show (i) S1 ≺: R, (ii) R 6≺: {b} for all b ∈ S2 and (iii) if T
is satisfies (i) and (ii), then R ≺: T .

The proof of (i) is straightforward by this construction: clearly, R ⊆ R ′ ⊆
R1. But then for any r ∈ R, r ∈ S1 or ∃a ∈ S1 such that a ≺:A r. But this is
precisely the definition of S1 ≺: R.

To prove (ii), we need to prove that for each b ∈ S2, then ∀r ∈ R, r 6≺:A b.
Pick any b ∈ S2, and suppose for contradiction that there is some r ∈ R

has been modified to remove the requirement that S is distinct and R 6≺: S’ since ≺: is a
partial order.

48

3.4 Related Work

with r ≺:A b. Then either r ∈ S2 or r ∈ {d | d ∈ A∧ ∃b ∈ S2 : d ≺:A b} by
definition. But then r ∈ R2, and so r 6∈ Rwhich is a contradiction.

To prove (iii), suppose otherwise. Then ∃t ∈ T such that ∀r ∈ R, r 6≺:A t.
Since S1 ≺: T , we know that either t ∈ S1 or ∃a ∈ S1 : a ≺:A t, which
precisely means that t ∈ R1. Then T ⊆ R1. Consider T ∩ R2; if this is non-
empty, then for some t ∈ T ∩R2 there is some b ∈ S2 with t ≺:A b. But then
this contradicts R 6≺: {b}. This intersection must therefore be empty, and
we need only consider the reduction step from R ′ to R in a similar manner
to Lemma 3.4. In particular, we therefore know that T ⊆ R ′ and so either
t ∈ R or t ∈ {f | {e, f} ⊆ R ′ ∧ e ≺:A f}. But then in either case there must be
some r ∈ Rwith r ≺:A t, so R ≺: T as required.

The final property we prove is to demonstrate that cut respects the an-
notation hierarchy, which is necessary in order to demonstrate annotation
safety for a lambda calculus with Security Annotations (Theorem 4.3).

Lemma 3.8. Let R, R ′ be Security Annotations such that R ≺: R ′. Then
cut(R, S) ≺: cut(R ′, S).

Proof. By definition, R ′ ≺: cut(R ′, S). By transitivity, we obtain R ≺:
cut(R ′, S). We also know by definition that cut(R ′, S) 6≺: S. Applying
the second clause of Definition 3.6, we must have cut(R ′, S) 6≺: cut(R, S)
and cut(R, S) ≺: cut(R ′, S) as required.

3.4 Related Work

The description of security properties enforced by Security Annotations
as discussed in this chapter draws on similar notions discussed in other
works which address security properties of program terms [7, 54, 32, 53,
95]. In the manner of these, we do not formally define what it means for a

49

3 Structure of Security Annotations

program property to be a security property, but rather construct machin-
ery to allow for description of a wide variety of useful properties. For
example, F7 [7] describes machinery for arbitrary refinement types and
describes how to use these for specifying programs obeying security prop-
erties.

The design of a lattice of Security Annotations follows largely standard
constructions [69]. The partial order on Security Annotations draws from
a range of subtyping approaches. In particular, the structure of Security
Annotations induced by composition are inspired in part by record typ-
ing [80]. For example, subtyping for records defines that records are more
specific when they carry more fields. This mirrors the intuition that a Secu-
rity Annotation is more precise when it describes more security properties.

Type qualifiers [34], as discussed in Section 2.1, provide inspiration for
the design patterns of Security Annotations. In particular, the underlying
construction of type qualifiers is that of a qualification lattice, similar to
our induced lattice on Security Annotations. In both cases, this provides
a natural mechanism for composition of additional type specifications.
However, Section 3.3 describes operators that we use to allow reclassifica-
tion of a term’s Security Annotations, e.g., cut. In contrast, type qualifiers
of a term cannot be reclassified, which has contributed to the observation
that type qualifiers are ill-suited to untyped scripting languages [48].

50

A Lambda Calculus of Security
Annotations 4
In this chapter we introduce a model for Security Annotations within the
context of a small language. We use as our framework a simple lambda
calculus and extend both types and values with Security Annotations.
We first explore the design decisions behind Security Annotations (Sec-
tion 4.1). We then describe the details of λSA: first, the syntax (Section 4.2)
and runtime semantics (Section 4.3), then typing judgments for Security
Annotations (Section 4.4). Next, we describe the manipulation of Security
Annotations (Section 4.5) and describe safety guarantees for the Lambda
Calculus (Section 4.6). Finally, we discuss related work (Section 4.7).

This chapter contains an extended version a paper presented at PEPM
2018 for which the author of this thesis was first author [65]. In this thesis,
we extend the discussion of underlying design decisions, and augment
the language with the cpAnn operator. Finally, we provide full proofs of
annotated type safety for λSA

1.

4.1 Design Decisions for λSA

In Section 3.1, Security Annotations were introduced as add-ons to the
type system of a language representing security properties, which can be

1An accompanying reference implementation is available at https://github.com/
ltbinsbe/lambda-security-tags.

51

https://github.com/ltbinsbe/lambda-security-tags
https://github.com/ltbinsbe/lambda-security-tags

4 A Lambda Calculus of Security Annotations

manipulated during evaluation of the program. In this chapter we for-
malize this concept by designing a lambda calculus with Security Anno-
tations. We describe, in this section, the core design decisions facilitating
such a calculus and describe alternatives to the presented design, compar-
ing their relative merits. In this chapter our broad notational choices and
description of the calculus follow that of Pierce [80].

A traditional typed lambda calculus enforces types statically and pro-
vides guarantees that well-typed programs are indeed valid: they will
evaluate to a single value. We want to mirror this notion: although our
eventual target is dynamic languages, we wish to be able to comment on
what it means for a program with Security Annotations to be valid. This
gives us our central design goal: we want a similar notion to type safety to
be provable for Security Annotations, i.e., if a program respects the Secu-
rity Annotation contracts, then it is safe. We further wish to ensure that the
process of adding Security Annotations to the calculus—and the means to
manipulate them—does not break the existing safety properties of the lan-
guage.

In order to leverage similar guarantees to those of type safety, we pro-
pose the static enforcement of Security Annotations within our extended
lambda calculus. This ties into the idea that Security Annotations for Java-
Script act as add-ons to the type system: attaching Security Annotations
to the type of a term retains the central design paradigm outlined in Sec-
tion 1.3. However, in adopting this approach, have three design challenges
to resolve:

(i) How extensive should our language be so as to capture the subtleties
of Security Annotations?

(ii) How can we provide the guarantees of static typing of Security An-
notations without losing sight of the dynamically-typed target lan-
guage?

52

4.1 Design Decisions for λSA

(iii) Since Security Annotations are manipulated at runtime, how should
these modifications be conveyed within the static system?

In answering challenge (i), we observe that the core intention of this chap-
ter is to demonstrate the mechanisms of manipulation of Security Anno-
tations themselves are safe. We therefore want to focus on those areas
where the design significantly differs from that of standard simply-typed
lambda calculus. Ultimately, there is therefore little value in adding ad-
ditional standard values and terms to the language (e.g., integers), when
their interactions with Security Annotations would be the same as that of
other types of values (e.g., booleans). We therefore opt for a minimal cal-
culus, which offers just booleans and lambda abstractions as values and
conditional, application and let bindings as terms.

Ultimately, we answer challenges (ii) and (iii) together, noting that both
concern themselves with what the shape of terms and types in the calculus
should be. The shape of types with annotations in λSA is a straightforward
decision—we introduce annotated types, A, which are a pair comprised
of a pretype T and Security Annotation S, and write T<S>. However, the
shape of values in the calculus is more complex, since we want program
terms, such as t as S to allow for the runtime manipulation of Security
Annotations and this must be accounted for in the static typing system.
There are three possibilities for this:

(i) Maintaining an explicit memory between evaluation steps of the term,
and retain the shape of values as in a standard lambda calculus.

(ii) Label all terms in the calculus, keeping the shape of values the same
as in a standard lambda calculus.

(iii) Change the shape of values such that they retain a dynamic copy of
their Security Annotation—each value becomes a pair of a prevalue
and Security Annotation, written w<S>.

53

4 A Lambda Calculus of Security Annotations

The first approach is similar to approaches such as hybrid type check-
ing [33]. For our purposes, this approach has two disadvantages: first, it is
more complex than the other two approaches, obscuring the core mecha-
nisms behind Security Annotations. Second, it would not reflect the model
of the target language, so the extra machinery would not provide a benefit
in terms of constructing a safe framework to adapt to JavaScript.

The second approach has merit: the labeling of terms allows the descrip-
tion of the shape of evaluation and express all of Security Annotations
within the static type system. The approach allows the typing of the same
value at different program points differently: for example, the value true
may have type Bool<S> at label 0 but type Bool<S ′> at label 1. However,
such an approach is ultimately not type-safe. The natural evaluation rule
for the expression [[true]0 as S]1 is to evaluate to [true]1. However, in
order to type this, we need to introduce a rule of the form

Γ ` [[t]i1 as S]i2 : T<S>

Γ ` [t]i2 : T<S>

which allows to ‘look back’ through the prior evaluation of the program.
Unfortunately, such a rule allows any program to type with any Security
Annotation S. Consider the program [true]1; we can produce a typing
derivation of this as Bool<S> for any S through the application rule above.
As such, this labeled approach is not a suitable direction.

The final option, of values carrying their annotations at runtime, is a
natural representation of the tag-typing approach of JavaScript. This of-
fers significant advantages: first, static semantics mirror the dynamic se-
mantics in a natural way (e.g., the static and dynamic semantics for the
as binary operator in Figure 4.6). Second, this approach enables an eas-
ier transition to the dynamic typing approach of JavaScript—in essence,
it allows us to ‘read-off’ the evaluation rules as the design pillars for Se-

54

4.2 Syntax of λSA

curity Annotations. In this way, the static typing system becomes a proof
framework for type safety, allowing us to verify the core concepts prior to
a natural translation to semantics for JavaScript. A formal translation to
JavaScript is described in detail in Chapter 5, which uses these core run-
time semantics as a guideline.

4.2 Syntax of λSA

The syntax for the lambda calculus extended with Security Annotations,
λSA, is given in Figures 4.1 and 4.2. The syntax differs from that of a stan-
dard lambda calculus in several ways. Firstly, values in this calculus com-
prise a prevalue, corresponding to the values of a traditional lambda cal-
culus, and a security annotation S. This allows us to represent security
properties on individual values in the runtime semantics. Annotations are
manipulated via the as, drop and cpAnn keywords. The term as adds
annotations, representing newly valid security properties, while drop re-
moves the annotations, representing security properties that are no longer
valid. cpAnn allows the copying of Security Annotations from one value
to another.

Programs are prepended by a series of annotation declarations, of the form
SecAnn and SecAnn ... Extends ...; these define the annotations avail-
able, inducing the lattice of annotations for the program. Annotation dec-
larations define the lattice as follows: first, the program’s annotation lat-
tice is initialized with Top. Second, any annotation declarations of the
form SecAnn a define a new atomic annotation in the lattice with the re-
lationship a ≺: Top and no hierarchical relationship to any other Secu-
rity Annotations. Next, we consider annotation declarations of the form
SecAnn a1 Extends a2; here, we require that a2 has been previously in-
troduced. This defines a new Security Annotation a1 with a hierarchical

55

4 A Lambda Calculus of Security Annotations

P ::= programs:
D . . .D t annotation declarations and term

t ::= terms:
x variable
v annotated value
λx : T<S>.t abstraction
t t application
if t then t else t conditional
let x = t in t let binding
t as S annotation introduction
t drop S annotation removal
cpAnn t1 t2 annotation copy

w ::= prevalues:
λx : T<S>.t abstraction prevalue
true true prevalue
false false prevalue

v ::= annotated values:
w<S> annotated prevalue

Figure 4.1: Syntax of λSA: programs, terms, values and prevalues.

relationship a1 ≺: a2. The combination of these annotation declarations,
D, together with the composition operator, ∗, induce the full lattice of Se-
curity Annotations for the program, LP. In the following sections we as-
sume that for any given program P, the corresponding annotation lattice
LP has been constructed, and that any annotations in semantic judgments
are well-defined in LP.

56

4.3 Dynamics

D ::= annotation declarations:
SecAnn a new annotation
SecAnn a extends a annotation inheritance

S ::= security annotations:
a security annotation
S ∗ S annotation composition
Top empty annotation

T ::= pretypes:
Bool pretype of Booleans
A→ A pretype of functions

A ::= annotated types:
T<S> annotated type

Γ ::= contexts:
∅ empty context
Γ, x : T<S> term variable binding

Figure 4.2: Syntax of λSA: types, environments and Security Annotations.

4.3 Dynamics

We present the runtime semantics for the core of λSA in Figure 4.3. These
broadly follow those of a standard simply-typed lambda calculus [80]; the
key alteration is that we add Security Annotations and develop mecha-
nisms to ensure that such annotations are sensibly propagated. As stan-
dard, [x 7→ v] t denotes the substitution of the value v in place of the free
occurrences of variable x in term t; we denote small-step evaluation via→.

We describe here only those evaluation rules which do not directly ma-
nipulate Security Annotations; this allows us to focus on how Security

57

4 A Lambda Calculus of Security Annotations

Annotations affect the standard runtime of the lambda calculus (we dis-
cuss their manipulation in Section 4.5). The reduction rules [E-APP1] and
[E-APP2] are unchanged from a standard simply-typed lambda calculus,
as are the rules governing the let construct. This is simply because these
rules cover the evaluation of terms down to values, and the substitution of
values in place of variables; they do not concern themselves with Security
Annotations or annotated types of values. The rule [E-APPABS] performs
the runtime evaluation of functions by substituting the value supplied as
an argument inside the body of the abstraction. The bound variable of the
lambda abstraction is annotated with an annotated type which serves to
allow us to assume any application of this abstraction is with a value of
that annotated type. However, this rule does not make any comment on
the compatibility of this annotation guard and the provided argument; this
is dealt with in the static annotated type system described in Section 4.4.
We do not add annotation enforcement here in order to retain symmetry
with the base type system: in a standard simply-typed lambda calculus
the type guard of the abstraction is not enforced at runtime, and since we
consider annotations as add-ons to our type system, we make the decision
to avoid additional runtime overhead in checking them dynamically as
well as statically.

Finally, we discuss the evaluation judgments governing the if construct.
In particular, to ensure Security Annotations are transparent to control
flow, we appeal directly to prevalues in order to govern which branch
should be taken in these judgments. This reflects the paradigm of Security
Annotations that they provide an add-on to the existing type system but
should not result in modifications to the program evaluation. We highlight
the if construct specifically here since it serves a general design pattern
for Security Annotations in any language: unless a construct is specifi-
cally designed to manipulate Security Annotations, the runtime semantics
of the language should be transparent to them.

58

4.4 Statics

[E-APP1] t1 → t ′1

t1 t2 → t ′1 t2

[E-APP2] t2 → t ′2

t1 t2 → t1 t
′
2

[E-APPABS] (λx : T<S>.t)<S ′> v→ [x 7→ v] t

[E-LETV] let x = v in t→ [x 7→ v] t

[E-LET] t1 → t ′1

let x = t1 in t2 → let x = t ′1 in t2
[E-IFTRUE] if true<S> then t2 else t3 → t2

[E-IFFALSE] if false<S> then t2 else t3 → t3

[E-IF] t1 → t ′1

if t1 then t2 else t3 →
if t ′1 then t2 else t3

Figure 4.3: Runtime semantics for λSA.

4.4 Statics

Figures 4.4 and 4.5 present inference rules defining the static type system
for λSA. Following standard notation, Γ ` t : A means that under the
typing environment Γ , the term t is of annotated type A, which we make
explicit in this presentation as base type T and Security Annotation S. We
describe first a notion of subtyping in this calculus based on the lattice of
Security Annotations (Section 4.4.1) and then discuss the remainder of the
static semantics of the calculus (Section 4.4.2).

4.4.1 A Subtyping Relation

Recall that in Chapter 3, we embedded the hierarchy of Security Anno-
tations into a lattice via a partial ordering based on reverse set inclusion.

59

4 A Lambda Calculus of Security Annotations

[T-SUB] Γ ` t : A1 A1 <: A2

Γ ` t : A2
[S-SUBANN] S1 ≺: S2

T<S1> <: T<S2>

[S-ARROW] B1 <: A1 A2 <: B2

(A1 → A2)<S> <: (B1 → B2)<S>

[S-TRANS] A1 <: A2 A2 <: A3

A1 <: A3

[S-REFL] A <: A

Figure 4.4: Annotated subtyping rules for λSA.

We extend this notion of hierarchical Security Annotations to a subtyping
relation for the annotated types of λSA in the natural way.

Definition 4.1 (Induced subtyping). The rules in Figure 4.4 induce a di-
rect subtyping relationship for annotated types from the lattice of Security
Annotations. Whenever A is a subtype of B, we write A <: B.

These rules, in practice, are simply standard subtyping semantics enriched
with annotations. The rule [S-SUBANN] describes the core concept of in-
ducing a subtyping relationship from our lattice of annotations, by di-
rectly inheriting from this hierarchy whenever pretypes match. The rule
[S-REFL] follows immediately immediately from the lattice of Security An-
notations; we present this form here for clarity. It is worth noting transitiv-
ity does not follow immediately from the definition in the case of function
types, hence our need for a separate semantic in [S-TRANS]. Note that
this formulation is distinct from that presented in the work this chapter
is based on [65]; the construction of an explicit subtyping judgment for
annotated types considerably simplifies some of the necessary inversion
lemmas for proving type safety in Section 4.6.

60

4.4 Statics

[T-VAR] x : T<S> ∈ Γ
Γ ` x : T<S>

[T-TRUE] true<S> : Bool<S>

[T-FALSE] false<S> : Bool<S>

[T-ABS] Γ, x : T1<S1> ` t : T2<S2>
Γ ` (λx : T1<S1>.t)<S3> :

(T1<S1> → T2<S2>)<S3>

[T-APP] Γ ` t1 : (T1<S1> → T2<S2>)<S3>
Γ ` t2 : T1<S1>
Γ ` t1 t2 : T2<S2>

[T-LET] Γ ` t1 : T1<S1> Γ, x : T1<S1> ` t2 : T2<S2>
Γ ` let x = t1 in t2 : T2<S2>

[T-IF] Γ ` t1 : Bool<>
Γ ` t2 : T2<S2> Γ ` t3 : T3<S3>

Γ ` if t1 then t2 else t3 : T2<S2 t S3>

Figure 4.5: Static semantics for λSA.

4.4.2 Annotated typing rules for λSA

The static semantics for λSA are given in Figure 4.5; rules for typing the ma-
nipulation of Security Annotations are discussed in Section 4.5. In general,
these static semantics are simple extensions of the standard typing rules
for a simply-typed lambda calculus [80]; the typing of these judgments in
view of Security Annotations often mirrors the dynamic semantics, since
annotations are dynamically propagated and manipulated. For example,
both the [T-TRUE] and [T-FALSE] rules reflect this: the underlying type
of the value is simply the type of the prevalue (Bool), and the static Se-
curity Annotation is the same as the annotation directly associated to the
prevalue in the term. The rules for variables, [T-VAR] and [T-LET], are

61

4 A Lambda Calculus of Security Annotations

the natural extensions of their equivalent rules in the standard calculus;
we simply add annotations to these rules. For example, in [T-LET], we
enforce that the Security Annotations of the term bound to the variable
matches the assumed Security Annotation of the variable in the typing of
the second term, t2.

The rules for typing function abstractions demonstrate the point at which
Security Annotations are directly enforced: [T-ABS] is a small extension,
describing the annotated type of an abstraction. Note that since abstrac-
tions are values within this calculus they are associated to Security An-
notations. The arrow type of the abstraction is between two annotated
types as one would expect, mirroring the construction of an abstraction
type from the standard calculus. The semantic [T-APP] governs the typ-
ing of the application of a value to an abstraction, it is here that Security
Annotations are enforced, reflecting our intention that Security Annota-
tions are enforced on entry to functions (specifically, API calls). This rule
ensures that the supplied argument to the function meets the annotated
type-guard of the variable declared in the abstraction. Note that the anno-
tation associated to the abstraction S3 is not enforced, since this represents
security properties of the abstraction value itself. Combined with the sub-
sumption judgments of Figure 4.4, this ensures that Security Annotation
contracts at entry of functions are enforced.

The typing of the if construct merits discussion: we want to retain the
maximal amount of information possible without re-working and over-
complicating our annotation lattice (e.g., via sum-like annotations). It
is intuitive to consider the most expressive annotation valid along both
branches (i.e. the t operator); consider the trivial example in Listing 4.1.
Since both C and D are not valid along the else branch, they cannot be
subannotations of the resulting annotation. We therefore type this as Bool
<D*B t A*B> = Bool<A*B>. The static Security Annotation will be over-
approximate as a result: the result of evaluation will possess the annota-

62

4.5 Manipulating Security Annotations in λSA

1 SecAnn A
2 SecAnn B
3 SecAnn C extends A
4 SecAnn D extends C
5
6 if true<> then true<D*B> else false<A*B>

Listing 4.1: Typing the if construct.

tion of precisely the taken branch, which is a subannotation of the static
Security Annotation.

We further remark on the contrast between our semantics for if and
the judgments in traditional security type systems. In these systems, the
resulting security label of the term is affected by the security label of the
guard term; this design is primarily motivated by implicit flows from high
to low security terms (see Section 2.1). In contrast, we do not make any
comment on the Security Annotations of the guard term’s effect on the
overall type; one could extend this calculus to enable such propagation,
however this is unnecessary for cryptographic properties. We explore the
propagation of Security Annotations in JavaScript programs in Chapter 7,
and design extensions allowing for the handling of these use cases.

4.5 Manipulating Security Annotations in λSA

We describe the mechanisms in λSA by which we manipulate Security An-
notations based on the validity of security properties of terms in the pro-
gram. We first describe the process of adding Security Annotations (ex-
plicit upcasting of terms), then removing Security Annotations (downcast-
ing) and finally discuss the copying of Security Annotations from a term
to another.

63

4 A Lambda Calculus of Security Annotations

[E-ASV] w<S1> as S2 → w<S1 ∗ S2>
[E-AS] t→ t ′

t as S→ t ′ as S

[T-AS] Γ ` t : T<S1>
Γ ` t as S2 : T<S1 ∗ S2>

Figure 4.6: Adding Security Annotations within λSA.

Adding Security Annotations via the as operator. Figure 4.6 provides
both the runtime and static semantics for the adding of Security Annota-
tions to terms in λSA via the as binary operator. The first argument to as

is the term to coerce, and the second a Security Annotation which should
be valid on the term. For example, in the term true<S1> as S2, we up-
cast the term true<S1> to also satisfy the annotation S2. The annotation
S1 remains valid; therefore the resulting annotated type of the term must
have the base type of the first operand and annotation the composition
of both the annotation of the first operand and also the second operand:
this is precisely the composition of the two annotations, S1 ∗ S2. This intu-
ition governs the typing judgment for this upcasting, [T-AS], and also the
runtime judgment for when the left operand is a value, [E-ASV]. Finally,
noting that the right operand is a Security Annotation, we need [E-AS],
which evaluates the left operand to a value. We do this before evaluation
of the as operator, in the same manner as [E-IF]. For example, to evalu-
ate the program true<> as S1 as S2, the first step of evaluation results in
true<S1> as S2, and then true<S1 ∗ S2>.

Removing Security Annotations via the drop operator In the same man-
ner as upcasting Security Annotations, we describe the mechanism for
downcasting Security Annotations via the drop operator. The runtime

64

4.5 Manipulating Security Annotations in λSA

[E-DROPV] w<S1> drop S2 → w<cut(S1, S2)>

[E-DROP] t→ t ′

t drop S→ t ′ drop S

[T-DROP] Γ ` t : T<S1>
Γ ` t drop S2 : T<cut(S1, S2)>

Figure 4.7: Removing Security Annotations within λSA.

1 SecAnn A
2 SecAnn B
3 SecAnn C extends A
4 SecAnn D extends C
5
6 true<D*B> drop C*B

Listing 4.2: Typing the drop operator.

and static semantics for this operator are given in Figure 4.7. As with
the as operator, the binary drop operator takes two arguments, the left
operand a term the resulting term will be a downcasted copy of, and the
right operand the Security Annotation which should not be valid. For ex-
ample, consider the program in Listing 4.2: it is clear that this program
will evaluate to a downcasted copy of the value true<D*B> comprised of
the prevalue true along with an annotation corresponding to the result
of discarding C*B from the more specific annotation D*B. This annotation
is precisely the result of applying the cut operation described in Defini-
tion 3.6: cut(D*B, C*B) is precisely A. This operator ensures that Security
Annotations which are superannotations of those discarded annotations
remain valid: they have not been discarded. The typing rule [T-DROP]
and the evaluation rule [E-DROPV] both utilize this operator for that pur-
pose. As in the case of the as operator, we also need [E-DROP] to ensure

65

4 A Lambda Calculus of Security Annotations

[E-CPANN1] t1 → t ′1

cpAnn t1 t2 → cpAnn t ′1 t2
[E-CPANN2] t2 → t ′2

cpAnn v1 t2 → cpAnn v1 t
′
2

[E-CPANN] cpAnnw1<S1>w2<S2> → w2<S1 ∗ S2>
[T-CPANN] Γ ` t1 : T1<S1> Γ ` t2 : T2<S2>

Γ ` cpAnn t1 t2 : T2<S1 ∗ S2>

Figure 4.8: Copying Security Annotations within λSA.

1 SecAnn Ciphertext
2 SecAnn Plaintext
3 SecAnn CryptKey
4 SecAnn Password
5
6 (let encrypt = λ x : Bool<>. λ y : Bool<CryptKey>
7 (((cpAnn x (internal.encrypt x y)) drop Plaintext) as

Ciphertext)
8 in encrypt true<Password*Plaintext> false<CryptKey>

Listing 4.3: Typing the cpAnn operator.

the left operand is fully evaluated before evaluating the drop operator.

Handling polymorphism via the cpAnn operator Security properties valid
as postconditions of functions are not necessarily independent of the prop-
erties of the arguments. We refer to such cases as functions which are
polymorphic in their Security Annotations. For example, the JavaScript
function window.btoa which takes a string and returns a Base64 encoded
string: clearly, any security properties of the argument should be valid on
the return value. Therefore, if value passed to window.btoa is w<S>, we
would expect the annotation of the result to be cut(S, encoding)∗Base64,

66

4.5 Manipulating Security Annotations in λSA

because any previous description of the encoding is no longer valid, but
all other security properties remain so. To achieve this without the need
for annotation variables, we introduce an operator, cpAnn, which allows
for the copying of annotations from one term to another. The runtime and
static semantics for this operator are given in Figure 4.8.

Listing 4.3 demonstrates the usage of this operator through example.
This example describes a simple encryption in the lambda calculus, where
the call to internal.encrypt refers to some built-in function which en-
crypts the first argument with the second argument as key. In this case,
the security property that the plaintext was a password is still valid on the
argument to be encrypted afterwards—although the notion that the argu-
ment might be plaintext is not, and so we copy all annotation across to
the result, and then use drop and as to modify the resulting annotation as
required.

This example demonstrates the runtime semantics for this operator: first,
each operand must be evaluated to a value (via the [E-CPANN1] and [E-
CPANN2] judgments in Figure 4.8). Second, once the two operands are
fully evaluated, then we can evaluate the operator itself: the result is the
prevalue of the second operand, along with the accompanying annotation
of the first operand. Much like the as operator, this does not invalidate
previous security properties, so we use composition to ensure previous se-
curity annotations remain valid (the [E-CPANN] judgment in Figure 4.8).
The operator is typed similarly: the annotated type of this expression has
base type matching the base type of the second operand, and Security An-
notation the composition of the annotations of the two operands.

67

4 A Lambda Calculus of Security Annotations

4.6 Annotated Type Safety for λSA

This section concerns itself with adapting the classical notion of type safety
to λSA. Type safety in this calculus ensures that the flexible system of Se-
curity Annotations introduced does not result in the ability of invalid pro-
grams to pass type checks. We formulate a notion of type safety based
on the traditional notions of (i) progress and (ii) preservation [80], which we
adapt to incorporate Security Annotations:

(i) A well-typed term is either a value, or can take a step of evaluation
according to the rules in Figure 4.3 and Figures 4.6-4.8.

(ii) If a well-typed term takes a step of evaluation, then the resulting
term is also well-typed, i.e. if t : T<S> and t→ t ′, then t ′ : T<S>.

The non-standard notion of (ii) reflects the typing of if, however it re-
mains impossible for programs to type as valid when they do not possess
the necessary security properties. First, we formally define what it means
for a term to be well-typed in the context of λSA.

Definition 4.2 (closed well-typed term). A term is well-typed if there exists
some pretype T and Security Annotation S such that Γ ` t : T<S> for some
Γ . Further, a well-typed term t is closed if there are no free variables within
t, i.e., when Γ is ∅.

In the rest of this section, we first construct a proof of preservation (Sec-
tion 4.6.1) and then of progress (Section 4.6.2). Finally, we provide a dis-
cussion of this guarantee in the context of security properties (Section 4.6.3).

4.6.1 Preservation for λSA

The statement of preservation for λSA encodes that after a step of evalua-
tion, a well-typed term is still well-typed. We formalize this through the
following statement.

68

4.6 Annotated Type Safety for λSA

Theorem 4.3 (Preservation). If Γ ` t : T<S> and t→ t ′, then Γ ` t ′ : T<S>.

To prove this theorem, we build a series of technical results, which adapt
standard results to account for Security Annotations [80].

Lemma 4.4 (Inversion of the Subtyping Relation). If A <: (B1 → B2)<S>

then A has the form (A1 → A2)<S
′> with B1 <: A1, A2 <: B2 and S ′ ≺: S.

Proof. By induction on subtyping derivations derived from the rules in
Figure 4.4. There are four possibilities for the final rule applied in the
subtyping derivation. First, if the final rule is [S-REFL], this is trivial since
A is simply (B1 → B2)<S> and we are done. In the case that the final rule
applied is [S-ARROW], then we are done simply noting that A already has
the desired form. Third, if the final rule applied is [S-SUBANN] then A
already has the desired form, since T = (B1 → B2).

Finally, if the final rule applied is [S-TRANS] then we know that there
exists some C such that A <: C and C <: (B1 → B2)<S>. But then by
induction, we know that there must be some C1, C2, S ′′ with C = (C1 →
C2)<S

′′> and B1 <: C1, C2 <: B2 and S ′′ ≺: S. We therefore know that
A <: (C1 → C2)<S

′′> by assumption, and then by induction we obtain an
A1, A2, S

′ with C1 <: A1, A2 <: C2 and S ′ ≺: S ′′. By [S-TRANS] we obtain
B1 <: A1 and A2 <: B2, and by transitivity of elements of the annotation
lattice we obtain S ′ ≺: S and we are done.

Armed with an inversion of the subtyping relation we now invert the
typing relation, which allows us, for a given well-typed term t, to examine
the annotated types of subterms of t.

Lemma 4.5 (Inversion of the Typing Relation). We can determine the types
of terms via the following:

(i) If Γ ` x : T<S> then x : T<S> ∈ Γ .

69

4 A Lambda Calculus of Security Annotations

(ii) If true<S> : A then A = Bool<S>.

(iii) If false<S> : A then A = Bool<S>.

(iv) If Γ ` (λx : A1.t1)<S> : (B1 → B2)<S>, then B1 <: A1 and Γ, x : A1 `
t1 : B2.

(v) If Γ ` t1 t2 : A then there are some A1, S such that Γ ` t1 : (A1 →
A)<S> and Γ ` t2 : A1.

(vi) If Γ ` if t1 then t2 else t3 : T<S>, then Γ ` t1 : Bool<S1>, Γ ` t2 :

T<S2> and Γ ` t3 : T<S3> for some S1, S2 and S3 with S2 t S3 = S.

(vii) If Γ ` t as S2 : T<S> then Γ ` t : T<S1> with for some S1 with
S = S1 ∗ S2.

(viii) If Γ ` t drop S2 : T<S> then Γ ` t : T<S1> for some S1 with S =

cut(S1, S2).

(ix) If Γ ` cpAnn t1 t2 : T<S> then Γ ` t1 : T<S1> and Γ ` t2 : T<S2> with
for some S1, S2 with S = S1 ∗ S2.

(x) If Γ ` let x = t1 in t2 : A then there exists some B with Γ ` t1 : B

and Γ, x : B ` t2 : A.

Proof. The vast majority of these cases are immediate from the typing
judgments in Figure 4.5. However, case (iv) merits special attention for
a single case of induction on typing derivations, when the final rule of the
typing derivation is [T-SUB]. We let t = (λx : A1.t1)<S>, then we know
Γ ` t : (B1 → B2)<S> and since the last rule was [T-SUB], there must be
some C <: (B1 → B2)<S> with Γ ` t : C. Applying Lemma 4.4, we ob-
tain that C has the form (C1 → C2)<S

′′> with B1 <: C1, A2 <: C2 and
S ′′ ≺: S. Applying induction and using [T-SUB] and [S-TRANS], we obtain
the desired result.

70

4.6 Annotated Type Safety for λSA

We also need a technical lemma covering the permuting and weakening of
the typing context, allowing us to, when necessary, insert additional well
typed variables into the context or permute the current context without
altering the typing of a term.

Lemma 4.6 (Permutation and Weakening). Let Γ ` t : A. Then:

(i) Whenever ∆ is a permuation of Γ then ∆ ` t : A.

(ii) Whenever x 6∈ Dom(Γ) then Γ, x : A ′ ` t : A.

Proof. Both statements are trivial inductions on the typing judgments.

The final technical result—which uses Lemma 4.5—ensures that when
substituting variables for appropriately-typed terms into terms we do not
break well-typedness.

Proposition 4.7 (Preservation of annotated types under substitution). If
Γ, x : A ′ ` t : A and Γ ` t ′ : A ′ then Γ ` [x 7→ t ′]t : A.

Proof. We proceed by induction on the typing derivation of Γ, x : A ′ ` t : A,
inspecting the final typing rule in the derivation.

[T-TRUE] Let t = true<S>; since there are no variables in t, then the an-
notated typing after substitution is immediate. The case [T-FALSE]
is identical.

[T-IF] Let t = if t1 then t2 else t3; we know that:

• For some S1, Γ, x : A ′ ` t1 : Bool<S1>, and

• For i = 2, 3, we have Γ, x : A ′ ` ti : T<Si> with A = T<S2 t S3>.

By induction on each term, we obtain:

• Γ ` [x 7→ t ′]t1 : true<S1>, and

• For i = 2, 3, Γ ` [x 7→ t ′]ti : T<Si>.

71

4 A Lambda Calculus of Security Annotations

Applying [T-IF], we can type Γ ` [x 7→ t ′]t : T<S2 t S3> as required.

[T-AS] Let t = t1 as S2, then we have:

• Γ, x : A ′ ` t : T<S1 ∗ S2> and

• Γ, x : A ′ ` t1 : T<S1> for some S1.

By induction on t1, we obtain Γ ` [x 7→ t ′]t1 : T<S1>, and then
applying [T-AS] we are done.

[T-DROP] Let t = t1 drop S2, then we have:

• Γ, x : A ′ ` t : T<cut(S1, S2)> and

• Γ, x : A ′ ` t1 : T<S1> for some S1.

By induction on t1, we obtain Γ ` [x 7→ t ′]t1 : T<S1>, and then
applying [T-DROP] we are done.

[T-CPANN] Let t = cpAnn t1 t2, then we have, for some S1, S2:

• Γ, x : A ′ ` t : T<S1 ∗ S2>,

• Γ, x : A ′ ` t1 : T<S1>, and

• Γ, x : A ′ ` t1 : T<S2>.

By induction, we obtain:

• Γ ` [x 7→ t ′]t1 : T<S1>, and

• Γ ` [x 7→ t ′]t2 : T<S2>.

and then applying [T-CPANN] we are done.

[T-VAR] Let t = z, with z : A ∈ (Γ, x : A ′). We have two subcases: in
the first, z = x, and so [x 7→ t ′]z = t ′. Since the typing of this was
an assumption, we are done. In the second case, z is a distinct vari-
able and then [x 7→ t ′]z = z and again, we are done by our original
assumption.

72

4.6 Annotated Type Safety for λSA

[T-ABS] Let t = (λy : B.t1)<S>, and A = (B → B ′)<S>. We know that
Γ, x : A ′, y : B ` t1 : B ′. We can assume x 6= y and that y is not a free
variable of x. Via weakening and permutation (Lemma 4.6), we can
state that Γ, y : B ` t ′ : A ′. By induction, we obtain Γ, y : B ` [x 7→
t ′] t1 : B

′. Finally, applying [T-ABS] we get the required result.

[T-APP] Let t = t1 t2, then we know that for some S and B that:

• Γ, x : A ′ ` t1 : (B→ A)<S> and

• Γ, x : A ′ ` t2 : B.

Applying induction we know that:

• Γ ` [x 7→ t ′] t1 : (B→ A)<S> and

• Γ ` [x 7→ t ′] t2 : B.

Applying [T-APP] to these two derivations, we are done.

[T-SUB] By assumption, we know that Γ, x : A ′ ` t1 : B with B <: A, and
that Γ ` t ′ : A ′. Applying induction, we know Γ ` [x 7→ t ′] t : B.
Using A ′ <: A, we can apply [T-SUB], and we are done.

Armed with the ability to substitute variables for terms, we are now in a
position to prove Preservation.

Proof of Theorem 4.3. Again, we prove this by induction on the typing deriva-
tion of Γ ` t : T<S>.

[T-TRUE], [T-FALSE], [T-ABS] Since t is already a value in each of these
cases, there is nothing to prove.

[T-VAR] Since there are no evaluation rules for variables, there is nothing
to prove here.

73

4 A Lambda Calculus of Security Annotations

[T-IF] We have t = if t1 then t2 else t3 and know that t : T<S>. Inverting
the typing relation, we have

• Γ ` t1 : Bool<S1>

• Γ ` t2 : T<S2>

• Γ ` t3 : T<S3>,

for some S1, S2, S3 with S = S2 t S3. There are three possible cases.

First, if t1 = true<S1>, then t → t2 via [E-IFTRUE]. SinceΓ ` t2 :

T<S2> and S2 ≺: S2 t S3 = S, we are done.

Second, whenever t2 = false<S1>, we apply [E-IFFALSE], and via
the same reasoning we are done.

Third, if t1 → t ′1, then applying [E-IF], we get t ′ = if t ′1 then t2 else t3.
By induction, t ′1 : Bool<S ′1>, and S ′1 ≺: S1. Applying [T-IF], we ob-
tain t ′ : T<S> and we are done.

[T-AS] We have t = t1 as S2, and via the inversion of the typing relation
we know that Γ ` t1 : T<S1> for some S1 with S = S1 ∗ S2. We have
two cases based on the two possible evaluation rules.

First, if t1 = w<S1> is a value, then we apply [E-ASV], and then
t→ t ′ = w<S1 ∗ S2>. Depending on the prevalue w, we apply either
[T-TRUE], [T-FALSE] or [T-ABS] and we are done.

In the second case, we suppose that there is some t ′1 with t1 → t ′1,
and so we can apply [E-AS]. By induction, we know that Γ ` t ′1 :

T<S ′1>, for some S ′1 with S ′1 ≺: S1. Via [T-AS] we get Γ ` t ′1 as S2 :

T<S ′1 ∗ S2>. Applying the partial ordering on annotations, we know
(S ′1 ∗ S2) ≺: S and so by [T-SUB] we are done.

[T-DROP] The case for [T-DROP] is almost identical to [T-AS], but uses
the property that whenever S ′1 ≺: S1, then for any S2, we must have
cut(S ′1, S2) ≺: cut(S1, S2) (per Lemma 3.8).

74

4.6 Annotated Type Safety for λSA

[T-CPANN] We have t = cpAnn t1 t2 and by inverting the typing relation-
ship we know that for some S1, S2 with S = S1 ∗ S2 we have:

• Γ ` t1 : T<S1>

• Γ ` t2 : T<S2>

There are three possible cases.

First, if t1 7→ t ′1 and [E-CPANN1] is applied, then by induction we
know Γ ` t1 : T<S ′1>, where S ′1 ≺: S1. Applying [T-CPANN]. Γ ` t ′ :
T<S ′1 ∗ S2> and by the partial ordering on annotations we are done.

The second case, where [E-CPANN2] is applied, is almost identical.

Third, if both t1 and t2 are values, then we apply [E-CPANN]. Let
t1 = w<S ′1> and t2 = w<S ′2>, with S ′1 ≺: S1 and § ′2 ≺: S2. Then t →
w2<S

′
1 ∗ S ′2>. By our annotation partial ordering and—depending

on the prevalue w2—one of [T-TRUE], [T-FALSE] or [T-ABS] we are
done.

[T-APP] We have t = t1 t2, and we can type these two subterms as:

• Γ ` t1 : (B→ C)<S1>

• Γ ` t2 : B,

with B = TB<SB> and C = TC<SC>. There are three distinct cases.

First, if [E-APP1] is applied, then by induction t ′1 : (B → C)<S ′2>,
with S ′1 ≺: S1. By applying [T-APP], we are done.

Second, if [E-APP2], is applied, then by induction we have Γ ` t ′2 :

TB<S
′
B> with S ′B ≺: SB. By [T-SUB], we get Γ ` t ′2 : B and then by

applying [T-APP], we are done.

Third, if the final application rule is [E-APPABS]. Then we need to
prove that for t ′ = [x 7→ v] s : TC<S

′
C> with S ′C ≺: SC, given that:

• t1 = (λx : B ′.s)<S1>

75

4 A Lambda Calculus of Security Annotations

• t2 = v.

From the inversion of the typing relation we know that B <: B ′ and
that Γ, x : B ′ ` s : C. Applying [T-SUB], we have Γ ` v : B ′. Putting
this together, along with the substitution lemma (Lemma 4.7), we
obtain the desired result.

[T-LET] This case is similar to [T-APP].

[T-SUB] Inverting the typing relation for t, we have Γ ` t : T<S ′> and
S ′ ≺: S. Since t → t ′, by induction we know that Γ ` t ′ : T<S ′> and
immediately we are done.

4.6.2 Progress for λSA

The statement of progress for λSA intuitively describes that for any when-
ever a term can be typed, then it is either a value, or can take a single step
of evaluation according to the runtime semantics described in Sections 4.3
and 4.5. We formalize this as follows:

Theorem 4.8 (Progress). Let t be a closed, well-typed term. Then either t
is a value or there exists some t ′ with t→ t ′.

In order to prove this statement we need only add a canonical forms lemma
to our existing machinery. This result describes what values look like
based on the described annotated type.

Lemma 4.9 (Canonical forms). Let v be a closed value with annotated type
A, then:

(i) If A is Bool<S>, then either v is true<S ′>, or false<S ′> for S ′ ≺: S.

(ii) IfA is (T1<S1> → T2<S2>)<S>, then v has the form (λx : T1<S
′
1>.t2)<S

′>

with S ′ ≺: S and S1 ≺: S ′1.

76

4.6 Annotated Type Safety for λSA

Proof. The first of these statements is proved by observing that we as-
sumed the pretype of v to be Bool, which means the prevalue must be
either true or false. Since the assumed static Security Annotation of v
is S, via the inversion of the typing relation the accompanying Security
Annotation of vmust be such that S ′ ≺: S.

The case for abstractions is similar: we assume that v has the annotated
type of functions; applying via Lemma 4.5, we obtain that the only valid
forms for values are those of the required form.

We are now ready to prove progress (Theorem 4.8), again through in-
duction. Along with the statement of preservation (Theorem 4.3), this
proves the central notion of annotated type safety for this calculus, mean-
ing that the addition of Security Annotations to a simply-typed lambda
calculus respects the notion that properly typed programs cannot go wrong.
The consequences of this are further discussed in Section 4.6.3.

Proof of 4.8. By induction on the typing derivation. Those cases which
concern values ([T-TRUE] and [T-FALSE] and [T-ABS]) are immediate; [T-
VAR] cannot occur since t is closed.

[T-IF] Let t = if t1 then t2 else t3, we know that

• t1 : Bool<S1>,

• t2 : T<S2>, and

• t3 : T<S2>.

By induction, either t1 is a value or t1 → t ′1. In the latter case we can
immediately apply [E-IF] and we are done. In the former, we have
t1 = w<S>, and by canonical forms (Lemma 4.9), w is either true or
false; in the former case we can apply [E-IFTRUE], and in the latter
[E-IFFALSE].

[T-APP] We have t = t1 t2. By induction:

77

4 A Lambda Calculus of Security Annotations

• either t1 is a value or t1 → t ′1, and

• either t2 is a value or t2 → t ′2.

If t1 → t ′1, we can apply [E-APP1]; if t1 is a value and t2 → t ′2, we
can apply [E-APP2]. Finally, if both t1 and t2 are values, then by
canonical forms (Lemma 4.9), t1 has the form (λx : T1<S

′
1>.s)<S

′>

and we can apply [E-APPABS].

[T-LET] Similar to the case [T-APP]: we have t = let x = t1 in t2, by in-
duction either t1 is a value (in which case we can apply [E-LETV]),
or t1 can take a step of evaluation, in which case [E-LET] applies.

[T-AS] We have t = t1 as S, by induction if t1 is a value, in which case
[E-ASV] applies. Else, t1 can take a step of evaluation and [E-AS]
applies.

[T-DROP] We have t = t1 drop S, by induction if t1 is a value, in which
case [E-DROPV] applies. Else, t1 can take a step of evaluation and
[E-DROP] applies.

[T-CPANN] We have t = cpAnn t1 t2. By induction, if t1 is not a value then
[E-CPANN1] applies. If t1 is a value and t2 is not, then [E-CPANN2]
applies. Finally, if both t1 and t2 are values, then we can take a step
of evaluation through [E-CPANN].

[T-SUB] This case follows directly from the induction hypothesis.

4.6.3 Discussion

In this section we discuss first the scope of annotated type safety in a lan-
guage allowing ad-hoc coercions of annotations, and then discuss what

78

4.6 Annotated Type Safety for λSA

annotated type safety means within the setting of our core motivation of
API checking.

Subverting annotated type safety. Since Security Annotations can be ar-
bitrarily modified inline by the programmer, it is possible to circumvent
the notion of annotated type safety by assigning annotations to terms to
arbitrarily pass any type check; the developer would simply lose the ben-
efits of using security annotations to enforce correct preconditions of se-
cure APIs. For example, the term (λx:Bool<A*B*C>. x)<> true<> fails
to type check; however, a developer may modify the program to change
the applied term to true<> as A*B*C, at which point the program type-
checks, although the annotations no longer faithfully models the security
properties of the term.

What does annotated type safety mean for security properties? Secu-
rity Annotations represent the validity of security properties on a value.
Annotated type safety allows us to guarantee that the designed propaga-
tion of Security Annotations does not go wrong in two ways. First, that Se-
curity Annotations are transparent to the control flow of a program other
than at enforcement of contracts in abstractions. Second, annotated type
safety guarantees that the static enforcement of Security Annotations re-
spects the dynamic evaluation: the static type of a program safely approx-
imates the resulting type of the program after evaluation. However, the
presence of a theorem of annotated type safety does not mean that security
properties are verifiable inside this framework. Such verifiable properties
are beyond the reach of annotated type safety: one must in addition ver-
ify that Security Annotation contracts between functions are correct with
respect to enforcing the intended security property. Further, one must en-
sure that, per the previous discussion, upcasting via as and cpAnn are not
used outside of these enforceable function contracts. In this setting, a type

79

4 A Lambda Calculus of Security Annotations

safe program would successfully enforce these contracts.

4.7 Related Work

Type systems for security property enforcement have been advocated by
Bhargavan et al. [7, 13, 35, 14]. The dependently typed languages F7 and
F* [98] seek to statically verify security properties in F# code. Such lan-
guages allow for the use of expressive refinement types to check security
properties in arbitrary implementations. Since we aim to check crypto-
graphic misuse, we establish a more lightweight machinery which is de-
signed specifically with such properties in mind.

Security type systems [86] augment types with annotations specifying
policies for secure information flow. Our approach is similar to this, but
heavily relies on annotations changing over time, which in security type
systems only occurs during declassification. Security Annotations are de-
signed to be particularly well-suited to dynamic languages: in allowing
for their ad-hoc removal and addition to terms and values, they share sim-
ilar paradigm as the base type system of such languages, e.g., JavaScript,
which implicitly coerces types as required at runtime.

Another approach to checking cryptographic API usage is to check spec-
ifications written in domain specific languages (DSLs) [53]. One could en-
code the properties described within the DSL as Security Annotations and
enforce these as pre- and postconditions in the manner described in this
chapter. As discussed in Chapter 5, Security Annotations described in this
chapter are designed to translate naturally to the dynamic nature of Java-
Script, which is notoriously difficult to statically analyze.

80

A Semantics for Security Annotations
in JavaScript 5
In this chapter we describe a formal semantics for Security Annotations
in a JavaScript-like language. We construct a dynamic variant of Secu-
rity Annotations, attached to values and objects via type-like information.
We formalize this variant by extending S5 [81], an existing JavaScript se-
mantics. We mechanize this language—which we call S5SA—to obtain a
reference implementation (Section 5.3-5.4). We extend the JavaScript-to-S5
desugaring relation to S5SA to obtain a reference interpreter for JavaScript
with embedded Security Annotations (Section 5.5). Alongside this, we
provide a specification for a fragment of the W3C WebCrypto standard
and demonstrate how this specification can reveal security vulnerabilities
in JavaScript code with the help of a case study within our reference in-
terpreter (Section 5.7). We define a notion of safety with respect to S5SA

and extend this to security guarantees for individual S5SA programs (Sec-
tion 5.8). Finally, we discuss related work (Section 5.9).

This chapter comprises an extended version of a paper originally pre-
sented at ESORICS 2019, for which the author of this thesis was first au-
thor [64]. In particular, we extend our language formalization to include
an annotation store (Section 5.5) and the accompanying case study (Sec-
tion 5.7)1.

1An accompanying reference implementation is available at https://github.com/
duncan-mitchell/SecAnnRefInterpreter.

81

https://github.com/duncan-mitchell/SecAnnRefInterpreter
https://github.com/duncan-mitchell/SecAnnRefInterpreter

5 A Semantics for Security Annotations in JavaScript

[E-COMPAT] e =⇒ e ′

σΘ;E<e> → σΘ;E<e ′>

[E-ENVSTORE] σ; e→σ σ ′; e ′

σΘ;E<e> → σ ′Θ;E<e ′>

[E-CONTROL] e→e e ′

σΘ;E<e> → σΘ;E<e ′>

[E-OBJECTS] Θ; e→Θ Θ ′; e ′

σΘ;E<e> → σΘ ′;E<e ′>

Figure 5.1: The reduction relations for S5 [81].

5.1 Working with a semantics for JavaScript

S5 [81] is a lambda calculus-like language which reflects the semantics of
the strict mode of EcmaScript 5.1 (ES5). S5 adopts the style of λJS [43],
which targeted ES3, by reducing the language of JavaScript into a small
core semantics. S5 is accompanied by a desugaring function, which takes
native JavaScript source programs and translates them to S5 programs.
S5 itself is described via small-step semantics, incorporating ES5 features
such as getters, setters and eval. The language is not a complete reference
implementation for the entire standard; however, S5 is tested against the
official ECMAScript test suite, ensuring JavaScript’s key features are han-
dled correctly. This means it is the ideal target for describing the details
of Security Annotations within JavaScript without unnecessary complica-
tion.

Terms in S5 are 3-tuples comprised of an expression, e, a store σ (map-
ping locations to values) and an object store Θ (mapping references to ob-
ject literals); the evaluation context is denoted E. The reduction relation →
is split into four parts dependent on which portions of the term are ma-

82

5.2 A More Complex Language

nipulated; their definitions are given in Figure 5.1. For example, the =⇒
relation, given by [E-COMPAT], does not modify either the object or vari-
able store, instead operating entirely within the evaluation context. The
relation given by [E-CONTROL], →e, governs certain control flow opera-
tors, like throw. For ease of reference, S5’s syntax is given in Figure 5.2;
full details of S5 are contained in the work of Politz et al [81].

5.2 A More Complex Language

Listing 5.1 describes a simple, abstract JavaScript program with Security
Annotations2. This example constructs an object with two fields—one a
boolean and the other a string—and describes Security Annotations on
both the values stored in internal fields and on the overall object. This
program evaluates to the object {field1 : true, field2: "val2"

<C>}<A>. In evaluating the expression stored in field1 down to a value,
since true is a boolean value, we can make use of our work in Chapter 4
and port over how the as expression evaluates. We can do this safely
because we know this dynamic semantic mirrors the static enforcement of
λSA; this enables us to keep evaluation of Security Annotations in some
sense ‘close’ to our known safe language. In evaluating the expression
stored in field2, we observe that the evaluation for booleans discussed
in Chapter 4 can be carried over to strings and numbers as well.

Evaluating the coercion of the object’s Security Annotation is more com-
plex: objects in JavaScript are stored in an object store and a reference looks
up this object in the store. To define sensible evaluation rules for Java-
Script, then, we enrich S5 with Security Annotations in order to formalize
the handling of such cases. Since S5 is close to a lambda calculus itself,

2In implementation, we use the delimiters <! and !>; in this thesis we match the seman-
tic rules and use < and >.

83

5 A Semantics for Security Annotations in JavaScript

r := object references
l := locations
v := null | undefined | str | num | true | false | r | func(x, ...){e}

e := v | x | l | x := e | op1(e) | op2(e, e) | e(e, ...) | e; e | let (x = e) e | if (e) {e} else {e}

| label: x e | break x e | err v | try e catch x e | try e finally e | throw e | eval(e, e)

| {ae str : pe, ...} object literals
| e[<o>] | e[<o> = e] object attributes
| e[e<a>] | e[e<a> = e] property attributes
| props(e) property names
| e[e]e | e[e = e]e | e[delete e] properties

o := class | extensible | proto | code | primval

a := writable | config | value | enum

ae := [class : e, extensible : e, proto : e, code : e, primval : e]

av := [class : v, extensible : v, proto : v, code : v, primval : v]

pe := [config : e, enum : e, value : e, writable : e] | [config : e, enum : e, get : e, set : e]

pv := [config : v, enum : v, value : v, writable : v] | [config : v, enum : v, get : v, set : v]

p := pv | []

op1 := string->num | log | prim->bool | ...

op2 := string-append | + | ÷ |>| ...

θ := {[av] str : pv, ...}

σ := · | σ, l : v
Θ := · | Θ, r : θ
Eae := [class : E ′, extensible : e, proto : e, code : e, primval : e] | [class : v, extensible : E ′, proto : e, code : e, primval : e]

| [class : v, extensible : v, proto : E ′, code : e, primval : e] | [class : v, extensible : v, proto : v, code : E ′, primval : e]

| [class : v, extensible : v, proto : v, code : v, primval : E ′]

Epe := [config : E ′, enum : e, value : e, writable : e] | [config : v, enum : E ′, value : e, writable : e]

| [config : v, enum : v, value : E ′, writable : e] | [config : v, enum : v, value : v, writable : E ′]

| config : E ′, enum : e, get : e, set : e] | [config : v, enum : E ′, get : e, set : e]

| [config : v, enum : v, get : E ′, set : e] | [config : v, enum : v, get : v, set : E ′]

E ′ := • | E ′ := e | v := E ′ | op1(E ′) | op2(E ′, e) | op2(v, E ′) | E ′(e, ...) | v(v, ..., E ′, e, ...) | E ′; e | v;E ′ | let (x = E ′) e

| if (E ′) {e} else {e} | throw E ′ | eval(E ′, e) | eval(v, E ′) | {Eae str : pe, ...} | {av str1 : pv, ..., strx : Epe, strn : pe, ...}

| E ′[<o>] | E ′[<o> = e] | v[<o> = E ′] | E ′[e<a>] | v[E ′<a>] | E ′[e<a> = e] | v[E ′<a> = e] | v[v<a> = E ′] | props(E ′)

| E ′[e]e | v[E ′]e | v[v]E
′
| E ′[delete e] | v[delete E ′]

E := E ′ | label : x E | break x E | try E catch e | try E finally e

F := E ′ | label : x F | break x F Exception Contexts
G := E ′ | tryG catch e Local Jump Contexts

Figure 5.2: The syntax of S5 [81].

this allows for a natural translation between λSA and S5SA for most of ex-
pressions using Security Annotations; we need only semantics for those
features unique to S5.

The S5SA program equivalent to Listing 5.1 is given in Listing 5.2. This
is obtained from the original JavaScript program via a desugaring process

84

5.2 A More Complex Language

1 SecAnn <A * B * C>;
2 ({field1 : true as , field2: "val2" as <C>}) as <A>

Listing 5.1: A simple JavaScript program using Security Annotations.

1 {let (%context = %nonstrictContext)
2 {let (#strict = false)
3 {SecAnn <!A * B * C!>;
4 { [#proto: %ObjectProto,
5 #class: "Object",
6 #extensible: true,]
7 ’field1’ : {#value (true as),
8 #writable true,
9 #configurable true},

10 ’field2’ : {#value ("val2" as <C>),
11 #writable true,
12 #configurable true}
13 } as <A>}
14 }
15 }

Listing 5.2: The S5SA program corresponding to Listing 5.1.

85

5 A Semantics for Security Annotations in JavaScript

a := Atomic Annotations
S := a | S ∗ S | Top

w := str | num | true | false

w ′ := null | undefined | func(x : S, . . .){e}

r := object references
l := locations
v := w<S> | r<Top> | w ′<Top>

e := . . . | e as S | e drop S | cpAnn(e, e)

. . .

o := {[av] str : pv, . . .}

θ := o<S>

σ := · | σ, l : v
Θ := · | Θ, r : θ
. . .

E ′ := . . . | E ′ as S | E ′ drop S | cpAnn(E ′, e) | cpAnn(v, E ′)

Figure 5.3: Syntax modifications to add Security Annotations to S5.

described in the work of Politz et al. [81] and extended to Security Anno-
tations in Section 5.6. This process makes explicit the JavaScript context,
as well as implicit properties of the defined object and the fields of the ob-
ject. The desugaring process preserves syntax for manipulation of Security
Annotations in S5, which remains the same as in JavaScript (and indeed,
λSA).

86

5.3 Syntax of S5SA

5.3 Syntax of S5SA

The additions and modifications to the syntax of S5 (Section 5.1) to extend
the language to S5SA by incorporating Security Annotations are contained
in Figure 5.3. We introduce atomic annotations a, as discussed in Sec-
tion 3.2, and general annotations S, which are either Top, the least specific
annotation, an atomic annotation, or the composition of two annotations,
given by ∗. Although all values within S5SA are annotated, only certain
prevaluesw can possess arbitrary Security Annotations; values are written
as w<S> which is syntactic sugar for the pair of a prevalue w along with
its corresponding Security Annotation S. The prevalues undefined and
null are considered non-annotatable precisely because it does not make
sense to describe security properties of these special values. We attach Top

to these prevalues to represent the lack of security properties, but arbitrary
Security Annotations are invalid. Similarly, we do not allow annotations
beyond Top on functions: they may act on values to alter security proper-
ties but in of themselves to do not possess security properties as described
in this thesis (e.g., a function cannot be a cryptographic key or a cipher-
text, see Section 3.1). An additional modification to the syntax reflects the
addition of annotations to objects: we consider preobjects, o, which form
objects when annotated with a Security Annotation S. We allow the arbi-
trary annotation of objects directly as opposed to their references (which,
in the manner of w ′ possess only the annotation Top); properties within
objects are annotated in the same manner as values. When an object is
modified, previously valid security properties on the object are no longer
guaranteed: modifying an object field should alter the annotations associ-
ated to the field, and also the annotations of the overall object.

Additional expressions, e, based on manipulating security annotations,
cover the as, drop and cpAnn constructs. We add evaluation contexts,
E ′, to cover these cases, where these are built in the same manner as in

87

5 A Semantics for Security Annotations in JavaScript

S5 (recalling Section 5.1). Finally, enforcement of Security Annotations
is added to functions via the form func(x : S, . . .); this does not require
modification of the evaluation contexts.

5.4 Semantics for S5SA

We formalize the extensions to S5 necessary to describe S5SA. We de-
scribe mechanisms for manipulating annotations (Section 5.4.1), runtime
enforcement (Section 5.4.2), and the rest of S5SA (Section 5.4.3).

5.4.1 Coercing Security Annotations

The evaluation judgments for coercion of annotations on values and ob-
jects are given in Figure 5.4, distinguished by case analysis on values. The
expression vasS upcasts v to a more specific annotation, achieved by com-
posing the previously valid annotation with S. Dependent on whether we
treatw<S> (in [E-ASW]), or a reference ([E-ASR]), we make use of distinct
reduction relations (Figure 5.1). In the former case, [E-COMPAT] is used to
govern the evaluation. In the latter, [E-OBJECTS] is used to modify the ob-
ject’s annotation in the object store. Finally, we throw an error whenever
w ′<Top> is passed to one of these expressions treating coercion of anno-
tations (e.g., [E-ASW’]), since coercing the annotation of these values is
prohibited. The case analysis for drop is similar; v drop S downcasts v to
a less specific annotation. This is accomplished via the cut operator (Sec-
tion 3.3) to prune the S from the annotation of v. As with as, the addition
of newly valid annotations does not render previous annotations invalid,
so composition unifies them; the evaluation rules are therefore similar in
structure.

88

5.4 Semantics for S5SA

[E-ASW] v = w<S>

v as S ′ =⇒ w<S ∗ S ′>
[E-ASR] v = r<Top> Θ(r) = o<R> Θ ′ = Θ[r/o<R ∗ S>]

Θ; v as S→Θ Θ ′; v

[E-ASW’] v = w ′<Top>

v as S =⇒ throw NotAnnotatable

[E-DROPW] v = w<S>

v drop S ′ =⇒ w<cut(S, S ′)>

[E-DROPR] v = r<Top> Θ(r) = o<R>
Θ ′ = Θ[r/o<cut(R, S)>]

Θ; v drop S→Θ Θ ′; v

[E-DROPW’] v = w ′<Top>

v drop S =⇒ throw NotAnnotatable

[E-CPWW] v1 = w1<S1> v2 = w2<S2>

cpAnn(v1, v2) =⇒ w2<S1 ∗ S2>
[E-CPWR] v1 = w<S1> v2 = r<Top> Θ(r) = o<S2>

Θ ′ = Θ[r/o<S1 ∗ S2>]
Θ; cpAnn(v1, v2) →Θ Θ ′; v2

[E-CPRW] v1 = r<Top> Θ(r) = o<S1> v2 = w<S2>

Θ; cpAnn(v1, v2) →Θ Θ;w<S1 ∗ S2>
[E-CPRR] v1 = r1<Top> Θ(r1) = o1<S1>

v2 = r2<Top> Θ(r2) = o2<S2>
Θ ′ = Θ[r2/o2<S1 ∗ S2>]

Θ; cpAnn(v1, v2) →Θ Θ ′; v2

[E-CPW’V] v1 = w
′<Top>

cpAnn(v1, v2) =⇒ throw NotAnnotatable

[E-CPVW’] v2 = w
′<Top>

cpAnn(v1, v2) =⇒ throw NotAnnotatable

Figure 5.4: Judgments for coercing annotations: as, drop and cpAnn.

89

5 A Semantics for Security Annotations in JavaScript

[E-APP]
∀i ∈ {1, . . . , n} : ann(vi) ≺: S ′i

σ ′ = σ, l1 : v1, . . . , ln : vn where l1 . . . ln fresh in σ, e, v1, . . . , vn
σΘ;E<func(x1 : S

′
1, . . . , xn : S ′n){e}(v1, . . . , vn)> →

σ ′Θ;E<e[x1/l1 , . . . ,
xn /ln]>

[E-APPFAIL] ∃i ∈ {1, . . . , n} : ann(vi) 6≺: S ′i
Θ; func(x1 : S

′
1, . . . , xn : S ′n){e}(v1, . . . , vn)→Θ Θ; throw FailedSecurityCheck

Figure 5.5: Function application with Security Annotation enforcement.

5.4.2 Checking Security Annotations

Figure 5.5 codifies the enforcement of Security Annotations at function
boundaries. To simplify the presentation of these rules we introduce a
projection from values to annotations; note that this function returns the
annotation of the corresponding object for references r, rather than Top:

ann(v) :=

Top v = w ′<Top>

S v = w<S>

S v = r<Top>∧Θ(r) = θ<S>

.

[E-APP] governs the case when arguments meet their annotation guards;
in this case the function is evaluated as normal. This rule inspects the ob-
ject store (to look up object annotations when arguments are references)
and modifies the variable store (to bind arguments to the corresponding
variables). We therefore use the standard reduction relation rather than the
split components (Figure 5.1), which requires that we also explicitly make
reference to the evaluation context E. To reflect the hierarchy of the annota-
tion lattice, this rule bakes in subsumption, e.g., enforcement of CryptKey

90

5.4 Semantics for S5SA

would accept the more specific PrivKey. A common JavaScript paradigm
is for non-annotatable values, e.g., functions, to be passed as arguments;
their annotation guard must be Top, i.e., no security precondition, in line
with the attached annotation. For any annotatable values,w<S>, we insist
S satisfies the guard S ′. For references r, we look up the corresponding
object and insist the annotation meets the guard. Direct checking of object
properties and the this argument is achieved via source-to-source rewrit-
ings, described in Section 5.6. [E-APPFAIL] describes what happens when
annotation-checking fails, i.e., whenever an argument carries a less pre-
cise annotation than its guard. FailedSecurityCheck is thrown to report
the potential security vulnerability to the user, rather than simply halting
evaluation.

5.4.3 Completing S5SA

The rest of S5 remains largely unchanged. After object fields are manip-
ulated, there is no guarantee the object annotation remains valid. For ex-
ample, modifying the keyUsages field of a key object returned from Web-
Crypto’s generateKey API may undermine the security of future opera-
tions involving the key. Valid security properties on the object are there-
fore unknown, so we associate Top to the object. Figure 5.6 includes judg-
ments for field manipulation, including adding fields which do not ex-
ist and overwriting the values of existing fields which are writable ([E-
SHADOWFIELD]). These semantics are transparent to annotations to allow
prevalues to govern control flow, e.g., the configurable property must
be true in [E-DELETEFIELD].

91

5 A Semantics for Security Annotations in JavaScript

[E-ADDFIELD]
Θ(r) = {[extensible : true<S1> . . .] str’<S2> : av, . . .}<S ′> Θ; r[str<S3>] ⇓ []
pv = [config : true<Top>, enum : true<Top>,value : v,writable : true<Top>]
Θ ′ = Θ[r/{[extensible : true<S1> . . .] str<S> : pv, str’<S2> : av, . . .}<Top>]

Θ; r[str<S> = v]va →Θ Θ ′; v

[E-SETFIELD]
Θ(r) = {pv . . . str<S1> : [. . .value : v ′,writable : true<S2>], . . .}<S>

Θ ′ = Θ[r/{pv . . . str<S1> : [. . .value : v,writable : true<S2>], . . .}<Top>]

Θ; r[str<S3> = v]va →Θ Θ ′; v

[E-DELETENOTFOUND]
Θ(r) = {av str1<S

′> : pv1, . . .}<S1> str 6∈ {str1, . . .}

Θ; r[delete str<S>] →Θ Θ; false<Top>

[E-DELETEFOUND]

Θ(r) =
{av str1<S1> : pv1, . . . ,
str<S ′> : [. . . configurable : true<S ′>, . . .], . . . ,
strn<Sn> : pvn}<S>

Θ ′ = Θ[r/{av str1<S1> : pv1, . . . strn<Sn> : pvn, . . .}<Top>]

Θ; r[delete str<S ′′>] →Θ Θ ′; true<Top>

[E-SHADOWFIELD]
Θ(r) = {[extensible : true<S1> . . .] str’<S2> : av, . . .}<S>

Θ; r[str<S3>] ⇓ [. . .writable : true<S4> . . .]
pv = [config : true<Top>, enum : true<Top>,value : v,writable : true<Top>]
Θ ′ = Θ[r/{[extensible : true<S1> . . .] str<S> : pv, str’<S2> : av, . . .}<Top>]

Θ; r[str<S> = v]va →Θ Θ ′; v

Figure 5.6: Judgments for setting, deleting and adding fields.

92

5.5 Implementing S5SA

5.5 Implementing S5SA

We mechanize Security Annotations on top of the existing reference imple-
mentation of S5 [81], closely following the rules described in Section 5.4.
We describe the necessary extensions to our semantics to incorporate per-
sistent annotations in a program, starting with declaration of annotations
(Section 5.5.1) and an algorithm for deciding the subannotation relation
within this framework (Section 5.5.2). We then discuss the adaptations to
our core semantics this requires (Section 5.5.3-5.5.4).

5.5.1 Declaring Annotations

The only principal divergence from these rules is that alongside object and
variable stores, we maintain a third annotation store, the lattice of valid an-
notations in the program. So far in this chapter we have not discussed
the introduction of Security Annotations to a program; Security Annota-
tions and their hierarchies are added via the expressions SecAnn S and
SecAnn S Extends S described informally in Section 3.2. The former de-
clares a new security annotation underneath Top but with no other hier-
archical relationships, whereas the latter introduces a new Security An-
notation as an immediate subannotation of the other. These expressions
modify the annotation store to reflect additions to the lattice and evalu-
ate to undefined. Using an annotation prior to declaration results in an
exception.

Formally, the annotation store is a mapping from atomic annotations to
sets of atomic annotations,A := · | A, a : {a1, . . . , an}. Explicitly, whenever

A : a 7→ {a1, . . . , an}

then a has immediate subannotations a1, . . . an (i.e., ai ≺: a and there is
no b such that ai ≺: b and b ≺: a). In a similar manner to the reduction

93

5 A Semantics for Security Annotations in JavaScript

[E-SECANNATOM] a 6∈ Dom(A) A ′ = A, a : ∅
A; SecAnn a→A A ′; undefined

[E-SECANNS] S = a ∗ S ′ S ′ 6= Top

SecAnn S =⇒ SecAnn a; SecAnn S ′

[E-SECANNTOP] S = a ∗ Top
SecAnn S =⇒ SecAnn a

[E-SECANNDEF] a ∈ Dom(A)
A; SecAnn a→A A; undefined

Figure 5.7: Judgments for SecAnn.

relations (Figure 5.1), we introduce a new reduction relation which allows
us to examine (and modify) this annotation store. This rule is expressed
as:

[E-ANNOTATIONS]
A; e→A A ′; e ′

σΘA;E < e >→ σΘA ′;E < e ′ >
.

We extend all other reduction rules to allow inspection (but not modifica-
tion) of the annotation store.

Figure 5.7 details evaluation judgments for the SecAnn expression. In
each of these figures, we use Dom(A) to denote the domain of A, i.e.,
a ∈ Dom(A) requires that the mapping A is defined at the atomic an-
notation a. The rule [E-SECANNATOM] defines a new atomic Security
Annotation, adding it to the hierarchy with no immediate subannotations.
The rule [E-SECANNS] is applied when the Security Annotation declared
is not atomic; in this case, we proceed recursively on the Security Anno-
tation, decomposing it into atomics we can apply [E-SECANNATOM] to.
Finally, [E-SECANNDEF] handles the case where the Security Annotation
has already been defined, in which case we simply evaluate to undefined

and do not modify the annotation store.

Figure 5.8 describes the evaluation judgments for Extends; for the ex-

94

5.5 Implementing S5SA

[E-EXT] A(a2) = A a1 6∈ Dom(A)
A ′ = A[a2/A u {a1}], a1 : ∅

A; SecAnn a1 Extends a2 →A A ′; undefined
[E-EXT2] a1, a2 /∈ Dom(A)

A ′ = A, a1 : ∅, a2 : {a1}
A; SecAnn a1 Extends a2 →A A ′; undefined

[E-EXTS] S = a1 ∗ S ′ S ′ 6= Top

SecAnn S Extends a2 =⇒
SecAnn a1 Extends a2; SecAnn S

′ Extends a2

[E-EXTSUBERR] a1 ∈ Dom(A)
A; SecAnn a1 Extends a2 →A
A; throw SubAnnDeclared

[E-EXTSUPERR] S2 = a1 ∗ S ′ S ′ 6= Top

SecAnn S1 Extends S2 =⇒
throw SuperNotAtomic

Figure 5.8: Judgments for SecAnn Extends.

pression SecAnn a1 Extends a2, we require that a1 is previously unde-
fined (in the case that it is, we apply [E-EXTSUBERR]). We distinguish
by case when a2 is defined (applying [E-EXT]) and when it is not (ap-
plying [E-EXT2]). In either case, we add a1 to our annotation store (with
no immediate subannotations) and augment the set mapped to by A(a2)
with {a1}. The rule [E-EXTS] is similar to [E-SECANNS], whenever we ex-
tend a2 with a non-atomic subannotation. Finally, the rule [E-EXTSUPERR]
covers the case that a non-atomic subannotation is extended, which we do
not allow (we prohibit atomic annotations from having multiple unrelated
parents, see Section 3.2).

95

5 A Semantics for Security Annotations in JavaScript

5.5.2 Deciding ≺:.

Algorithm 1 describes the mechanism we use in order to verify whether
S1 ≺: S2 for arbitrary Security Annotations in implementation. The func-
tion isSubAtomAtom (lines 1-12) details the process of deciding if a1 ≺: a2
for two atomic Security Annotations. In this case, the results are imme-
diate if either annotation is Top, since all annotations are a subannotation
of Top, and Top ≺: S only when S is precisely Top. Otherwise, we need
to inspect the annotation hierarchy (lines 6-12); to do this, we look up a2
in the annotation store, inspecting the elements of A(a2). If a1 = a2, we
are done by reflexivity. Whenever a1 ∈ A(a2), we are done, since a1 is
an immediate subannotation of a2. Otherwise, we recurse on elements of
A(a2) (line 10) in order to examine the rest of the annotation hierarchy.

The function isSubProdAtom (lines 14-22) generalizes this to deciding
whether S ≺: a for a general Security Annotation S and atomic Security
Annotation a. First, we consider the set of atomic Security Annotations
which make up the atomic decomposition of S (line 14). Clearly, by our
partial ordering, if a is part of this atomic decomposition, the S ≺: a.
Otherwise, we check if there is some b in the atomic decomposition with
b ≺: a (line 20); if there is, then S ≺: a. If not, S 6≺: a.

Armed with these two auxiliary functions, we check that S1 is a suban-
notation of each annotation in the decomposition of S2 (line 26). In the case
that there is a b in the decomposition such that S1 6≺: b, then S1 cannot be
a subannotation of S2; if we exhaust all annotations in this decomposition,
then S1 ≺: S2.

5.5.3 Adapting The Semantics of S5SA

The addition of an annotation store does not meaningfully change the se-
mantics detailed in Section 5.4; none of the semantics modify the annota-
tion store, though they do inspect it. In particular, the annotation coercion

96

5.5 Implementing S5SA

Algorithm 1: Deciding the subannotation relation.
Input : Security Annotations S1, S2 The annotation store, A
Output: true if S1 ≺: S2, false otherwise

1 function isSubAtomAtom(a1, a2):
2 if a2 = Top then
3 return true
4 if a1 = Top then
5 return false
6 if a1 = a2 then
7 return true
8 else
9 foreach a ∈ A(a2) do

10 if isSubAtomAtom(a1, a) then
11 return true
12 return false
13

14 function isSubProdAtom(S, b):
15 A := {a1, . . . , an} where S = a1 ∗ . . . ∗ an
16 if b ∈ A then
17 return true
18 else
19 foreach a ∈ A do
20 if isSubAtomAtom(a, b) then
21 return true
22 return false
23

24 B := {b1, . . . , bn} where S2 = b1 ∗ . . . ∗ bn
25 foreach b ∈ B do
26 if !isSubProdAtom(S1, b) then
27 return false
28 return true

97

5 A Semantics for Security Annotations in JavaScript

[E-COMPATANN] A; e =⇒ AA; e ′

σΘA;E<e> → σΘA;E<e ′>
[E-ENVSTOREANN] σA; e→σA σ ′A; e ′

σΘA;E<e> → σ ′ΘA;E<e ′>
[E-CONTROLANN] A; e→e A; e ′

σΘA;E<e> → σΘA;E<e ′>
[E-OBJECTSANN] ΘA; e→ΘA Θ ′A; e ′

σΘA;E<e> → σΘ ′A;E<e ′>

Figure 5.9: Reduction relations enriched with the annotation store.

expressions must inspect the annotation store to check that the annota-
tions in the expression are defined. As mentioned previously, we construct
natural extensions of the reduction relations (Figure 5.1); these additional
rules, given in Figure 5.9, simply permit inspection of the annotation store.

In Figure 5.10, we give the rules for the as operator with reference to
the annotation store. These make use of our extended reduction relations
to ensure that the added Security Annotation has been properly defined
prior to the coercion. In the case that it has not, we apply [E-ASUNDEC],
and throw an error. Otherwise, we simply proceed by case analysis on v
as before; note that [E-ASW’] remains unchanged.

5.5.4 Mechanizing Functions

The annotation store is also inspected in function application (Figure 5.5)
to compare annotations with respect to subsumption. Figure 5.11 describes
the extended evaluation rules for function application which first extend
[E-APP] by ensuring that all annotations have been declared, and extend
the failure case to cover when specified annotations do not exist. The sub-

98

5.6 Executing JavaScript in S5SA

[E-ASW-STORE] v = w<S>
S ′ = a1 ∗ . . . ∗ an ∀i ∈ 1, . . . , n, ai ∈ Dom(A)

A; v as S ′ =⇒ AA;w<S ∗ S ′>

[E-ASR-STORE] v = r Θ(r) = o<R> Θ ′ = Θ[r/o<R ∗ S>]
S = a1 ∗ . . . ∗ an ∀i ∈ 1, . . . , n, ai ∈ Dom(A)

ΘA; v as S→ΘA Θ ′A; v

[E-ASUNDEC] S = a1 ∗ . . . ∗ an ∃i ∈ 1, . . . , n, ai 6∈ Dom(A)
A; v as S =⇒ throw UndeclaredAnnotation

Figure 5.10: Judgments for as enriched with the annotation store.

annotation relation assertions are checked via the algorithm described in
Section 5.5.2.

In S5SA, we have described only functions in which each argument is
checked against some annotation guard. In implementation, we retain
enforcement-free functions and do not insist every argument has an anno-
tation guard. In addition, instead of performing a single-step reduction on
enforced functions (as in [E-APP]), we split this reduction into two steps.
First, we check the annotation guards against the arguments supplied; if
any argument fails its annotation check, we throw FailedSecurityCheck

as in [E-APPFAIL]. If all annotation checks succeed, we instead evaluate to
an equivalent, enforcement-free function applied to the same arguments.
This allows reuse of existing ES5 environment implementations described
in the work of Politz et al. [81].

5.6 Executing JavaScript in S5SA

We execute JavaScript code with Security Annotations by extending the
JavaScript-to-S5 desugaring relation. We extend the syntax of JavaScript

99

5 A Semantics for Security Annotations in JavaScript

[E-APP]
∀i ∈ {1, . . . , n} : (S ′i = ai,1 ∗ . . . ∗ ai,ni

∧ ∀j ∈ {1, . . . , ni}, ai,j ∈ Dom(A))
∀i ∈ {1, . . . , n} : ann(vi) ≺: S ′i

σ ′ = σ, l1 : v1, . . . , ln : vn where l1 . . . ln fresh in σ, e, v1, . . . , vn
σΘA;E<func(x1 : S ′1, . . . , xn : S ′n){e}(v1, . . . , vn)> →

σ ′ΘA;E<e[x1/l1 , . . . ,
xn /ln]>

[E-APPFAIL]
∃i ∈ {1, . . . , n} : (S ′i = ai,1 ∗ . . . ∗ ai,ni

∧ ∃j ∈ {1, . . . , ni}, ai,j 6∈ Dom(A))
∨ ∃i ∈ {1, . . . , n} : ann(vi) 6≺: S ′i

ΘA; func(x1 : S ′1, . . . , xn : S ′n){e}(v1, . . . , vn)→ΘA ΘA; throw FailedSecurityCheck

Figure 5.11: Function application enriched with an annotation store.

by adding Security Annotations and function guards, as well as the ex-
pressions as, drop, cpAnn, SecAnn and SecAnn Extends. Our desugaring
rewrites these expressions into their S5 equivalents, which are then exe-
cuted in the reference interpreter.

Checking object properties. We discuss how our implementation per-
forms annotation checking of object internals through source-to-source
transformations (Section 5.6). Recall Listing 3.1 provides a specification
for WebCrypto’s encrypt API, in which the "iv" property of the alg ar-
gument should be a cryptographically secure random value (i.e., anno-
tated with CSRV). This demonstrates the need for checking properties of
objects. We achieve this via source-to-source rewritings at the JavaScript
level; these are simplified by an assert function:

let assert = function(arg, ann){

(function(x : ann) {})(arg);

100

5.6 Executing JavaScript in S5SA

}.

There are three possible cases: first, obj :S [prop, S] checks that obj[
prop]meets S. We check the specified property exists, and insist it satisfies
the guard S:

if (typeof obj == ’object’ &&

Object.getOwnPropertyNames(obj).indexOf(prop) >= 0) {

assert(x[prop], S);

} else { throw ’FailedSecurityCheck’; }

Second, obj :A S checks all properties meet the guard S; to achieve this
we iterate over all object properties:

if (typeof obj == ’object’) {

let props = Object.getOwnPropertyNames(obj);

for (let iter = 0; iter < props.length; iter++) {

assert(obj[props[iter]], S);

}

} else { throw ’FailedSecurityCheck’; }.

Finally, obj :E [N, S] checks at least N properties satisfy S. As be-
fore, we iterate over object properties, counting the number that meet the
guard:

if (typeof obj == ’object’) {

let props = Object.getOwnPropertyNames(x), successes = 0;

for (let iter = 0; iter < props.length; iter++) {

try { assert(x[props[iter]], S); successes++; } catch (e

) { };

}

if (successes < N) { throw ’FailedSecurityCheck’; }

} else { throw ’FailedSecurityCheck’; }.

Checking this. Functions have an implicit this argument, the context
object in which the current code is executing. For example, the following

101

5 A Semantics for Security Annotations in JavaScript

evaluates to true:

let obj = {get: function() {return this.val;}, val: true};

obj.get();

In the manner of object property enforcement, we check this via the syn-
tax function(: S, ...) { body(); } which is rewritten to function

(...){ assert(this, S); body(); }, where assert is the helper func-
tion discussed previously.

5.7 Using S5SA: A Case Study

We provide a reference implementation of Security Annotations for the
correctness of future implementations in native JavaScript. Our interpreter
translates a subset of Node.js programs into S5 programs; we demonstrate
the scope of this reference interpreter by describing the modifications to
programs necessary for execution. We outline how we envisage Security
Annotations being used by developers to detect security vulnerabilities
through case study within our interpreter.

A client-server application. We implement in Node.js a small chat appli-
cation which takes as argument a confidential message a client wishes to
transmit to a server. The server and client negotiate a key exchange, and
an encrypted copy of this message is sent to the server, which decrypts it.
We omit authentication from this case study for simplicity of presentation.

Execution in S5SA. In order to execute the case study in S5, we must
simulate the behvior of certain libraries; throughout this thesis, we call
these copies of the libraries mocks. Library mocks are necessary to exe-
cute the case study in S5. S5 does not support asynchronous code, so we

102

5.7 Using S5SA: A Case Study

construct a synchronous mock of the networking API, net [72]. An ex-
tension to asynchronous code is possible in principle based on an existing
formalization of JavaScript promises [62]. Second, cryptographic opera-
tions are mocked as stub functions returning objects of the same under-
lying structure. Finally, S5 programs do not take input, so we explicitly
declare process.argv to simulate this. WebCrypto is not implemented in
Node.js, so we construct a synchronous mock using the Node.js crypto

module [70].

A shim for a WebCrypto fragment. Listing 5.3 contains an annotated
shim of a fragment of WebCrypto for use by developers. These method
specifications follow the same structure as Listing 3.1 (line 47 refers to this
shim). getRandomValues fills the supplied array with cryptographically
secure random values, so this array is annotated with CSRV. Despite the
lack of a return, the annotation on this array persists because the annota-
tion is attached directly to the object. generateKey constructs a key (or
key pair) object for the supplied algorithm; postconditions of this method
are differentiated by case analysis. deriveKey is used to compute a shared
secret key from the other party’s public key and the private key. The con-
tract for decrypt is similar to encrypt; we do not enforce Ciphertext

against data—or that the IV is randomly generated—to allow decryption
of messages received across a network. importKey allows public keys re-
ceived across a network to be formatted for use with other WebCrypto
APIs. This API allows the upcasting of arbitrary data; however, without
importKey, it would be impossible to use WebCrypto across a network.

A security property violation. Listing 5.4 shows the developer’s function
used to construct the IV. The developer constructs an array to store the
IV is constructed as an array of 16 unsigned 8-bit integers (line 2). This
array is then used in the correct generation of an IV the same size as the

103

5 A Semantics for Security Annotations in JavaScript

1 SecAnn <CSRV * Message * CryptKey>;
2 SecAnn <PrivKey * PubKey * SymKey> Extends <CryptKey>;
3 SecAnn <Plaintext * Ciphertext> Extends <Message>;
4
5 window.oldCrypto = window.crypto;
6 let wc = window.oldCrypto.subtle;
7
8 const grvShim = function(arr) {
9 window.oldCrypto.getRandomValues(arr);

10 arr as <CSRV>;
11 };
12
13 const gkShim = async function(alg, extractable, keyUsages) {
14 let key = await wc.generateKey(alg, extractable, keyUsages);
15 if (/RSA|ECD/.test(alg.name)) {
16 key.privateKey = key.privateKey as <PrivKey * CSRV>;
17 key.publicKey = key.publicKey as <PubKey * CSRV>;
18 } else if(/AES|HMAC/.test(alg.name)) {
19 key as <SymKey * CSRV>;
20 } else { throw FailedSecurityCheck; }
21 return key;
22 };
23
24 const dkShim = async function(alg :S ["public", <PubKey>],
25 masterKey : <PrivKey>, derivedKeyAlg, extractable, keyUsages) {
26 let key = await wc.deriveKey(alg, masterKey, derivedKeyAlg,

extractable,
27 keyUsages);
28 return (key as <SymKey>);
29 };
30
31 const decShim = async function(alg, key, data) {
32 if (/AES/.test(alg.name)) {
33 (function(arg : <SymKey>) {})(key);
34 } else if (/RSA/.test(alg.name)) {
35 (function(arg : <PrivKey>) {})(key);
36 } else { throw FailedSecurityCheck; }
37 var res = await wc.decrypt(alg, key, data);
38 return ((cpAnn(data, res) drop <Ciphertext>) as <Plaintext>);
39 };
40
41 const ikShim = async function(type, key, alg, extractable, keyUsages) {
42 let pubKey = await wc.importKey(type, key, alg, extractable, keyUsages

);
43 return (pubKey as <PubKey>);
44 };
45
46 const wcShim = {generateKey: {value: gkShim},
47 deriveKey: {value: dkShim}, encrypt: {value: encShim},
48 decrypt: {value: decShim}, importKey: {value: ikShim}};
49 defineProperty(window.crypto, "subtle", { value: wcShim});
50 defineProperty(window.crypto, "getRandomValues", {value: grvShim});

Listing 5.3: An annotated shim for a fragment of the WebCrypto API.

104

5.7 Using S5SA: A Case Study

1 function getIV() {
2 var iv = new Uint8Array(16);
3 crypto.getRandomValues(iv);
4 for (var i = 0; i < iv.length; i++) {
5 iv[i] = iv[i] % 128;
6 }
7 return iv;
8 }

Listing 5.4: Case Study: constructing the IV.

1 function encrypt(store, str) {
2 var ivEnc = getIV();
3 var res = crypto.subtle.encrypt({
4 name:’AES-CBC’,
5 length:128,
6 iv: ivEnc,
7 }, store.sharedSecret, str);
8 return "{ct:"+res[0]+",iv:"+res[1]+"}"
9 }

Listing 5.5: Case Study: the developer’s encrypt function.

cipher block size (line 3). The developer then forces each element of the
array forming the IV to be an integer in the interval [0, 127] (line 5). This is
intended to ensure that the IV can be directly encoded as an ASCII string.
However, the developer in practice, this simply reduces the entropy to
only 112 bits (from 128), less than the block size: a potential security flaw
which does not visibly affect runtime behavior.

To detect such bugs, a developer includes our WebCrypto shim. When
the developer calls their encrypt function (Listing 5.5), they first generate
a fresh IV (line 2). As discussed, this IV is generated through a call to the
WebCrypto API, and so is initally annotated with CSRV (per the specifi-

105

5 A Semantics for Security Annotations in JavaScript

cation in Listing 5.3). However, the manipulation of the array drops the
annotation (per [E-SETFIELD] in Figure 5.6). Since the iv property of the
object passed as the first argument (line 6) is not annotated with CSRV, the
call to encrypt fails, FailedSecurityCheck is thrown and this security
flaw is reported to the developer. When the manipulation of the array in
getIV is removed, no error is thrown; the security pre- and postconditions
enforced in the shim are respected.

5.8 Properties of S5SA Programs

We discuss safety guarantees for S5 programs with Security Annotations
(Section 5.8.1) and extend this to security guarantees (Section 5.8.2). Fi-
nally, we apply this to prove security of our case study (Section 5.8.3).
Throughout this section, we assume all programs discussed terminate;
since Security Annotations are enforced at runtime, for programs which
do not terminate, we cannot comment on whether there are Security An-
notation violations. That is, due to the nature of the analysis, for these
programs, we cannot comment on the program since the analysis itself
may not terminate.

5.8.1 Safety Guarantees

We adopt a relatively modest notion of safety: first, a program is safe if it
does not evaluate to an exception as a result of a function argument failing
to meet the annotation guard. Second, the program should not coerce the
annotation of a non-annotatable value, e.g., null as <CSRV>. This gives
us the definition:

Definition 5.1 (Annotation Safety). An S5 program is safe with respect to Se-
curity Annotations (or, annotation safe) if the execution of the program does

106

5.8 Properties of S5SA Programs

not result in any of the FailedSecurityCheck, UndeclaredAnnotation
or NotAnnotatable exceptions.

Although programs in S5 are deterministic, programs in JavaScript (or any
meaningful language) are not: their execution depends on the DOM or
user input. To consider this broader context, suppose P is a program ex-
pecting input, we extend Definition 5.1 as follows:

Definition 5.2 (Annotation Safety for Programs with Input). A program
which takes input P , is annotation safe if no execution of the program
results in any of the FailedSecurityCheck, UndeclaredAnnotation or
NotAnnotatable exceptions.

Consider a family of S5 programs,Π, which are deterministic and simulate
input by declaring a global variable process.argv assigned to an object
containing N fields. For each field, fi suppose there is an accompanying
value vi. For each vi, we fix a base type and range over all possible preval-
ues (and undefined, which simulates a lack of input). If vi is a reference to
an object, we range over all possible objects θ. The resulting family of pro-
grams represents the space of possible executions for P . For example, our
case study (Section 5.7) takes only a single input (the message to send);
Π describes this by fixing process.argv as an object with a single field
which ranges over all possible strings and undefined. We can therefore
reformulate Definition 5.2:

Lemma 5.3. Let P be an S5 program with input and Π the family of de-
terministic programs p describing all possible inputs for P . Then P is
annotation safe if and only if every program p ∈ Π is annotation safe.

Proof. By construction, each execution of P is considered as a separate de-
terministic program P so the result is immediate.

Since this family Π is very large, we formalize safety in terms of a subset
of these programs. Let π be the set of all p ∈ Π following exactly the same

107

5 A Semantics for Security Annotations in JavaScript

sequence of evaluation judgments. This set of S5 programs corresponds
to a single control-flow path of P : so if any p is annotation safe, so are all
programs in π. Since the union of all (clearly disjoint) possible paths π is
equal to the overall family of programs Π, we can obtain a simpler notion
of safety for P :

Theorem 5.4. Let Π be the family of deterministic programs describing all
possible inputs for P . Consider all disjoint subsets π ⊆ Π representing
single control flow paths of P , and for each, choose a single p ∈ π. Then P
is annotation safe if and only if each p is annotation safe.

Proof. Suppose first that P is annotation safe. Then by Lemma 5.3, we
know every P ∈ Π is annotation safe. Since each π ⊆ Π, each p must be
annotation safe as required. For the other direction, suppose each p is an-
notation safe. Pick one such p, and the subset of Π to which it belongs, π.
Let p ′ be some other program in π, and suppose that p ′ is not annotation
safe. Then the execution of p ′ results in either a FailedSecurityCheck

or NotAnnotable exception. This means that the final evaluation judg-
ment applied in the evaluation of p ′ is either [E-APPFAIL], [E-ASW’], [E-
DROPW’], [E-CPW’V] or [E-CPVW’]. Since p and p ′ both belong to π,
they follow the same sequence of evaluation judgments. But then p is not
annotation safe, which is a contradiction. Thus each p in π is annotation
safe, and extending this across all disjoint subsets π of Π, each program in
Πmust be annotation safe. Applying Lemma 5.3 again, we are done.

This result says that if any set π is not safe, then some control-flow path in
P violates the Security Annotation specification of the program, indicating
a possible security vulnerability. This description of safety requires us to
find these subsets π to obtain a guarantee. In practice, this is equivalent to
enumerating all control flow paths of a program over all types of input val-
ues and objects, which makes our mechanism ideally suited for combina-
tion with feedback-directed fuzzing or dynamic symbolic execution [61].

108

5.8 Properties of S5SA Programs

For example, in our case study, there are two control flow paths—either
the input is provided, or it is not. We therefore need only consider two
programs to obtain Π-safety: where process.argv is undefined and one
where the only field is an arbitrary string, say ’hi’.

5.8.2 Security Guarantees

We extend the notion of safety to security guarantees for Security Anno-
tations. Let a be the function annotating an arbitrary program supplied
as argument (of course, in practice this is a manual process). Let L be a
library and a(L) an annotated shim of this library (e.g., Listing 5.3); any
security guarantees are conditional on the correctness of L, e.g., that Web-
Crypto itself is a correct implementation of cryptographic primitives. Let
P be an S5 program which calls L, and suppose the developer of P in-lines
this annotated shim in a program P ′ = a(L);P. For the remainder of this
section, we assume that P does not contain any expressions which manip-
ulate Security Annotations. We can make the following (overapproximate)
claim, which states that whenever P ′ is annotation safe, it respects the se-
curity properties enforced by the Security Annotation specifications of the
methods in a(L).

Lemma 5.5. Suppose P ′ is annotation safe and that P does not contain any
expressions which manipulate Security Annotations. Then the Security
Annotation specifications described in a(L) are respected.

Proof. Suppose a Security Annotation specification in a(L) is not respected.
Then some function precondition fails, so the judgment [E-APPFAIL] is
evaluated, contradicting our assumption that P ′ is annotation safe. Since
P does not involve the manipulation of Security Annotations, any annota-
tions must be the postconditions of an API call in a(L); hence these speci-
fications are respected.

109

5 A Semantics for Security Annotations in JavaScript

Analogously to Section 5.8.1, we extend this result to programs with input:

Theorem 5.6. Let P be a program with input and suppose P ′ = a(L);P is
annotation safe. Suppose further that that P does not contain any expres-
sions which manipulate Security Annotations. Then the Security Annota-
tion specifications described in a(L) are respected.

Proof. This follows immediately from the combination of Theorem 5.4 and
Lemma 5.5.

Annotation safety and approximation. The converse of this result is not
true: if a program P ′ is not annotation safe this does not necessarily mean
a security property is violated. The conservative nature of Security An-
notations means that some valid Security Annotations may be discarded
resulting in a program to fail to annotation check. For example, adding
a field to the key object generated by WebCrypto’s deriveKey API does
not necessarily invalidate the fact that the object contains symmetric key,
however the annotation would be discarded. The notion of annotation
safety is therefore overapproximate with respect to the security properties
Security Annotations express.

5.8.3 Security Guarantees in Practice

We use Theorem 5.6 to describe concrete security guarantees for the case
study outlined in Section 5.7, which are conditional on the correctness of
WebCrypto. Recall that after fixing the security vulnerability involving the
ASCII-encoded IV, when a message supplied as argument, the program
executes without error; if no message is provided the application simply
reports this to the user and exits. Both control-flow paths of this program
are annotation safe. With reference to the specifications described in our
WebCrypto shim (Listing 5.3), there are two caveats to our claim; the first

110

5.8 Properties of S5SA Programs

assumes the developer does not leak keying material and the second re-
lates to the omission of authentication from the case study.

Security Statement 5.7. Suppose that: (i) None of the initialization vector
(IV), symmetric key nor either party’s secret keys are leaked across the
network, (ii), an attacker impersonates neither party and (iii) the attacker
cannot break the AES-128 cipher in CBC mode. Then encrypted messages
sent by the client can only be read by the server.

Analysis. The application does not manipulate annotations; when executed
with a non-annotated copy of the library the program is annotation safe.
As described above, both control-flow paths of the program are annota-
tion safe with our annotated library in-lined, we can directly apply The-
orem 5.6. It remains to demonstrate the specification enforced by the an-
notation library. The encryption—via AES-CBC with a 128-bit key—is se-
cure only when the symmetric key has been securely derived, and the IV
is a block-sized CSRV (Listing 3.1). Our WebCrypto specification enforces
the CSRV portion of the contract directly: calling getRandomValues an-
notates the IV with CSRV (lines 8-10 of Listing 5.3), and this array is not
subsequently modified, the annotation check on entry to encrypt passes.

Second, the symmetric key used for AES must be shared between the
two parties secretly. The key is derived through an ECDH key exchange;
both the server and client use generateKey (lines 13-22 of Listing 5.3) to
compute a key pair. Public keys are exchanged, and validated it through
importKey (lines 41-44). The client supplies their private key and the
server’s public key to deriveKey (lines 24-29). Neither key has been tam-
pered with, so the client’s key is annotated with PrivKey and the server’s
with PubKey. This satisfies the guard of deriveKey, and so the key for
AES is computed, and annotated SymKey. The provenance of the secret
key as derived from safe API calls can be confirmed, so the guard against
the key in encrypt succeeds (line 10 of Listing 3.1). Therefore, only some-

111

5 A Semantics for Security Annotations in JavaScript

one in possession of the private key corresponding to the server’s public
key can read the message supplied as data to this API.

5.8.4 Limitations

We discuss the limitations of the approach described in the previous sec-
tion, with particular reference to the annotation of libraries through the
function a. As before, let P be a program calling a library L and P ′ =
a(L);P be the program with an annotated copy of L in-lined. There are
three principal limitations to our approach relating to the fact that P is an
arbitrary piece of code, other than the fact that it does not directly manip-
ulate Security Annotations:

(i) The process of annotating the library, a, may affect L or P.

(ii) The program P may affect L.

(iii) The program P may affect the annotations a.

In this section we describe our assumptions in detail, and describe the
relation of these to each of the three principal limitations and their impli-
cations outside of an idealized setting.

Threat assumptions. As described throughout this thesis, the intended
usage scenario of Security Annotations is within testing environments. We
consider three actors in our assumptions: the library author, the library an-
notator and the program author. First, we assume that none of these actors
is malicious. Second, we assume that the library author writes a trusted,
correct implementation. We assume that the library annotator does not
modify the library; in particular, we assume that a(L) has the following
structure: for each methodm in L, the shim a(m) first enforces annotation
guards on provided arguments, then calls m directly. Finally, the return

112

5.8 Properties of S5SA Programs

value of m is annotated through the as, drop and cpAnn expressions (in
the manner of the shim given in Listing 5.3). That is, the logic of m is
preserved. Finally we assume that the program author does not directly
manipulate Security Annotations in P via the expressions as, drop and
cpAnn. Other than this, the program P is considered arbitrary.

a affecting L or P. This limitation covers the effect of the library anno-
tator causing a change in behavior to either L or P. As described in our
assumptions, we assume that the result of evaluation of each exposed li-
brary method is, modulo annotations, unmodified by the shim a(L). That
is, there should be no difference in the evaluation of the library method
and the shimmed method other than the presence of Security Annotations.
If this assumption is broken, the behavior of the program a(L);P is now
distinct from L;P so the value of using Security Annotations as a testing
mechanism is reduced (since behavior in a production environment may
differ). However, it is still possible that the Security Annotations could
correctly specify the modified L, meaning that there may be security guar-
antees for a(L);P, it would just be impossible to transfer these guarantees
to the program L;P.

P affecting L. This limitation describes the case when a program directly,
or indirectly, modifies the library it calls. For example, suppose L contains
the method:

function len(str) {

return str.length;

}.

If P modifies the definition of String.length at runtime, then len will
not behave as expected. This would therefore undermine the annotation
specification described in a(L).

113

5 A Semantics for Security Annotations in JavaScript

P affecting a. This case is similar, but more subtle, than the P affecting
L. We have assumed P does not manipulate Security Annotations through
as, drop and cpAnn. Since this is the only way that Security Annotations
can be manipulated in a S5SA program, P cannot directly modify which
annotations are manipulated by the shim a. However, in the same way L
can be modified by P, so too could a if the shim adds additional logic to
decide, for example, which type of key annotation should be added (e.g.,
similar to the conditional logic in Listing 5.3). This modification could
cause incorrect annotations to be added to values, causing executions of
P to pass annotation checks when they should fail (or vice versa). In our
native JavaScript implementation (Chapter 7), it is further possible that a
non-malicious yet pathological P may cause effects equivalent to the ex-
pressions which manipulate annotations. This would cause executions of
P to pass annotation checks when they should fail.

Addressing the effect of P on a and L. Both of the two above limitations
are concerned with the effect of our arbitrary program P with either a or
L. We consider the problem out of scope for this thesis; the problem of
dealing with interaction between trusted and untrusted code is treated by
systems such as DJS [11] which can offer guarantees of noninterference in
such a scenario. However, such guarantees come at a significant cost in re-
stricting the languages both L and a can be written in. Since the approach
presented in this thesis is designed to allow the annotation and testing
of the use of arbitrary libraries, this restriction would severely limit the
applicability of the approach.

114

5.9 Related Work

5.9 Related Work

A variety of formalizations of the JavaScript language exist [88, 77, 43, 81];
these are discussed in Section 2.2. Since we do not intend the checking
of Security Annotations to be performed directly in a formal intermedi-
ate representation, we prioritize a model amenable to clear concise rep-
resentations of Security Annotations, where security proofs are tractable.
Security Annotations allow developers to analyze their program for secu-
rity bugs without the need for manual intervention; this contrasts with the
high level of developer input required to achieve verification with the for-
mal framework JaVerT [88]. Since S5 remains closer to the minimal lambda
calculus described Chapter 4, this allows for a more natural translation.

Our work is complementary to work on cryptographic API usage in An-
droid applications [54, 32]. CrySL [53] is a DSL for the specifying correct
usage of the Java Cryptography Architecture. The motivation of this work
is similar to this thesis, intending cryptographic experts write specifica-
tions which are then statically checked without modification of the appli-
cation. Our approach of encoding pre- and postconditions via Security
Annotations on values and objects embraces the dynamicity of JavaScript,
for which static analysis has historically proved difficult.

The use of statically typed JavaScript dialects to ensure safety is com-
mon [27, 108, 25, 83]. The effective use of such static typing approaches
would require the modification of APIs and language semantics, e.g., di-
rectly prohibiting byte array indexing of Key types. Further, we allow
developers to test existing implementations dynamically without rewrit-
ing into such a dialect. Similarly, existing DSLs for cryptographic code in
JavaScript [12, 52, 10] are not amenable for use on existing applications:
these languages are small subsets of JavaScript without many of the com-
mon idioms and advantages of the language.

Refinement type systems for security property checking [7, 13, 14, 98]

115

5 A Semantics for Security Annotations in JavaScript

demonstrate the viability of verification of security properties in main-
stream implementations. Through Security Annotations, we offer idiomatic
and concise descriptions of security properties, designing an alternative
system which avoids the need for developers to directly annotate program
terms to achieve results. Since we check Security Annotations at runtime,
we do not offer formal guarantees in the manner of this work.

The work of Taly et al. details the process of constructing automated
analysis for security-critical JavaScript APIs [99]. The work focuses on
restricting security critical API usage by confinement: the trusted code
hides all security-critical resources behind an API which provides meth-
ods to access these resources from untrusted code securely. Of course, it is
necessary to ensure that such a mechanism is secure against arbitrary un-
trusted code, i.e. that an attacker cannot gain access to confined resources
without using these APIs. This work differs substantially from the aims of
this chapter (and, indeed, this thesis): we explicitly assume that the APIs
themselves are secure and correct.

116

Sound Regular Expression Semantics
for the Dynamic Symbolic Execution
of JavaScript 6
In this chapter, we discuss an extension of the DSE engine ExpoSE (de-
scribed in Section 2.4.2) to support the modeling of JavaScript’s flavor
of extended regular expressions, which encode non-regular languages.
Many programs making use of cryptographic functionality naturally in-
volve the manipulation of strings, e.g., processing encrypted messages
received across a network. A lack of comprehensive support for string
manipulation in a DSE engine would therefore be detrimental to any pro-
gram analysis focusing on finding cryptographic errors. We describe a
logical model for analyzing these extended regular expressions in terms
of regular languages and string constraints which allows for the analysis
of such operations.

Although modern constraint solvers support regular expressions in the
language-theoretic sense, support for regex (see Section 1.4), which can
represet non-regular langauges [3], is limited. In tools reasoning about
string-manipulating programs, these extensions to the machinery of regu-
lar expressions are usually ignored or imprecisely approximated. This can,
within the context of dynamic symbolic execution (DSE) for test genera-
tion, lead to missed bugs where constraints would have to include mem-
bership in non-regular languages.

117

6 Sound Regular Expression Semantics for DSE

To date, there has been only limited progress on this problem, mostly
addressing immediate needs of implementations with approximate solu-
tions, e.g., for capture groups [90] and backreferences [91]. We extend
these to a comprehensive model for both these features, lookaheads and
matching precedence.

In this chapter, we propose a novel, sound, scheme for supporting EC-
MAScript regex in dynamic symbolic execution. We rely on the specifica-
tion of regexes and their associated methods in ECMAScript 2015 (ES6) [31].
However, our methods are easily transferable to most other existing im-
plementations. In particular, we describe the following:

• We fully model ES6 regex in terms of classical regular languages and
string constraints. We introduce the notion of a capturing language to
make the problem of matching and capture group assignment self-
contained.

• We introduce a counterexample-guided abstraction refinement (CE-
GAR) scheme to address the effect of greediness on capture groups,
which allows us to deploy our model in DSE without sacrificing
soundness for under-approximation.

In the remainder of the chapter we review ES6 regexes (Section 6.1). We
then present an overview of our approach by example (Section 6.2). We
detail our regex model using a novel formulation (Section 6.3), and we
propose a CEGAR scheme to address matching precedence (Section 6.4).
We describe how this can be used to provide a model for JavaScript’s regex
API (Section 6.5) and some consequences of this model (Section 6.6). Fi-
nally, we discuss related work (Section 6.7)

This chapter is drawn from work carried out in collaboration with my
colleague Blake Loring and previously published in both SPIN 2017 [60]
and PLDI 2019 [61]. Here, we present the formal logical model for ex-
tended regular expressions based on the notion of Capturing Languages

118

6.1 ECMAScript Regex

(Section 6.3), which was the core contribution by the author of this the-
sis. The author was also involved in the design of the CEGAR algorithm
described in Section 6.4. For a full evaluation of this work, the reader is
referred to the full paper [61] which contains experiments not carried out
by the author of this thesis.

6.1 ECMAScript Regex

We review the ES6 regex specification, focusing on differences to classical
regular expressions. We begin with the regex API and then explain capture
groups, backreferences and operator precedence. ES6 regexes are compa-
rable to those of other languages but lack Perl’s recursion and lookbehind
and do not require POSIX-like longest matches.

Methods and Anchors. ES6 regexes are RegExp objects, created from lit-
erals or the RegExp constructor, with two methods, test and exec, which
expect a string argument. String objects offer the match, split, search
and replace methods that expect a RegExp argument. A regex accepts a
string if any portion of the string matches the expression, i.e., it is implic-
itly surrounded by wildcards; relative position in the string can be con-
trolled with anchors, with ^ and $ matching the start and end, respectively.

Flags. Regexes can contain flags which modify the behavior of matching
operations. The ignore case flag i ignores character cases when matching.
The multiline flag m redefines anchor characters to match either the start
and end of input or newline characters. The unicode flag u changes how
unicode literals are escaped within an expression. The sticky flag y forces
matching to start at RegExp.lastIndex, which is updated with the index
of the previous match. Therefore, RegExp objects become stateful as seen

119

6 Sound Regular Expression Semantics for DSE

in the following example:

r = /goo+d/y;

r.test("goood"); // true; r.lastIndex = 6

r.test("goood"); // false; r.lastIndex = 0

The meaning of the global flag g varies. It extends the effects of match
and replace to include all matches on the string (but not the matches

of capture groups) and it is equivalent to the sticky flag for the test and
exec methods of RegExp.

Capture Groups Parentheses in regexes not only change operator prece-
dence (e.g., (ab)* matches any number of repetitions of the string "ab"

while ab* matches the character "a" followed by any number of repeti-
tions of the character "b") but also create capture groups. Capture groups
are implicitly numbered from left to right by order of the opening paren-
thesis. For example, /a|((b)*c)*d/ is numbered as /a|(1(2b)*c)*d/.
Where only bracketing is required, a non-capturing group can be created
by using the syntax (?: . . .). For regexes, capture groups are important
because the regex engine will record the most recent substring matched
against each capture group. Capture groups can be referred to from within
the expression using backreferences. The last matched substring for each
capture group is also returned by some of the API methods. In JavaScript,
the return values of match and exec are arrays, with the whole match at
index 0 (the implicit capture group 0), and the last matched instance of the
ith capture group at index i. In the example above, "bbbbcbcd".match
(/a|((b)*c)*d/) will evaluate to the array ["bbbbcbcd", "bc", "b"].
The interpretation of the matched results can be subtle: if the contents of a
capture group did not match, the corresponding entry will be undefined.
For example, "a".match(/a(b)?/) evaluates to ["a", undefined]. If
the capture group matches the empty string, the entry is the empty string.

120

6.1 ECMAScript Regex

For example, "a".match(/a(b?)/), evaluates to ["a", ""].

Backreferences A backreference in a regex refers to a numbered capture
group and will match the most recent match of the capture group. In gen-
eral, the addition of backreferences to regexes makes the accepted lan-
guages non-regular [3]. Inside quantifiers (Kleene star, Kleene plus, and
other repetition operators), the string matched by the backreference can
change across multiple matches. For example, the regex /((a|b)\2)+/

can match the string "aabb", with the backreference \2 being matched
twice: the first time, the capture group contains "a", the second time it
contains "b". This logic applies recursively, and it is possible for backref-
erences to in turn be part of other capture groups.

Operator Evaluation Table 6.1 lists the regular expression operators of
interest. Some operators can be rewritten into semantically equivalent ex-
pressions to reduce the number of cases to handle (shown in the Rewriting
column). Regexes distinguish between greedy and lazy evaluation. Greedy
operators consume as many characters as possible such that the entire reg-
ular expression still matches; lazy operators consume as few characters
as possible. This distinction—called matching precedence—is unnecessary
for classical regular languages, but does affect the assignment of capture
groups and therefore backreferences. Zero-length assertions or lookarounds
do not consume any characters but still restrict the accepted word, en-
forcing a language intersection, available through lookahead and lookbehind.
Positive or negative lookaheads can contain any regex, including capture
groups and backreferences. For example, the regex /a(?=b)/ matches "a"
in the string "ab" but not in the string "ac" since the "a" must be followed
by a "b", but this second character is not consumed. In ES6, lookbehind is
only available through \b (word boundary), and \B (non-word bound-
ary), which are commonly used to only (or never) match whole words in

121

6 Sound Regular Expression Semantics for DSE

Table 6.1: Regular expression operators, separated by classes of prece-
dence.

Operator Name Rewriting

(r) Capturing parentheses
\n Backreference
(?:r) Non-capturing parentheses
(?=r) Positive lookahead
(?!r) Negative lookahead
\b Word boundary
\B Non-word boundary

r* Kleene star
r*? Lazy Kleene star
r+ Kleene plus r*r
r+? Lazy Kleene plus r*?r
r{m,n} Repetition rn| . . .|rm

r{m,n}? Lazy repetition rm| . . .|rn

r? Optional r|ε
r?? Lazy optional ε|r

r1r2 Concatenation

r1|r2 Alternation

a string. For example, the regex /\bexample\b/ matches the whole word
"example" in the string "my example string", but not in the string "my

examples are good" since the substring "example" is followed by an
"s" rather than a word boundary character.

6.2 Approach

We describe the approach; first, we define the word problem for regex and
how it arises in DSE. We introduce our model for regex by example and
explain how to eliminate spurious solutions by refinement.

122

6.2 Approach

The word problem and capturing languages. For any given classical reg-
ular expression r, w ∈ L(r) means w is a word within the (regular) lan-
guage generated by r. For a regex R, we also need to record values of
capture groups within the regex. To this end, we introduce the definition:

Definition 6.1 (Capturing Language). The capturing language of a regex R,
denoted Lc(R), is the set of tuples (w, C0, . . . , Cn) such that w is a word of
the language of R and each C0, . . . , Cn is the substring ofwmatched by the
corresponding numbered capture group in R.

A word w is therefore matched by a regex R if and only if ∃C0, . . . , Cn :

(w, C0, . . . , Cn) ∈ Lc(R). It is not matched if and only if ∀C0, . . . , Cn :

(w, C0, . . . , Cn) 6∈ Lc(R). For readability, we will usually omit quantifiers
for capture variables where they are clear from the context.

Regex in DSE. The code in Listing 6.1 parses numeric arguments be-
tween XML tags from its input variable args, an array of strings. The
regex in line 4 breaks each argument into two capture groups, the tag
and the numeric value (parts[0] is the entire match). When the tag is
"timeout", it sets the timeout value accordingly (line 7). On line 11, a
runtime assertion checks that the timeout value is truly numeric after the
arguments have been processed. The assertion can fail because the pro-
gram contains a bug: the regex (line 4) uses a Kleene star and therefore
also admits the empty string as the number to set, and JavaScript’s dy-
namic type system will allow setting timeout to "".

DSE finds such bugs by systematically enumerating paths, including
the failure branches of assertions [41]. Starting from a concrete run with
input, say, args[0] = "foo", the DSE engine will attempt to build a path
condition that encodes the branching decisions in terms of the input values.
It then attempts to systematically flip clauses in the path condition and
query an SMT solver to obtain input assignments covering different paths.

123

6 Sound Regular Expression Semantics for DSE

1 let timeout = ’500’;
2 for (let i = 0; i < args.length; i++) {
3 let arg = args[i];
4 let parts = /<(\w+)>([0-9]*)<\/\1>/.exec(arg);
5 if (parts) {
6 if (parts[1] === "timeout") {
7 timeout = parts[2];
8 }
9 }

10 }
11 assert(/^[0-9]+$/.test(timeout) == true);

Listing 6.1: Using complex regex features to match an XML tag.

This process repeats forever or until all paths are covered (this program
has an unbounded number of paths as loops over an input string).

Without support for regex, the DSE engine will concretize arg on the
call to exec, assigning the concrete result to parts. With all subsequent
decisions therefore concrete, the path condition becomes pc = true and
the engine will be unable to cover more paths and find the bug.

Implementing regex support ensures that parts is symbolic, i.e., its ele-
ments are represented as formulas during symbolic execution. The path
condition for the initial path thus becomes pc = (args[0], C0, C1, C2) 6∈
Lc(R) where R = <(\w+)>([0-9]*)<\/\1>. Negating the clause and solv-
ing yields, e.g., args[0] = "<a>0". DSE then uses this input assign-
ment to cover a second path with pc = (args[0], C0, C1, C2) ∈ Lc(R)∧C1 6=
"timeout". Negating the last clause yields, e.g., “<timeout>0</timeout
>”, entering line 7 and making timeout and therefore the assertion sym-
bolic. This leads to pc = (args[0], C0, C1, C2) ∈ Lc(R)∧C1 = "timeout"∧

(C2, C ′0) ∈ Lc(^[0-9]+$), which, after negating the last clause, triggers the
bug with the input “<timeout></timeout>”.

124

6.2 Approach

Modeling capturing language membership. We model capturing language
membership constraints in the path condition in terms of classical regular
language membership and string constraints since they cannot be directly
expressed in SMT. For a given ES6 regex R, we rewrite R according to Ta-
ble 6.1. For consistency with the JavaScript API, we also introduce an outer
capture group C0. Consider the regex R = (?:a|(b))\1. After preprocess-
ing, the capturing language membership problem becomes

(w, C0, C1) ∈ Lc((?:.|\n)*?((?:a|(b))\1)(?:.|\n)*?),

a generic rewriting that allows for characters to precede and follow the
match in the absence of anchors (the reason for the particular form of
rewriting is described in Section 6.3). We recursively reduce capturing
language membership to regular membership. To begin, we translate the
purely regular Kleene stars and the outer capture group to obtain

(w, C0, C1) ∈Lc(R) =⇒ w = w1 ++w2 ++w3 ∧w1 ∈ L((:?.|\n)*?)

∧ (w2, C1) ∈ Lc((?:a|(b))\1)∧ C0 = w2
∧w3 ∈ L((:?.|\n)*?),

where ++ is string concatenation. We continue by decomposing the regex
until there are only purely regular terms or standard string constraints.
Next, we translate the nested capturing language constraint

(w2, C1) ∈ Lc((?:a|(b))\1) =⇒
w2 = w

′
1 ++w

′
2 ∧ (w ′1, C1) ∈ Lc(a|(b))∧ (w ′2) ∈ Lc(\1).

125

6 Sound Regular Expression Semantics for DSE

To treat alternation, either the left is satisfied and the capture is undefined
(denoted ∅), or the right is satisfied and the capture is locked to the match:

(w ′1 ∈ L(a)∧ C1 = ∅)∨ (w ′1 ∈ L(b)∧ C1 = w ′1).

Finally we model the backreference, which is case dependent on whether
the capture group it refers to is defined or not:

(C1 = ∅ =⇒ w ′2 = ε)∧ (C1 6= ∅ =⇒ w ′2 = C1).

Putting this together, we obtain a model for R:

(w, C0, C1) ∈ Lc(R) =⇒ w = w1 ++w
′
1 ++w

′
2 ++w3 ∧ C0 = w ′1 ++w ′2

∧
(
(w ′1 ∈ L(a)∧ C1 = ∅)∨ (w ′1 ∈ L(b)∧ C1 = w ′1)

)
∧ (C1 = ∅ =⇒ w ′2 = ε)∧ (C1 6= ∅ =⇒ w ′2 = C1)

∧w1 ∈ L((:?.|\n)*?)∧w3 ∈ L((:?.|\n)*?).

Refinement. Because of matching precedence (greediness), these models
permit assignments to capture groups that are impossible in real execu-
tions. For example, we model /^a*(a)?$/ as

(w, C0, C1) ∈ Lc(/^a*(a)?$/) =⇒ w = w1 ++w2

∧w1 ∈ L(a*)∧w2 ∈ L(a|ε)∧ C0 = w∧ C1 = w2.

This allows C1 to be either a or the empty string ε, i.e., we permit spurious
members of the capturing language under our model, such as the tuple
("aa", "aa", "a"). Because a* is greedy, it will always consume both char-
acters in the string "aa"; therefore, (a)? can only match ε. This problem
posed by greedy and lazy operator semantics remains unaddressed by pre-
vious work [90, 104, 91]. To address this, we use a counterexample-guided

126

6.3 Modeling ES6 Regex

abstraction refinement scheme that validates candidate assignments with
an ES6-compliant matcher. Continuing the example, the candidate ele-
ment ("aa", "aa", "a") is validated by running a concrete matcher on the
string "aa", which contradicts the candidate captures with C0 = "aa" and
C1 = ε. The model is refined with the counter-example to the following:

w = w1 ++w2 ∧w1 ∈ L(a*)∧w2 ∈ L(a|ε)∧ C0 = w∧ C1 = w2
∧
(
w = "aa" =⇒ (C0 = "aa"∧ C1 = ε)

)
.

We then generate and validate a new candidate (w, C0, C1) and repeat the
refinement until a satisfying assignment passes the concrete matcher.

6.3 Modeling ES6 Regex

We detail the modeling of the capturing language of a given regex R.
First, we preprocess R into an equivalent regex R ′ (Section 6.3.1). Next,
we model constraints (w, C0, . . . , Cn) ∈ Lc(R ′) by recursively translating
terms in the abstract syntax tree (AST) of R ′ to regular language member-
ship and string constraints (Section 6.3.2-6.3.3). Finally, we model negated
constraints (w, C0, . . . , Cn) 6∈ Lc(R ′) (Section 6.3.4).

6.3.1 Preprocessing

Rewritable operators. We make the concatenation of R1 and R2 explicit
as the binary operator R1 · R2. Any regex can then be split into combina-
tions of atomic elements, capture groups and backreferences (referred to
collectively as terms, per ES6’s specification [31]), joined by explicit opera-
tors. Using the rules in Table 6.1, we rewrite any R to an equivalent regex
R ′ containing only alternation, concatenation, Kleene star, capture groups,
non-capturing parentheses, lookarounds, and backreferences. We rewrite

127

6 Sound Regular Expression Semantics for DSE

lazy quantifiers to their greedy equivalents, as our models are agnostic to
matching precedence (this is dealt with in refinement).

Renumbering capture groups. Rewrite rules for Kleene plus and repeti-
tion duplicate capture groups, e.g., rewriting /(a){1,2}/ to /(a)(a)|(a)/
adds two capture groups. We therefore explicitly relate capture groups
between the original and rewritten expressions. The rewriting of a Kleene
plus expression, S+ containing K capture groups (S*S), has 2K capture
groups. For a constraint of the form (C1, . . . , CK) ∈ Lc(S+), the rewrit-
ing yields (C0, C1,1, . . . , CK,1, C1,2, . . . , CK,2) ∈ Lc(S*S). As S*S contains two
copies of S, Ci,j corresponds to the ith capture in the jth copy of S in S*S.
We express this correspondence between captures as

(w, C0, C1, . . . , CK) ∈ Lc(S+) ⇐⇒
(w, C0, C1,1, . . . , CK,1, C1,2, . . . , CK,2) ∈ Lc(S*S)∧ ∀i ∈ {1, . . . , K}, Ci = Ci,2.

If S{m,n} has K capture groups, then S ′ = Sn | . . . | Sm has K
2 (n +m)(n −

m + 1) captures. In S ′, suppose we index our captures as Ci,j,k where i ∈
{1, . . . , K} is the index of the capture group in S, j ∈ {0, . . . , n−m} denotes
which alternate the capture group is in (0 being the rightmost), and k ∈
{0, . . . ,m+ j− 1} indexes the copies of Swithin each alternate. Intuitively,
we pick a single x ∈ {0, . . . , n −m} that corresponds to the first satisfied
alternate. Comparing the assignment of captures in S{m,n} to S ′, we know
that the value of the capture is the last possible match, so Ci = Ci,x,m+x−1

for all i ∈ {1, . . . , K}. Formally, this direct correspondence can be expressed

128

6.3 Modeling ES6 Regex

as

(w,C0, C1, . . . , CK) ∈ Lc(S{m,n}) ⇐⇒
(w, C0, C1,0,0, . . . , CK,n−m,n) ∈ Lc(Sn | . . . | Sm)

∧ ∃x ∈ {0, . . . , n−m} :
(
(w, C0, C1,x,0, . . . , CK,x,m+x−1) ∈ Lc(Sm+x)

∧ ∀x ′ > x, (w, C0, C1,x ′,0, . . . , CK,x ′,m+x ′−1) 6∈ Lc(Sm+x ′)

∧ ∀i ∈ {1, . . . , K}, Ci = Ci,x,m+x−1

)
.

6.3.2 Operators and Capture Groups

Let t be the next term to process in the AST of R ′. If t is capture-free and
purely regular, there is nothing to do in this step. If t is non-regular, it
contains capture groups numbered i through i+k. At each recursive step,
we express membership of the capturing language (w, Ci, ..., Ci+k) ∈ Lc(t)
through a model consisting of string and regular language membership
constraints, and a set of remaining capturing language membership con-
straints for subterms of t. We record the locations of capture groups within
the regex during preprocessing. When splitting t into subterms t1 and
t2, capture groups Ci, . . . , Ci+j are contained in t1 and Ci+j+1, . . . , Ci+k are
contained in t2 for some j. Models for individual operations are given in
Table 6.2.

When matching an alternation |, capture groups on the non-matching
side will be undefined, denoted by ∅, which is distinct from the empty
string ε. When modeling quantification t = t1∗, we assume t1 does not
contain backreferences: we model t via the expression t̂1*t1|ε, where t̂1
is a regular expression corresponding to t1, except each set of capturing
parentheses is rewritten as a set of non-capturing parentheses. In this way,
t̂1 is regular (it is backreference-free by assumption). However, t̂1*t1|ε is
not semantically equivalent to t: if possible, capturing groups must be

129

6 Sound Regular Expression Semantics for DSE

Table 6.2: Models for regex operators.

Operation t Overapproximate Model for
(w, Ci, ..., Ci+k) ∈ Lc(t)

Alternation t1|t2

(
(w, Ci, ..., Ci+j) ∈ Lc(t1) ∧ Ci+j+1 = ... = Ci+k = ∅

)
∨
(
(w, Ci+j+1, ..., Ci+k) ∈ Lc(t2) ∧ Ci = ... = Ci+j = ∅

)
Concatenation t1 · t2

w = w1 ++w2 ∧ (w1, Ci, ..., Ci+j) ∈ Lc(t1)
∧ (w2, Ci+j+1, ..., Ci+k) ∈ Lc(t2)

Backreference-
free
Quantification

t1*

w = w1 ++w2

∧w1 ∈ L(t̂1*) ∧ (w2, Ci, ..., Ci+k) ∈ Lc(t1|ε)
∧

(
w2 = ε =⇒ (w1 = ε ∧ Ci = . . . = Ci+k = ∅)

)
Positive
Lookahead (?=t1)t2

(w, Ci, ..., Ci+j) ∈ Lc(t1.*)

∧(w, Ci+j+1, ..., Ci+k) ∈ Lc(t2)

Negative
Lookahead (!=t1)t2

(w, Ci, ..., Ci+j) 6∈ Lc(t1.*)

∧(w, Ci+j+1, ..., Ci+k) ∈ Lc(t2)

Input Start t1^ (w, Ci, ..., Ci+k) ∈ Lc(t1) ∧ (w, Ci, ..., Ci+k) ∈ L(. ∗ 〈)

Input Start
(Multiline) t1^ (w, Ci, ..., Ci+k) ∈ Lc(t1)∧ (w, Ci, ..., Ci+k) ∈ L(.∗〈|\n)

Input End $t1 (w, Ci, ..., Ci+k) ∈ Lc(t1) ∧ (w, Ci, ..., Ci+k) ∈ L(〉.∗)

Input End
(Multiline) $t1 (w, Ci, ..., Ci+k) ∈ Lc(t1) ∧ (w, Ci, ..., Ci+k) ∈ L(〉|\n.∗)

Word Boundary t1\b t2

w = w1 ++w2 ∧ (w1, Ci, ..., Ci+j) ∈ Lc(t1)
∧ (w2, Ci+j+1, ..., Ci+k) ∈ Lc(t2)

∧
((

(w1 ∈ L(.*\W) ∨w1 = ε) ∧w2 ∈ L(\w.*)
)

∨
(
w1 ∈ L(.*\w) ∧ (w2 ∈ L(\W.*) ∨w2 = ε)

))

Non-Word
Boundary t1\B t2

w = w1 ++w2 ∧ (w1, Ci, ..., Ci+j) ∈ Lc(t1)
∧ (w2, Ci+j+1, ..., Ci+k) ∈ Lc(t2)

∧
(
(w1 6∈ L(.*\W) ∧w1 6= ε) ∨w2 6∈ L(\w.*)

)
∧
(
w1 6∈ L(.*\w) ∨ (w2 6∈ L(\W.*) ∧w2 6= ε)

)
Capture Group (t1) (w, Ci+1, ..., Ci+k) ∈ Lc(t1) ∧ Ci = w

Non-Capturing
Group (?:t1) (w, Ci, ..., Ci+k) ∈ Lc(t1)

Base Case t regular w ∈ L(t)

130

6.3 Modeling ES6 Regex

satisfied, so t̂1* cannot consume all matches of the expression. We encode
this constraint with the implication that t̂1* must match the empty string
whenever t1|ε does.

Lookahead constrains the word to be a member of the languages of both
the assertion expression and t2. The word boundary \b is effectively a
single-character lookaround for word and non-word characters. Since the
boundary can occur both ways, disjunction allows the end of w1 and the
start of w2 to be word and non-word, or non-word and word characters,
respectively. The non-word boundary \B is defined as the dual of \b.

For capture groups, we bind the next capture variable Ci to the string
matched by t1. The ith capture group must be the outer capture and the
remaining captures Ci+1, . . . , Ci+k must therefore be contained within t1.
There is nothing to be done for non-capturing groups and recursion con-
tinues on the contained subexpression.

Anchors assert the start (^) and end ($) of input; we represent the be-
ginning and end of a word via the meta-characters 〈 and 〉, respectively.
In most instances when handling these operations, t1 will be ε; this is be-
cause it is rare to have regex operators prior to those marking the start of
input (or after marking the end of input, respectively). In both these cases,
we assert that the language defines the start or end of input—and that as
a result of this, the language of t1 must be an empty word, though the
capture groups may be defined (say through t1 containing assertions with
nested captures). We give separate rules for matching a regular expression
with the multiline flag set, which modify the behavior of anchors to accept
either our meta-characters or a line break.

6.3.3 Backreferences

Table 6.3 describes the different cases of backreferences in the AST of regex
R; \k is a backreference to the kth capture group of R. Intuitively, each in-

131

6 Sound Regular Expression Semantics for DSE

Table 6.3: Modeling backreferences.
Type
of \k Capturing Language Approximation Model

Empty (w) ∈ Lc(\k) Exact w = ε

Immutable(w) ∈ Lc(\k) Overapproximate
(Ck = ∅ =⇒ w = ε)

∧ (Ck 6= ∅ =⇒ w = Ck)

Immutable(w) ∈ Lc(\k*) Overapproximate
(Ck = ∅ =⇒ w = ε) ∧ (Ck 6= ∅ =⇒

∃m ≥ 0 : w = ++m
i=0 Ck)

Mutable (w,Ck) ∈ Lc((?:(t1)\k)*)
t1is capture group-free

Overapproximate

(
w = ε ∧ Ck = ∅

)
∨
(
∃m ≥ 1 : w = ++m

i=1(σi,1 ++σi,2)
∧ Ck = Ck,m ∧ ∀i > 1,(
(σi,1, Ck,i) ∈ Lc(t1) ∧ σi,2 = Ck,i

))

Mutable (w,Ck) ∈ Lc((?:(t1)\k)*)
t1is capture group-free

Unsound

(
w = ε ∧ Ck = ∅

)
∨
(
∃m ≥ 1 : w = ++m

i=1(σi,1 ++σi,2)
∧ (σi,1, Ck) ∈ Lc(t1)
∧ ∀i ≥ 1, (σi,1 = σ1,1 ∧ σi,2 = σ1,1)

)

stance of a backreference is a variable that refers to a capture group and
has a type that depends on the structure of R. We call a backreference im-
mutable if it can only evaluate to a single value when matching; it is mutable
if it can take on multiple values, which is a rare but particularly tricky case.
For example, consider /((a|b)\2)+\1\2/. Here, the backreference \1 and
the second instance of \2 are immutable. However, the first instance of \2
is mutable: each repetition of the outer capture group under the Kleene
plus can change the value of the second (inner) capture group, in turn
changing the value of the backreference inside this quantification. For ex-
ample, the string "aabbaabbbbb" satisfies this regex, but "aabaaabaa"
does not. To fully characterize these distinctions, we introduce the follow-
ing definition:

Definition 6.2 (Backreference Type). Let t be the kth capture group of a
regex R; then

132

6.3 Modeling ES6 Regex

(i) \k is empty if either k is greater than the number of capture groups in
R, or \k is encountered before t in a post-order traversal of the AST
of R;

(ii) \k is mutable if \k is not empty, and both t and \k are subterms of
some quantified term Q in R;

(iii) otherwise, \k is immutable.

Empty backreferences are modeled as ε: they refer either to a capture
group which is a superterm, e.g., /(a\1)/, or appears later, e.g., /\1(a)/.

There are two cases for immutable backreferences. In the first, the back-
reference is not quantified: Ck has already been modeled with an equality
constraint, so we bind the backreference to it. In the second, the backrefer-
ence occurs within quantification; the matched word is a finite concatena-
tion of identical copies of the capture group. Both models cover the corner
case where the capture group is ∅ due to alternation or an empty Kleene
star; following the standard, the backreference evaluates to ε.

Mutable backreferences appear as (...t1...\k...)* where t1 is the kth cap-
ture group. ES6 does not support forward referencing of backreferences:
in (...\k...t1...)*, \k is empty. Table 6.3 describes the simplest case, other
patterns are straightforward generalizations. We assume t1 is the kth cap-
ture group but is otherwise capture group-free. We treat the entire term at
once: words in the language are either ε, or for some number of iterations,
we have the concatenation of a word in the language of t1 followed by a
copy of it. We introduce variables Ck,i referring to the values of the cap-
ture group in each iteration, encoding the repeated matching on the string
until the final value for Ck. We need not deal with the possibility that any
Ck,i is ∅, since the quantification ends as soon as t1 does not match.

Unfortunately, constraints for mutable references generated from this
model are hard to solve and infeasible for current SMT solvers: they re-

133

6 Sound Regular Expression Semantics for DSE

quire “guessing” a partition of the matched string variable into individual
and varying components. To make solving such queries practical, the last
row of Table 6.3 describes an unsound alternative to the previous rule,
where we treat quantified backreferences as immutable. For example, re-
turning to /((a|b)\2)+\1\2/, we accept ("aaaaaaaaa", "aaaaaaaaa", "aa", "a"),
but not the tuple ("aabbaabbbbb", "aabbaabbbbb", "bb", "b").

6.3.4 Modeling Non-membership

We define an analogous model for non-membership of the form ∀C0, . . . , Cn :

(w, C0, . . . , Cn) 6∈ Lc(R). Intuitively, non-membership models assert that
for all capture group assignments there exists some partition of the word
such that one of the individual constraints is violated. Most models are
simply negated. In concatenation and quantification, only language and
emptiness constraints are negated, so the models take the form

w = w1 ++w2 ∧
(
. . . 6∈ Lc(. . .)∨ . . . 6∈ Lc(. . .)∨ (w2 = ε∧ ¬(w1 = ε . . .))

)
.

In the same manner, the model for capture groups is

(w, Ci+1, ..., Ci+k) 6∈ Lc(t1)∧ Ci = w.

Returning to our example in Section 6.2, the negated model for ∀C0, C1 :

(w, C0, C1) 6∈ Lc((?:a|(b))\1) becomes

∀C0, C1 : w = w1 ++w
′
1 ++w

′
2 ++w3 ∧ C0 = w ′1 ++w ′2

∧
(
¬
(
(w ′1 ∈ L(a)∧ C1 = ∅)∨ (w ′1 ∈ L(b)∧ C1 = w ′1)

)
∨ ¬(C1 = ∅ =⇒ w ′2 = ε)∨ ¬(C1 6= ∅ =⇒ w ′2 = C1)

∨w1 6∈ L((:?.|\n)*?)∨w3 6∈ L((:?.|\n)*?)
)
.

134

6.4 Matching Precedence Refinement

6.4 Matching Precedence Refinement

We explain the matching precedence problem (Section 6.4.1) and address it
through a counterexample-guided abstraction refinement (CEGAR) scheme
(Section 6.4.1). We discuss termination of the scheme (Section 6.4.2) and
the overall soundness of our approach (Section 6.4.3).

6.4.1 Matching Precedence

The model in Tables 6.2 and 6.3 does not account for matching prece-
dence. A standards-compliant ES6 regex matcher will derive a unique set
of capture group assignments when matching a string w, because match-
ing precedence dictates that greedy (non-greedy) expressions match as
many (as few) characters as possible before moving on to the next [31].
These requirements are not part of our model, as encoding them directly
into SMT would require nesting of quantifiers for each operator, making
even the simplest examples infeasible for automated solving. Since we
seek to model ES6 regex in way amenable to automated solving, even at
the cost of soundness in the case of mutable backreferences, we use an
external refinement scheme to solve the problem of matching precedence
rather than bake this into our model.

CEGAR for ES6 regex models We eliminate infeasible elements of the
capturing language admitted by our model through a scheme of counter
example-guided abstraction refinement (CEGAR). Algorithm 2 is a CEGAR-
based satisfiability checker for constraints modeled from ES6 regexes, which
relies on an external SMT solver with classical regular expression and
string support and an ES6-compliant regex matcher. The algorithm takes
an SMT problem P (derived from the DSE path condition) as a conjunction
of constraints, some of which model the m ≥ 0 original capturing lan-

135

6 Sound Regular Expression Semantics for DSE

Algorithm 2: Counterexample-guided abstraction refinement
scheme for matching precedence.
Input : Constraint problem P including models form constraints

(wj, C0,j, . . . , Cnj,j)�j Lc(Rj).
Output: null if P is unsatisfiable, or a satisfying assignment for P

otherwise
1 M := null;
2 Failed := false;
3 do
4 M := Solve(P);
5 if M = null then
6 return null;
7 Failed := false;
8 for j := 0 tom− 1 do
9 (C\

0,j, . . . , C
\
nj,j

) := ConcreteMatch(M[wj], Rj) ;
10 if (C\

0,j, . . . , C
\
nj,j

) then
11 if �j = ∈ then
12 for i := 0 to nj do
13 if C\

i,j 6= M[Ci,j] then
14 Failed := true;
15 P := P ∧ (wj = M[wj] =⇒ ∧

0≤i≤nj
Ci,j = C\

i,j) ;
16 else // Non-membership query
17 Failed := true;
18 P := P ∧ (wj 6= M[wj]);
19 else // No concrete match
20 if �j = ∈ then
21 Failed := true;
22 P := P ∧ (wj 6= M[wj]);
23 while Failed;
24 return M;

136

6.4 Matching Precedence Refinement

guage membership constraints. We number the problem’s original cap-
turing language constraints 0 ≤ j < m so that we can refer to them
as (wj, C0,j, . . . , Cnj,j)�j Lc(Rj), where � ∈ {∈, /∈}. The algorithm returns
null if P is unsatisfiable, or a satisfying assignment with correct matching
precedence.

In a loop, we first pass the problem P to an external SMT solver. The
solver returns a satisfying assignment M or null if the problem is unsat-
isfiable, in which case we are done (lines 4–6). If M is not null, the algo-
rithm uses a concrete regular expression matcher (e.g., Node.js’s built-in
matcher) to populate concrete capture variables C\i,j corresponding to the
words wj in M.

Lines 8–22 describe how the assignments of capture groups are checked
for each regular expression Rj in the original problem P. We first check
whether the concrete matcher returned a list of valid capture group as-
signments, i.e., whether the word M[wj] from the satisfying assignment
matches concretely. If it did, then wj is a member of the language gener-
ated by Rj. If �j = ∈, i.e., the membership constraint was positive, then
we must check if the capture group assignments are consistent with those
from M (line 13). If they are, we move on to the next regex, otherwise
we refine the constraint problem by fixing capture group assignments to
their concrete values for the matched word (line 15). Dually, if a modeled
non-membership constraint was satisfiable but the word from the current
satisfying assignment M[wj] did match concretely, we refine the problem
by asserting that w must not equal that word (line 18). We do the same if
M[wj] did not match concretely but came from a satisfied positive mem-
bership constraint (line 22).

If no refinement was necessary we have confirmed the overall assign-
ment satisfies P and return M (line 24). Otherwise, the loop continues
with solving the refined problem.

137

6 Sound Regular Expression Semantics for DSE

6.4.2 Termination of the Scheme

Unsurprisingly, CEGAR may require arbitrarily many refinements on patho-
logical formulas and never terminate. This is unavoidable due to unde-
cidability [17]. In practice, we therefore impose a limit on the number of
refinements, leading to unknown as a possible third result. SMT solvers al-
ready may timeout or report unknown for complex string formulas, so this
does not lead to additional problems in practice.

6.4.3 Soundness of the Model

When constructing the models in Tables 6.2 and 6.3, we followed the regex
semantics laid out in the ES6 standards document [31]. The ES6 standard
is written in a semi-formal fashion, so we are confident that our translation
into logic is accurate, but cannot have formal proof. Existing attempts to
encode ECMAScript semantics into logic such as JSIL [20] or KJS [77] do
not include regexes.

With the exception of the optimized rule for mutable backreferences,
our models are overapproximate, because they ignore matching prece-
dence. When the CEGAR loop terminates, any spurious solutions from
overapproximation are eliminated. As a result, we have an exact proce-
dure to decide (non)-membership for capturing languages of ES6 regexes
without quantified backreferences. In the presence of quantified backref-
erences, the model after CEGAR termination becomes underapproximate.
Since DSE itself is an underapproximate program analysis (due to con-
cretization, solver timeouts, and partial exploration), our model and re-
finement strategy are sound for DSE.

138

6.5 Modeling the ES6 Regex API

6.5 Modeling the ES6 Regex API

The ES6 standard specifies several methods that evaluate regexes [31]. We
follow its specified pseudocode for RegExp.exec(s) to implement match-
ing and capture group assignment in terms of capturing language mem-
bership in Algorithm 3. Notably, our algorithm implements support for all
flags and operators specified for ES6. RegExp.test(s) is precisely equiv-
alent to the expression RegExp.exec(s) !== undefined. In the same
manner, one can construct models for other regex functions defined for
ES6. Our implementation includes partial models for the remaining func-
tions that allow effective test generation in practice but are not semanti-
cally complete.

Algorithm 3: RegExp.exec(input)

1 input ′ := ‘〈’ + input + ‘〉’;
2 if sticky or global then
3 offset := lastIndex > 0 ? lastIndex + 1 : 0;
4 input ′ := input ′.substring(offset);
5 source ′ := ‘(:?.|\n)*?(’ + source + ‘)(:?.|\n)*?’;
6 if caseIgnore then
7 source ′ := rewriteForIgnoreCase(source ′);
8 if (input ′, C0, ..., Cn) ∈ Lc(source ′) then
9 Remove 〈 and 〉 from (input ′, C0, ..., Cn);

10 lastIndex := lastIndex + C0.startIndex + C0.length;
11 result := [C0, ..., Cn];
12 result.input := input;
13 result.index := C0.startIndex;
14 return result;
15 else
16 lastIndex := 0;
17 return undefined;

Algorithm 3 first processes flags to begin from the end of the previous

139

6 Sound Regular Expression Semantics for DSE

match for sticky or global flags, and it rewrites the regex to accept lower
and upper case variants of characters for the ignore case flag. We intro-
duce the 〈 and 〉meta-characters to input which act as markers for the start
and end of a string during matching. Next, if the sticky or global flags
are set we slice input at lastIndex so that the new match begins from
the end of the previous. Due to the introduction of our meta-characters
the lastIndex needs to be offset by 1 if it is greater than zero. We then
rewrite the regex source to allow for characters to precede and succeed
the match. Note that we use (?:.|n)*? rather than .*? because the wild-
card . consumes all characters except line breaks in ECMAScript regexes.
To avoid adding these characters to the final match we place the original
regex source inside a capture group. This forms C0, which is defined to
be the whole matched string [31]. Once preprocessing is complete we test
whether the input string and fresh string for each capture group are within
the capturing language for the expression. If they are then a results object
is created which returns the correctly mapped capture groups, the input
string, and the start of the match in the string with the meta-characters
removed. Otherwise lastIndex is reset and undefined is returned.

6.6 Consequences of this Model

A detailed empirical evaluation of the model described in Sections 6.3-
6.5 is contained in the full paper detailing this work [61]. We report a
brief summary of the results, demonstrating that the model allows deeper
analysis of string-manipulating programs.

The evaluation of this model is performed within the context of the DSE
engine ExpoSE (Section 2.4.2). The model was evaluated on a sample of
1, 131 packages from Node.js’ NPM package repository which manipu-
lated strings through regexes. For each of these, ExpoSE automatically

140

6.7 Related Work

Table 6.4: Contribution of different components of the model to testing
1, 131 NPM packages, showing number (#) and fraction (%) of
packages with line coverage improvements.

Improved
Regex Support Level # %

Concrete Regular Expressions - -
+ Modeling RegEx 528 46.68%
+ Captures & Backreferences 194 17.15%
+ Refinement 63 5.57%

All Features vs. Concrete 617 54.55%

generates a meaningful test harness by executing all exported methods of
the library with symbolic arguments.

Each package was executed for one hour across four distinct levels of
regex support, and the result is that supporting these complex features
of regexes improves the line coverage of the analysis. These results are
summarized in Table 6.4. As baseline, all regex methods are executed con-
cretely, concretizing the arguments and results. Second, our model for ES6
regex and their methods is added without support for capture groups or
backreferences. Third, full support for capture groups and backreferences
is enabled. Fourth, the refinement scheme to address matching precedence
is added. Explicitly, these results mean that after deploying our model we
are able to solve path constraints involving strings which were previously
unsolvable, allowing for deeper exploration of these programs.

6.7 Related Work

There have been several approaches for symbolic execution of JavaScript;
most include some limited support for classical regular expressions. In
theory, regex engines can be symbolically executed themselves through

141

6 Sound Regular Expression Semantics for DSE

the interpreter [21]. While this removes the need for modeling, in practice
the symbolic execution of the entire interpreter and regex engine quickly
becomes infeasible due to path explosion. Li et al. [57] presented an au-
tomated test generation scheme for programs with regular expressions by
on-line generation of a matching function for each regular expression en-
countered, exacerbating path explosion. Saxena et al. [90] proposed the
first scheme to encode capture groups through string constraints. Li et
al. [55] describe a custom browser and symbolic execution engine for Java-
Script and the browser DOM, and a string constraint solver PASS [56] with
support for most JavaScript string operations. Although all of these ap-
proaches feature some support for ECMAScript regex (e.g., limited sup-
port for capture groups), they ignore matching precedence and do not
support backreferences or lookaheads.

Thomé et al. [103] propose a heuristic approach for solving constraints
involving unsupported string operations. We choose to model operations
unsupported by the solver and employ a CEGAR scheme to ensure cor-
rectness. The use of a refinement scheme to solve complex constraint prob-
lems, including support for context-free languages, has been proposed in
previous work [2]. The language of regular expressions with backrefer-
ences is not context-free [24] and, as such, their scheme does not suffice
for encoding all regexes; however, their approach could serve as richer
base theory than classic regular expressions. Scott et al. [91] suggest back-
references can be eliminated via concatenation constraints, however they
do not present a method for doing so.

Further innovations from the string solving community, such as work
on the decidability of string constraints involving complex functions [26,
47] or support for recursive string operations [105, 106], are likely to im-
prove the performance of the approach described in this chapter in future.
We incorporate our techniques at the level of the DSE engine rather than
the constraint solver, which allows our tool to leverage advances in string

142

6.7 Related Work

solving techniques; at the same time, we avoid integrating language-specific
details for regular expressions into a generic solver.

143

Security Annotations for JavaScript 7
In this chapter we describe the design and implementation of Security An-
notations in full JavaScript. Our implementation is based on source code
instrumentation [92] and built on top of the dynamic symbolic execution
engine ExpoSE [60, 61]. We first describe the implementation of Security
Annotations, ExpoSESA (Section 7.1). This implementation is guided by
S5SA, and, in Section 7.2 we discuss how we ensure faithfulness between
this formal model and ExpoSESA. We then describe a strategy for using
ExpoSESA to test real JavaScript applications which use cryptography (Sec-
tion 7.3). Section 7.4 details the expressiveness of ExpoSESA through ex-
tending the case study of Section 5.7 to full JavaScript. Finally, we discuss
the analysis of two real-world applications (Section 7.5).

7.1 Implementation

In this section we describe the implementation of Security Annotations
on top of ExpoSE1. First, we explain the structure of Security Annotations
themselves (Section 7.1.1). We discuss how Security Annotations are at-
tached to values (Section 7.1.2); complications involving objects and their

1This implementation is available at: https://github.com/ExpoSEJS/ExpoSE/
tree/features/annotations.

145

https://github.com/ExpoSEJS/ExpoSE/tree/features/annotations
https://github.com/ExpoSEJS/ExpoSE/tree/features/annotations

7 Security Annotations for JavaScript

references (Section 7.1.3) and finally how Security Annotations are manip-
ulated (Section 7.1.4).

7.1.1 Security Annotations

Within ExpoSESA, Security Annotations are implemented as JavaScript
classes; each specific annotation extends a master Annotation class. An-
notation hierarchies are induced by class inheritance: one class extends
another if the annotation it represents is a subannotation of the other, i.e.,
if A1 and A2 are atomic annotations such that A1 ≺: A2, then the class
representing A1 extends the class representing A2.

Each annotation class comes equipped with associated helper methods
defined in the master Annotation class. These methods encode a proce-
dure for deciding whether an atomic annotation, A1, is a subannotation of
an atomic annotation,A2, through JavaScript’s built-in instanceof opera-
tor. These methods also describe the construction of new annotations from
old (i.e., by composition or cut). Finally, each annotation also possesses a
specific property naming the annotation.

In order to use a Security Annotation in a program, one must construct
a concrete instance of the class. This means there can be multiple instances
of a single annotation, however, this does not present a problem. Annota-
tion hierarchies are defined through the classes themselves rather than on
any specific instances: in practice, two instances of the same annotation
behave identically. Second, since annotations are only declared and ma-
nipulated within trusted APIs, we do not need to worry about developers
constructing new instances of annotations.

In S5SA, Security Annotations are directly added to an individual store
in memory and can be recalled directly. Since ExpoSESA is built through
source code instrumentation, we do not directly control the memory of
the application. Therefore, to use an annotation, we need a reference to

146

7.1 Implementation

our concrete instance of it. In practice, this means that we must bind our
concrete instances of annotations to variables. In our WebCrypto shim,
names of these variables are defined as the capitalized annotation name,
preceded by an underscore—e.g., PrivKey is represented by the variable
_PRIVKEY. Within the case studies discussed in this chapter, we did not
encounter problems with this naming scheme resulting in variable reuse.

In practice, this approach makes the construction of Security Annota-
tions a little more complex than simply declaring SecAnnA in the manner
of S5SA. Instead, declaring two Security Annotations,A andBwithA ≺: B,
is achieved through:

var _A = SecAnn("A");

var _B = SecAnn("B", _A);

_A = new _A([]);

_B = new _B([]);

Note here that we must define the subannotation relationship prior to
constructing the concrete instances of the annotations. Additionally, the
SecAnn Extends syntax is replaced by simply providing an additional ar-
gument to SecAnn.

7.1.2 Attaching Annotations

Recall that in S5SA values are comprised of prevalues, equivalent to Java-
Script values (e.g., numbers, strings and booleans) and Security Annota-
tions. In our ExpoSESA, we recognize that the vast majority of values in a
program will not possess security properties; therefore, insisting all values
carry a corresponding annotation is overly expensive.

In ExpoSESA, we distinguish between standard JavaScript values and
those with associated security properties. When a security property is as-
sociated to a value it is wrapped—constructing a pair of value and Security
Annotation. Specifically, the first time a value is coerced to attach (or dis-

147

7 Security Annotations for JavaScript

1 setAnnotations = function(v, ann) {
2 if (!state.isWrapped(v)) {
3 v = new WrappedValue(v);
4 }
5 v.annotations = ann;
6 return v;
7 }

Listing 7.1: Annotating a JavaScript Value.

card) Security Annotations, we construct a wrapped value with the same
base value and the required annotation, and return this wrapped value.
This approach follows the essential structure of the evaluation rules for
coercion by returning the value with modified annotations (recall, e.g., [E-
ASW] in Figure 5.4).

The primary internal function involved in setting the annotation of a
value is given in Listing 7.1. This function does not deal with the specific
semantics of, for example, as or drop. Instead, it is called in the logic of
these coercions to set the resulting annotation. In particular, it checks if
the value is already wrapped, and, if not, constructs a new wrapped value
with the same base value. It then overwrites any previous annotation with
the desired Security Annotation ann.

7.1.3 Complications: Annotating Objects.

The problem. Consider the example in Listing 7.2: the program con-
structs an array, fills it, and then checks the resulting array meets the an-
notation guard. In particular, the function fillArray fills an array and
then annotates the array with _A. The method annotate on line 7 is an
analogue for as, and is described in Section 7.1.4). The enforce method

148

7.1 Implementation

1 var _A = new (SecAnn("A"))([]);
2
3 var fillArray = function(arr) {
4 for (var i = 0; i < arr.length; i++) {
5 arr[i] = 1;
6 }
7 annotate(arr, _A);
8 };
9

10 var x = new Uint8Array(16);
11 fillArray(x);
12 enforce(x, _A);

Listing 7.2: Annotating objects vs. their references.

(line 12) asserts that the annotation of the first argument is at least the sec-
ond argument (see Section 7.1.4). Line 10 constructs an array and saves a
reference to it in the variable x; we call this reference r. This reference r is
then passed to the method fillArray and, on line 7, the annotation of r
is upcast to _A. This is achieved via the method described in Listing 7.1,
which acts only on JavaScript values, and so acts on references—not the
object r points to.

The reference stored in x has not been annotated, so a new WrappedValue

is constructed from r; this new reference, r ′, points to the same object.
Since it is wrapped, r ′ can then be annotated with _A, and this is then re-
turned to the method fillArray. However, since the result of annotate
is not saved to a variable, the annotated reference r ′ is lost. When control
returns from the function to the main body of the program, only the ref-
erence r, stored in x, remains. The enforcement on line 12 therefore fails
when we would expect it to succeed.

Unfortunately, this problem manifests itself in cryptographic APIs. Re-

149

7 Security Annotations for JavaScript

call the shim for the getRandomValues method of the WebCrypto API
given on lines 8-10 Listing 5.3. This method takes as argument a refer-
ence to an array, and fills this array with random values. The array itself is
not returned. Our shim annotates the argument after modification of the
array with CSRV. The structure of this method is precisely the structure of
fillArray in Listing 7.2.

The solution in S5SA. In S5SA, we had full control over the memory of
the application. This means that we had full control over the object store,
Θ, variable store, σ, and the annotation store, A. Θ is a mapping from
references, r, to objects, θ<S>, which form the image ofΘ. Manipulation of
object annotations is guided by evaluation rules such as [E-ASR-STORE] in
Figure 5.10, which describes the evaluation of rasS, under the assumption
that r is a reference to the object θ<R> underΘ. To evaluate this expression
we replace the mapping Θ directly with a new mapping Θ ′ and evaluate
to r. Θ ′ is identical up to any instances of θ<R> in the image of Θ, which
in the image of Θ ′ are replaced by θ<R ∗ S>. Any reference to θ<R> under
Θwill, under Θ ′, therefore map to our object with the updated annotation
as desired. In this way, S5SA allows for the updating of the annotation
associated to an object in the program globally, without the need to update
the annotation for each reference.

The S5SA solution cannot be reused in ExpoSESA. The solution for our
reference implementation relies on the fact that we have complete control
of the memory at runtime and can, when required, alter it to update object
annotations. Since ExpoSESA is based on source code instrumentation, we
do not control the memory, and as such cannot simply use this solution.
In particular, we are only able to wrap (and therefore annotate) references
to the object, directly contrasting the model described in Chapter 5.

150

7.1 Implementation

A solution for WebCrypto in ExpoSESA. In this thesis we offer a limited
solution, which suffices for the modeling of security properties in the Web-
Crypto API. In particular, the problem occurs when the setting of annota-
tions is required on an unwrapped value. The new reference is created,
and this new reference is annotated, but may subsequently be lost unless
the old reference is not specifically overwritten, which we cannot guaran-
tee. This problem does not occur if the annotation is set on a wrapped
value: in this case, the annotations property is simply updated.

A natural solution is to automatically wrap any new reference to an ob-
ject; in general, this is not possible. Instead, we note that within Web-
Crypto, the only JavaScript objects which require annotation are instances
of TypedArray (e.g., Uint8Array). These must be declared with an ex-
plicit constructor. Through ExpoSE, we hook these constructors in order
to automatically wrap references to TypedArray objects. In Listing 7.2, this
means that the call to annotate does not create a new reference, but in-
stead updates the annotations property of the wrapped reference stored
in x (per Listing 7.1). The enforcement of A on line 12 therefore succeeds
as desired.

This automatic wrapping of references is only for those instances of
TypedArray which could be annotated as a result of using the WebCrypto
API; this is therefore not a generic solution. However, it ensures that an-
notations are properly attached to those objects used in cryptographic op-
erations.

7.1.4 Manipulating Annotations

We extend ExpoSE’s built-in S$ library with Security Annotation manipu-
lation methods. The S$ library enables the construction of symbolic values
and assumptions or assertions about such values. In essence, this library
provides a means for developers to enable testing of their programs us-

151

7 Security Annotations for JavaScript

ing ExpoSE. We therefore extend S$ with our methods for Security An-
notations since they naturally fit in the same space, in that these methods
enable property testing.

We provide a method for declaring Security Annotations: S$.SecAnn(
name, parent), described in detail in Section 7.1.1. The first argument,
name, is a string defining the name of the annotation; parent is an optional
argument declaring the immediate parent annotation in the lattice. If no
annotation is provided, then this is considered to be Top.

The method S$.annotate(val, ann) is an analogue for the expression
val as ann. The argument val is any value and ann a concrete instance
of an annotation. The return value of this method is a wrapped value
with base value val. The wrapped value has annotation at least ann. If
the value was previously wrapped, it is the composition of ann and the
previously valid annotation; otherwise, the resulting annotation is sim-
ply ann. The S$.drop(val, ann) and S$.cpAnn(val1, val2) methods
are natural analogues of the drop and cpAnn expressions, with the same
divergences as S$.annotate.

Finally, we introduce a method S$.enforce(val, ann). This method
is essentially the same as the assertmacro from Section 5.6, and is equiva-
lent to applying the rule [E-APP] from Figure 5.11 to the function function

(x : ann){})(val). In particular, we first check if the annotation en-
forced, ann, is Top. If so, the check passes and we are done. Next, we
check if val corresponds to a prevalue w ′ described in Chapter 5. If so,
we throw FailedSecurityCheck, since the value is not enforced against
Top. This preserves the intuition that null and undefined cannot pos-
sess security properties. Finally, we check that the annotation of val is a
subannotation of ann; if not, FailedSecurityCheck is thrown.

We do not reintroduce the function syntax function(x : ann), or ex-
plicit expressions such as val as ann for manipulation of Security Anno-
tations. Instead, we simply expose the methods described above through

152

7.2 Establishing Faithfulness

the S$ library. This avoids the need to introduce syntax transformation as
a pre-processing step on the JavaScript code to be analyzed, which may
not be faithful. In addition, this means we do not need to modify the Java-
Script engine.

7.2 Establishing Faithfulness

It is important to have confidence that ExpoSESA respects the mechanisms
of Security Annotations built up throughout this thesis. These language
in Chapter 5 is accompanied by an implementation which is thoroughly
tested via a comprehensive test suite, ensuring the implementation pre-
cisely matches the formal model. This implementation is well-behaved,
and we leveraged the underlying model to prove properties related to Se-
curity Annotations (Section 5.8). It is therefore natural to use S5SA as a
reference implementation to guide ExpoSESA and to check the two imple-
mentations agree on a conformance test suite. Any formal proof of cor-
rectness of this implementation is beyond reach; however, we can offer
assurance that ExpoSESA is well-behaved at least for some subset of the
language.

This test suite provides a natural opportunity for checking the faithful-
ness of ExpoSESA. We translate this test suite into a form compatible with
S$2. The resulting test suite contains 58 distinct tests which exercise the
judgments described in Chapter 5; in addition, the combination of judg-
ments are also tested to ensure that Security Annotation manipulations
interact as desired. Further, the test suite checks that the subannotation
relation is respected. Each test is passed by S5SA: failed tests indicate a
divergence between our implementations.

Adhering to the test suite in its entirety would not guarantee a correct

2This test suite is available alongside the implementation of ExpoSESA.

153

7 Security Annotations for JavaScript

implementation. Recall that S5 itself is not a complete description of Java-
Script itself; rather, it models the essential features of the language. We
therefore have no mechanism for testing features of JavaScript not cov-
ered by S5. However, our model still allows us to gain a degree of con-
fidence based on “observational equivalence”: it should be impossible to
distinguish between the two implementations by observing test outputs.

In some cases, differences in implementation do not cause divergences
between the implementations. As described in Section 7.1.2, values only
possess Security Annotations if they are wrapped as a result of a Security
Annotation manipulation. One might expect this to create divergences in
the behavior of enforcement: since an unwrapped value does not possess
annotations, it should fail any annotation check. Recall that, in our refer-
ence implementation, the Security Annotation of each value is considered
at least Top; in ExpoSESA we mirror this behavior by passing enforcement
checks if Top is enforced. This means that although many values in a pro-
gram aren’t wrapped, ExpoSESA still considers them to possess Top.

The principal divergence relates to the annotation of objects in Section 7.1.2.
In particular, since annotations are attached to references rather than ob-
jects, annotations may be lost if references are not passed carefully, e.g.,
modifying the annotation of an object inside a function and not returning
this reference from the function. This is mitigated in the specific case of
typed arrays, as previously discussed; however, for generic arrays, this
results in divergence from the reference implementation.

This divergence mean that we can distinguish between our reference
implementation and ExpoSESA. However, the divergence is known, and
are mitigated for the purposes of analyzing the desired APIs. At the point
of enforcing Security Annotations for the WebCrypto API, the two imple-
mentations are observationally equivalent. This closeness therefore gives
us confidence in the validity of analyses based on Security Annotations,
even if we cannot leverage the formal guarantees discussed in Section 5.8.

154

7.3 A Testing Strategy for the Detection of Cryptographic Errors

7.3 A Testing Strategy for the Detection of

Cryptographic Errors

In this section, we describe the overall testing strategy for real-world ap-
plications. Motivated by the security guarantees offered by the enumera-
tion of program paths in Section 5.8, we use dynamic symbolic execution,
through ExpoSE, to construct test cases enumerating the distinct control
flow paths. We do this by marking input values to the program as sym-
bolic. For example, consider a node.js application, for which the input is
represented as an array with name process.argv. To test such an applica-
tion, we make the entire array symbolic; this will explore all paths based
on the input to the program. We combine this DSE with Security An-
notations by adding in our drop-in replacement for the WebCrypto API,
which contains a Security Annotation specification. When a path results in
a FailedSecurityCheck error being thrown, we have found a path result-
ing in a possible security property violation, along with a test case which
recreates this error. DSE in general will not terminate, so the absence of
security property violations cannot be proved. However, the systematic
exploration of program paths allows us to find possible security bugs.

Limitations. We review the limitations of our approach in the context of
native JavaScript. In particular, recall that we cannot guarantee that the
program under test does not affect either the library itself or the anno-
tated shim of the library. In the setting of native JavaScript this is exac-
erbated, since Security Annotations themselves are implemented in pure
JavaScript. Although the programs under test themselves should not use
the S$ library which exposes methods which manipulate Security Anno-
tations, it is possible for a program to cause equivalent effects.

As discussed in in Section 5.8.4, we comment briefly on the effect of the

155

7 Security Annotations for JavaScript

program under test on libraries and the system of annotations. Similarly,
we note that, unlike the implementation of S5SA, the implementation in
native JavaScript is susceptible to program under test directly accessing
and manipulating annotations, even if the program in question is not in-
tentionally malicious. In these cases, we cannot guarantee that a program
path which executes safely is free from possible security violations. To pre-
vent this, one could insist the library and system of annotations are written
within a system such as DJS [11]. This system could then be trusted to run
safely in the untrusted environment of the program under test. However
we consider this out of scope for this thesis, since this would limit the ap-
plicability of the approach to only libraries written in such restrictive lan-
guage subsets. In particular, the testing of applications using WebCrypto
would not be possible, since they are not written within such a restrictive
subset.

7.4 From S5SA to ExpoSESA

We return to the case study described in Section 5.7, and use it to demon-
strate the scope and expressiveness of ExpoSESA. We discuss the limita-
tions of S5SA and the modifications of the application required to execute
within this reference interpreter. We describe how each limitation of the
reference interpreter is solved in ExpoSESA, allowing for an execution of
the case study; we discuss minor library mocks which allow for ease of
testing, but do not require modifications to the developer’s application3.

Execution in S5SA. To execute this case study in S5SA, we made signifi-
cant alterations to the application since S5SA cannot execute asynchronous

3The full source for this application and testing environment are available at: https:
//github.com/duncan-mitchell/secAnn-caseStudies.

156

https://github.com/duncan-mitchell/secAnn-caseStudies
https://github.com/duncan-mitchell/secAnn-caseStudies

7.4 From S5SA to ExpoSESA

code. This required two substantial changes: first, extensive library mocks
were necessary. Second, changes had to be made to the application in or-
der to remove the handling of asynchronous library calls. The net library
is reliant on listeners which are triggered by network activity; we there-
fore constructed a purely synchronous mock of it. Second, we constructed
a synchronous mock of WebCrypto. The case study was adapted for these
libraries in the following ways: first, since the mock for WebCrypto was
synchronous, all code handling this asynchronicity was removed. Our
synchronous mock does not perform cryptographic operations, the rea-
sons for this are discussed below. Second, in order to use our mock of net,
we explicitly called the listener’s callback function each time we expected
the event to fire.

A mock for the net API in ExpoSESA. We must still provide a mock of
the net API in order to execute this case study in ExpoSESA. The net

API module enables the construction of servers and clients over stream-
based TCP and IPC. ExpoSESA supports the listener-based architecture of
the networking in this module; however, it does not support the actual net-
working itself. Our mock closely follows the behavior of the real API, by
basing our mock on the node.js module events [71]. Addresses and port
numbers are therefore fixed constants, and calls to construct servers and
sockets define objects which will return the required information with-
out actually manipulating the relevant ports. Calls to a socket or server’s
write method are mocked to emit an event triggering the relevant listener.
Since addresses and port numbers are fixed, this mock only supports a sin-
gle server and socket.

A mock for the WebCrypto API in ExpoSESA. There is no strict require-
ment to mock WebCrypto in order to execute applications using this API
in ExpoSESA. However, in the interests of more efficient testing, we pro-

157

7 Security Annotations for JavaScript

1 decrypt: function(alg, key, data) {
2 if(alg.name === ’AES-CBC’ ||
3 alg.name === ’AES-GCM’ ||
4 alg.name === ’AES-CTR’ ||
5 alg.name === ’RSA-OAEP’) {
6 return new Promise(function(resolve, reject) {
7 setTimeout(function() {
8 resolve(data);
9 }, 300);

10 });
11 } else { throw ’InvalidAccessError’ }
12 }

Listing 7.3: A mock for WebCrypto’s decrypt method.

vide a simple mock for the API. In particular, our mock is faithful to the
specification for WebCrypto, except that it does not perform the crypto-
graphic primitives (in line with the mock for S5SA). For example, con-
sider the mock for the decrypt API given in Listing 7.3. Note that the
data argument supplied containing the ciphertext, is an ArrayBuffer.
All WebCrypto APIs, with the exception of getRandomValues, return a
JavaScript promise (see Section 2.3) to the return value. In the case of
decrypt, this is an ArrayBuffer containing the plaintext of the provided
ciphertext. In this mock, we do not perform the cryptographic operation
and return an actual decryption inside the promise: instead, we provide
the supplied ciphertext inside a promise, since this provides a value of
the correct return type. In order to ensure this mock is asynchronous,
we use the setTimeout method to delay the execution of the function
by 300 milliseconds. Although this means that when testing the applica-
tion no actual cryptographic operations will be performed, this avoids the
path explosion problem in DSE being exacerbated. In particular, crypto-

158

7.4 From S5SA to ExpoSESA

1 var decShim = function(alg, key, data) {
2 if (/AES/.test(alg.name)) {
3 S$.enforce(key, _SYMKEY);
4 } else if (/RSA/.test(alg.name)) {
5 S$.enforce(key, _PRIVKEY);
6 } else { throw FailedSecurityCheck; }
7 var res = wc.decrypt(alg, key, data);
8 res = res.then(function(val) {
9 return S$.annotate(S$.drop(S$.cpAnn(data, val),

_CIPHERTEXT), _PLAINTEXT);
10 });
11 return res;
12 };

Listing 7.4: A shim for WebCrypto’s decrypt method.

graphic operations often feature many different internal branching condi-
tions, and passing symbolic arguments may cause the path space for DSE
to explore to grow enormously, preventing exploration of the behavior we
care about. ExpoSESA is designed for testing and not production use, and
we focus on testing use of the WebCrypto API; we trust that WebCrypto
correctly implements the underlying primitives correctly. There is there-
fore little value in executing these operations. Further, since the encrypt

mock does not perform the encryption operation, it also returns a promise
to the provided plaintext argument, so we maintain the invariant that the
decryption of an encryption is still the original data.

Modifying the WebCrypto shim. The shim in Listing 5.3 does not account
for asynchronicity; in Listing 7.4 we demonstrate the necessary modifica-
tions to enable analysis in ExpoSESA for one API method. First, we replace
uses of Security Annotation manipulation and enforcement expressions
with equivalent calls to the S$ library (e.g., line 9). Second, we ensure that

159

7 Security Annotations for JavaScript

1 var S$ = require(’S$’);
2 var window = require(’./window-mock’);
3 var net = require(’./net-mock’);
4 var shim = require(’./wcShim’);
5
6 shim(window);
7 process.argv = S$.symbol(’Args’, [’’]);

Listing 7.5: Modifications to test an application in ExpoSESA.

we annotate the result of the cryptographic operation and not a promise to
it by calling the then method of the promise (lines 8-10). After annotating,
a promise to the annotated result is then returned from the shim (line 11).

To use this shim in applications, we define it inside a function and ex-
port this function as part of a node.js module. This module can then be
included in the application under test and the function called.

Developer modifications for DSE. Listing 7.5 gives the inserted code in
order to enable the testing of the application under DSE. No other changes
to the code by a developer are necessary (besides, in this example, rewrit-
ing cryptographic API calls into asynchronous code blocks to match the
faithful WebCrypto mock). Line 1 defines the helper library for ExpoSESA

to allow creation of symbolic values. Lines 2-3 include the API mocks dis-
cussed previously. Lines 4-6 include the shim and then call it to redefine
the WebCrypto API, as described previously. Finally, line 7 uses the S$.

symbol method to create a new symbol to simulate program input. This
symbolic object is stored in process.argv, which stores the arguments
with which the node.js process was called. This symbol is given the name
’Args’ and initialized to an array containing a single element, the empty
string; this is equivalent to the case where no input is provided.

160

7.4 From S5SA to ExpoSESA

1 function getMsg () {
2 var args = process.argv;
3 if (args.length != 3 || args[2] === "") {
4 throw ("cryptoApp takes a single argument");
5 } else { return args[2]; }
6 }

Listing 7.6: Processing the message to be sent.

Testing the application. Armed with an application with the necessary
modifications made to enable DSE, we can now test the application with
ExpoSESA. The discussion in Section 5.8.3 describes two distinct program
paths: one where an argument is not provided (in which case an error
is thrown) and one where some argument is provided, in which case a
message is encrypted and sent across the network. In our native JavaScript
implementation, we modify the function which checks the validity of the
argument to insist the provided argument is not the empty string. This
function is given in Listing 7.6. The stipulation that process.argv is of
length 3 comes from the fact that, in a native execution, process.argv
[0] corresponds to the interpreter (usually node), process.argv[1] to
the name of the application.

This application therefore has three control-flow paths, rather than two.
First: the array provided may not be of length 3, and ExpoSESA generates
a test case for this where process.argv is the empty array. Second: the
argument provided as the third element of the array is the empty string.
ExpoSESA generates a test case for this where process.argv is ["", "

", ""]. In both these cases, an error is thrown because no argument is
provided as a message to send to the server. The final path corresponds
to the case that an argument is provided (ExpoSESA provides the concrete
test case ["!0!","!0!","!0!"]). In this case, in line with Section 5.7,

161

7 Security Annotations for JavaScript

FailedSecurityCheck is thrown because the IV is modified prior to en-
cryption. When this bug is removed, this test case executes successfully.
At this point, the DSE terminates since the all control flow paths of the
program have been explored, and concrete test cases provided for each4.

7.5 Case Studies

We discuss the testing of two case studies of JavaScript applications which
make use of WebCrypto5. The first, secret-notes [100], is an application
supporting a tutorial explaining correct usage of the WebCrypto API (Sec-
tion 7.5.1). The second, hat.sh [93], is a web application offering a file
encryption and decryption service (Section 7.5.2).

7.5.1 secret-notes

We describe the analysis of a prominent tutorial for the WebCrypto API [100],
which comes equipped with the associated source code6. We first give a
brief overview of the application, describe a testing framework and exten-
sions to the shim for WebCrypto. Finally, we discuss the results of analysis.

Overview of the application. secret-notes is a web application designed
as a tutorial for the WebCrypto API. The application allows a user to write
a note, which is saved and then can later be restored. It contains four dis-
tinct JavaScript modules—teaching different elements of the API—each

4Since the entire array for process.argv is symbolic, the test cases to exercise these
correspond to an explicit declaration of process.argv in a testing framework. To
replay these tests using node.js, the first corresponds to not supplying an argument, the
second to supplying the empty string, and the final test case corresponds to supplying
the string "!0!" as argument.

5The source code of these applications and test harnesses are available at https:
//github.com/duncan-mitchell/secAnn-caseStudies.

6https://github.com/ttaubert/secret-notes

162

https://github.com/duncan-mitchell/secAnn-caseStudies
https://github.com/duncan-mitchell/secAnn-caseStudies
https://github.com/ttaubert/secret-notes

7.5 Case Studies

providing a different type of security. In the first, no security is offered in
saving and loading notes; in the second, data integrity is ensured by use
of the digest method. In the third, authenticity is provided: the user pro-
vides a password, for which a signing key is derived using the PBKDF2 al-
gorithm (password-based key derivation function) of the deriveKey API.
The resulting key is then used to generate a HMAC (hash-based mes-
sage authentication code) through the sign method. Finally, the fourth
provides secrecy through AES in Galois/Counter Mode (GCM) and the
encrypt method. In order to derive a key for this encryption, a password
is again supplied. In total, the cryptographic portion of this codebase cov-
ers approximately 300 lines of code.

Testing the application. We are interested in testing the cryptographic
portion of functionality in this application. Each tutorial file follows the
same structure: it exposes two functions, save and load, to the rest of
the application. Enabling the testing of these functions is our core aim
since they comprise the cryptographic logic of the application. These func-
tions take input (the notes to be stored, and, where necessary, a password)
and either save into local storage or retrieve these notes from local stor-
age. In the web application, save and load trigger the corresponding
functions. Alongside cryptographic operations, the application utilizes
the localforage library for web applications to provide an offline data
store [67].

ExpoSESA is desgned to test node.js applications; to replicate the web
application interface, we construct a simple test harness to exercise each
pair of save and load functions. The test harness for the tutorial enforcing
integrity is given in Listing 7.7; ’./versions/integrity’ simply refers
to the relevant cryptographic tutorial and getNote is a function similar
to the getMsg function in Listing 7.6. To enable standalone testing, we
mock the web-only localforage library by adding a simple data store in

163

7 Security Annotations for JavaScript

1 var integrity = require(’./versions/integrity’);
2 var v2 = integrity.save(getNote()).then(function() {
3 integrity.load().then(function(res) {
4 console.log(’integrity: ’ + res);
5 })
6 });

Listing 7.7: A testing harness for the integrity tutorial in secret-notes.

a JavaScript object. We provide both notes to be saved and passwords to
secure these notes through arguments to the node.js harness. Within the
tutorial files, no modifications are necessary besides the addition of our
library mocks. Similar to Section 7.4, we mark the input to the program
as symbolic to examine control flow paths through the save and load

cryptographic functions. This enables us to test the core of the application
in standalone JavaScript.

Extending the WebCrypto shim. The shim of WebCrypto given in List-
ing 5.3 requires extension to cover additional WebCrypto API methods
used in this application. Method shims for digest (which computes a
hash of data for integrity purposes) and verify (which verifies the pro-
vided signature) are given in Listing 7.8. Note that the shim for digest
uses a new annotation _HASH, which we distinguish from _SIGNATURE to
ensure that the result of a digest method is not used to check for authen-
ticity, only integrity. Listing 7.9 gives an extended shim for deriveKey, in-
corporating valid uses of the PBKDF2 algorithm to derive a cryptographic
key from a password. In particular, this specification is similar to the case
where we derive a symmetric key using ECDH, however there are dis-
tinct security requirements. First, there is no security requirement on the
masterKey argument, since it is a user-provided password we expect to

164

7.5 Case Studies

1 var verifyShim = function(alg, key, sig, data) {
2 S$.enforce(sig, _SIGNATURE);
3 if (/HMAC/.test(alg.name)) {
4 S$.enforce(key, _SYMKEY);
5 } else if (/RSA|ECDSA/.test(alg.name)) {
6 S$.enforce(key, _PRIVKEY);
7 } else { throw "FailedSecurityCheck"; }
8 var res = wc.verify(alg, key, sig, data);
9 res = res.then(function(val) {

10 return val;
11 });
12 return res;
13 }
14
15 var digestShim = function(alg, data) {
16 if (/SHA-(?:256|384|512)/.test(alg.name)) {
17 var res = wc.digest(alg, data);
18 res = res.then(function(sig) {
19 return S$.annotate(sig, _HASH);
20 });
21 return res;
22 } else { throw "FailedSecurityCheck"; }
23 }

Listing 7.8: Shims for digest and verify.

165

7 Security Annotations for JavaScript

1 var dkShim = function(alg, masterKey, derivedKeyAlg,
extractable, keyUsages) {

2 if (alg.name === ’ECDH’) {
3 S$.enforce(alg[’public’], _PUBKEY);
4 S$.enforce(masterKey, _PRIVKEY);
5 } else if (/HKDF|PBKDF2/.test(alg.name)) {
6 if (alg.hash === ’SHA-1’) {
7 throw ’FailedSecurityCheck’;
8 }
9 S$.enforce(alg[’salt’], _CSRV);

10 } else { throw FailedSecurityCheck; }
11 let res = wc.deriveKey(alg, masterKey,

derivedKeyAlg, extractable, keyUsages);
12 res = res.then(function(key) {
13 return S$.annotate(key, _SYMKEY);
14 });
15 return res;
16 };

Listing 7.9: Extending the shim for deriveKey.

166

7.5 Case Studies

be of low entropy. Second, we ensure that the underlying primitive used
by PBKDF2 is not the insecure SHA-1 hashing algorithm; in that case, we
throw a security error (line 7). Third, we ensure that the provided salt is a
CSRV, otherwise, the resulting key may be predictable (line 9).

Results. In analyzing this application, we do not find any control flow
paths which violate the underlying cryptographic contracts described in
our specification by Security Annotations. We do find a possible insecu-
rity in the tutorial demonstrating authenticity: in this case, the underly-
ing primitive used for deriving the key from the password is SHA-1; as
discussed, this is insufficient for future use cases. This security flaw was
known to the authors: a comment in the source code notes the chosen al-
gorithm may be insecure and should be updated. However, at the time of
the application being written (2014), this was the only supported primitive
for use with PBKDF2.

7.5.2 hat.sh: A File Encryption Serivce

The open source7 application, hat.sh [93], is a browser-based file encryp-
tion service underpinned by WebCrypto. We first describe the application,
and a methodology for testing it. We then describe key functions within
the application and finally discuss the results of the analysis.

Overview of the application. hat.sh is a popular web application de-
signed to allow users to encrypt and decrypt files without the need to
upload them to a server. Instead, the encryption and decryption of files
is performed through WebCrypto within the browser itself. First, the user
uploads a file to be encrypted (or, respectively, decrypted). Second, the

7https://github.com/sh-dv/hat.sh

167

https://github.com/sh-dv/hat.sh

7 Security Annotations for JavaScript

user can choose between optionally providing their own password, or al-
lowing the application to generate one. This password is then used to
generate a key for encryption (or decryption) through PBKDF2 (and the
deriveKey API). After this key is derived, the file is encrypted (or de-
crypted) and the result downloaded by the user. The core logic of the
application is approximately 350 lines of code.

Testing the application. As discussed in Section 7.5.1, ExpoSESA is de-
signed to test node.js applications; in order to test the full logic of this ap-
plication we must mock certain web-specific method calls and libraries. In
particular, we provide mocks for methods that manipulate the DOM; these
do not affect the overall logic of the application, but simply ensure that we
do not need to alter the core application. Second, we mock button listen-
ers, and then trigger them within a test harness in sequence replicating
user input. We also construct simple mocks of certain built-in APIs (e.g.,
FileReader and Blob) which are not present in node.js. Finally, we make
minor alterations to some application methods to avoid use of the async

and await keywords, which are unsupported by ExpoSESA. In these ap-
plications, we replace these keywords with idiomatic translations to the
traditional .then paradigms for asynchronous code used throughout this
thesis.

We then construct a test harness mimicking the UI: we simulate a cho-
sen password and file to upload through command-line arguments. As
in our previous case studies, this array of command-line arguments is left
symbolic. We then use our test harness to simulate button clicks within
the UI: first, if a password is provided as an argument, we click the but-
ton to process this password and proceed to encrypt the provided file.
Otherwise, we use the application to generate a password and proceed to
encrypt the provided file with this password. If the encryption succeeded
(and a password was provided), we then decrypt the file. In the case that

168

7.5 Case Studies

1 async function deriveSecretKey() {
2 let getSecretKey = await importSecretKey();
3 let rawPassword = str2ab(password.value);
4 return window.crypto.subtle.deriveKey({
5 name: DEC.algoName1,
6 salt: rawPassword,
7 iterations: DEC.itr,
8 hash: { name: DEC.hash },
9 },

10 getSecretKey,
11 { length: DEC.algoLength, },
12 false,
13 DEC.perms2
14)
15 }

Listing 7.10: Deriving a key from a password in hat.sh [93].

the password was generated, we do not perform decryption as our mock
does not extract the generated password. In total, the test harness itself
which drives the application is approximately 50 lines of code.

A closer look at key derivation. The function which derives a symmetric
key for encryption and decryption is given in Listing 7.10. First, a pass-
word is asynchronously imported using the application’s importSecretKey
function, which reads password.value (line 2). On line 3, the raw value

of the password is converted into an ArrayBuffer using the method str2ab

, based on an example from the WebCrypto documentation. Finally, the
method returns the result of a call to the deriveKey API. The specified al-
gorithm (stored in an object DEC) is PBKDF2, and, per the specification, the
cryptographic salt should be at least a 128-bit random value [110]. Note
that the user-supplied password is passed as both the password to be used

169

7 Security Annotations for JavaScript

1 function generateKey() {
2 const usedChars = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz0123456789@#_+=’;
3 let keyArray = new Uint8Array(16);
4 window.crypto.getRandomValues(keyArray);
5 keyArray = keyArray.map(x =>

usedChars.charCodeAt(x % usedChars.length));
6 const randomizedKey =

String.fromCharCode.apply(null, keyArray);
7 password.value = randomizedKey;
8 }

Listing 7.11: Automatically generating a password in hat.sh [93].

as the base for the derivation (line 10) and as the salt itself (line 6).

Automatic password generation. Listing 7.11 contains the automatic pass-
word generation function for the case where a user elects to not supply
their own password for the encryption. Here, the developer safely gener-
ates 128 bits of random data using getRandomValues (line 4). They then
format this data as a string of human-readable characters from the string
usedChars (line 2). In doing so, they replace each 8-bit integer x within
the array with the character code for the value of x % 67 to ensure the
characters remain within this human-readable range (line 5). We discuss
the consequences of the developer’s decision below.

Results. Using ExpoSESA, we find two possible security flaws within
this application along the two distinct control flows of the application: one
when a password is provided, and the other when it is automatically gen-
erated. Both relate to the deployment of the PBKDF2 algorithm to derive
a secure encryption key from the password given in Listing 7.10. Both

170

7.5 Case Studies

possible security flaws trigger FailedSecurityCheck errors due to the
provided salt not meeting the annotation guard of _CSRV in deriveKey

(line 9 of Listing 7.9).

When a user provides a password, since this password is by nature not
randomly generated—but user-supplied—it is not annotated with _CSRV.
The subsequent use of this password to derive the key from is not prob-
lematic: PBKDF2 expects a password of little to no entropy. As such, our
WebCrypto shim does not have an annotation guard for the masterKey

argument (Listing 7.9). However, as discussed previously, the developer
reuses the password as the salt; since this is not a randomly generated
value, the security of the resulting key cannot be guaranteed. A fix to this
would be to generate a random salt: since this value can be public, pro-
viding it as part of the preamble to the encrypted file when downloaded
(alongside the IV used for encryption), would allow the re-computation of
the secret key at a later point.

The second possible security flaw involves the case where a user does
not provide a password. Here, there is no problem with the password
generation (Listing 7.11) for the purposes of using it as a user passphrase
(since, as mentioned above, PBKDF2 expects a low entropy password).
However, note that the array of random values is overwritten to corre-
spond to an integer between 0 and 66 rather than 0 and 256. In total, this
reduces the entropy of this array by approximately 32 bits8). The modifi-
cation of this array leads to the discarding of _CSRV, and so, on entry to
deriveKey in Listing 7.10, FailedSecurityCheck is thrown due to the in-
sufficient salt. This can, as before, be solved by simply generating the salt
at the necessary time rather than reusing the password within the call to

8This approximation assumes usedChars has length 64 rather than 67. In fact, there is
also a bias towards the first 55 characters of the string: for each of these, 4 possible 8-
bit integers map to these characters, whereas for the last 12 characters, only 3 possible
integers do. This bias also makes brute force attacks to guess the password easier.

171

7 Security Annotations for JavaScript

deriveKey. Both of these vulnerabilities were reported to the developer,
who acknowledged them and patched the application to fix these issues.

172

Conclusions 8
This thesis has presented a novel mechanism for checking meta-properties
of programs. In particular, we described a theoretical grounding for Secu-
rity Annotations, which facilitate both the specification of cryptographic
APIs in JavaScript and the checking of their usage. We implemented this
system within formal languages and on top of the dynamic symbolic exe-
cution engine ExpoSE to enable the analysis of real-world applications. We
provided security guarantees in these formal settings and demonstrated
the applicability of the approach through case studies in full JavaScript.

Historically, JavaScript has proved notoriously difficult to analyze. With
many unconventional features and a purely dynamic type system, the pre-
vailing attitude has been that JavaScript is ill-suited to cryptographic im-
plementations. The standardization of cryptographic APIs, however, has
meant that discouraging its use is no longer an option. Previous work on
this topic has focused on verifying bespoke implementations with the help
of manual work by cryptographic experts. The checking of mainstream
implementations has been restricted to languages amenable to static check-
ing; we extend the status quo to the automatic runtime analysis of Java-
Script programs using standardized APIs.

In this thesis, we have introduced Security Annotations, a mechanism
allowing values to carry meta-properties as type tags. Throughout this
thesis, we have built a formal grounding for Security Annotations in stages

173

8 Conclusions

in order to ensure correctness and usefulness of the mechanism. We first
described the mechanisms of Security Annotations within a small func-
tional language, and proved safety properties about such a language. This
necessary first step ensured the correctness of Security Annotations as a
language mechanism. Next, we migrated Security Annotations to a formal
semantics for JavaScript and proved security guarantees within this set-
ting, demonstrating the use case for this mechanism. We further demon-
strated the applicability of this beyond the theoretical through case study,
using Security Annotations to prove security properties about the usage of
cryptographic APIs. Finally, we used this formal semantics to test an im-
plementation of Security Annotations within full JavaScript. We built this
implementation on top of the DSE engine ExpoSE, and used this to enable
the automatic testing of real applications. We proved the viability of using
Security Annotations as a mechanism to check API usage through the dis-
covery of a security flaw in a file encryption service using the WebCrypto
API.

A core challenge in the analysis of applications using cryptography we
encountered was the lack of support for systematic testing of programs
with string manipulation. In particular, JavaScript’s particularly expres-
sive flavor of regular expressions has historically thwarted the analysis of
such programs. When analyzing such a program under dynamic sym-
bolic execution, these features could not be reasoned about, causing a
loss of coverage in programs using regular expressions. In this thesis, we
presented the first comprehensive model for EcmaScript 6 regular expres-
sions. Our key insight was that we could model the path condition con-
straints involving these regexes in terms of formal regular languages and
string concatenation. This model enables the constraint solver to reason
about such path condition constraints and determine path feasibility. As
such, these complex features no longer limit the efficacy of the use of DSE
as a testing tool for JavaScript programs.

174

This thesis has proposed and demonstrated the viability of runtime en-
forcement of cryptographic properties in JavaScript, a language that is
traditionally notoriously difficult to analyze. We presented the design of
Security Annotations from a language-agnostic basis, through smaller lan-
guages through to the analysis of real-world JavaScript code. We designed
a specification for the standardized WebCrypto API through Security An-
notations. Such a specification enables the automatic testing of implemen-
tations, removing the need for intervention by cryptographic experts.

Future Work There are several plausible avenues of future work which
would extend the applicability of the approach described in this thesis.
Web applications are a natural fit for developers desiring security beyond
TLS/SSL. The next step in enabling the testing of a broader range of ap-
plications is the extension of Security Annotations to the browser. Our
current system allows the checking of the core logic of web applications
(e.g., the hat.sh case study in Section 7.5.2). Extending support to web ap-
plications would make the process of testing more viable for mainstream
developers, and allow the testing of a broader range of targets.

Within this thesis, annotation specifications—both for cryptographic APIs
and for library functions which may manipulate cryptographic objects—
are designed by hand. This thesis presented only a specification for the
WebCrypto API: extending this to alternative cryptographic APIs could
improve the applicability and practicality of the approach. Further, spec-
ifications for other library calls are currently ad-hoc. In order for the ap-
proach described in this thesis to be usable by developers without expert
intervention, a systematic approach to the annotation of these methods is
required. Such an approach could include automatic inference of speci-
fications for library methods, which would ensure Security Annotations
could be used by developers as additional functionality is added to the
JavaScript standard, or new libraries are used by developers. There ex-

175

8 Conclusions

ists a strong body of work on specifications for JavaScript libraries; one
approach could be to infer Security Annotation specifications from type
specifications designed for typed languages such as TypeScript.

Two other extensions to the work proposed in this thesis could broaden
its scope. First, the mechanism of Security Annotations itself is language-
agnostic; one could apply this mechanism to other dynamically typed
languages, e.g., Python, which are also used to implement cryptographic
solutions, particularly in server-side code. Second, Security Annotations
themselves are fairly generic: although designed to express cryptographic
meta-properties, they can be used to express other security properties.
This would enable the checking of broader program properties within
JavaScript, for example, checking access control in web applications.

176

Bibliography

[1] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer,
and J. Stenman. Norn: An SMT solver for string constraints. In
Computer Aided Verification (CAV), 2015.

[2] P. A. Abdulla, M. F. Atig, Y.-F. Chen, B. P. Diep, L. Holík, A. Rezine,
and P. Rümmer. Flatten and conquer: A framework for efficient
analysis of string constraints. In ACM SIGPLAN Conf. Programming
Language Design and Implementation, PLDI, 2017.

[3] A. V. Aho. Algorithms for finding patterns in strings. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science (Vol. A),
pages 255–300. MIT Press, 1990.

[4] N. J. Al Fardan and K. G. Paterson. Lucky thirteen: Breaking the tls
and dtls record protocols. In IEEE Symposium on Security and Privacy
(S&P), Washington, DC, USA, 2013. IEEE Computer Society.

[5] T. Arcieri. What’s wrong with in-browser cryptography? https://
tonyarcieri.com/whats-wrong-with-webcrypto (Last ac-
cessed: 17 June 2019), Dec. 2013.

[6] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P.-Y.
Strub. Easycrypt: A tutorial. In Foundations of Security Analysis and
Design VII. 2014.

177

https://tonyarcieri.com/whats-wrong-with-webcrypto
https://tonyarcieri.com/whats-wrong-with-webcrypto

Bibliography

[7] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maf-
feis. Refinement types for secure implementations. ACM Trans. Prog.
Lang. Syst., 33(2):8:1–8:45, 2011.

[8] D. J. Bernstein. Cache-timing attacks on aes. Technical report, 2005.

[9] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue. A messy
state of the union: Taming the composite state machines of TLS.
In 2015 IEEE Symp. Security and Privacy (S&P 2015), pages 535–552,
2015.

[10] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and
reference implementations for the TLS 1.3 standard candidate. In
IEEE Symp. on Security and Privacy (S&P), 2017.

[11] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Language-based
defenses against untrusted browser origins. In Proceedings of the
22Nd USENIX Conference on Security, 2013.

[12] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Defensive Java-
Script – building and verifying secure web components. In Found. of
Security Analysis and Design (FOSAD), 2014.

[13] K. Bhargavan, C. Fournet, and N. Guts. Typechecking higher-order
security libraries. In Asian Symp. on Programming Languages and Sys-
tems (APLAS), 2010.

[14] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub.
Implementing TLS with verified cryptographic security. In IEEE
Symp. on Security and Privacy (S&P), 2013.

[15] K. Bhargavan and G. Leurent. On the practical (in-)security of 64-bit
block ciphers: Collision attacks on http over tls and openvpn. In

178

Bibliography

ACM SIGSAC Conf. on Computer and Communications Security (CCS),
New York, NY, USA, 2016. ACM.

[16] N. Bjørner, V. Ganesh, R. Michel, and M. Veanes. SMT-LIB sequences
and regular expressions. In Int. Workshop on Satisfiability Modulo The-
ories (SMT), 2012.

[17] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analy-
sis for string-manipulating programs. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2009.

[18] B. Blanchet. A computationally sound mechanized prover for secu-
rity protocols. IEEE Transactions on Dependable and Secure Computing,
5(4):193–207, Oct.–Dec. 2008.

[19] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of
selected equivalences for security protocols. Journal of Logic and Al-
gebraic Programming, 75(1):3–51, Feb.–Mar. 2008.

[20] M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis,
D. Naudziuniene, A. Schmitt, and G. Smith. A trusted mechanised
JavaScript specification. In ACM SIGPLAN-SAGACT Symposium on
Principles of Programming Languages, 2014.

[21] S. Bucur, J. Kinder, and G. Candea. Prototyping symbolic execution
engines for interpreted languages. In Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2014.

[22] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams. In USENIX Conf. Operating Systems Design and Implementation
(OSDI), 2008.

179

Bibliography

[23] N. Campbell. bcrypt. https://www.npmjs.com/package/

bcrypt (Last accessed: 21 July 2019), 2010.

[24] C. Câmpeanu, K. Salomaa, and S. Yu. A formal study of practical
regular expressions. Int. J. Foundations of Computer Science, 14(06),
2003.

[25] A. Chaudhuri, P. Vekris, S. Goldman, M. Roch, and G. Levi. Fast
and precise type checking for JavaScript. Proc. ACM Prog. Lang.,
1(OOPSLA):48:1–48:30, 2017.

[26] T. Chen, Y. Chen, M. Hague, A. W. Lin, and Z. Wu. What is decid-
able about string constraints with the replaceall function. PACMPL,
2(POPL):3:1–3:29, 2018.

[27] R. Chugh, D. Herman, and R. Jhala. Dependent types for JavaScript.
In ACM SIGPLAN Conf. on Object-Oriented Prog., Sys., Lang., and App.
(OOPSLA), 2012.

[28] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2008.

[29] Digital Bazaar, Inc. forge. https://github.com/

digitalbazaar/forge (Last accessed: 17 June 2019), 2010.

[30] T. Disney. contracts.js. https://github.com/disnet/

contracts.js (Last accessed: 17 June 2019), 2017.

[31] ECMA International. ECMAScript 2015 Language Specification, 2015.

[32] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empiri-
cal study of cryptographic misuse in android applications. In ACM
SIGSAC Conf. on Comp. and Comm. Security (CCS), 2013.

180

https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://github.com/digitalbazaar/forge
https://github.com/digitalbazaar/forge
https://github.com/disnet/contracts.js
https://github.com/disnet/contracts.js

Bibliography

[33] C. Flanagan. Hybrid type checking. In ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages (POPL), pages 245–256,
2006.

[34] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type quali-
fiers. In ACM SIGPLAN Conf. on Prog. Lang. Design and Implementa-
tion (PLDI), 1999.

[35] C. Fournet, K. Bhargavan, and A. D. Gordon. Foundations of se-
curity analysis and design vi. chapter Cryptographic Verification
by Typing for a Sample Protocol Implementation, pages 66–100.
Springer-Verlag, Berlin, Heidelberg, 2011.

[36] J. Fragoso Santos, P. Maksimović, G. Sampaio, and P. Gardner. Javert
2.0: Compositional symbolic execution for javascript. volume 3,
2019.

[37] T. Freeman and F. Pfenning. Refinement types for ml. In Proceed-
ings of the ACM SIGPLAN 1991 Conference on Prog. Lang. Design and
Implementation, PLDI ’91, 1991.

[38] X. Fu, M. C. Powell, M. Bantegui, and C. Li. Simple linear string
constraints. Formal Asp. Comput., 25(6), 2013.

[39] P. Gardner, S. Maffeis, and G. D. Smith. Towards a program logic for
javascript. In ACM SIGPLAN-SIGACT Symp. on Principles of Prog.
Lang. (POPL), 2012.

[40] GitHub Inc. Electron. https://electronjs.org (Last accessed:
17 June 2019), 2019.

[41] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In Proc. ACM SIGPLAN 2005 Conf. Prog. Lang. De-
sign and Implementation (PLDI 2005), 2005.

181

https://electronjs.org

Bibliography

[42] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox fuzz
testing. In Network and Distributed System Security Symp. (NDSS),
2008.

[43] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of Java-
Script. In Eur. Conf. on Object-Oriented Prog. (ECOOP), 2010.

[44] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. Jsflow: Tracking
information flow in JavaScript and its apis. In 29th Annual ACM
Symposium on Applied Computing, 2014.

[45] D. Hedin, A. Sjösten, F. Piessens, and A. Sabelfeld. A principled
approach to tracking information flow in the presence of libraries.
In Principles of Security and Trust (POST), 2017.

[46] S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo. IFC in-
side: Retrofitting languages with dynamic information flow control.
In Principles of Security and Trust (POST), 2015.

[47] L. Holík, P. Janku, A. W. Lin, P. Rümmer, and T. Vojnar. String
constraints with concatenation and transducers solved efficiently.
PACMPL, 2(POPL):4:1–4:32, 2018.

[48] N. Jovanovic, C. Krügel, and E. Kirda. Pixy: A static analysis tool
for detecting web application vulnerabilities (short paper). In IEEE
Symp. on Security and Privacy (S&P), 2006.

[49] B. Kaliski. Pkcs #5: Password-based cryptography specification ver-
sion 2.0, 2000.

[50] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second
Edition. Chapman & Hall/CRC, 2nd edition, 2014.

182

Bibliography

[51] M. Keil and P. Thiemann. Treatjs: Higher-order contracts for
javascripts. In European Conf. on Object-Oriented Programming
(ECOOP), 2015.

[52] N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated verifica-
tion for secure messaging protocols and their implementations: A
symbolic and computational approach. In IEEE European Symp. on
Security and Privacy (EuroS&P), 2017.

[53] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini. CrySL: Vali-
dating correct usage of cryptographic APIs. In Eur. Conf. on Object
Oriented Prog. (ECOOP), 2018.

[54] D. Lazar, H. Chen, X. Wang, and N. Zeldovich. Why does crypto-
graphic software fail?: A case study and open problems. In Asia-
Pacific Workshop on Systems, 2014.

[55] G. Li, E. Andreasen, and I. Ghosh. Symjs: automatic symbolic test-
ing of JavaScript web applications. In Int. Symp. Foundations of Soft-
ware Engineering (FSE), 2014.

[56] G. Li and I. Ghosh. Pass: String solving with parameterized array
and interval automaton. In Haifa Verification Conf. (HVC), 2013.

[57] N. Li, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Reggae:
Automated test generation for programs using complex regular ex-
pressions. In Automated Software Engineering (ASE), 2009.

[58] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A
DPLL(T) theory solver for a theory of strings and regular expres-
sions. In Int. Conf. Computer Aided Verification (CAV), 2014.

[59] T. Liang, N. Tsiskaridze, A. Reynolds, C. Tinelli, and C. Barrett. A
decision procedure for regular membership and length constraints

183

Bibliography

over unbounded strings. In Int. Symp. on Frontiers of Combining Sys-
tems, FroCoS, 2015.

[60] B. Loring, D. Mitchell, and J. Kinder. ExpoSE: Practical symbolic
execution of standalone JavaScript. In 24th International SPIN Sym-
posium on Model Checking of Software, SPIN ’17, 2017.

[61] B. Loring, D. Mitchell, and J. Kinder. Sound regular expression
semantics for dynamic symbolic execution of javascript. In Proc.
ACM SIGPLAN Conf. Programming Language Design and Implemen-
tation (PLDI). ACM, 2019.

[62] M. Madsen, O. Lhoták, and F. Tip. A model for reasoning about
JavaScript promises. Proc. ACM Prog. Lang., 1(OOPSLA):86:1–86:24,
2017.

[63] M. Matsui. Linear cryptanalysis method for des cipher. In Advances
in Cryptology — EUROCRYPT ’93, Berlin, Heidelberg, 1994. Springer
Berlin Heidelberg.

[64] D. Mitchell and J. Kinder. A formal model for checking crypto-
graphic api usage in javascript. In European Symp. on Research in
Comp. Security (ESORICS), 2019.

[65] D. Mitchell, L. T. van Binsbergen, B. Loring, and J. Kinder. Check-
ing cryptographic API usage with composable annotations. In
ACM SIGPLAN Workshop on Partial Evaluation and Prog. Manipula-
tion (PEPM), 2018.

[66] J. Mott. crypto-js. https://code.google.com/archive/p/

crypto-js/ (Last accessed: 17 June 2019), 2013.

[67] Mozilla. localforage. https://localforage.github.io/

localForage/ (Last accessed: 28 August 2019), 2013.

184

https://code.google.com/archive/p/crypto-js/
https://code.google.com/archive/p/crypto-js/
https://localforage.github.io/localForage/
https://localforage.github.io/localForage/

Bibliography

[68] S. Nadi, S. Krüger, M. Mezini, and E. Bodden. Jumping through
hoops: why do java developers struggle with cryptography APIs?
In Int. Conf. on Software Eng. (ICSE), 2016.

[69] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Anal-
ysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[70] Node.js Foundation. Node.js crypto API. https://nodejs.org/
api/crypto.html (Last accessed: 17 June 2019), 2010.

[71] Node.js Foundation. Node.js events API. https://nodejs.org/
api/net.html (Last accessed: 23 August 2019), 2010.

[72] Node.js Foundation. Node.js net API. https://nodejs.org/

api/net.html (Last accessed: 17 June 2019), 2010.

[73] Node.js Foundation. Node.js. https://nodejs.org (Last ac-
cessed: 17 June 2019), 2019.

[74] U. S. N. I. of Standards and T. (NIST). Announcing the advanced
encryption standard (AES). Technical report, 2001.

[75] D. Olson. Client-side encryption. https:

//www.braintreepayments.com/blog/

client-side-encryption/ (Last accessed: 17 June 2019),
May 2011.

[76] Oracle. Java cryptography architecture (jca) reference guide.
https://docs.oracle.com/javase/8/docs/technotes/

guides/security/crypto/CryptoSpec.html/ (Last ac-
cessed: 25 July 2019), 2019.

[77] D. Park, A. Stefănescu, and G. Roşu. Kjs: A complete formal seman-
tics of JavaScript. In ACM SIGPLAN Conf. on Prog. Lang. Design and
Implementation (PLDI), 2015.

185

https://nodejs.org/api/crypto.html
https://nodejs.org/api/crypto.html
https://nodejs.org/api/net.html
https://nodejs.org/api/net.html
https://nodejs.org/api/net.html
https://nodejs.org/api/net.html
https://nodejs.org
https://www.braintreepayments.com/blog/client-side-encryption/
https://www.braintreepayments.com/blog/client-side-encryption/
https://www.braintreepayments.com/blog/client-side-encryption/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html/

Bibliography

[78] C. S. Pasareanu and N. Rungta. Symbolic PathFinder: symbolic ex-
ecution of Java bytecode. In Int. Conf. on Automated Software Eng.
(ASE), pages 179–180, 2010.

[79] A. Petcher and G. Morrisett. The foundational cryptography frame-
work. In Principles of Security and Trust. Springer, 2015.

[80] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[81] J. G. Politz, M. J. Carroll, B. S. Lerner, J. Pombrio, and S. Krishna-
murthi. A tested semantics for getters, setters, and eval in JavaScript.
In Symp. on Dynamic Languages (DLS), 2012.

[82] T. Ptacek. JavaScript cryptography considered harm-
ful. https://www.nccgroup.trust/us/about-us/

newsroom-and-events/blog/2011/august/

javascript-cryptography-considered-harmful/ (Last
accessed: 17 June 2019), Aug. 2011.

[83] A. Rastogi, N. Swamy, C. Fournet, G. M. Bierman, and P. Vekris.
Safe & efficient gradual typing for TypeScript. In ACM SIGPLAN-
SIGACT Symp. on Principles of Prog. Lang. (POPL), 2015.

[84] E. Rescorla. The transport layer security (TLS) protocol version
1.3. Federal information processing standards publication 197, IETF,
2018.

[85] G. Rosu and T. Serbanuta. An overview of the K semantic frame-
work. J. Log. Algebr. Program., 79(6):397–434, 2010.

[86] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1):5–
19, 2003.

186

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/

Bibliography

[87] J. F. Santos, P. Gardner, P. Maksimovic, and D. Naudziuniene. To-
wards logic-based verification of javascript programs. In Int. Conf.
on Automated Deduction (CADE), 2017.

[88] J. F. Santos, P. Maksimovic, D. Naudziuniene, T. Wood, and P. Gard-
ner. JaVerT: JavaScript verification toolchain. Proc. ACM Prog. Lang.,
2(POPL):50:1–50:33, 2018.

[89] J. F. Santos and T. Rezk. An information flow monitor-inlining com-
piler for securing a core of javascript. In ICT Systems Security and
Privacy Protection, 2014.

[90] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A symbolic execution framework for JavaScript. In IEEE Symp. Sec.
and Privacy (S&P), 2010.

[91] J. D. Scott, P. Flener, and J. Pearson. Constraint solving on bounded
string variables. In Integration of AI and OR Tech. in Constraint Prog.
(CPAIOR), 2015.

[92] K. Sen, S. Kalasapur, T. G. Brutch, and S. Gibbs. Jalangi: A selec-
tive record-replay and dynamic analysis framework for javascript.
In Joint Meeting of the European Software Engineering Conf. and the
ACM SIGSOFT Symp. on the Foundations of Software Engineering, (ES-
EC/FSE), 2013.

[93] sh-dv. Hat.sh. https://hat.sh (Last accessed: 30 August 2019),
2019.

[94] E. Stark, M. Hamburg, and D. Boneh. Symmetric cryptography
in JavaScript. In Annual Computer Security Applications Conference
(ASAC), 2009.

187

https://hat.sh

Bibliography

[95] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp,
and D. Mazières. Protecting users by confining javascript with
COWL. In USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), 2014.

[96] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov.
The first collision for full sha-1. In Advances in Cryptology – CRYPTO
2017. Springer International Publishing, 2017.

[97] N. Sullivan. How we built origin CA: Web crypto. https://blog.
cloudflare.com/how-we-built-origin-ca-web-crypto/

(Last accessed: 17 June 2019), May 2016.

[98] N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. In
ACM SIGPLAN Int. Conf. on Func. Prog. (ICFP), 2011.

[99] A. Taly, Ú. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Au-
tomated analysis of security-critical JavaScript APIs. In IEEE Symp.
on Security and Privacy (S&P), 2011.

[100] T. Taubert. Keeping secrets with java-
script. https://timtaubert.de/talks/

keeping-secrets-with-javascript/ (Last accessed: 28
August 2019), 2014.

[101] The Guardian. The NSA files. https://www.theguardian.

com/us-news/the-nsa-files (Last accessed: 17 June 2019).

[102] S. Thomas. Decryptocat. https://tobtu.com/decryptocat.

php (Last accessed: 19 June 2019), 2013.

[103] J. Thomé, L. K. Shar, D. Bianculli, and L. C. Briand. Search-driven

188

https://blog.cloudflare.com/how-we-built-origin-ca-web-crypto/
https://blog.cloudflare.com/how-we-built-origin-ca-web-crypto/
https://timtaubert.de/talks/keeping-secrets-with-javascript/
https://timtaubert.de/talks/keeping-secrets-with-javascript/
https://www.theguardian.com/us-news/the-nsa-files
https://www.theguardian.com/us-news/the-nsa-files
https://tobtu.com/decryptocat.php
https://tobtu.com/decryptocat.php

Bibliography

string constraint solving for vulnerability detection. In Int. Conf.
Software Engineering (ICSE), 2017.

[104] M. Trinh, D. Chu, and J. Jaffar. S3: A symbolic string solver for
vulnerability detection in web applications. In Conf. Computer and
Commun. Sec. (CCS), 2014.

[105] M. Trinh, D. Chu, and J. Jaffar. Progressive reasoning over
recursively-defined strings. In Computer Aided Verification (CAV),
2016.

[106] M. Trinh, D. Chu, and J. Jaffar. Model counting for recursively-
defined strings. In Computer Aided Verification (CAV), 2017.

[107] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic regular
expression explorer. In Software Testing, Verification and Validation
(ICST), 2010.

[108] P. Vekris, B. Cosman, and R. Jhala. Refinement types for TypeScript.
In ACM SIGPLAN Conf. on Prog. Lang. Design and Implementation
(PLDI), 2016.

[109] X. Wang and H. Yu. How to break md5 and other hash functions.
In R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[110] M. Watson. Web cryptography API. W3C recommendation, W3C,
Jan. 2017.

[111] J. G. Wright and S. D. Wolthusen. Stealthy injection attacks against
iec61850’s goose messaging service. IEEE PES Innovative Smart Grid
Technologies Conf. Europe (ISGT-Europe), 2018.

[112] C. Zapponi. GitHut: A small place to discover languages in GitHub.
https://githut.info (Last accessed: 17 June 2019), 2019.

189

https://githut.info

Bibliography

[113] Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, M. Berzish, J. Dolby,
and X. Zhang. Z3str2: an efficient solver for strings, regular ex-
pressions, and length constraints. Formal Methods in System Design,
50(2-3), 2017.

[114] Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, J. Dolby, and
X. Zhang. Effective search-space pruning for solvers of string equa-
tions, regular expressions and length constraints. In Computer Aided
Verification (CAV), 2015.

[115] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A Z3-based string solver
for web application analysis. In Foundations of Software Engineering
(FSE), 2013.

[116] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche.
Hacl*: A verified modern cryptographic library. In ACM SIGSAC
Conf. on Computer and Communications Security (CCS), New York, NY,
USA, 2017. ACM.

190

	Introduction
	Context
	Cryptography
	Implementing Cryptography
	Detecting Cryptographic Errors
	JavaScript and Cryptography

	The Problem
	The Approach
	Analyzing String Manipulating Programs
	Contributions

	Background
	Analyzing Cryptographic Implementations
	Analyzing JavaScript Programs
	JavaScript and Cryptography
	Test Generation for JavaScript
	A Primer on Dynamic Symbolic Execution
	ExpoSE: Practical DSE for JavaScript

	Structure of Security Annotations
	What are Security Annotations?
	Formalizing Security Annotations
	The !cut! Operator
	Related Work

	A Lambda Calculus of Security Annotations
	Design Decisions for SA
	Syntax of SA
	Dynamics
	Statics
	A Subtyping Relation
	Annotated typing rules for SA

	Manipulating Security Annotations in SA
	Annotated Type Safety for SA
	Preservation for SA
	Progress for SA
	Discussion

	Related Work

	A Semantics for Security Annotations in JavaScript
	Working with a semantics for JavaScript
	A More Complex Language
	Syntax of S5SA
	Semantics for S5SA
	Coercing Security Annotations
	Checking Security Annotations
	Completing S5SA

	Implementing S5SA
	Declaring Annotations
	Deciding :.
	Adapting The Semantics of S5SA
	Mechanizing Functions

	Executing JavaScript in S5SA
	Using S5SA: A Case Study
	Properties of S5SA Programs
	Safety Guarantees
	Security Guarantees
	Security Guarantees in Practice
	Limitations

	Related Work

	Sound Regular Expression Semantics for the Dynamic Symbolic Execution of JavaScript
	ECMAScript Regex
	Approach
	Modeling ES6 Regex
	Preprocessing
	Operators and Capture Groups
	Backreferences
	Modeling Non-membership

	Matching Precedence Refinement
	Matching Precedence
	Termination of the Scheme
	Soundness of the Model

	Modeling the ES6 Regex API
	Consequences of this Model
	Related Work

	Security Annotations for JavaScript
	Implementation
	Security Annotations
	Attaching Annotations
	Complications: Annotating Objects.
	Manipulating Annotations

	Establishing Faithfulness
	A Testing Strategy for the Detection of Cryptographic Errors
	From S5SA to ExpoSESA
	Case Studies
	secret-notes
	hat.sh: A File Encryption Serivce

	Conclusions
	Bibliography

