239 research outputs found

    INSENS: Intrusion-tolerant routing for wireless sensor networks

    Get PDF
    This paper describes an INtrusion-tolerant routing protocol for wireless SEnsor NetworkS (INSENS). INSENS securely and efficiently constructs tree-structured routing for wireless sensor networks (WSNs). The key objective of an INSENS network is to tolerate damage caused by an intruder who has compromised deployed sensor nodes and is intent on injecting, modifying, or blocking packets. To limit or localize the damage caused by such an intruder, INSENS incorporates distributed lightweight security mechanisms, including efficient one-way hash chains and nested keyed message authentication codes that defend against wormhole attacks, as well as multipath routing. Adapting to WSN characteristics, the design of INSENS also pushes complexity away from resource-poor sensor nodes towards resource-rich base stations. An enhanced single-phase version of INSENS scales to large networks, integrates bidirectional verification to defend against rushing attacks, accommodates multipath routing to multiple base stations, enables secure joining/leaving, and incorporates a novel pairwise key setup scheme based on transitory global keys that is more resilient than LEAP. Simulation results are presented to demonstrate and assess the tolerance of INSENS to various attacks launched by an adversary. A prototype implementation of INSENS over a network of MICA2 motes is presented to evaluate the cost incurred

    Safe Routing Approach by Identifying and Subsequently Eliminating the Attacks in MANET

    Full text link
    Wireless networks that are decentralized and communicate without using existing infrastructure are known as mobile ad-hoc networks. The most common sorts of threats and attacks can affect MANETs. Therefore, it is advised to utilize intrusion detection, which controls the system to detect additional security issues. Monitoring is essential to avoid attacks and provide extra protection against unauthorized access. Although the current solutions have been designed to defeat the attack nodes, they still require additional hardware, have considerable delivery delays, do not offer high throughput or packet delivery ratios, or do not do so without using more energy. The capability of a mobile node to forward packets, which is dependent on the platform's life quality, may be impacted by the absence of the network node power source. We developed the Safe Routing Approach (SRA), which uses behaviour analysis to track and monitor attackers who discard packets during the route discovery process. The attacking node recognition system is made for irregular routing node detection to protect the controller network's usual properties from becoming recognized as an attack node. The suggested method examines the nearby attack nodes and conceals the trusted node in the routing pathway. The path is instantly assigned after the initial discovery of trust nodes based on each node's strength value. It extends the network's life span and reduces packet loss. In terms of Packet Delivery Ratio (PDR), energy consumption, network performance, and detection of attack nodes, the suggested approach is contrasted with AIS, ZIDS, and Improved AODV. The findings demonstrate that the recommended strategy performs superior in terms of PDR, residual energy, and network throughput

    Wireless Sensor Networks for Building Robotic Paths - A Survey of Problems and Restrictions

    Get PDF
    The conjugation of small nodes with sensing, communication and processing capabilities allows for the creation of wireless sensor networks (WSNs). These networks can be deployed to measure a very wide range of environmental phenomena and send data from remote locations back to users. They offer new and exciting possibilities for applications and research. This paper presents the background of WSNs by firstly exploring the different fields applications, with examples for each of these fields, then the challenges faced by these networks in areas such as energy-efficiency, node localization, node deployment, limited storage and routing. It aims at explaining each issue and giving solutions that have been proposed in the research literature. Finally, the paper proposes a practical scenario of deploying a WSN by autonomous robot path construction. The requirements for such a scenario and the open issues that can be tackled by it are exposed, namely the issues of associated with measuring RSSI, the degree of autonomy of the robot and connectivity restoration.The authors would like to acknowledge the company Inspiring Sci, Lda for the interest and valuable contribution to the successful development of this work.info:eu-repo/semantics/publishedVersio

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    A Centralized Energy Management System for Wireless Sensor Networks

    Get PDF
    This document presents the Centralized Energy Management System (CEMS), a dynamic fault-tolerant reclustering protocol for wireless sensor networks. CEMS reconfigures a homogeneous network both periodically and in response to critical events (e.g. cluster head death). A global TDMA schedule prevents costly retransmissions due to collision, and a genetic algorithm running on the base station computes cluster assignments in concert with a head selection algorithm. CEMS\u27 performance is compared to the LEACH-C protocol in both normal and failure-prone conditions, with an emphasis on each protocol\u27s ability to recover from unexpected loss of cluster heads

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area

    Routing Protocols for Underwater Acoustic Sensor Networks: A Survey from an Application Perspective

    Get PDF
    Underwater acoustic communications are different from terrestrial radio communications; acoustic channel is asymmetric and has large and variable end‐to‐end propagation delays, distance‐dependent limited bandwidth, high bit error rates, and multi‐path fading. Besides, nodes’ mobility and limited battery power also cause problems for networking protocol design. Among them, routing in underwater acoustic networks is a challenging task, and many protocols have been proposed. In this chapter, we first classify the routing protocols according to application scenarios, which are classified according to the number of sinks that an underwater acoustic sensor network (UASN) may use, namely single‐sink, multi‐sink, and no‐sink. We review some typical routing strategies proposed for these application scenarios, such as cross‐layer and reinforcement learning as well as opportunistic routing. Finally, some remaining key issues are highlighted

    A survey of distributed data aggregation algorithms

    Get PDF
    Distributed data aggregation is an important task, allowing the decentralized determination of meaningful global properties, which can then be used to direct the execution of other applications. The resulting values are derived by the distributed computation of functions like COUNT, SUM, and AVERAGE. Some application examples deal with the determination of the network size, total storage capacity, average load, majorities and many others. In the last decade, many different approaches have been proposed, with different trade-offs in terms of accuracy, reliability, message and time complexity. Due to the considerable amount and variety of aggregation algorithms, it can be difficult and time consuming to determine which techniques will be more appropriate to use in specific settings, justifying the existence of a survey to aid in this task. This work reviews the state of the art on distributed data aggregation algorithms, providing three main contributions. First, it formally defines the concept of aggregation, characterizing the different types of aggregation functions. Second, it succinctly describes the main aggregation techniques, organizing them in a taxonomy. Finally, it provides some guidelines toward the selection and use of the most relevant techniques, summarizing their principal characteristics.info:eu-repo/semantics/publishedVersio

    Design and evaluation of wireless dense networks : application to in-flight entertainment systems

    Get PDF
    Le rĂ©seau sans fil est l'un des domaines de rĂ©seautage les plus prometteurs avec des caractĂ©ristiques uniques qui peuvent fournir la connectivitĂ© dans les situations oĂč il est difficile d'utiliser un rĂ©seau filaire, ou lorsque la mobilitĂ© des nƓuds est nĂ©cessaire. Cependant, le milieu de travail impose gĂ©nĂ©ralement diverses contraintes, oĂč les appareils sans fil font face Ă  diffĂ©rents dĂ©fis lors du partage des moyens de communication. De plus, le problĂšme s'aggrave avec l'augmentation du nombre de nƓuds. DiffĂ©rentes solutions ont Ă©tĂ© introduites pour faire face aux rĂ©seaux trĂšs denses. D'autre part, un nƓud avec une densitĂ© trĂšs faible peut crĂ©er un problĂšme de connectivitĂ© et peut conduire Ă  l'optension de nƓuds isolĂ©s et non connectes au rĂ©seau. La densitĂ© d'un rĂ©seau est dĂ©finit en fonction du nombre de nƓuds voisins directs au sein de la portĂ©e de transmission du nƓud. Cependant, nous croyons que ces mĂ©triques ne sont pas suffisants et nous proposons une nouvelle mesure qui considĂšre le nombre de voisins directs et la performance du rĂ©seau. Ainsi, la rĂ©ponse du rĂ©seau, respectant l'augmentation du nombre de nƓuds, est considĂ©rĂ©e lors du choix du niveau de la densitĂ©. Nous avons dĂ©fini deux termes: l'auto-organisation et l'auto-configuration, qui sont gĂ©nĂ©ralement utilisĂ©s de façon interchangeable dans la littĂ©rature en mettant en relief la diffĂ©rence entre eux. Nous estimons qu'une dĂ©finition claire de la terminologie peut Ă©liminer beaucoup d'ambiguĂŻtĂ© et aider Ă  prĂ©senter les concepts de recherche plus clairement. Certaines applications, telles que Ies systĂšmes "In-Flight Entertainment (IFE)" qui se trouvent Ă  l'intĂ©rieur des cabines d'avions, peuveut ĂȘtre considĂ©rĂ©es comme des systĂšmes sans fil de haute densitĂ©, mĂȘme si peu de nƓuds sont relativement prĂ©sents. Pour rĂ©soudre ce problĂšme, nous proposons une architecture hĂ©tĂ©rogĂšne de diffĂ©rentes technologies Ă  fin de surmonter les contraintes spĂ©cifiques de l'intĂ©rieur de la cabine. Chaque technologie vise Ă  rĂ©soudre une partie du problĂšme. Nous avons rĂ©alisĂ© diverses expĂ©rimentations et simulations pour montrer la faisabilitĂ© de l'architecture proposĂ©e. Nous avons introduit un nouveau protocole d'auto-organisation qui utilise des antennes intelligentes pour aider certains composants du systĂšme IFE; Ă  savoir les unitĂ©s d'affichage et leurs systĂšmes de commande, Ă  s'identifier les uns les autres sans aucune configuration prĂ©liminaire. Le protocole a Ă©tĂ© conçu et vĂ©rifiĂ© en utilisant le langage UML, puis, un module de NS2 a Ă©tĂ© crĂ©Ă© pour tester les diffĂ©rents scĂ©narios.Wireless networking is one of the most challenging networking domains with unique features that can provide connectivity in situations where it is difficult to use wired networking, or when ! node mobility is required. However, the working environment us! ually im poses various constrains, where wireless devices face various challenges when sharing the communication media. Furthermore, the problem becomes worse when the number of nodes increase. Different solutions were introduced to cope with highly dense networks. On the other hand, a very low density can create a poor connectivity problem and may lead to have isolated nodes with no connection to the network. It is common to define network density according to the number of direct neighboring nodes within the node transmission range. However, we believe that such metric is not enough. Thus, we propose a new metric that encompasses the number of direct neighbors and the network performance. In this way, the network response, due to the increasing number of nodes, is considered when deciding the density level. Moreover, we defined two terms, self-organization and self-configuration, which are usually used interchangeably in the literature through highlighting the difference ! between them. We believe that having a clear definition for terminology can eliminate a lot of ambiguity and help to present the research concepts more clearly. Some applications, such as In-Flight Entertainment (IFE) systems inside the aircraft cabin, can be considered as wirelessly high dense even if relatively few nodes are present. To solve this problem, we propose a heterogeneous architecture of different technologies to overcome the inherited constrains inside the cabin. Each technology aims at solving a part of the problem. We held various experimentation and simulations to show the feasibility of the proposed architecture
    • 

    corecore